
1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.2

1.2.3

1.2.4

1.3

1.3.1

1.3.2

1.3.2.1

1.3.2.2

1.3.2.3

1.3.2.4

1.3.2.5

1.3.2.6

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.11.1

1.3.11.2

1.3.11.3

1.3.11.4

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.1.3

1.4.1.4

1.4.1.5

1.4.1.6

1.4.1.7

1.4.1.8

Table	of	Contents
Introduction

Getting	Started

Installation

Install	as	Service	on	Unix

Install	as	Service	on	Windows

Install	with	Docker

Run	the	server

Run	the	console

Run	the	Studio

Data	Modeling

Graph	or	Document	API?

Basic	Concepts

Supported	Types

Inheritance

Concurrency

Schema

Cluster	Selection

Managing	Dates

Classes

Clusters

Record	ID

Relationships

Working	with	Graphs

Using	Schema	with	Graphs

Graph	Consistency

Fetching	Strategies

Use	Cases

Time	Series

Chat

Key	Value

Queue	system

Administration

Console	Command	Reference

Backup

Begin

Browse	Class

Browse	Cluster

List	Classes

Cluster	Status

List	Clusters

List	Servers

1

1.4.1.9

1.4.1.10

1.4.1.11

1.4.1.12

1.4.1.13

1.4.1.14

1.4.1.15

1.4.1.16

1.4.1.17

1.4.1.18

1.4.1.19

1.4.1.20

1.4.1.21

1.4.1.22

1.4.1.23

1.4.1.24

1.4.1.25

1.4.1.26

1.4.1.27

1.4.1.28

1.4.1.29

1.4.1.30

1.4.1.31

1.4.1.32

1.4.1.33

1.4.1.34

1.4.1.35

1.4.1.36

1.4.1.37

1.4.1.38

1.4.1.39

1.4.1.40

1.4.1.41

1.4.1.42

1.4.1.43

1.4.1.44

1.4.1.45

1.4.1.46

1.4.1.47

1.4.1.48

1.4.1.49

1.4.1.50

1.4.1.51

1.4.1.52

List	Server	Users

Commit

Config

Config	Get

Config	Set

Connect

Create	Cluster

Create	Database

Create	Index

Create	Link

Create	Property

Declare	Intent

Delete

Dictionary	Get

Dictionary	Keys

Dictionary	Put

Dictionary	Remove

Disconnect

Display	Record

Display	Raw	Record

Drop	Cluster

Drop	Database

Drop	Server	User

Export	Database

Export	Record

Freeze	DB

Get

GREMLIN

Import	Database

Indexes

Info

Info	Class

Info	Property

Insert

List	Databases

List	Connections

Load	Record

Profiler

Properties

Release	DB

Reload	Record

Restore

Rollback

Set

2

1.4.1.53

1.4.1.54

1.4.2

1.4.2.1

1.4.2.2

1.4.2.3

1.4.2.4

1.4.2.5

1.4.2.6

1.4.2.7

1.4.2.8

1.4.3

1.4.4

1.4.4.1

1.4.4.2

1.4.4.2.1

1.4.4.2.2

1.4.4.3

1.4.5

1.4.5.1

1.4.5.2

1.4.5.3

1.4.5.4

1.4.5.5

1.4.5.6

1.4.5.7

1.4.5.8

1.4.5.9

1.4.5.10

1.4.5.11

1.4.5.12

1.4.5.13

1.4.6

1.4.7

1.4.7.1

1.4.7.2

1.4.7.3

1.4.7.4

1.4.7.5

1.4.7.6

1.4.7.7

1.4.7.8

1.4.7.9

1.4.7.10

Set	Server	User

Sleep

Upgrading

Backward	compatibility

From	2.1.x	to	2.2.x

From	2.0.x	to	2.1.x

From	1.7.x	to	2.0.x

From	1.6.x	to	1.7.x

From	1.5.x	to	1.6.x

From	1.4.x	to	1.5.x

From	1.3.x	to	1.4.x

Backup	and	Restore

Export	and	Import

Export	format

Import	From	RDBMS

To	Document	Model

To	Graph	Model

Import	From	Neo4j

ETL

Configuration

Blocks

Sources

Extractors

Transformers

Loaders

Import	the	database	of	Beers

Import	from	CSV	to	a	Graph

Import	a	tree	structure

Import	from	JSON

Import	from	RDBMS

Import	from	DB-Pedia

Import	from	Parse	(Facebook)

Logging

Studio

Query

Edit	Document

Edit	Vertex

Schema

Class

Graph	Editor

Functions

Security

Database	Management

Server	Management

3

1.4.7.11

1.4.8

1.4.8.1

1.4.8.2

1.4.9

1.4.9.1

1.4.9.2

1.4.9.3

1.4.9.4

1.4.9.5

1.4.9.6

1.4.10

1.4.10.1

1.4.10.2

1.4.10.3

1.4.10.4

1.4.11

1.5

1.5.1

1.5.2

1.5.3

1.5.3.1

1.5.3.2

1.5.3.2.1

1.5.3.2.2

1.5.3.2.3

1.5.3.2.4

1.5.3.2.5

1.5.3.3

1.5.3.3.1

1.5.3.3.2

1.5.3.3.3

1.5.3.4

1.5.3.4.1

1.5.3.5

1.5.3.6

1.5.3.7

1.5.3.8

1.5.3.9

1.5.3.10

1.5.3.11

1.5.3.12

1.5.4

1.5.5

Auditing

Troubleshooting

Java

Query	Examples

Performance	Tuning

Setting	Configuration

Graph	API

Document	API

Object	API

Profiler

Distributed	tuning

Security

Database	security

Server	security

Database	encryption

Secure	SSL	connections

Server	Management

APIs	and	Drivers

Functions

Available	Plugins	and	Tools

Java	API

Java	API	Introduction

Graph	API

Factory

Schema

Partitioned

Comparison

Lightweight	Edges

Document	API

Schema

Field	Part

Comparison

Object	API

Binding

Traverse

Live	Query

Multi-Threading

Transactions

Binary	Data

Web	Apps

JDBC	Driver

JPA

JMX

Gremlin	API

4

1.5.6

1.5.6.1

1.5.7

1.5.8

1.5.9

1.5.9.1

1.5.9.2

1.5.9.3

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.1.3

1.6.1.4

1.6.1.5

1.6.2

1.6.2.1

1.6.2.2

1.6.2.3

1.6.2.4

1.6.2.5

1.6.2.6

1.6.2.7

1.6.2.8

1.6.2.9

1.6.2.10

1.6.2.11

1.6.2.12

1.6.2.13

1.6.2.14

1.6.2.15

1.6.2.16

1.6.2.17

1.6.2.18

1.6.2.19

1.6.2.20

1.6.2.21

1.6.2.22

1.6.2.23

1.6.2.24

1.6.2.25

1.6.2.26

1.6.2.27

1.6.2.28

Javascript

Javascript	API

Scala	API

HTTP	API

Binary	Protocol

CSV	Serialization

Schemaless	Serialization

Commands

SQL	Reference

CRUD	Operations

Select

Insert

Update

Delete

Match

Commands

Alter	Class

Alter	Cluster

Alter	Database

Alter	Property

Alter	Sequence

Create	Class

Create	Cluster

Create	Edge

Create	Function

Create	Index

Create	Link

Create	Property

Create	Sequence

Create	User

Create	Vertex

Move	Vertex

Update	edge

Delete	Edge

Delete	Vertex

Drop	Class

Drop	Cluster

Drop	Index

Drop	Property

Drop	Sequence

Drop	User

Explain

Find	References

Grant

5

1.6.2.29

1.6.2.30

1.6.2.31

1.6.2.32

1.6.2.33

1.6.2.34

1.6.2.35

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.6.9

1.6.10

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.5.1

1.8

1.8.1

1.8.2

1.8.3

1.8.3.1

1.8.4

1.8.5

1.8.6

1.8.7

1.8.8

1.9

1.9.1

1.9.1.1

1.9.1.2

1.9.1.2.1

1.9.1.2.2

1.9.1.2.3

1.9.1.3

1.9.2

1.9.3

1.9.4

1.9.5

Optimize	Database

Rebuild	Index

Revoke

Traverse

Truncate	Class

Truncate	Cluster

Truncate	Record

Filtering

Functions

Methods

Batch

Pagination

Sequences	and	auto	increment

Pivoting	with	Query

Command	Cache

Indexing

SB-Tree

Hash

Full	Text

Lucene	Full	Text

Lucene	Spatial	Index

Lucene	Spatial	Module

Scaling

Working	with	Distributed	Graphs

Lifecycle

Configuration

Runtime	Configuration

Server	Manager

Replication

Sharding

Cache

Setup	a	Distributed	Database

Internals

Storages

Memory	storage

PLocal	storage

Engine

Disk-Cache

WAL	(Journal)

Local	storage	(deprecated)

Clusters

Limits

RidBag

SQL	Syntax

6

1.9.6

1.9.7

1.9.8

1.9.9

1.9.10

1.9.10.1

1.9.10.2

1.9.11

1.9.11.1

1.9.11.2

1.9.12

1.9.12.1

1.9.12.2

1.9.12.3

1.9.12.4

1.9.12.5

1.9.12.6

1.10

1.10.1

1.10.1.1

1.10.1.2

1.10.2

1.10.3

1.10.3.1

1.10.4

1.11

1.11.1

Custom	Index	Engine

Caching

Transaction

Hooks	-	Triggers

Dynamic	Hooks

Java	(Native)	Hooks

Java	Hook	Tutorial

Server

Embed	the	Server

Web	Server

Plugins

Automatic	Backup

Mail

JMX

Rexster

Gephi	Graph	Render

spider-box

Contribute	to	OrientDB

The	Team

Hackaton

Report	an	issue

Get	in	touch

More	Tutorials

Presentations

Roadmap

Enterprise	Edition

Auditing

7

OrientDB	Manual	-	version	2.1.x

Quick	Navigation

Getting	Started Main	Topics Developers

Introduction	to	OrientDB Basic	Concepts SQL

Installation Supported	Data	Types Gremlin

First	Steps Inheritance HTTP	API

Troubleshooting Security Java	API

Enterprise	Edition Indexes NodeJS

ACID	Transactions PHP

Functions Python

Caching	Levels .NET

Common	Use	Cases Other	Drivers

Network	Binary	Protocol

Javadocs

Operations

Installation
3rd	party	Plugins
Upgrade
Configuration
Distributed	Architecture	(replication,	sharding	and	high-availability)
Performance	Tuning
ETL	to	Import	any	kind	of	data	into	OrientDB
Import	from	Relational	DB
Backup	and	Restore
Export	and	Import

Quick	References

Introduction

8

https://github.com/orientechnologies/PhpOrient
https://github.com/orientechnologies/pyorient
https://github.com/orientechnologies/OrientDB-NET.binary
http://www.orientechnologies.com/javadoc/latest/

Console
Studio	web	tool
Workbench	(Enterprise	Edition)
OrientDB	Server
Network-Binary-Protocol
Gephi	Graph	Analysis	Visual	tool
Rexster	Support	and	configuration
Continuous	integration

Resources

User	Group	-	Have	question,	troubles,	problems?
#orientdb	IRC	channel	on	freenode
Professional	Support
Training	-	Training	and	classes.
Events	-	Follow	OrientDB	at	the	next	event!
Team	-	Meet	the	team	behind	OrientDB
Contribute	-	Contribute	to	the	project.
Who	is	using	OrientDB?	-	Clients	using	OrientDB	in	production.

Questions	or	Need	Help?

Check	out	our	Get	in	Touch	page	for	different	ways	of	getting	in	touch	with	us.

PDF

This	documentation	is	also	available	in	PDF	format.

Past	releases

v1.7.8
v2.0.x

Welcome	to	OrientDB	-	the	first	Multi-Model	Open	Source	NoSQL	DBMS	that	brings	together	the	power	of	graphs	and	the	flexibility
of	documents	into	one	scalable	high-performance	operational	database.

Every	effort	has	been	made	to	ensure	the	accuracy	of	this	manual.	However,	Orient	Technologies,	LTD.	makes	no	warranties
with	respect	to	this	documentation	and	disclaims	any	implied	warranties	of	merchantability	and	fitness	for	a	particular	purpose.
The	information	in	this	document	is	subject	to	change	without	notice.

Introduction

9

http://orientdb.com/enterprise/last/introduction.html
http://helios.orientechnologies.com/
http://orientdb.com/active-user-community
http://webchat.freenode.net/?channels=orientdb
http://orientdb.com/support
http://orientdb.com/training
http://orientdb.com/event
http://orientdb.com/customers
http://orientdb.com/docs/1.7.8/
http://orientdb.com/docs/2.0/

Getting	Started
Over	the	past	few	years,	there	has	been	an	explosion	of	many	NoSQL	database	solutions	and	products.	The	meaning	of	the	word
"NoSQL"	is	not	a	campaign	against	the	SQL	language.	In	fact,	OrientDB	allows	for	SQL	syntax!	NoSQL	is	probably	best	described	by
the	following:

NoSQL,	meaning	"not	only	SQL",	is	a	movement	encouraging	developers	and	business	people	to	open	their	minds	and	consider
new	possibilities	beyond	the	classic	relational	approach	to	data	persistence.

Alternatives	to	relational	database	management	systems	have	existed	for	many	years,	but	they	have	been	relegated	primarily	to	niche	use
cases	such	as	telecommunications,	medicine,	CAD	and	others.	Interest	in	NoSQL	alternatives	like	OrientDB	is	increasing	dramatically.
Not	surprisingly,	many	of	the	largest	web	companies	like	Google,	Amazon,	Facebook,	Foursquare	and	Twitter	are	using	NoSQL	based
solutions	in	their	production	environments.

What	motivates	companies	to	leave	the	comfort	of	a	well	established	relational	database	world?	It	is	basically	the	great	need	to	better
solve	today's	data	problems.	Specifically,	there	are	a	few	key	areas:

Performance
Scalability	(often	huge)
Smaller	footprint
Developer	productivity	and	friendliness
Schema	flexibility

Most	of	these	areas	also	happen	to	be	the	requirements	of	modern	web	applications.	A	few	years	ago,	developers	designed	systems	that
could	handle	hundreds	of	concurrent	users.	Today	it	is	not	uncommon	to	have	a	potential	target	of	thousands	or	millions	of	users
connected	and	served	at	the	same	time.

Changing	technology	requirements	have	been	taken	into	account	on	the	application	front	by	creating	frameworks,	introducing	standards
and	leveraging	best	practices.	However,	in	the	database	world,	the	situation	has	remained	more	or	less	the	same	for	over	30	years.	From
the	1970s	until	recently,	relational	DBMSs	have	played	the	dominant	role.	Programming	languages	and	methodologies	have	evolved,	but
the	concept	of	data	persistence	and	the	DBMS	have	remained	unchanged	for	the	most	part:	it	is	all	still	tables,	records	and	joins.

NoSQL	Models

NoSQL-based	solutions	in	general	provide	a	powerful,	scalable,	and	flexible	way	to	solve	data	needs	and	use	cases,	which	have
previously	been	managed	by	relational	databases.	To	summarize	the	NoSQL	options,	we'll	examine	the	most	common	models	or
categories:

Key	/	Value	databases:	where	the	data	model	is	reduced	to	a	simple	hash	table,	which	consists	of	key	/	value	pairs.	It	is	often
easily	distributed	across	multiple	servers.	The	most	recognized	products	of	this	group	include	Redis,	Dynamo,	and	Riak.

Column-oriented	databases:	where	the	data	is	stored	in	sections	of	columns	offering	more	flexibility	and	easy	aggregation.
Facebook's	Cassandra,	Google's	BigTable,	and	Amazon's	SimpleDB	are	some	examples	of	column-oriented	databases.

Document	databases:	where	the	data	model	consists	of	document	collections,	in	which	each	individual	document	can	have
multiple	fields	without	necessarily	having	a	defined	schema.	The	best	known	products	of	this	group	are	MongoDB	and	CouchDB.

Graph	databases:	where	the	domain	model	consists	of	vertices	interconnected	by	edges	creating	rich	graph	structures.	The	best
known	products	of	this	group	are	OrientDB,	Neo4j	and	Titan.

OrientDB	is	a	document-graph	database,	meaning	it	has	full	native	graph	capabilities	coupled	with	features	normally	only	found
in	document	databases.

Each	of	these	categories	or	models	has	its	own	peculiarities,	strengths	and	limitations.	There	is	no	single	category	or	model,	which	is
better	than	the	others.	However,	certain	types	of	databases	are	better	at	solving	specific	problems.	This	leads	to	the	motto	of	NoSQL:
choose	the	best	tool	for	your	specific	use	case.

The	goal	of	Orient	Technologies	in	building	OrientDB	was	to	create	a	robust,	highly	scalable	database	that	can	perform	optimally	in	the
widest	possible	set	of	use	cases.	Our	product	is	designed	to	be	a	fantastic	"go	to"	solution	for	practically	all	of	your	data	persistence
needs.	In	the	following	parts	of	this	tutorial,	we	will	look	closely	at	OrientDB,	one	of	the	best	open-source,	multi-model,	next

Getting	Started

10

generation	NoSQL	products	on	the	market	today.

Getting	Started

11

Installation
OrientDB	is	available	in	two	editions:

Community	Edition	This	edition	is	released	as	an	open	source	project	under	the	Apache	2	license.	This	license	allows	unrestricted
free	usage	for	both	open	source	and	commercial	projects.

Enterprise	Edition	OrientDB	Enterprise	Edition	is	commercial	software	built	on	top	of	the	Community	Edition.	Enterprise	is
developed	by	the	same	team	that	developed	the	OrientDB	engine.	It	serves	as	an	extension	of	the	Community	Edition,	providing
Enterprise	features,	such	as:

Query	Profiler
Distributed	Clustering	configuration
Metrics	Recording
Live	Monitoring	with	configurable	Alerts

The	Community	Edition	is	available	as	a	binary	package	for	download	or	as	source	code	on	GitHub.	The	Enterprise	Edition	license	is
included	with	Support	purchases.

Prerequisites

Both	editions	of	OrientDB	run	on	any	operating	system	that	implements	the	Java	Virtual	machine	(JVM).	Examples	of	these	include:

Linux,	all	distributions,	including	ARM	(Raspberry	Pi,	etc.)
Mac	OS	X
Microsoft	Windows,	from	95/NT	and	later
Solaris
HP-UX
IBM	AIX

OrientDB	requires	Java,	version	1.7	or	higher.

Note:	In	OSGi	containers,	OrientDB	uses	a		ConcurrentLinkedHashMap		implementation	provided	by	concurrentlinkedhashmap	to
create	the	LRU	based	cache.	This	library	actively	uses	the	sun.misc	package	which	is	usually	not	exposed	as	a	system	package.
To	overcome	this	limitation	you	should	add	property		org.osgi.framework.system.packages.extra		with	value		sun.misc		to	your
list	of	framework	properties.

It	may	be	as	simple	as	passing	an	argument	to	the	VM	starting	the	platform:

$	java	-Dorg.osgi.framework.system.packages.extra=sun.misc

Installing	OrientDB

There	are	two	methods	available	to	install	OrientDB,	with	some	variations	on	each	depending	on	your	operating	system.	The	first
method	is	to	download	a	binary	package	from	OrientDB.	The	other	method	is	to	compile	the	package	from	the	source	code.

Binary	Installation

OrientDB	provides	a	pre-compiled	binary	package	to	install	the	database	on	your	system.	Depending	on	your	operating	system,	this	is
a	tarred	or	zipped	package	that	contains	all	the	relevant	files	you	need	to	run	OrientDB.	For	desktop	installations,	go	to	OrientDB
Downloads	and	select	the	package	that	best	suits	your	system.

On	server	installations,	you	can	use	the		wget		utility:

$	wget	https://orientdb.com/download.php?file=orientdb-community-2.1.2.tar.gz

Installation

12

http://www.orientechnologies.com/orientdb/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/support/
http://www.java.com/en/download
https://code.google.com/p/concurrentlinkedhashmap/
http://www.orientechnologies.com/download/

Whether	you	use	your	web	browser	or		wget	,	unzip	or	extract	the	downloaded	file	into	a	directory	convenient	for	your	use,	(for
example,		/opt/orientdb/		on	Linux).	This	creates	a	directory	called		orientdb-community-2.1.2		with	relevant	files	and	scripts,	which
you	will	need	to	run	OrientDB	on	your	system.

Source	Code	Installation

In	addition	to	downloading	the	binary	packages,	you	also	have	the	option	of	compiling	OrientDB	from	the	Community	Edition	source
code,	available	on	GitHub.	This	process	requires	that	you	install	Git	and	Apache	Maven	on	your	system.

To	compile	OrientDB	from	source	code,	clone	the	Community	Edition	repository,	then	run	Maven	(mvn)	in	the	newly	created
directory:

$	git	clone	https://github.com/orientechnologies/orientdb

$	git	checkout	develop

$	cd	orientdb

$	mvn	clean	install

It	is	possible	to	skip	tests:

$	mvn	clean	install	-DskipTests

The	develop	branch	contains	code	for	the	next	version	of	OrientDB.	Stable	versions	are	tagged	on	master	branch.	For	each	maintained
version	OrientDB	has	its	own		hotfix		branch.	As	the	time	of	writing	this	notes,	the	state	of	branches	is:

develop:	work	in	progress	for	next	2.2.x	release	(2.2.0-SNAPSHOT)
2.1.x:	hot	fix	for	next	2.1.x	stable	release	(2.1.10-SNAPSHOT)
2.0.x:	hot	fix	for	next	2.0.x	stable	release	(2.0.17-SNAPSHOT)
last	tag	on	master	is	2.1.9

The	build	process	installs	all	jars	in	the	local	maven	repository	and	creates	archives	under	the		distribution		module	inside	the		target	
directory.	At	the	time	of	writing,	building	from	branch	2.1.x	gave:

$ls	-l	distribution/target/

total	199920

				1088	26	Jan	09:57	archive-tmp

					102	26	Jan	09:57	databases

					102	26	Jan	09:57	orientdb-community-2.1.10-SNAPSHOT.dir

48814386	26	Jan	09:57	orientdb-community-2.1.10-SNAPSHOT.tar.gz

53542231	26	Jan	09:58	orientdb-community-2.1.10-SNAPSHOT.zip

$

The	directory		orientdb-community-2.1.10-SNAPSHOT.dir		contains	the	OrientDB	distribution	uncompressed.	Take	a	look	to	Contribute
to	OrientDB	if	you	want	to	be	involved.

Update	Permissions

For	Linux,	Mac	OS	X	and	UNIX-based	operating	system,	you	need	to	change	the	permissions	on	some	of	the	files	after	compiling	from
source.

$	chmod	755	bin/*.sh

$	chmod	-R	777	config

These	commands	update	the	execute	permissions	on	files	in	the		config/		directory	and	shell	scripts	in		bin/	,	ensuring	that	you	can
run	the	scripts	or	programs	that	you've	compiled.

Post-installation	Tasks
For	desktop	users	installing	the	binary,	OrientDB	is	now	installed	and	can	be	run	through	shell	scripts	found	in	the	package		bin	
directory	of	the	installation.	For	servers,	there	are	some	additional	steps	that	you	need	to	take	in	order	to	manage	the	database	server	for
OrientDB	as	a	service.	The	procedure	for	this	varies,	depending	on	your	operating	system.

Installation

13

http://www.git-scm.com/
https://maven.apache.org/

Install	as	Service	on	Unix,	Linux	and	Mac	OS	X
Install	as	Service	on	Microsoft	Windows

Upgrading

When	the	time	comes	to	upgrade	to	a	newer	version	of	OrientDB,	the	methods	vary	depending	on	how	you	chose	to	install	it	in	the	first
place.	If	you	installed	from	binary	downloads,	repeat	the	download	process	above	and	update	any	symbolic	links	or	shortcuts	to	point
to	the	new	directory.

For	systems	where	OrientDB	was	built	from	source,	pull	down	the	latest	source	code	and	compile	from	source.

$	git	pull	origin	master

$	mvn	clean	install

Bear	in	mind	that	when	you	build	from	source,	you	can	switch	branches	to	build	different	versions	of	OrientDB	using	Git.	For	example,

$	git	checkout	2.1.x

$	mvn	clean	install

builds	the		2.1.x		branch,	instead	of		master	.

Other	Resources
To	learn	more	about	how	to	install	OrientDB	on	specific	environments,	please	refer	to	the	guides	below:

Install	with	Docker
Install	on	Linux	Ubuntu
Install	on	JBoss	AS
Install	on	GlassFish
Install	on	Ubuntu	12.04	VPS	(DigitalOcean)
Install	on	Vagrant

Installation

14

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps
https://bitbucket.org/nuspy/vagrant-orientdb-with-tinkerpop/overview

Install	as	Service	on	Unix/Linux
Following	the	installation	guide	above,	whether	you	chose	to	download	binaries	or	build	from	source,	does	not	install	OrientDB	at	a
system-level.	There	are	a	few	additional	steps	you	need	to	take	in	order	to	manage	the	database	system	as	a	service.

OrientDB	ships	with	a	script,	which	allows	you	to	manage	the	database	server	as	a	system-level	daemon.	You	can	find	it	in	the		bin/	
path	of	your	installation	directory,	(that	is,	at		$ORIENTDB_HOME/bin/orientdb.sh	.

The	script	supports	three	parameters:

	start	

	stop	

	status	

Configuring	the	Script

In	order	to	use	the	script	on	your	system,	you	need	to	edit	the	file	to	define	two	variables:	the	path	to	the	installation	directory	and	the
user	you	want	to	run	the	database	server.

$	vi	$ORIENTDB_HOME/bin/orientdb.sh

#!/bin/sh

#	OrientDB	service	script

#

#	Copyright	(c)	Orient	Technologies	LTD	(http://www.orientechnologies.com)

#	chkconfig:	2345	20	80

#	description:	OrientDb	init	script

#	processname:	orientdb.sh

#	You	have	to	SET	the	OrientDB	installation	directory	here

ORIENTDB_DIR="YOUR_ORIENTDB_INSTALLATION_PATH"

ORIENTDB_USER="USER_YOU_WANT_ORIENTDB_RUN_WITH"

Edit	the		ORIENTDB_DIR		variable	to	indicate	the	installation	directory.	Edit	the		ORIENTDB_USER		variable	to	indicate	the	user	you	want	to
run	the	database	server,	(for	instance,		orientdb).

Installing	the	Script
Different	operating	systems	and	Linux	distributions	have	different	procedures	when	it	comes	to	managing	system	daemons,	as	well	as
the	procedure	for	starting	and	stopping	them	during	boot	up	and	shutdown.	Below	are	generic	guides	for	init	and	systemd	based	unix
systems	as	well	Mac	OS	X.	For	more	information,	check	the	documentation	for	your	particular	system.

Installing	for	init

Many	Unix-like	operating	systems	such	as	FreeBSD,	most	older	distributions	of	Linux	as	well	as	current	releases	of	Debian,	Ubuntu
and	their	derivatives	use	variations	on	SysV-style	init	for	these	processes.	These	are	typically	the	systems	that	manage	such	processes
using	the		service		command.

To	install	OrientDB	as	a	service	on	an	init-based	unix	or	Linux	system,	copy	the	modified		orientdb.sh		file	from		$ORIENTDB_HOME/bin	
into		/etc/init.d/	:

#	cp	$ORIENTDB_HOME/bin/orientdb.sh	/etc/init.d/orientdb

Install	as	Service	on	Unix

15

Once	this	is	done,	you	can	start	and	stop	OrientDB	using	the		service		command:

#	service	orientdb	start

Starting	OrientDB	server	daemon...

Installing	for	systemd

Most	newer	releases	of	Linux,	especially	among	the	RPM-based	distributions	like	Red	Hat,	Fedora	and	CentOS,	as	well	as	future
releases	of	Debian	and	Ubuntu	use	systemd	for	these	processes.	These	are	the	systems	that	manage	such	processes	using	the
	systemctl		command.

Installing	OrientDB	on	a	systemd-based	Linux	distribution	requires	that	you	write	a	service	file	set	to	use	the		orientdb.sh		script	in
launching	the	database	server.	Place	this	file	in	the	systemd	configuration	directory,	(for	instance,		/etc/systemd/	:

#	vi	/etc/systemd/system/orientdb.service

[Unit]

Description=OrientDB	Server

After=network.target

After=syslog.target

[Install]

WantedBy=multi-user.target

[Service]

Type=forking

ExecStart=$ORIENTDB_HOME/bin/orientdb.sh	start

ExecStop=$ORIENTDB_HOME/bin/orientdb.sh	stop

ExecStatus=$ORIENTDB_HOME/bin/orientdb.sh	status

You	may	want	to	use	the	absolute	path	instead	of	the	environmental	variable		$ORIENTDB_HOME	.	Once	this	file	is	saved,	you	can	start	and
stop	the	OrientDB	server	using	the		systemctl		command:

#	systemctl	start	orientdb.service

Additionally,	with	the		orientdb.service		file	saved,	you	can	set	systemd	to	start	the	database	server	automatically	during	boot	by
issuing	the		enable		command:

#	systemctl	enable	orientdb.service

Synchronizing	state	of	orientdb.service	with	SysV	init	with	/usr/lib/systemd/systemd-sysv-

install...

Executing	/usr/lib/systemd/systemd-sysv-install	enable	orientdb

Created	symlink	from	/etc/systemd/system/multi-user.target.wants/orientdb.service	to	

/etc/systemd/system/orientdb.service.

Installing	for	Mac	OS	X

For	Mac	OS	X,	create	an	alias	to	OrientDB	system	daemon	script	and	the	console.

$	alias	orientdb-server=/path/to/$ORIENTDB_HOME/bin/orientdb.sh

$	alias	orientdb-console=/path/to/$ORIENTDB_HOME/bin/console.sh

You	can	now	start	the	OrientDB	database	server	using	the	following	command:

$	orientdb-server	start

Install	as	Service	on	Unix

16

Once	the	database	starts,	it	is	accessible	through	the	console	script.

$	orientdb-console

OrientDB	console	v.1.6	www.orientechnologies.com

Type	'HELP'	to	display	all	the	commands	supported.

orientdb>

Other	resources

To	learn	more	about	how	to	install	OrientDB	on	specific	environment	please	follow	the	guide	below:

Install	on	Linux	Ubuntu
Install	on	JBoss	AS
Install	on	GlassFish
Install	on	Ubuntu	12.04	VPS	(DigitalOcean)
Install	as	service	on	Unix,	Linux	and	MacOSX
Install	as	service	on	Windows

Install	as	Service	on	Unix

17

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps

Install	as	a	Service	on	Windows
OrientDB	is	a	Java	server	application.	As	most	server	applications,	they	have	to	perform	several	tasks,	before	being	able	to	shut	down
the	Virtual	Machine	process,	hence	they	need	a	portable	way	to	be	notified	of	the	imminent	Virtual	Machine	shutdown.	At	the	moment,
the	only	way	to	properly	shut	down	an	OrientDB	server	instance	(not	embedded)	is	to	execute	the	shutdown.bat	(or	shutdown.sh)
script	shipped	with	the	OrientDB	distribution,	but	it's	up	to	the	user	to	take	care	of	this.	This	implies	that	the	server	instance	isn't
stopped	correctly,	when	the	computer	on	which	it	is	deployed,	is	shut	down	without	executing	the	above	script.

Apache	Commons	Daemon

Apache	Commons	Daemon	is	a	set	of	applications	and	API	enabling	Java	server	application	to	run	as	native	non	interactive	server
applications	under	Unix	and	Windows.	In	Unix,	server	applications	running	in	the	background	are	called	daemons	and	are	controlled	by
the	operating	system	with	a	set	of	specified	signals.	Under	Windows,	such	programs	are	called	services	and	are	controlled	by
appropriate	calls	to	specific	functions	defined	in	the	application	binary.	Although	the	ways	of	dealing	with	running	daemons	or	services
are	different,	in	both	cases	the	operating	system	can	notify	a	server	application	of	its	imminent	shutdown,	and	the	underlying
application	has	the	ability	to	perform	certain	tasks,	before	its	process	of	execution	is	destroyed.	Wrapping	OrientDB	as	a	Unix	daemon
or	as	a	Windows	service	enables	the	management	of	this	server	application	lifecycle	through	the	mechanisms	provided	natively	by	both
Unix	and	Windows	operating	systems.

Installation

This	tutorial	is	focused	on	Windows,	so	you	have	to	download	procrun.	Procrun	is	a	set	of	applications,	which	allow	Windows	users	to
wrap	(mostly)	Java	applications	(e.g.	Tomcat)	as	a	Windows	service.	The	service	can	be	set	to	automatically	start,	when	the	machine
boots	and	will	continue	to	run	with	no	user	logged	onto	the	machine.

1.	 Point	you	browser	to	the	Apache	Commons	Daemon	download	page.
2.	 Click	on	Browse	native	binaries	download	area...:	you	will	see	the	index	commons/daemon/binaries/	(even	if	the	title	in	the

page	reports	Index	of	dist/commons).
3.	 Click	on	windows.	Now	you	can	see	the	index	of	commons/daemon/binaries/windows.
4.	 Click	on	commons-daemon-1.0.7-bin-windows.zip.	The	download	starts.
5.	 Unzip	the	file	in	a	directory	of	your	choice.	The	content	of	the	archive	is	depicted	below:

commons-daemon-1.0.7-bin-windows

|

\---amd64

				|

				\---prunsrv.exe

|

\---ia64

				|

				\---prunsrv.exe

|

\---LICENCE.txt

|

\---NOTICE.txt

|

\---prunmgr.exe

|

\---prunsrv.exe

|

\---RELEASE-NOTES.txt

prunmgr	is	a	GUI	application	for	monitoring	and	configuring	Windows	services	wrapped	with	procrun.	prunsrv	is	a	service	application
for	running	applications	as	services.	It	can	convert	any	application	(not	just	Java	applications)	to	run	as	a	service.	The	directory	amd64
contains	a	version	of	prunsrv	for	x86-64	machines	while	the	directory	ia64	contains	a	version	of	prunsrv	for	Itanium	64	machines.

Once	you	downloaded	the	applications,	you	have	to	put	them	in	a	folder	under	the	OrientDB	installation	folder.

1.	 Go	to	the	OrientDB	folder,	in	the	following	referred	as	%ORIENTDB_HOME%

Install	as	Service	on	Windows

18

http://commons.apache.org/daemon/
http://commons.apache.org/daemon/procrun.html
http://commons.apache.org/daemon/download_daemon.cgi

2.	 Create	a	new	directory	and	name	it	service
3.	 Copy	there	the	appropriate	versions	of	prunsrv	and	prunmgr	according	to	the	architecture	of	your	machine.

Configuration

In	this	section,	we	will	show	how	to	wrap	OrientDB	as	a	Windows	Service.	In	order	to	wrap	OrientDB	as	a	service,	you	have	to	execute
a	short	script	that	uses	the	prunsrv	application	to	configure	a	Windows	Service.

Before	defining	the	Windows	Service,	you	have	to	rename	prunsrv	and	prunmgr	according	to	the	name	of	the	service.	Both	applications
require	the	name	of	the	service	to	manage	and	monitor	as	parameter	but	you	can	avoid	it	by	naming	them	with	the	name	of	the	service.	In
this	case,	rename	them	respectively	OrientDBGraph	and	OrientDBGraphw	as	OrientDBGraph	is	the	name	of	the	service	that	you
are	going	to	configure	with	the	script	below.	If	you	want	to	use	a	difference	service	name,	you	have	to	rename	both	application
respectively	myservicename	and	myservicenamew	(for	example,	if	you	are	wrapping	OrientDB	and	the	name	of	the	service	is
OrientDB,	you	could	rename	prunsrv	as	OrientDB	and	prunmgr	as	OrientDBw).	After	that,	create	the	file
%ORIENTDB_HOME%\service\installService.bat	with	the	content	depicted	below:

::	OrientDB	Windows	Service	Installation

@echo	off

rem	Remove	surrounding	quotes	from	the	first	parameter

set	str=%~1

rem	Check	JVM	DLL	location	parameter

if	"%str%"	==	""	goto	missingJVM

set	JVM_DLL=%str%

rem	Remove	surrounding	quotes	from	the	second	parameter

set	str=%~2

rem	Check	OrientDB	Home	location	parameter

if	"%str%"	==	""	goto	missingOrientDBHome

set	ORIENTDB_HOME=%str%

set	CONFIG_FILE=%ORIENTDB_HOME%/config/orientdb-server-config.xml

set	LOG_FILE=%ORIENTDB_HOME%/config/orientdb-server-log.properties

set	LOG_CONSOLE_LEVEL=info

set	LOG_FILE_LEVEL=fine

set	WWW_PATH=%ORIENTDB_HOME%/www

set	ORIENTDB_ENCODING=UTF8

set	ORIENTDB_SETTINGS=-Dprofiler.enabled=true	-Dcache.level1.enabled=false	-Dcache.level2.strategy=1

set	JAVA_OPTS_SCRIPT=-XX:+HeapDumpOnOutOfMemoryError

rem	Install	service

OrientDBGraphX.X.X.exe	//IS	--DisplayName="OrientDB	GraphEd	X.X.X"	^

--Description="OrientDB	Graph	Edition,	aka	GraphEd,	contains	OrientDB	server	integrated	with	the	latest	release	of	the	TinkerP

op	Open	Source	technology	stack	supporting	property	graph	data	model."	^

--StartClass=com.orientechnologies.orient.server.OServerMain	--StopClass=com.orientechnologies.orient.server.OServerShutdownMa

in	^

--Classpath="%ORIENTDB_HOME%\lib*"	--JvmOptions	"-Dfile.Encoding=%ORIENTDB_ENCODING%;-Djava.util.logging.config.file="%LOG_FI

LE%";-Dorientdb.config.file="%CONFIG_FILE%";-Dorientdb.www.path="%WWW_PATH%";-Dlog.console.level=%LOG_CONSOLE_LEVEL%;-Dlog.fil

e.level=%LOG_FILE_LEVEL%;-Dorientdb.build.number="@BUILD@";-DORIENTDB_HOME=%ORIENTDB_HOME%"	^

--StartMode=jvm	--StartPath="%ORIENTDB_HOME%\bin"	--StopMode=jvm	--StopPath="%ORIENTDB_HOME%\bin"	--Jvm="%JVM_DLL%"	--LogPath=

"%ORIENTDB_HOME%\log"	--Startup=auto

EXIT	/B

:missingJVM

echo	Insert	the	JVM	DLL	location

goto	printUsage

:missingOrientDBHome

echo	Insert	the	OrientDB	Home

goto	printUsage

:printUsage

echo	usage:

echo					installService	JVM_DLL_location	OrientDB_Home

EXIT	/B

The	script	requires	two	input	parameters:

1.	 The	location	of	jvm.dll,	for	example	C:\Program	Files\Java\jdk1.6.0_26\jre\bin\server\jvm.dll

Install	as	Service	on	Windows

19

2.	 The	location	of	the	OrientDB	installation	folder,	for	example	D:\orientdb-graphed-1.0rc5

The	service	is	actually	installed	when	executing	OrientDBGraph.exe	(originally	prunsrv)	with	the	appropriate	set	of	command	line
arguments	and	parameters.	The	command	line	argument	//IS 	states	that	the	execution	of	that	application	will	result	in	a	service
installation.	Below	there	is	the	table	with	the	command	line	parameters	used	in	the	above	script.

Parameter
name Description Source

--
DisplayName

The	name	displayed	in	the	Windows	Services
Management	Console Custom

--Description The	description	displayed	in	the	Windows
Services	Management	Console Custom

--StartClass

Class	that	contains	the	startup	method	(=	the
method	to	be	called	to	start	the	application).
The	default	method	to	be	called	is	the		main	
method

The	class	invoked	in	the	*/bin/server.bat*	script

--StopClass
Class	that	will	be	used	when	receiving	a	Stop
service	signal.	The	default	method	to	be	called
is	the		main		method

The	class	invoked	in	the	*/bin/shutdown.bat*	script

--Classpath Set	the	Java	classpath The	value	of	the		-cp		parameter	specified	in	the
_%ORIENTDB_HOME%\bin\server.bat_	script

--
JvmOptions

List	of	options	to	be	passed	to	the	JVM
separated	using	either	#	or	;	characters

The	list	of	options	in	the	form	of	-D	or	-X	specified	in	the
_%ORIENTDB_HOME%\bin\server.bat_	script	and	the
definition	of	the	ORIENTDB_HOME	system	property

--StartMode
Specify	how	to	start	the	process.	In	this	case,
it	will	start	Java	in-process	and	not	as	a
separate	image

Based	on	Apache	Tomcat	configuration

--StartPath Working	path	for	the	StartClass _%ORIENTDB_HOME%\bin_

--StopMode The	same	as	--StartMode Based	on	Apache	Tomcat	configuration

--StopPath Working	path	for	the	StopClass _%ORIENTDB_HOME%\bin_

--Jvm Which	*jvm.dll*	to	use:	the	default	one	or	the
one	located	in	the	specified	full	path

The	first	input	parameter	of	this	script.	Ensure	that	you
insert	the	location	of	the	Java	HotSpot	Server	VM	as	a
full	path.	We	will	use	the	server	version	for	both	start	and
stop.

--LogPath Path	used	by	prunsrv	for	logging The	default	location	of	the	Apache	Commons	Daemon	log

--Startup States	if	the	service	should	start	at	machine
start	up	or	manually auto

For	a	complete	reference	to	all	available	parameters	and	arguments	for	prunsrv	and	prunmgr,	visit	the	Procrun	page.

In	order	to	install	the	service:

1.	 Open	the	Windows	command	shell
2.	 Go	to	%ORIENTDB_HOME%\service,	for	example	typing	in	the	shell		>	cd	D:\orientdb-graphed-1.0rc5\service	
3.	 Execute	the	installService.bat	specifying	the	jvm.dll	location	and	the	OrientDB	Home	as	full	paths,	for	example	typing	in	the	shell

	>	installService.bat	"C:\Program	Files\Java\jdk1.6.0_26\jre\bin\server\jvm.dll"	D:\orientdb-graphed-1.0rc5	

4.	 Open	the	Windows	Services	Management	Console	-	from	the	taskbar,	click	on	Start,	Control	Panel,	Administrative	Tools	and	then
Service	-	and	check	the	existance	of	a	service	with	the	same	name	specified	as	value	of	the		--DisplayName		parameter	(in	this	case
OrientDB	GraphEd	1.0rc5).	You	can	also	use	%ORIENTDB_HOME%\service\OrientDBGraphw.exe	to	manage	and	monitor	the
OrientDBGraph	service.

Other	resources

To	learn	more	about	how	to	install	OrientDB	on	specific	environment	please	follow	the	guide	below:

Install	on	Linux	Ubuntu
Install	on	JBoss	AS
Install	on	GlassFish

Install	as	Service	on	Windows

20

http://commons.apache.org/daemon/procrun.html
http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish

Install	on	Ubuntu	12.04	VPS	(DigitalOcean)
Install	as	service	on	Unix,	Linux	and	MacOSX
Install	as	service	on	Windows

Install	as	Service	on	Windows

21

https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps

Installing	in	a	Docker	Container
OrientDB	is	the	first	Multi-Model	Open	Source	NoSQL	DBMS	that	combines	the	power	of	graphs	and	the	flexibility	of	documents
into	one	scalable,	high-performance	operational	database.

This	repository	is	a	dockerfile	for	creating	an	orientdb	image	with	:

explicit	orientdb	version	(orientdb-2.0)	for	image	cache	stability
init	by	supervisord
config,	databases	and	backup	folders	expected	to	be	mounted	as	volumes

And	lots	of	information	from	my	orientdb+docker	explorations.	Read	on!

Building	the	image	on	your	own

1.	 Clone	this	project	to	a	local	folder:

git	clone	https://github.com/orientechnologies/orientdb-docker.git

2.	 Build	the	image:

docker	build	-t	<YOUR_DOCKER_HUB_USER>/orientdb-2.0	.

3.	 Push	it	to	your	Docker	Hub	repository	(it	will	ask	for	your	login	credentials):

docker	push	<YOUR_DOCKER_HUB_USER>/orientdb-2.0

All	examples	below	are	using	an	image	from	nesrait/orientdb-2.0.	If	you	build	your	own	image	please	find/replace	"nesrait"	with	your
Docker	Hub	user.

Running	Orientdb
To	run	the	image,	run:

docker	run	--name	orientdb	-d	-v	<config_path>:/opt/orientdb/config	-v	<databases_path>:/opt/orientdb/databases	-v	<backup_pat

h>:/opt/orientdb/backup	-p	2424	-p	2480	nesrait/orientdb-2.0

The	docker	image	contains	a	unconfigured	Orientdb	installation	and	for	running	it,	you	need	to	provide	your	own	config	folder	from
which	OrientDB	will	read	its	startup	settings.

The	same	applies	for	the	databases	folder	which	if	local	to	the	running	container	would	go	away	as	soon	as	it	died/you	killed	it.

The	backup	folder	only	needs	to	be	mapped	if	you	activate	that	setting	on	your	OrientDB	configuration	file.

Persistent	distributed	storage	using	BTSync

If	you're	not	running	OrientDB	in	a	distributed	configuration	you	need	to	take	special	care	to	backup	your	database	(in	case	your	host
goes	down).

Below	is	a	simple,	yet	hackish,	way	to	do	this:	using	BTSync	data	containers	to	propagate	the	OrientDB	config,	LIVE	databases	and
backup	folders	to	remote	location(s).	Note:	don't	trust	the	remote	copy	of	the	LIVE	database	folder	unless	the	server	is	down	and	it	has
correctly	flushed	changes	to	disk.

1.	 Create	BTSync	shared	folders	on	any	remote	location	for	the	various	folder	you	want	to	replicate

1.1.	config:	orientdb	configuration	inside	the	config	folder

Install	with	Docker

22

http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org

1.2.	databases:	the	LIVE	databases	folder

1.3.	backup:	the	place	where	OrientDB	will	store	the	zipped	backups	(if	you	activate	the	backup	in	the	configuration	file)

2.	 Take	note	of	the	BTSync	folder	secrets	CONFIG_FOLDER_SECRET,	DATABASES_FOLDER_SECRET,
BACKUP_FOLDER_SECRET

3.	 Launch	BTSync	data	containers	for	each	of	the	synched	folder	you	created	giving	them	proper	names:

docker	run	-d	--name	orientdb_config	-v	/opt/orientdb/config	nesrait/btsync	/opt/orientdb/config	CONFIG_FOLDER_SECRET

docker	run	-d	--name	orientdb_databases	-v	/opt/orientdb/databases	nesrait/btsync	/opt/orientdb/databases	DATABASES_FOLDE

R_SECRET

docker	run	-d	--name	orientdb_backup	-v	/opt/orientdb/backup	nesrait/btsync	/opt/orientdb/backup	BACKUP_FOLDER_SECRET

4.	 Wait	until	all	files	have	magically	appeared	inside	your	BTSync	data	volumes:	```bash	docker	run	--rm	-i	-t	--volumes-from
orientdb_config	--volumes-from	orientdb_databases	--volumes-from	orientdb_backup	ubuntu	du	-h	/opt/orientdb/config
/opt/orientdb/databases	/opt/orientdb/backup

5.	Finally	you're	ready	to	start	your	OrientDB	server

		```bash

docker	run	--name	orientdb	-d	\

												--volumes-from	orientdb_config	\

												--volumes-from	orientdb_databases	\

												--volumes-from	orientdb_backup	\

												-p	2424	-p	2480	\

												nesrait/orientdb-2.0

OrientDB	distributed
If	you're	running	OrientDB	distributed*	you	won't	have	the	problem	of	losing	the	contents	of	your	databases	folder	since	they	are
already	replicated	to	the	other	OrientDB	nodes.	From	the	setup	above	simply	leave	out	the	"--volumes-from	orientdb_databases"
argument	and	OrientDB	will	use	the	container	storage	to	hold	your	databases'	files.

*note:	some	extra	work	might	be	needed	to	correctly	setup	hazelcast	running	inside	docker	containers	(see	this	discussion).

Ad-hoc	backups

With	OrientDB	2.0	we	can	now	create	ad-hoc	backups	by	taking	advantage	of	the	new	backup.sh	script:

Using	the	orientdb_backup	data	container	that	was	created	above:

docker	run	-i	-t	--volumes-from	orientdb_config	--volumes-from	orientdb_backup	nesrait/orientdb-2.0	./backup.sh	<dburl>	<

user>	<password>	/opt/orientdb/backup/<backup_file>	[<type>]

Or	using	a	host	folder:

	docker	run	-i	-t	--volumes-from	orientdb_config	-v	<host_backup_path>:/backup	nesrait/orientdb-2.0	./backup.sh	<dburl>	<user>

<password>	/backup/<backup_file>	[<type>]	

Either	way,	when	the	backup	completes	you	will	have	the	backup	file	located	outside	of	the	OrientDB	container	and	read	for
safekeeping.

Note:	I	haven't	tried	the	non-blocking	backup	(type=lvm)	yet	but	found	this	discussion	about	a	docker	LVM	dependency	issue.

Running	the	Orientdb	console

Install	with	Docker

23

http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org
https://groups.google.com/forum/#!topic/vertx/MvKcz_aTaWM
http://www.orientdb.org
https://github.com/orientechnologies/orientdb/wiki/Backup-and-Restore#backup-database
http://www.orientdb.org
https://groups.google.com/forum/#!topic/docker-user/n4Xtvsb4RAw


docker	run	--rm	-it	\

												--volumes-from	orientdb_config	\

												--volumes-from	orientdb_databases	\

												--volumes-from	orientdb_backup	\

												nesrait/orientdb-2.0	\

												/opt/orientdb/bin/console.sh

Install	with	Docker

24



Running	the	OrientDB	Server
When	you	finish	installing	OrientDB,	whether	you	build	it	from	source	or	download	the	binary	package,	you	are	ready	to	launch	the
database	server.	You	can	either	start	it	through	the	system	daemon	or	through	the	provided	server	script.	This	article	only	covers	the
latter.

Note:	If	you	would	like	to	run	OrientDB	as	a	service	on	your	system,	there	are	some	additional	steps	that	you	need	to	take.	This
provides	alternate	methods	for	starting	the	server	and	allows	you	to	launch	it	as	a	daemon	when	your	system	boots.	For	more
information	on	this	process	see:

Install	OrientDB	as	a	Service	on	Unix,	Linux	and	Mac	OS	X
Install	OrientDB	as	a	Service	on	Microsoft	Windows

Starting	the	Database	Server
While	you	can	run	the	database	server	as	system	daemon,	you	also	have	the	option	of	starting	it	directly.	In	the	OrientDB	installation
directory,	(that	is		$ORIENTDB_HOME	),	under		bin	,	there	is	a	file	named		server.sh		on	Unix-based	systems	and		server.bat		on
Windows.	Executing	this	file	starts	the	server.

To	launch	the	OrientDB	database	server,	run	the	following	commands:

Run	the	server

25



$	cd	$ORIENTDB_HOME/bin

$	./server.sh

												.

											.`								`

								,						`:.

										`,`				,:`

										.,.			:,,

										.,,		,,,

					.				.,.:::::		````

					,`			.::,,,,::.,,,,,,`;;																						.:

					`,.		::,,,,,,,:.,,.`		`																							.:

						,,:,:,,,,,,,,::.			`								`									``					.:

							,,:.,,,,,,,,,:	`::,	,,			::,::`			:	:,::`		::::

								,:,,,,,,,,,,::,:			,,		:.				:			::				:			.:

									:,,,,,,,,,,:,::			,,		:						:		:					:			.:

			`					:,,,,,,,,,,:,::,		,,	.::::::::		:					:			.:

			`,...,,:,,,,,,,,,:	.:,.	,,	,,									:					:			.:

					.,,,,::,,,,,,,:		`:	,	,,		:					`			:					:			.:

							...,::,,,,::..	`:		.,,		:,				:			:					:			.:

												,::::,,,.	`:			,,			:::::				:					:			.:

												,,:`	`,,.

											,,,				.,`

										,,.					`,																						S	E	R	V	E	R

								``								`.

																		``

																		`

2012-12-28	01:25:46:319	INFO	Loading	configuration	from:	config/orientdb-server-

config.xml...	[OServerConfigurationLoaderXml]

2012-12-28	01:25:46:625	INFO	OrientDB	Server	v1.6	is	starting	up...	[OServer]

2012-12-28	01:25:47:142	INFO	->	Loaded	memory	database	'temp'	[OServer]

2012-12-28	01:25:47:289	INFO	Listening	binary	connections	on	0.0.0.0:2424	

[OServerNetworkListener]

2012-12-28	01:25:47:290	INFO	Listening	http	connections	on	0.0.0.0:2480	

[OServerNetworkListener]

2012-12-28	01:25:47:317	INFO	OrientDB	Server	v1.6	is	active.	[OServer]

The	database	server	is	now	running.	It	is	accessible	on	your	system	through	ports		2424		and		2480	.	At	the	first	startup	the	server	will
ask	for	the	root	user	password.	The	password	is	stored	in	the	config	file.

Stop	the	Server

On	the	console	where	the	server	is	running	a	simple	CTRL+c	will	shutdown	the	server.

The	shutdown.sh	(shutdown.bat)	script	could	be	used	to	stop	the	server:

$	cd	$ORIENTDB_HOME/bin

$	./shutdown.sh	-p	ROOT_PASSWORD

On	*nix	systems	a	simple	call	to	shutdown.sh	will	stop	the	server	running	on	localhost:

$	cd	$ORIENTDB_HOME/bin

$	./shutdown.sh

Run	the	server

26



It	is	possible	to	stop	servers	running	on	remote	hosts	or	even	on	different	ports	on	localhost:

$	cd	$ORIENTDB_HOME/bin

$	./shutdown.sh	-h	odb1.mydomain.com	-P	2424-2430	-u	root	-p	ROOT_PASSWORD

List	of	params

-h	|	--host	HOSTNAME	or	IP	ADDRESS 	:	the	host	or	ip	where	OrientDB	is	running,	default	to	localhost
-P	|	--ports	PORT	or	PORT	RANGE	:	single	port	value	or	range	of	ports;	default	to	2424-2430
-u	|	--user	ROOT	USERNAME	:	root's	username;	deafult	to	root
-p	|	--password	ROOT	PASSWORD	:	root's	user	password;	mandatory

NOTE	On	Windows	systems	password	is	always	mandatory	because	the	script	isn't	able	to	discover	the	pid	of	the	OrientDB's
process.

Server	Log	Messages

Following	the	masthead,	the	database	server	begins	to	print	log	messages	to	standard	output.	This	provides	you	with	a	guide	to	what
OrientDB	does	as	it	starts	up	on	your	system.

1.	 The	database	server	loads	its	configuration	file	from	the	file		$ORIENTDB_HOME/config/orientdb-server-config.xml	.

For	more	information	on	this	step,	see	OrientDB	Server.

2.	 The	database	server	loads	the		temp		database	into	memory.	You	can	use	this	database	in	storing	temporary	data.

3.	 The	database	server	begins	listening	for	binary	connections	on	port		2424		for	all	configured	networks,	(	0.0.0.0	).

4.	 The	database	server	begins	listening	for	HTTP	connections	on	port		2480		for	all	configured	networks,	(	0.0.0.0	).

Accessing	the	Database	Server
By	default,	OrientDB	listens	on	two	different	ports	for	external	connections.

Binary:	OrientDB	listens	on	port		2424		for	binary	connections	from	the	console	and	for	clients	and	drivers	that	support	the
Network	Binary	Protocol.

HTTP:	OrientDB	listens	on	port		2480		for	HTTP	connections	from	OrientDB	Studio	Web	Tool	and	clients	and	drivers	that
support	the	HTTP/REST	protocol,	or	similar	tools,	such	as	cURL.

If	you	would	like	the	database	server	to	listen	at	different	ports	or	IP	address,	you	can	define	these	values	in	the	configuration	file
	config/orientdb-server-config.xml	.

Run	the	server

27

http://www.orientechnologies.com/docs/last/orientdb-studio.wiki/Home-page.html
http://en.wikipedia.org/wiki/cURL


Running	the	OrientDB	Console
There	are	various	methods	you	can	use	to	connect	to	your	database	server	and	the	individual	databases,	once	the	server	is	running,	such
as	the	Network	Binary	and	HTTP/REST	protocols.	In	addition	to	these,	OrientDB	provides	a	command-line	interface	for	connecting	to
and	working	with	the	database	server.

Starting	the	OrientDB	Console

In	the	OrientDB	installation	directory,	(that	is,		$ORIENTDB_HOME	,	where	you	installed	the	database),	under		bin	,	there	is	a	file	called
	console.sh		on	Unix-based	systems	and	on	Windows		console.bat	.

To	launch	the	OrientDB	console,	run	the	following	command	after	you	start	the	database	server:

$	cd	$ORIENTDB_HOME/bin

$	./console.sh

OrientDB	console	v.X.X.X	(build	0)	www.orientdb.com

Type	'HELP'	to	display	all	the	commands	supported.

Installing	extensions	for	GREMLIN	language	v.X.X.X

orientdb>

The	OrientDB	console	is	now	running.	From	this	prompt	you	can	connect	to	and	manage	any	remote	or	local	databases	available	to	you.

Using	the	 	HELP		Command

In	the	event	that	you	are	unfamiliar	with	OrientDB	and	the	available	commands,	or	if	you	need	help	at	any	time,	you	can	use	the		HELP	
command,	or	type		?		into	the	console	prompt.

orientdb>	HELP

AVAILABLE	COMMANDS:

	*	alter	class	<command-text>			Alter	a	class	in	the	database	schema

	*	alter	cluster	<command-text>	Alter	class	in	the	database	schema

	...																												...

	*	help																									Print	this	help

	*	exit																									Close	the	console

For	each	console	command	available	to	you,		HELP		documents	its	basic	use	and	what	it	does.	If	you	know	the	particular	command	and
need	details	on	its	use,	you	can	provide	arguments	to		HELP		for	further	clarification.

orientdb>	HELP	SELECT

COMMAND:	SELECT

-	Execute	a	query	against	the	database	and	display	the	results.

SYNTAX:	select	<query-text>

WHERE:

-	<query-text>:	The	query	to	execute

Connecting	to	Server	Instances

Run	the	console

28



There	are	some	console	commands,	such	as		LIST	DATABASES		or		CREATE	DATABASE	,	which	you	can	run	while	only	connected	to	the
server	instance.	For	other	commands,	however,	you	must	also	connect	to	a	database,	before	they	run	without	error.

Before	you	can	connect	to	a	fresh	server	instance	and	fully	control	it,	you	need	to	know	the	root	password	for	the	database.	The
root	password	is	located	in	the	configuration	file	at		config/orientdb-server-config.xml	.	You	can	find	it	by	searching	for	the
	<users>		element.	If	you	want	to	change	it,	edit	the	configuration	file	and	restart	the	server.

...

<users>

			<user	resources="*"

									password="my_root_password"

									name="root"/>

			<user	resources="connect,server.listDatabases,server.dblist"

									password="my_guest_password"

									name="guest"/>

</users>

...

With	the	required	credentials,	you	can	connect	to	the	database	server	instance	on	your	system,	or	establish	a	remote	connection	to	one
running	on	a	different	machine.

orientdb>	CONNECT	remote:localhost	root	my_root_password

Connecting	to	remote	Server	instance	[remote:localhost]	with	user	'root'...OK

Once	you	have	established	a	connection	to	the	database	server,	you	can	begin	to	execute	commands	on	that	server,	such	as		LIST
DATABASES		and		CREATE	DATABASE	.

orientdb>	LIST	DATABASES

Found	1	databases:

*	GratefulDeadConcerts	(plocal)

	

To	connect	to	this	database	or	to	a	different	one,	use	the		CONNECT		command	from	the	console	and	specify	the	server	URL,	username,
and	password.	By	default,	each	database	has	an		admin		user	with	a	password	of		admin	.

Warning:	Always	change	the	default	password	on	production	databases.

The	above		LIST	DATABASES		command	shows	a		GratefulDeadConcerts		installed	on	the	local	server.	To	connect	to	this	database,	run	the
following	command:

orientdb>	CONNECT	remote:localhost/GratefulDeadConcerts	admin	admin

Connecting	to	database	[remote:localhost/GratefulDeadConcerts]	with	user	'admin'...OK

The		CONNECT		command	takes	a	specific	syntax	for	its	URL.	That	is,		remote:localhost/GratefulDeadConcerts		in	the	example.	It	has
three	parts:

Protocol:	The	first	part	of	the	database	address	is	the	protocol	the	console	should	use	in	the	connection.	In	the	example,	this	is
	remote	,	indicating	that	it	should	use	the	TCP/IP	protocol.

Address:	The	second	part	of	the	database	address	is	hostname	or	IP	address	of	the	database	server	that	you	want	the	console	to
connect	to.	In	the	example,	this	is		localhost	,	since	the	connection	is	made	to	a	server	instance	running	on	the	local	file	system.

Database:	The	third	part	of	the	address	is	the	name	of	the	database	that	you	want	to	use.	In	the	case	of	the	example,	this	is
	GratefulDeadConcerts	.

For	more	detailed	information	about	the	commands,	see	Console	Commands.

Run	the	console

29



Note:	The	OrientDB	distribution	comes	with	the	bundled	database		GratefulDeadConcerts		which	represents	the	Graph	of	the
Grateful	Dead's	concerts.	This	database	can	be	used	by	anyone	to	start	exploring	the	features	and	characteristics	of	OrientDB.

Run	the	console

30

http://en.wikipedia.org/wiki/Grateful_Dead


Run	the	Studio
In	the	event	that	you're	more	comfortable	interacting	with	database	systems	through	a	graphical	interface,	you	can	accomplish	most
common	database	tasks	with	the	web	interface	OrientDB	Studio.

Connecting	to	Studio

By	default,	there	are	no	additional	steps	that	you	need	to	take	to	start	OrientDB	Studio.	When	you	launch	the	Server,	whether	through
the	start-up	script		server.sh		or	as	a	system	daemon,	the	Studio	web	interface	opens	automatically	with	it.

$	firefox	http://localhost:2480

From	here	you	can	create	a	new	database,	connect	to	or	drop	an	existing	database,	import	a	public	database	and	navigate	to	the	Server
management	interface.

For	more	information	on	the	OrientDB	Studio,	see	Studio.

Run	the	Studio

31



Multi-Model
The	OrientDB	engine	supports	Graph,	Document,	Key/Value,	and	Object	models,	so	you	can	use	OrientDB	as	a	replacement	for	a
product	in	any	of	these	categories.	However,	the	main	reason	why	users	choose	OrientDB	is	because	of	its	true	Multi-Model	DBMS
abilities,	which	combine	all	the	features	of	the	four	models	into	the	core.	These	abilities	are	not	just	interfaces	to	the	database	engine,	but
rather	the	engine	itself	was	built	to	support	all	four	models.	This	is	also	the	main	difference	to	other	multi-model	DBMSs,	as	they
implement	an	additional	layer	with	an	API,	which	mimics	additional	models.	However,	under	the	hood,	they're	truly	only	one	model,
therefore	they	are	limited	in	speed	and	scalability.

The	Document	Model

The	data	in	this	model	is	stored	inside	documents.	A	document	is	a	set	of	key/value	pairs	(also	referred	to	as	fields	or	properties),	where
the	key	allows	access	to	its	value.	Values	can	hold	primitive	data	types,	embedded	documents,	or	arrays	of	other	values.	Documents	are
not	typically	forced	to	have	a	schema,	which	can	be	advantageous,	because	they	remain	flexible	and	easy	to	modify.	Documents	are
stored	in	collections,	enabling	developers	to	group	data	as	they	decide.	OrientDB	uses	the	concepts	of	"classes"	and	"clusters"	as	its
form	of	"collections"	for	grouping	documents.	This	provides	several	benefits,	which	we	will	discuss	in	further	sections	of	the
documentation.

OrientDB's	Document	model	also	adds	the	concept	of	a	"LINK"	as	a	relationship	between	documents.	With	OrientDB,	you	can	decide
whether	to	embed	documents	or	link	to	them	directly.	When	you	fetch	a	document,	all	the	links	are	automatically	resolved	by	OrientDB.
This	is	a	major	difference	to	other	Document	Databases,	like	MongoDB	or	CouchDB,	where	the	developer	must	handle	any	and	all
relationships	between	the	documents	herself.

The	table	below	illustrates	the	comparison	between	the	relational	model,	the	document	model,	and	the	OrientDB	document	model:

Relational	Model Document	Model OrientDB	Document	Model

Table Collection Class	or	Cluster

Row Document Document

Column Key/value	pair Document	field

Relationship not	available Link

The	Graph	Model

A	graph	represents	a	network-like	structure	consisting	of	Vertices	(also	known	as	Nodes)	interconnected	by	Edges	(also	known	as	Arcs).
OrientDB's	graph	model	is	represented	by	the	concept	of	a	property	graph,	which	defines	the	following:

Vertex	-	an	entity	that	can	be	linked	with	other	Vertices	and	has	the	following	mandatory	properties:

unique	identifier
set	of	incoming	Edges
set	of	outgoing	Edges

Edge	-	an	entity	that	links	two	Vertices	and	has	the	following	mandatory	properties:

unique	identifier
link	to	an	incoming	Vertex	(also	known	as	head)
link	to	an	outgoing	Vertex	(also	known	as	tail)
label	that	defines	the	type	of	connection/relationship	between	head	and	tail	vertex

In	addition	to	mandatory	properties,	each	vertex	or	edge	can	also	hold	a	set	of	custom	properties.	These	properties	can	be	defined	by
users,	which	can	make	vertices	and	edges	appear	similar	to	documents.	In	the	table	below,	you	can	find	a	comparison	between	the	graph
model,	the	relational	data	model,	and	the	OrientDB	graph	model:

Data	Modeling

32



Relational	Model Graph	Model OrientDB	Graph	Model

Table Vertex	and	Edge	Class Class	that	extends	"V"	(for	Vertex)	and	"E"	(for	Edges)

Row Vertex Vertex

Column Vertex	and	Edge	property Vertex	and	Edge	property

Relationship Edge Edge

The	Key/Value	Model

This	is	the	simplest	model	of	the	three.	Everything	in	the	database	can	be	reached	by	a	key,	where	the	values	can	be	simple	and	complex
types.	OrientDB	supports	Documents	and	Graph	Elements	as	values	allowing	for	a	richer	model,	than	what	you	would	normally	find	in
the	classic	Key/Value	model.	The	classic	Key/Value	model	provides	"buckets"	to	group	key/value	pairs	in	different	containers.	The	most
classic	use	cases	of	the	Key/Value	Model	are:

POST	the	value	as	payload	of	the	HTTP	call	->		/<bucket>/<key>	
GET	the	value	as	payload	from	the	HTTP	call	->		/<bucket>/<key>	
DELETE	the	value	by	Key,	by	calling	the	HTTP	call	->		/<bucket>/<key>	

The	table	below	illustrates	the	comparison	between	the	relational	model,	the	Key/Value	model,	and	the	OrientDB	Key/Value	model:

Relational	Model Key/Value	Model OrientDB	Key/Value	Model

Table Bucket Class	or	Cluster

Row Key/Value	pair Document

Column not	available Document	field	or	Vertex/Edge	property

Relationship not	available Link

The	Object	Model

This	model	has	been	inherited	by	Object	Oriented	programming	and	supports	Inheritance	between	types	(sub-types	extends	the
super-types),	Polymorphism	when	you	refer	to	a	base	class	and	Direct	binding	from/to	Objects	used	in	programming	languages.

The	table	below	illustrates	the	comparison	between	the	relational	model,	the	Object	model,	and	the	OrientDB	Object	model:

Relational	Model Object	Model OrientDB	Object	Model

Table Class Class	or	Cluster

Row Object Document	or	Vertex

Column Object	property Document	field	or	Vertex/Edge	property

Relationship Pointer Link

Data	Modeling

33

http://en.wikipedia.org/wiki/Object-oriented_programming


Graph	or	Document	API?
In	OrientDB,	we	created	2	different	APIs:	the	Document	API	and	the	Graph	API.	The	Graph	API	works	on	top	of	the	Document	API.
The	Document	API	contains	the	Document,	Key/Value	and	Object	Oriented	models.	The	Graph	API	handles	the	Vertex	and	Edge
relationships.

									YOU,	THE	USER

				||																	||

			_||_																||

			\		/																||

				\/																_||_

+-------------+							\		/

|		Graph	API		|								\/

+-------------+-----------------+

|									Document	API										|

+-------------------------------+

|	Key/Value	and	Object	Oriented	|

+-------------------------------+

Graph	API

With	OrientDB	2.0,	we	improved	our	Graph	API	to	support	all	models	in	just	one	Multi-Model	API.	This	API	will	probably	cover
80%	of	your	database	use	cases,	so	it	should	be	your	"go	to"	API,	if	you're	starting	with	OrientDB.

Using	the	Graph	API:

Your	Data	('records'	in	the	RDBMS	world)	will	be	modeled	as	Vertices	and	Edges.	You	can	store	properties	in	both.
You	can	still	work	in	Schema-Less,	Schema-Full	or	Hybrid	modes.
Relationships	are	modeled	as	Bidirectional	Edges.	If	the	Lightweight	edge	setting	is	active,	OrientDB	uses	Lightweight	Edges	in
cases	where	edges	have	no	properties,	so	it	has	the	same	impact	on	speed	and	space	as	with	Document	LINKs,	but	with	the
additional	bonus	of	having	bidirectional	connections.	This	means	you	can	use	the		MOVE	VERTEX		command	to	refactor	your	graph
with	no	broken	LINKs.	For	more	information	how	Edges	are	managed,	please	refer	to	Lightweight	Edges.

Document	API
What	about	the	remaining	20%	of	your	database	use	cases?	Should	you	need	a	Document	Database	(while	retaining	the	additional
OrientDB	features,	like	LINKs)	or	you	come	from	the	Document	Database	world,	using	the	Document	API	could	be	the	right	choice.

These	are	the	Pros	and	Cons	of	using	the	Document	API:

The	Document	API	is	simpler	than	the	Graph	API	in	general.
Relationships	are	only	mono-directional.	If	you	need	bidirectional	relationships,	it	is	your	responsibility	to	maintain	both	LINKs.
A	Document	is	an	atomic	unit,	while	with	Graphs,	the	relationships	are	modeled	through	In	and	Out	properties.	For	this	reason,
Graph	operations	must	be	done	within	transactions.	In	contrast,	when	you	create	a	relationship	between	documents	with	a	LINK,
the	targeted	linked	document	is	not	involved	in	this	operation.	This	results	in	better	Multi-Threaded	support,	especially	with
insert,	delete	and	update	operations.

Graph	or	Document	API?

34



Basic	Concepts

The	Record

The	smallest	unit	that	you	can	load	from	and	store	in	the	database.	Records	come	in	four	types:

Document
RecordBytes
Vertex
Edge

A	Record	is	the	smallest	unit	that	can	be	loaded	from	and	stored	into	the	database.	A	record	can	be	a	Document,	a	RecordBytes	record
(BLOB)	a	Vertex	or	even	an	Edge.

Documents

The	Document	is	the	most	flexible	record	type	available	in	OrientDB.	Documents	are	softly	typed	and	are	defined	by	schema	classes
with	defined	constraints,	but	you	can	also	use	them	in	a	schema-less	mode	too.

Documents	handle	fields	in	a	flexible	manner.	You	can	easily	import	and	export	them	in	JSON	format.	For	example,

{

					"name"						:	"Jay",

					"surname"			:	"Miner",

					"job"							:	"Developer",

					"creations"	:	[

										{

															"name"				:	"Amiga	1000",

															"company"	:	"Commodore	Inc."

											},	{

															"name"				:	"Amiga	500",

															"company"	:	"Commodore	Inc."

											}

					]

}

For	Documents,	OrientDB	also	supports	complex	relationships.	From	the	perspective	of	developers,	this	can	be	understood	as	a
persistent		Map<String,Object>	.

RecordBytes

In	addition	to	the	Document	record	type,	OrientDB	can	also	load	and	store	binary	data.	The	RecordBytes	record	type	is	similar	to	the
	BLOB		data	type	in	Relational	databases.

Vertex

In	Graph	databases,	the	most	basic	unit	of	data	is	the	node,	which	in	OrientDB	is	called	a	vertex.	The	Vertex	stores	information	for	the
database.	There	is	a	separate	record	type	called	the	Edge	that	connects	one	vertex	to	another.

Vertices	are	also	documents.	This	means	they	can	contain	embedded	records	and	arbitrary	properties.

Edge

In	Graph	databases,	an	arc	is	the	connection	between	two	nodes,	which	in	OrientDB	is	called	an	edge.	Edges	are	bidirectional	and	can
only	connect	two	vertices.

Edges	can	be	regular	or	lightweight.	The	Regular	Edge	saves	as	a	Document,	while	the	Lightweight	Edge	does	not.	For	an	understanding
of	the	differences	between	these,	see	Lightweight	Edges.

For	more	information	on	connecting	vertices	in	general,	see	Relationships,	below.

Basic	Concepts

35



Record	ID

When	OrientDB	generates	a	record,	it	auto-assigns	a	unique	unit	identifier,	called	a	Record	ID,	or	RID.	The	syntax	for	the	Record	ID	is
the	pound	sign	with	the	cluster	identifier	and	the	position.	The	format	is	like	this:

	#<cluster>:<position>	.

Cluster	Identifier:	This	number	indicates	the	cluster	to	which	the	record	belongs.	Positive	numbers	in	the	cluster	identifier
indicate	persistent	records.	Negative	numbers	indicate	temporary	records,	such	as	those	that	appear	in	result-sets	for	queries	that
use	projections.

Position:	This	number	defines	the	absolute	position	of	the	record	in	the	cluster.

NOTE:	The	prefix	character		#		is	mandatory	to	recognize	a	Record	ID.

Records	never	lose	their	identifiers	unless	they	are	deleted.	When	deleted,	OrientDB	never	recycles	identifiers,	except	with		local	
storage.	Additionally,	you	can	access	records	directly	through	their	Record	ID's.	For	this	reason,	you	don't	need	to	create	a	field	to	serve
as	the	primary	key,	as	you	do	in	Relational	databases.

Record	Version

Records	maintain	their	own	version	number,	which	increments	on	each	update.	In	optimistic	transactions,	OrientDB	checks	the	version
in	order	to	avoid	conflicts	at	commit	time.

Class

The	concept	of	the	Class	is	taken	from	the	Object	Oriented	Programming	paradigm.	In	OrientDB,	classes	define	records.	It	is	closest	to
the	concept	of	a	table	in	Relational	databases.

Classes	can	be	schema-less,	schema-full	or	a	mix.	They	can	inherit	from	other	classes,	creating	a	tree	of	classes.	Inheritance,	in	this
context,	means	that	a	sub-class	extends	a	parent	class,	inheriting	all	of	its	attributes.

Each	class	has	its	own	cluster.	A	class	must	have	at	least	one	cluster	defined,	which	functions	as	its	default	cluster.	But,	a	class	can
support	multiple	clusters.	When	you	execute	a	query	against	a	class,	it	automatically	propagates	to	all	clusters	that	are	part	of	the	class.
When	you	create	a	new	record,	OrientDB	selects	the	cluster	to	store	it	in	using	a	configurable	strategy.

When	you	create	a	new	class,	by	default,	OrientDB	creates	a	new	persistent	cluster	with	the	same	name	as	the	class,	in	lowercase.

Abstract	Class

The	concept	of	an	Abstract	Class	is	one	familiar	to	Object-Oriented	programming.	In	OrientDB,	this	feature	has	been	available	since
version	1.2.0.	Abstract	classes	are	classes	used	as	the	foundation	for	defining	other	classes.	They	are	also	classes	that	cannot	have
instances.	For	more	information	on	how	to	create	an	abstract	class,	see	CREATE	CLASS.

This	concept	is	essential	to	Object	Orientation,	without	the	typical	spamming	of	the	database	with	always	empty,	auto-created	clusters.

For	more	information	on	Abstract	Class	as	a	concept,	see	Abstract	Type	and	Abstract	Methods	and	Classes

Class	vs.	Cluster	in	Queries

The	combination	of	classes	and	clusters	is	very	powerful	and	has	a	number	of	use	cases.	Consider	an	example	where	you	create	a	class
	Invoice	,	with	two	clusters		invoice2015		and		invoice2016	.	You	can	query	all	invoices	using	the	class	as	a	target	with		SELECT	.

orientdb>	SELECT	FROM	Invoice

In	addition	to	this,	you	can	filter	the	result-set	by	year.	The	class		Invoice		includes	a		year		field,	you	can	filter	it	through	the		WHERE	
clause.

orientdb>	SELECT	FROM	Invoice	WHERE	year	=	2012

Basic	Concepts

36

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Inheritance_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Abstract_type
http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html


You	can	also	query	specific	objects	from	a	single	cluster.	By	splitting	the	class		Invoice		across	multiple	clusters,	(that	is,	one	per	year),
you	can	optimize	the	query	by	narrowing	the	potential	result-set.

orientdb>	SELECT	FROM	CLUSTER:invoice2012

Due	to	the	optimization,	this	query	runs	significantly	faster,	because	OrientDB	can	narrow	the	search	to	the	targeted	cluster.

Relationships
OrientDB	supports	two	kinds	of	relationships:	referenced	and	embedded.	It	can	manage	relationships	in	a	schema-full	or	schema-less
scenario.

Referenced	Relationships

In	Relational	databases,	tables	are	linked	through		JOIN		commands,	which	can	prove	costly	on	computing	resources.	OrientDB	manges
relationships	natively	without	computing		JOIN	's.	Instead,	it	stores	direct	links	to	the	target	objects	of	the	relationship.	This	boosts	the
load	speed	for	the	entire	graph	of	connected	objects,	such	as	in	Graph	and	Object	database	systems.

For	example

																		customer

		Record	A					------------->				Record	B

CLASS=Invoice																	CLASS=Customer

		RID=5:23																							RID=10:2

Here,	record		A		contains	the	reference	to	record		B		in	the	property		customer	.	Note	that	both	records	are	reachable	by	other	records,
given	that	they	have	a	Record	ID.

With	the	Graph	API,	Edges	are	represented	with	two	links	stored	on	both	vertices	to	handle	the	bidirectional	relationship.

1:1	and	1:n	Referenced	Relationships

OrientDB	expresses	relationships	of	these	kinds	using	links	of	the		LINK		type.

1:n	and	n:n	Referenced	Relationships

OrientDB	expresses	relationships	of	these	kinds	using	a	collection	of	links,	such	as:

	LINKLIST		An	ordered	list	of	links.
	LINKSET		An	unordered	set	of	links,	which	does	not	accept	duplicates.
	LINKMAP		An	ordered	map	of	links,	with		String		as	the	key	type.	Duplicates	keys	are	not	accepted.

With	the	Graph	API,	Edges	connect	only	two	vertices.	This	means	that	1:n	relationships	are	not	allowed.	To	specify	a	1:n	relationship
with	graphs,	create	multiple	edges.

Embedded	Relationships

When	using	Embedded	relationships,	OrientDB	stores	the	relationship	within	the	record	that	embeds	it.	These	relationships	are	stronger
than	Reference	relationships.	You	can	represent	it	as	a	UML	Composition	relationship.

Embedded	records	do	not	have	thier	own	Record	ID,	given	that	you	can't	directly	reference	it	through	other	records.	It	is	only	accessible
through	the	container	record.

In	the	event	that	you	delete	the	container	record,	the	embedded	record	is	also	deleted.	For	example,

																			address

		Record	A					<>---------->			Record	B

CLASS=Account															CLASS=Address

		RID=5:23																					NO	RID!

Basic	Concepts

37

http://en.wikipedia.org/wiki/Class_diagram#Composition


Here,	record		A		contains	the	entirety	of	record		B		in	the	property		address	.	You	can	reach	record		B		only	by	traversing	the	container
record.	For	example,

orientdb>	SELECT	FROM	Account	WHERE	address.city	=	'Rome'

1:1	and	n:1	Embedded	Relationships

OrientDB	expresses	relationships	of	these	kinds	using	the		EMBEDDED		type.

1:n	and	n:n	Embedded	Relationships

OrientDB	expresses	relationships	of	these	kinds	using	a	collection	of	links,	such	as:

	EMBEDDEDLIST		An	ordered	list	of	records.
	EMBEDDEDSET		An	unordered	set	of	records,	that	doesn't	accept	duplicates.
	EMBEDDEDMAP		An	ordered	map	of	records	as	the	value	and	a	string	as	the	key,	it	doesn't	accept	duplicate	keys.

Inverse	Relationships

In	OrientDB,	all	Edges	in	the	Graph	model	are	bidirectional.	This	differs	from	the	Document	model,	where	relationships	are	always
unidirectional,	requiring	the	developer	to	maintain	data	integrity.	In	addition,	OrientDB	automatically	maintains	the	consistency	of	all
bidirectional	relationships.

Database

The	database	is	an	interface	to	access	the	real	Storage.	IT	understands	high-level	concepts	such	as	queries,	schemas,	metadata,	indices
and	so	on.	OrientDB	also	provides	multiple	database	types.	For	more	information	on	these	types,	see	Database	Types.

Each	server	or	Java	VM	can	handle	multiple	database	instances,	but	the	database	name	must	be	unique.	You	can't	manage	two	databases
at	the	same	time,	even	if	they	are	in	different	directories.	To	handle	this	case,	use	the		$		dollar	character	as	a	separator	instead	of	the
	/		slash	character.	OrientDB	binds	the	entire	name,	so	it	becomes	unique,	but	at	the	file	system	level	it	converts		$		with		/	,	allowing
multiple	databases	with	the	same	name	in	different	paths.	For	example,

test$customers	->	test/customers

production$customers	=	production/customers

To	open	the	database,	use	the	following	code:

test	=	new	ODatabaseDocumentTx("remote:localhost/test$customers");

production	=	new	ODatabaseDocumentTx("remote:localhost/production$customers");

Database	URL

OrientDB	uses	its	own	URL	format,	of	engine	and	database	name	as		<engine>:<db-name>	.

Engine Description Example

plocal This	engine	writes	to	the	file	system	to	store	data.	There	is	a	LOG
of	changes	to	restore	the	storage	in	case	of	a	crash.

	plocal:/temp/databases/petshop/petshop	

memory Open	a	database	completely	in	memory 	memory:petshop	

remote

The	storage	will	be	opened	via	a	remote	network	connection.	It
requires	an	OrientDB	Server	up	and	running.	In	this	mode,	the
database	is	shared	among	multiple	clients.	Syntax:		remote:<server>:
[<port>]/db-name	.	The	port	is	optional	and	defaults	to	2424.

	remote:localhost/petshop	

Database	Usage

Basic	Concepts

38

http://en.wikipedia.org/wiki/Uniform_Resource_Locator


You	must	always	close	the	database	once	you	finish	working	on	it.

NOTE:	OrientDB	automatically	closes	all	opened	databases,	when	the	process	dies	gracefully	(not	by	killing	it	by	force).	This	is
assured	if	the	Operating	System	allows	a	graceful	shutdown.

Basic	Concepts

39



Supported	Types
OrientDB	supports	several	types	natively.	Below	is	the	complete	table.

#id Type Description Java	type Minimum
Maximum

Auto-
conversion
from/to

0 Boolean Handles	only	the	values	True	or
False

	java.lang.Boolean		or
	boolean	

0
1 String

1 Integer 32-bit	signed	Integers 	java.lang.Integer		or
	int	

-2,147,483,648
+2,147,483,647

Any
Number,
String

2 Short Small	16-bit	signed	integers 	java.lang.Short		or
	short	

-32,768
32,767

Any
Number,
String

3 Long Big	64-bit	signed	integers 	java.lang.Long		or
	long	

-2
+2 -1

Any
Number,
String

4 Float Decimal	numbers 	java.lang.Float		or
	float	

2
(2-2 )*2

Any
Number,
String

5 Double Decimal	numbers	with	high
precision

	java.lang.Double		or
	double	

2
(2-2 )*2

Any
Number,
String

6 Datetime
Any	date	with	the	precision	up	to
milliseconds.	To	know	more	about
it,	look	at	Managing	Dates

	java.util.Date	
-
1002020303

Date,	Long,
String

7 String Any	string	as	alphanumeric
sequence	of	chars

	java.lang.String	
-
- -

8 Binary Can	contain	any	value	as	byte	array 	byte[]	
0
2,147,483,647 String

9 Embedded
The	Record	is	contained	inside	the
owner.	The	contained	Record	has
no	RecordId

	ORecord	
-
- ORecord

10 Embedded
list

The	Records	are	contained	inside
the	owner.	The	contained	records
have	no	RecordIds	and	are
reachable	only	by	navigating	the
owner	record

	List<Object>	

0
41,000,000
items

String

11 Embedded
set

The	Records	are	contained	inside
the	owner.	The	contained	Records
have	no	RecordId	and	are	reachable
only	by	navigating	the	owner
record

	Set<Object>	

0
41,000,000
items

String

12 Embedded
map

The	Records	are	contained	inside
the	owner	as	values	of	the	entries,
while	the	keys	can	only	be	Strings.
The	contained	ords	e	no	RecordIds
and	are	reachable	only	by
navigating	the	owner	Record

	Map<String,	ORecord>	

0
41,000,000
items

	Collection<?

extends

ORecord<?>>	,
	String	

13 Link Link	to	another	Record.	It's	a
common	one-to-one	relationship

	ORID	,		<?	extends
ORecord>	

1:-1
32767:2^63-1 String

14 Link	list

Links	to	other	Records.	It's	a
common	one-to-many	relationship
where	only	the	RecordIds	are
stored

	List<?	extends

ORecord	

0
41,000,000
items

String

0
	Collection<?

63
63

-149
-23 127

-1074
-52 1023

Supported	Types

40



15 Link	set Links	to	other	Records.	It's	a
common	one-to-many	relationship

	Set<?	extends

ORecord>	

41,000,000
items

extends

ORecord>	,
	String	

16 Link	map

Links	to	other	Records	as	value	of
the	entries,	while	keys	can	only	be
Strings.	It's	a	common	One-to-
Many	Relationship.	Only	the
RecordIds	are	stored

	Map<String,				?

extends	Record>	

0
41,000,000
items

String

17 Byte Single	byte.	Useful	to	store	small	8-
bit	signed	integers

	java.lang.Byte		or
	byte	

-128
+127

Any
Number,
String

18 Transient Any	value	not	stored	on	database

19 Date
Any	date	as	year,	month	and	day.
To	know	more	about	it,	look	at
Managing	Dates

	java.util.Date	 -- Date,	Long,
String

20 Custom
used	to	store	a	custom	type
providing	the	marshall	and
unmarshall	methods

	OSerializableStream	
0
X -

21 Decimal Decimal	numbers	without	rounding 	java.math.BigDecimal	
?
?

Any
Number,
String

22 LinkBag List	of	RecordIds	as	spec	RidBag 	ORidBag	
?
? -

23 Any
Not	determinated	type,	used	to
specify	Collections	of	mixed	type,
and	null

- - -

Supported	Types

41



Inheritance
Unlike	many	Object-relational	mapping	tools,	OrientDB	does	not	split	documents	between	different	classes.	Each	document	resides	in
one	or	a	number	of	clusters	associated	with	its	specific	class.	When	you	execute	a	query	against	a	class	that	has	subclasses,	OrientDB
searches	the	clusters	of	the	target	class	and	all	subclasses.

Declaring	Inheritance	in	Schema

In	developing	your	application,	bear	in	mind	that	OrientDB	needs	to	know	the	class	inheritance	relationship.	This	is	an	abstract	concept
that	applies	to	both	POJO's	and	Documents.

For	example,

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

OClass	company	=	database.getMetadata().getSchema().createClass("Company").setSuperClass(account);

Using	Polymorphic	Queries

By	default,	OrientDB	treats	all	queries	as	polymorphic.	Using	the	example	above,	you	can	run	the	following	query	from	the	console:

orientdb>	SELECT	FROM	Account	WHERE	name.toUpperCase()	=	'GOOGLE'

This	query	returns	all	instances	of	the	classes		Account		and		Company		that	have	a	property	name	that	matches		Google	.

How	Inheritance	Works

Consider	an	example,	where	you	have	three	classes,	listed	here	with	the	cluster	identifier	in	the	parentheses.

Account(10)	<|---	Company	(13)	<|---	OrientTechnologiesGroup	(27)

By	default,	OrientDB	creates	a	separate	cluster	for	each	class.	It	indicates	this	cluster	by	the		defaultClusterId		property	in	the	class
	OClass		and	indicates	the	cluster	used	by	default	when	not	specified.	However,	the	class		OClass		has	a	property		clusterIds	,	(as
	int[]	),	that	contains	all	the	clusters	able	to	contain	the	records	of	that	class.		clusterIds		and		defaultClusterId		are	the	same	by
default.

When	you	execute	a	query	against	a	class,	OrientDB	limits	the	result-sets	to	only	the	records	of	the	clusters	contained	in	the
	clusterIds		property.	For	example,

orientdb>	SELECT	FROM	Account	WHERE	name.toUpperCase()	=	'GOOGLE'

This	query	returns	all	the	records	with	the	name	property	set	to		GOOGLE		from	all	three	classes,	given	that	the	base	class		Account		was
specified.	For	the	class		Account	,	OrientDB	searches	inside	the	clusters		10	,		13		and		17	,	following	the	inheritance	specified	in	the
schema.

Inheritance

42



Concurrency
OrientDB	uses	an	optimistic	approach	to	concurrency.	Optimistic	Concurrency	Control,	or	OCC	assumes	that	multiple	transactions	can
compete	frequently	without	interfering	with	each	other.

Optimistic	Concurrency	in	OrientDB

Optimistic	concurrency	control	is	used	in	environments	with	low	data	contention.	That	is,	where	conflicts	are	rare	and	transactions	can
complete	without	the	expense	of	managing	locks	and	without	having	transactions	wait	for	locks	to	clear.	This	means	a	reduced
throughput	over	other	concurrency	control	methods.

OrientDB	uses	OCC	for	both	Atomic	Operations	and	Transactions.

Atomic	Operations

OrientDB	supports	Multi-Version	Concurrency	Control,	or	MVCC,	with	atomic	operations.	This	allows	it	to	avoid	locking	server	side
resources.	At	the	same	time,	it	checks	the	version	in	the	database.	If	the	version	is	equal	to	the	record	version	contained	in	the	operation,
the	operation	is	successful.	If	the	version	found	is	higher	than	the	record	version	contained	in	the	operation,	then	another	thread	or	user
has	already	updated	the	same	record.	In	this	case,	OrientDB	generates	an		OConcurrentModificationException		exception.

Given	that	behavior	of	this	kind	is	normal	on	systems	that	use	optimistic	concurrency	control,	developers	need	to	write	concurrency-
proof	code.	Under	this	design,	the	application	retries	transactions	x	times	before	reporting	the	error.	It	does	this	by	catching	the
exception,	reloading	the	affected	records	and	attempting	to	update	them	again.	For	example,	consider	the	code	for	saving	a	document,

int	maxRetries	=	10;

List<ODocument>	result	=	db.query("SELECT	FROM	Client	WHERE	id	=	'39w39D32d2d'");

ODocument	address	=	result.get(0);

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{

					try	{

										//	LOOKUP	FOR	THE	INVOICE	VERTEX

										address.field(	"street",	street	);

										address.field(	"zip",	zip	);

										address.field(	"city",	cityName	);

										address.field(	"country",	countryName	);

										address.save();

										//	EXIT	FROM	RETRY	LOOP

										break;

					}

					catch(	ONeedRetryException	e	)	{

										//	IF	SOMEONE	UPDATES	THE	ADDRESS	DOCUMENT

										//	AT	THE	SAME	TIME,	RETRY	IT.

					}

}

Transactions

OrientDB	supports	optimistic	transactions.	The	database	does	not	use	locks	when	transactions	are	running,	but	when	the	transaction
commits,	each	record	(document	or	graph	element)	version	is	checked	to	see	if	there	have	been	updates	from	another	client.	For	this
reason,	you	need	to	code	your	applications	to	be	concurrency-proof.

Optimistic	concurrency	requires	that	you	retire	the	transaction	in	the	event	of	conflicts.	For	example,	consider	a	case	where	you	want	to
connect	a	new	vertex	to	an	existing	vertex:

Concurrency

43

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control


int	maxRetries	=	10;

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{

					try	{

										//	LOOKUP	FOR	THE	INVOICE	VERTEX

										Vertex	invoice	=	graph.getVertices("invoiceId",	2323);

										//	CREATE	A	NEW	ITEM

										Vertex	invoiceItem	=	graph.addVertex("class:InvoiceItem");

										invoiceItem.field("price",	1000);

										//	ADD	IT	TO	THE	INVOICE

										invoice.addEdge(invoiceItem);

										graph.commit();

										//	EXIT	FROM	RETRY	LOOP

										break;

					}

					catch(	OConcurrentModificationException	e	)	{

										//	SOMEONE	HAS	UPDATED	THE	INVOICE	VERTEX

										//	AT	THE	SAME	TIME,	RETRY	IT

					}

}

Concurrency	Level

In	order	to	guarantee	atomicity	and	consistency,	OrientDB	uses	an	exclusive	lock	on	the	storage	during	transaction	commits.	This	means
that	transactions	are	serialized.

Given	this	limitation,	developers	with	OrientDB	are	working	on	improving	parallelism	to	achieve	better	scalability	on	multi-core
machines,	by	optimizing	internal	structure	to	avoid	exclusive	locking.

Concurrency	when	Adding	Edges

Consider	the	case	where	multiple	clients	attempt	to	add	edges	on	the	same	vertex.	OrientDB	could	throw	the
	OConcurrentModificationException		exception.	This	occurs	because	collections	of	edges	are	kept	on	vertices,	meaning	that,	every	time
OrientDB	adds	or	removes	an	edge,	both	vertices	update	and	their	versions	increment.	You	can	avoid	this	issue	by	using	RIDBAG
Bonsai	structure,	which	are	never	embedded,	so	the	edge	never	updates	the	vertices.

To	use	this	configuration	at	run-time,	before	launching	OrientDB,	use	this	code:

OGlobalConfiguration.RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD.setValue(-1);

Alternatively,	you	can	set	a	parameter	for	the	Java	virtual-machine	on	startup,	or	even	at	run-time,	before	OrientDB	is	used:

$	java	-DridBag.embeddedToSbtreeBonsaiThreshold=-1

While	running	in	distributed	mode	SBTrees	are	not	supported.	If	using	a	distributed	database
then	you	must	set

ridBag.embeddedToSbtreeBonsaiThreshold	=	Integer.MAX\_VALUE

to	avoid	replication	errors.

Troubleshooting

Reduce	Transaction	Size

Concurrency

44



On	occasion,	OrientDB	throws	the		OConcurrentModificationException		exception	even	when	you	concurrently	update	the	first	element.
In	particularly	large	transactions,	where	you	have	thousands	of	records	involved	in	a	transaction,	one	changed	record	is	enough	to	roll	the
entire	process	back	with	an		OConcurrentModificationException		exception.

To	avoid	issues	of	this	kind,	if	you	plan	to	update	many	elements	in	the	same	transaction	with	high-concurrency	on	the	same	vertices,	a
best	practice	is	to	reduce	the	transaction	size.

Concurrency

45



Schema
While	OrientDb	can	work	in	a	schema-less	mode,	you	may	find	it	necessary	at	times	to	enforce	a	schema	on	your	data	model.	OrientDB
supports	both	schema-full	and	schema-hybrid	solutions.

In	the	case	of	schema-hybrid	mode,	you	only	set	constraints	for	certain	fields	and	leave	the	user	to	add	custom	fields	to	the	record.	This
mode	occurs	at	a	class	level,	meaning	that	you	can	have	an		Employee		class	as	schema-full	and	an		EmployeeInformation		class	as	schema-
less.

Schema-full	Enables	strict-mode	at	a	class-level	and	sets	all	fields	as	mandatory.
Schema-less	Enables	classes	with	no	properties.	Default	is	non-strict-mode,	meaning	that	records	can	have	arbitrary	fields.
Schema-hybrid	Enables	classes	with	some	fields,	but	allows	records	to	define	custom	fields.	This	is	also	sometimes	called	schema-
mixed.

NOTE	Changes	to	the	schema	are	not	transactional.	You	must	execute	these	commands	outside	of	a	transaction.

You	can	access	the	schema	through	SQL	or	through	the	Java	API.	Examples	here	use	the	latter.	To	access	the	schema	API	in	Java,	you
need	the	Schema	instance	of	the	database	you	want	to	use.	For	example,

OSchema	schema	=	database.getMetadata().getSchema();

Class
OrientDB	draws	from	the	Object	Oriented	programming	paradigm	in	the	concept	of	the	Class.	A	class	is	a	type	of	record.	In	comparison
to	Relational	database	systems,	it	is	most	similar	in	conception	to	the	table.

Classes	can	be	schema-less,	schema-full	or	schema-hybrid.	They	can	inherit	from	other	classes,	shaping	a	tree	of	classes.	In	other	words,
a	sub-class	extends	the	parent	class,	inheriting	all	attributes.

Each	class	has	its	own	clusters.	By	default,	these	clusters	are	logical,	but	they	can	also	be	physical.	A	given	class	must	have	at	least	one
cluster	defined	as	its	default,	but	it	can	support	multiple	clusters.	OrientDB	writes	new	records	into	the	default	cluster,	but	always
reads	from	all	defined	clusters.

When	you	create	a	new	class,	OrientDB	creates	a	default	physical	cluster	that	uses	the	same	name	as	the	class,	but	in	lowercase.

Creating	Persistent	Classes

Classes	contain	one	or	more	properties.	This	mode	is	similar	to	the	classical	model	of	the	Relational	database,	where	you	must	define
tables	before	you	can	begin	to	store	records.

To	create	a	persistent	class	in	Java,	use	the		createClass()		method:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

This	method	creates	the	class		Account		on	the	database.	It	simultaneously	creates	the	physical	cluster		account	,	to	provide	storage	for
records	in	the	class		Account	.

Getting	Persistent	Classes

With	the	new	persistent	class	created,	you	may	also	need	to	get	its	contents.

To	retrieve	a	persistent	class	in	Java,	use	the		getClass()		method:

OClass	account	=	database.getMetadata().getSchema().getClass("Account");

This	method	retrieves	from	the	database	the	persistent	class		Account	.	If	the	query	finds	that	the		Account		class	does	not	exist,	it
returns		NULL	.

Schema

46



Dropping	Persistent	Classes

In	the	event	that	you	no	longer	want	the	class,	you	can	drop,	or	delete,	it	from	the	database.

To	drop	a	persistent	class	in	Java,	use	the		OSchema.dropClass()		method:

database.getMetadata().getSchema().dropClass("Account");

This	method	drops	the	class		Account		from	your	database.	It	does	not	delete	records	that	belong	to	this	class	unless	you	explicitly	ask
it	to	do	so:

database.command(new	OCommandSQL("DELETE	FROM	Account")).execute();

database.getMetadata().getSchema().dropClass("Account");

Constraints

Working	in	schema-full	mode	requires	that	you	set	the	strict	mode	at	the	class-level,	by	defining	the		setStrictMode()		method	to
	TRUE	.	In	this	case,	records	of	that	class	cannot	have	undefined	properties.

Properties
In	OrientDB,	a	property	is	a	field	assigned	to	a	class.	For	the	purposes	of	this	tutorial,	consider	Property	and	Field	as	synonymous.

Creating	Class	Properties

After	you	create	a	class,	you	can	define	fields	for	that	class.	To	define	a	field,	use	the		createProperty()		method.

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

account.createProperty("id",	OType.Integer);

account.createProperty("birthDate",	OType.Date);

These	lines	create	a	class		Account	,	then	defines	two	properties		id		and		birthDate	.	Bear	in	mind	that	each	field	must	belong	to	one
of	the	supported	types.	Here	these	are	the	integer	and	date	types.

Dropping	Class	Properties

In	the	event	that	you	would	like	to	remove	properties	from	a	class	you	can	do	so	using	the		dropProperty()		method	under		OClass	.

database.getMetadata().getSchema().getClass("Account").dropProperty("name");

When	you	drop	a	property	from	a	class,	it	does	not	remove	records	from	that	class	unless	you	explicitly	ask	for	it,	using	the		UPDATE...
REMOVE		statements.	For	instance,

database.getMetadata().getSchema().getClass("Account").dropProperty("name");

database.command(new	OCommandSQL("UPDATE	Account	REMOVE	name")).execute();

The	first	method	drops	the	property	from	the	class.	The	second	updates	the	database	to	remove	the	property.

Relationships

OrientDB	supports	two	types	of	relationships:	referenced	and	embedded.

Referenced	Relationships

In	the	case	of	referenced	relationships,	OrientDB	uses	a	direct	link	to	the	referenced	record	or	records.	This	allows	the	database	to	avoid
the	costly		JOIN		operations	used	by	Relational	databases.

Schema

47



																		customer

		Record	A					------------->				Record	B

CLASS=Invoice																	CLASS=Customer

		RID=5:23																							RID=10:2

In	the	example,	Record	A	contains	the	reference	to	Record	B	in	the	property		customer	.	Both	records	are	accessible	by	any	other
records	since	each	has	a	Record	ID.

1:1	and	n:1	Reference	Relationships

In	one	to	one	and	many	to	one	relationships,	the	reference	relationship	is	expressed	using	teh		LINK		type.	For	instance.

OClass	customer=	database.getMetadata().getSchema().createClass("Customer");

customer.createProperty("name",	OType.STRING);

OClass	invoice	=	database.getMetadata().getSchema().createClass("Invoice");

invoice.createProperty("id",	OType.INTEGER);

invoice.createProperty("date",	OType.DATE);

invoice.createProperty("customer",	OType.LINK,	customer);

Here,	records	of	the	class		Invoice		link	to	a	record	of	the	class		Customer	,	through	the	field		customer	.

1:n	and	n:n	Reference	Relationships.

In	one	to	many	and	many	to	many	relationships,	OrientDB	expresses	the	referenced	relationship	using	collections	of	links.

	LINKLIST		An	ordered	list	of	links.
	LINKSET		An	unordered	set	of	links,	that	does	not	accept	duplicates.
	LINKMAP		An	ordered	map	of	links,	with	a	string	key.	It	does	not	accept	duplicate	keys.

For	example,

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");

orderItem.createProperty("id",	OType.INTEGER);

orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");

order.createProperty("id",	OType.INTEGER);

order.createProperty("date",	OType.DATE);

order.createProperty("items",	OType.LINKLIST,	orderItem);

Here,	you	have	two	classes:		Order		and		OrderItem		and	a	1:n	referenced	relationship	is	created	between	them.

Embedded	Relationships

In	the	case	of	embedded	relationships,	OrientDB	contains	the	relationship	within	the	record.	Embedded	relationships	are	stronger	than
referenced	relationships,	but	the	embedded	record	does	not	have	its	own	Record	ID.	Because	of	this,	you	cannot	reference	them	directly
through	other	records.	The	relationship	is	only	accessible	through	the	container	record.	If	the	container	record	is	deleted,	then	the
embedded	record	is	also	deleted.

																		address

		Record	A					<>---------->			Record	B

CLASS=Account															CLASS=Address

		RID=5:23																					NO	RID!

Here,	Record	A	contains	the	entirety	of	Record	B	in	the	property		address	.	You	can	only	reach	Record	B	by	traversing	the	container,
Record	A.

orientdb>	SELECT	FROM	Account	WHERE	Address.city	=	'Rome'

1:1	and	n:1	Embedded	Relationships

Schema

48



For	one	to	one	and	many	to	one	embedded	relationships,	OrientDB	uses	links	of	the		EMBEDDED		type.	For	example,

OClass	address	=	database.getMetadata().getSchema().createClass("Address");

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

account.createProperty("id",	OType.INTEGER);

account.createProperty("birthDate",	OType.DATE);

account.createProperty("address",	OType.EMBEDDED,	address);

Here,	records	of	the	class		Account		embed	records	for	the	class		Address	.

1:n	and	n:n	Embedded	Relationships

In	the	case	of	one	to	many	and	many	to	many	relationships,	OrientDB	sues	a	collection	embedded	link	types:

	EMBEDDEDLIST		An	ordered	list	of	records.
	EMBEDDEDSET		An	unordered	set	of	records.	It	doesn't	accept	duplicates.
	EMBEDDEDMAP		An	ordered	map	of	records	as	key-value	pairs.	It	doesn't	accept	duplicate	keys.

For	example,

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");

orderItem.createProperty("id",	OType.INTEGER);

orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");

order.createProperty("id",	OType.INTEGER);

order.createProperty("date",	OType.DATE);

order.createProperty("items",	OType.EMBEDDEDLIST,	orderItem);

This	establishes	a	one	to	many	relationship	between	the	classes		Order		and		OrderItem	.

Constraints

OrientDB	supports	a	number	of	constraints	for	each	field.	For	more	information	on	setting	constraints,	see	the		ALTER	PROPERTY	
command.

Minimum	Value:		setMin()		The	field	accepts	a	string,	because	it	works	also	for	date	ranges.
Maximum	Value:		setMax()		The	field	accepts	a	string,	because	it	works	also	for	date	rangers.
Mandatory:		setMandatory()		This	field	is	required.
Read	Only:		setReadonly()		This	field	cannot	update	after	being	created.
Not	Null:		setNotNull()		This	field	cannot	be	null.
Unique:	This	field	doesn't	allow	duplicates	or	speedup	searches.
Regex:	This	field	must	satisfy	Regular	Expressions

For	example,

profile.createProperty("nick",	OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);

profile.createIndex("nickIdx",	OClass.INDEX_TYPE.UNIQUE,	"nick");	//	Creates	unique	constraint

profile.createProperty("name",	OType.STRING).setMin("3").setMax("30");

profile.createProperty("surname",	OType.STRING).setMin("3").setMax("30");

profile.createProperty("registeredOn",	OType.DATE).setMin("2010-01-01	00:00:00");

profile.createProperty("lastAccessOn",	OType.DATE).setMin("2010-01-01	00:00:00");

Indices	as	Constraints

To	define	a	property	value	as	unique,	use	the		UNIQUE		index	constraint.	For	example,

profile.createIndex("EmployeeId",	OClass.INDEX_TYPE.UNIQUE,	"id");

You	can	also	constrain	a	group	of	properties	as	unique	by	creating	a	composite	index	made	from	multiple	fields.	For	instance,

Schema

49

http://en.wikipedia.org/wiki/Regular_expression


profile.createIndex("compositeIdx",	OClass.INDEX_TYPE.NOTUNIQUE,	"name",	"surname");

For	more	information	about	indexes	look	at	Index	guide.

Schema

50



Cluster	Selection
When	you	create	a	new	record	and	specify	the	class	to	which	it	belongs,	OrientDB	automatically	selects	a	cluster,	where	it	stores	the
physical	data	of	the	record.	There	are	a	number	of	configuration	strategies	available	for	you	to	use	in	determining	how	OrientDB	selects
the	appropriate	cluster	for	the	new	record.

	default		It	selects	the	cluster	using	the		defaultClusterId		property	from	the	class.	Prior	to	version	1.7,	this	was	the	default
method.

	round-robin		It	arranges	the	configured	clusters	for	the	class	into	sequence	and	assigns	each	new	record	to	the	next	cluster	in	order.

	balanced		It	checks	the	number	of	records	in	the	configured	clusters	for	the	class	and	assigns	the	new	record	to	whichever	is	the
smallest	at	the	time.	To	avoid	latency	issues	on	data	insertions,	OrientDB	calculates	cluster	size	every	five	seconds	or	longer.

	local		When	the	database	is	run	in	distributed	mode,	it	selects	the	master	cluster	on	the	current	node.	This	helps	to	avoid	conflicts
and	reduce	network	latency	with	remote	calls	between	nodes.

Whichever	cluster	selection	strategy	works	best	for	your	application,	you	can	assign	it	through	the		ALTER	CLASS...CLUSTERSELECTION	
command.	For	example,

orientdb>	ALTER	CLASS	Account	CLUSTERSELECTION	round-robin

When	you	run	this	command,	it	updates	the		Account		class	to	use	the		round-robin		selection	strategy.	It	cycles	through	available
clusters,	adding	new	records	to	each	in	sequence.

Custom	Cluster	Selection	Strategies
In	addition	to	the	cluster	selection	strategies	listed	above,	you	can	also	develop	your	own	select	strategies	through	the	Java	API.	This
ensures	that	it	the	strategies	that	are	available	by	default	do	not	meet	your	particular	needs,	you	can	develop	one	that	does.

1.	 Using	your	preferred	text	editor,	create	the	implementation	in	Java.	In	order	to	use	a	custom	strategy,	the	class	must	implement	the
	OClusterSelectionStrategy		interface.

package	mypackage;

public	class	RandomSelectionStrategy	implements	OClusterSelectionStrategy	{

			public	int	getCluster(final	OClass	iClass,	final	ODocument	doc)	{

						final	int[]	clusters	=	iClass.getClusterIds();

						//	RETURN	A	RANDOM	CLUSTER	ID	IN	THE	LIST

						return	new	Random().nextInt(clusters.length);

			}

			public	String	getName(){	return	"random";	}

}

Bear	in	mind	that	the	method		getCluster()		also	receives	the		ODocument		cluster	to	insert.	You	may	find	this	useful,	if	you	want
to	assign	the		clusterId		variable,	based	on	the	Document	content.

2.	 Register	the	implementation	as	a	service.	You	can	do	this	by	creating	a	new	file	under		META-INF/service	.	Use	the	filename
	com.orientechnologies.orient.core.metadata.schema.clusterselection.OClusterSelectionStrategy	.	For	its	contents,	code	your
class	with	the	full	package.	For	instance,

mypackage.RandomSelectionStrategy

This	adds	to	the	default	content	in	the	OrientDB	core:

com.orientechnologies.orient.core.metadata.schema.clusterselection.ORoundRobinClusterSelectionStrategy

com.orientechnologies.orient.core.metadata.schema.clusterselection.ODefaultClusterSelectionStrategy

com.orientechnologies.orient.core.metadata.schema.clusterselection.OBalancedClusterSelectionStrategy

Cluster	Selection

51



3.	 From	the	database	console,	assign	the	new	selection	strategy	to	your	class	with	the		ALTER	CLASS...CLUSTERSELECTION		command.

orientdb>	ALTER	CLASS	Employee	CLUSTERSELECTION	random

The	class		Employee		now	selects	clusters	using		random	,	your	custom	strategy.

Cluster	Selection

52



Managing	Dates
OrientDB	treats	dates	as	first	class	citizens.	Internally,	it	saves	dates	in	the	Unix	time	format.	Meaning,	it	stores	dates	as	a		long	
variable,	which	contains	the	count	in	milliseconds	since	the	Unix	Epoch,	(that	is,	1	January	1970).

Date	and	Datetime	Formats

In	order	to	make	the	internal	count	from	the	Unix	Epoch	into	something	human	readable,	OrientDB	formats	the	count	into	date	and
datetime	formats.	By	default,	these	formats	are:

Date	Format:		yyyy-MM-dd	
Datetime	Format:		yyyy-MM-dd	HH:mm:ss	

In	the	event	that	these	default	formats	are	not	sufficient	for	the	needs	of	your	application,	you	can	customize	them	through		ALTER
DATABASE...DATEFORMAT		and		DATETIMEFORMAT		commands.	For	instance,

orientdb>	ALTER	DATABASE	DATEFORMAT	"dd	MMMM	yyyy"

This	command	updates	the	current	database	to	use	the	English	format	for	dates.	That	is,	14	Febr	2015.

SQL	Functions	and	Methods

To	simplify	the	management	of	dates,	OrientDB	SQL	automatically	parses	dates	to	and	from	strings	and	longs.	These	functions	and
methods	provide	you	with	more	control	to	manage	dates:

SQL Description

	DATE()	 Function	converts	dates	to	and	from	strings	and	dates,	also	uses	custom	formats.

	SYSDATE()	 Function	returns	the	current	date.

	.format()	 Method	returns	the	date	in	different	formats.

	.asDate()	 Method	converts	any	type	into	a	date.

	.asDatetime()	 Method	converts	any	type	into	datetime.

	.asLong()	 Method	converts	any	date	into	long	format,	(that	is,	Unix	time).

For	example,	consider	a	case	where	you	need	to	extract	only	the	years	for	date	entries	and	to	arrange	them	in	order.	You	can	use	the
	.format()		method	to	extract	dates	into	different	formats.

orientdb>	SELECT	@RID,	id,	date.format('yyyy')	AS	year	FROM	Order

--------+----+------+

	@RID			|	id	|	year	|

--------+----+------+

	#31:10	|	92	|	2015	|

	#31:10	|	44	|	2014	|

	#31:10	|	32	|	2014	|

	#31:10	|	21	|	2013	|

--------+----+------+

In	addition	to	this,	you	can	also	group	the	results.	For	instance,	extracting	the	number	of	orders	grouped	by	year.

Managing	Dates

53

https://en.wikipedia.org/wiki/Unix_time


orientdb>	SELECT	date.format('yyyy')	AS	Year,	COUNT(*)	AS	Total	

										FROM	Order	ORDER	BY	Year

------+--------+

	Year	|		Total	|

------+--------+

	2015	|						1	|

	2014	|						2	|

	2013	|						1	|

------+--------+

Dates	before	1970
While	you	may	find	the	default	system	for	managing	dates	in	OrientDB	sufficient	for	your	needs,	there	are	some	cases	where	it	may	not
prove	so.	For	instance,	consider	a	database	of	archaeological	finds,	a	number	of	which	date	to	periods	not	only	before	1970	but	possibly
even	before	the	Common	Era.	You	can	manage	this	by	defining	an	era	or	epoch	variable	in	your	dates.

For	example,	consider	an	instance	where	you	want	to	add	a	record	noting	the	date	for	the	foundation	of	Rome,	which	is	traditionally
referred	to	as	April	21,	753	BC.	To	enter	dates	before	the	Common	Era,	first	run	the	[	ALTER	DATABASE	DATETIMEFORMAT	]	command	to	add
the		GG		variable	to	use	in	referencing	the	epoch.

orientdb>	ALTER	DATABASE	DATETIMEFORMAT	"yyyy-MM-dd	HH:mm:ss	GG"

Once	you've	run	this	command,	you	can	create	a	record	that	references	date	and	datetime	by	epoch.

orientdb>	CREATE	VERTEX	V	SET	city	=	"Rome",	date	=	DATE("0753-04-21	00:00:00	BC")

orientdb>	SELECT	@RID,	city,	date	FROM	V

-------+------+------------------------+

	@RID		|	city	|	date																			|

-------+------+------------------------+

	#9:10	|	Rome	|	0753-04-21	00:00:00	BC	|

-------+------+------------------------+

Using		.format()		on	Insertion

In	addition	to	the	above	method,	instead	of	changing	the	date	and	datetime	formats	for	the	database,	you	can	format	the	results	as	you
insert	the	date.

orientdb>	CREATE	VERTEX	V	SET	city	=	"Rome",	date	=	DATE("yyyy-MM-dd	HH:mm:ss	GG")

orientdb>	SELECT	@RID,	city,	date	FROM	V

------+------+------------------------+

	@RID	|	city	|	date																			|

------+------+------------------------+

	#9:4	|	Rome	|	0753-04-21	00:00:00	BC	|

------+------+------------------------+

Here,	you	again	create	a	vertex	for	the	traditional	date	of	the	foundation	of	Rome.	However,	instead	of	altering	the	database,	you	format
the	date	field	in		CREATE	VERTEX		command.

Viewing	Unix	Time

Managing	Dates

54



In	addition	to	the	formatted	date	and	datetime,	you	can	also	view	the	underlying	count	from	the	Unix	Epoch,	using	the		asLong()	
method	for	records.	For	example,

orientdb>	SELECT	@RID,	city,	date.asLong()	FROM	#9:4

------+------+------------------------+

	@RID	|	city	|	date																			|

------+------+------------------------+

	#9:4	|	Rome	|	-85889120400000								|

------+------+------------------------+

Meaning	that,	OrientDB	represents	the	date	of	April	21,	753	BC,	as	-85889120400000	in	Unix	time.	You	can	also	work	with	dates
directly	as	longs.

orientdb>	CREATE	VERTEX	V	SET	city	=	"Rome",	date	=	DATE(-85889120400000)

orientdb>	SELECT	@RID,	city,	date	FROM	V

-------+------+------------------------+

	@RID		|	city	|	date																			|

-------+------+------------------------+

	#9:11	|	Rome	|	0753-04-21	00:00:00	BC	|

-------+------+------------------------+

Use	ISO	8601	Dates

According	to	ISO	8601,	Combined	date	and	time	in	UTC:	2014-12-20T00:00:00.	To	use	this	standard	change	the	datetimeformat	in	the
database:

ALTER	DATABASE	DATETIMEFORMAT	yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

Managing	Dates

55



Classes
Multi-model	support	in	the	OrientDB	engine	provides	a	number	of	ways	in	approaching	and	understanding	its	basic	concepts.	These
concepts	are	clearest	when	viewed	from	the	perspective	of	the	Document	Database	API.	Like	many	database	management	systems,
OrientDB	uses	the	Record	as	an	element	of	storage.	There	are	many	types	of	records,	but	with	the	Document	Database	API,	records
always	use	the	Document	type.	Documents	are	formed	by	a	set	of	key/value	pairs,	referred	to	as	fields	and	properties,	and	can	belong	to
a	class.

The	Class	is	a	concept	drawn	from	the	Object-oriented	programming	paradigm.	It	is	a	type	of	data	model	that	allows	you	to	define
certain	rules	for	records	that	belong	to	it.	In	the	traditional	Document	database	model,	it	is	comparable	to	the	collection,	while	in	the
Relational	database	model	it	is	comparable	to	the	table.

For	more	information	on	classes	in	general,	see	Wikipedia.

To	list	all	the	configured	classes	on	your	system,	use	the		CLASSES		command	in	the	console:

orientdb>	CLASSES

CLASSES:

-------------------+------------+----------+-----------+

	NAME														|	SUPERCLASS	|CLUSTERS		|	RECORDS			|

-------------------+------------+----------+-----------+

	AbstractPerson				|												|	-1							|									0	|

	Account											|												|	11							|						1126	|

	Actor													|												|	91							|									3	|

	Address											|												|	19							|							166	|

	Animal												|												|	17							|									0	|

	....														|	....							|	....					|						....	|

	Whiz														|												|	14							|						1001	|

-------------------+------------+----------+-----------+

	TOTAL																																											22775	|

-------------------------------------------------------+

Working	with	Classes

In	order	to	start	using	classes	with	your	own	applications,	you	need	to	understand	how	to	create	and	configure	them	for	use.	As	a
concept,	the	class	in	OrientDB	has	the	closest	relationship	with	the	table	in	relational	databases,	but	(unlike	tables)	classes	can	be
schema-less,	schema-full	or	mixed.	Classes	can	inherit	from	other	classes,	creating	trees	of	classes.	Each	class	has	its	own	cluster	or
clusters,	(created	by	default,	if	none	are	defined).

For	more	information	on	classes	in	OrientDB,	see	Class.

To	create	a	new	class,	use	the		CREATE	CLASS		command:

orientdb>	CREATE	CLASS	Student

Class	created	successfully.	Total	classes	in	database	now:	92

This	creates	a	class	called		Student	.	Given	that	no	cluster	was	defined	in	the		CREATE	CLASS		command,	OrientDB	creates	a	default
cluster	called		student	,	to	contain	records	assigned	to	this	class.	For	the	moment,	the	class	has	no	records	or	properties	tied	to	it.	It	is
now	displayed	in	the		CLASSES		listings.

Adding	Properties	to	a	Class

Classes

56

http://en.wikipedia.org/wiki/Class_in_object-oriented_programming


As	mentioned	above,	OrientDB	does	allow	you	to	work	in	a	schema-less	mode.	That	is,	it	allows	you	to	create	classes	without	defining
their	properties.	However,	in	the	event	that	you	would	like	to	define	indexes	or	constraints	for	your	class,	properties	are	mandatory.
Following	the	comparison	to	relational	databases,	if	classes	in	OrientDB	are	similar	to	tables,	properties	are	the	columns	on	those	tables.

To	create	new	properties	on		Student	,	use	the		CREATE	PROPERTY		command	in	the	console:

orientdb>	CREATE	PROPERTY	Student.name	STRING

Property	created	successfully	with	id=1

orientdb>	CREATE	PROPERTY	Student.surname	STRING

Property	created	successfully	with	id=2

orientdb>	CREATE	PROPERTY	Student.birthDate	DATE

Property	created	successfully	with	id=3

These	commands	create	three	new	properties	on	the		Student		class	to	provide	you	with	areas	to	define	the	individual	student's	name,
surname	and	date	of	birth.

Displaying	Class	Information

On	occasion,	you	may	need	to	reference	a	particular	class	to	see	what	clusters	it	belongs	to	and	any	properties	configured	for	its	use.
Using	the		INFO	CLASS		command,	you	can	display	information	on	the	current	configuration	and	properties	of	a	class.

To	display	information	on	the	class		Student	,	use	the		INFO	CLASS		command:

orientdb>	INFO	CLASS	Student

Class................:	Student

Default	cluster......:	student	(id=96)

Supported	cluster	ids:	[96]

Properties:

-----------+--------+--------------+-----------+----------+----------+-----+-----+

	NAME						|	TYPE			|	LINKED	TYPE/	|	MANDATORY	|	READONLY	|	NOT	NULL	|	MIN	|	MAX	|

											|								|	CLASS								|											|										|										|					|					|

-----------+--------+--------------+-----------+----------+----------+-----+-----+

	birthDate	|	DATE			|	null									|	false					|	false				|	false				|					|					|

	name						|	STRING	|	null									|	false					|	false				|	false				|					|					|

	surname			|	STRING	|	null									|	false					|	false				|	false				|					|					|

-----------+--------+--------------+-----------+----------+----------+-----+-----+

Adding	Constraints	to	Properties

Constraints	create	limits	on	the	data	values	assigned	to	properties.	For	instance,	the	type,	the	minimum	or	maximum	size	of,	whether	or
not	a	value	is	mandatory	or	if	null	values	are	permitted	to	the	property.

To	add	a	constraint,	use	the		ALTER	PROPERTY		command:

orientdb>	ALTER	PROPERTY	Student.name	MIN	3

Property	updated	successfully

Classes

57



This	command	adds	a	constraint	to		Student		on	the		name		property.	It	sets	it	so	that	any	value	given	to	this	class	and	property	must
have	a	minimum	of	three	characters.

Viewing	Records	in	a	Class

Classes	contain	and	define	records	in	OrientDB.	You	can	view	all	records	that	belong	to	a	class	using	the		BROWSE	CLASS		command	and
data	belonging	to	a	particular	record	with	the		DISPLAY	RECORD		command.

In	the	above	examples,	you	created	a		Student		class	and	defined	the	schema	for	records	that	belong	to	that	class,	but	you	did	not	create
these	records	or	add	any	data.	As	a	result,	running	these	commands	on	the		Student		class	returns	no	results.	Instead,	for	the	examples
below,	consider	the		OUser		class.

orientdb>	INFO	CLASS	OUser

CLASS	'OUser'

Super	classes........:	[OIdentity]

Default	cluster......:	ouser	(id=5)

Supported	cluster	ids:	[5]

Cluster	selection....:	round-robin

Oversize.............:	0.0

PROPERTIES

----------+---------+--------------+-----------+----------+----------+-----+-----+

	NAME					|	TYPE				|	LINKED	TYPE/	|	MANDATORY	|	READONLY	|	NOT	NULL	|	MIN	|	MAX	|

										|									|	CLASS								|											|										|										|					|					|

----------+---------+--------------+-----------+----------+----------+-----+-----+

	password	|	STRING		|	null									|	true						|	false				|	true					|					|					|

	roles				|	LINKSET	|	ORole								|	false					|	false				|	false				|					|					|

	name					|	STRING		|	null									|	true						|	false				|	true					|					|					|

	status			|	STRING		|	null									|	true						|	false				|	true					|					|					|

----------+---------+--------------+-----------+----------+----------+-----+-----+

INDEXES	(1	altogether)

-------------------------------+----------------+

	NAME																										|	PROPERTIES					|

-------------------------------+----------------+

	OUser.name																				|	name											|

-------------------------------+----------------+

OrientDB	ships	with	a	number	of	default	classes,	which	it	uses	in	configuration	and	in	managing	data	on	your	system,	(the	classes	with
the		O		prefix	shown	in	the		CLASSES		command	output).	The		OUser		class	defines	the	users	on	your	database.

To	see	records	assigned	to	the		OUser		class,	run	the		BROWSE	CLASS		command:

orientdb>	BROWSE	CLASS	OUser

---+------+-------+--------+-----------------------------------+--------+-------+

	#	|	@RID	|	@Class|	name			|	password																										|	status	|	roles	|

---+------+-------+--------+-----------------------------------+--------+-------+

	0	|	#5:0	|	OUser	|	admin		|	{SHA-256}8C6976E5B5410415BDE90...	|	ACTIVE	|	[1]			|

	1	|	#5:1	|	OUser	|	reader	|	{SHA-256}3D0941964AA3EBDCB00EF...	|	ACTIVE	|	[1]			|

	2	|	#5:2	|	OUser	|	writer	|	{SHA-256}B93006774CBDD4B299389...	|	ACTIVE	|	[1]			|

---+------+-------+--------+-----------------------------------+--------+-------+

Classes

58



In	the	example,	you	are	listing	all	of	the	users	of	the	database.	While	this	is	fine	for	your	initial	setup	and	as	an
example,	it	is	not	particularly	secure.	To	further	improve	security	in	production	environments,	see	Security.

When	you	run		BROWSE	CLASS	,	the	first	column	in	the	output	provides	the	identifier	number,	which	you	can	use	to	display	detailed
information	on	that	particular	record.

To	show	the	first	record	browsed	from	the		OUser		class,	run	the		DISPLAY	RECORD		command:

orientdb>	DISPLAY	RECORD	0

------------------------------------------------------------------------------+

	Document	-	@class:	OUser																						@rid:	#5:0						@version:	1				|

----------+-------------------------------------------------------------------+

					Name	|	Value																																																													|

----------+-------------------------------------------------------------------+

					name	|	admin																																																													|

	password	|	{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873F8A81F6F2AB...	|

			status	|	ACTIVE																																																												|

				roles	|	[#4:0=#4:0]																																																							|

----------+-------------------------------------------------------------------+

Bear	in	mind	that	this	command	references	the	last	call	of		BROWSE	CLASS	.	You	can	continue	to	display	other	records,	but	you	cannot
display	records	from	another	class	until	you	browse	that	particular	class.

Classes

59



Clusters
The	Cluster	is	a	place	where	a	group	of	records	are	stored.	Like	the	Class,	it	is	comparable	with	the	collection	in	traditional	document
databases,	and	in	relational	databases	with	the	table.	However,	this	is	a	loose	comparison	given	that	unlike	a	table,	clusters	allow	you	to
store	the	data	of	a	class	in	different	physical	locations.

To	list	all	the	configured	clusters	on	your	system,	use	the		CLUSTERS		command	in	the	console:

orientdb>	CLUSTERS

CLUSTERS:

-------------+------+-----------+-----------+

	NAME								|	ID			|	TYPE						|	RECORDS			|

-------------+------+-----------+-----------+

	account					|	11			|	PHYSICAL		|						1107	|

	actor							|	91			|	PHYSICAL		|									3	|

	address					|	19			|	PHYSICAL		|							166	|

	animal						|	17			|	PHYSICAL		|									0	|

	animalrace		|	16			|	PHYSICAL		|									2	|

	....								|	....	|	....						|						....	|

-------------+------+-----------+-----------+

	TOTAL																																23481	|

--------------------------------------------+

Understanding	Clusters

By	default,	OrientDB	creates	one	cluster	for	each	Class.	Starting	from	v2.2,	OrientDB	automatically	creates	multiple	clusters	per	each
class	(the	number	of	clusters	created	is	equals	to	the	number	of	CPU's	cores	available	on	the	server)	to	improve	using	of	parallelism.	All
records	of	a	class	are	stored	in	the	same	cluster,	which	has	the	same	name	as	the	class.	You	can	create	up	to	32,767	(or,	2 	-	1)	clusters
in	a	database.	Understanding	the	concepts	of	classes	and	clusters	allows	you	to	take	advantage	of	the	power	of	clusters	in	designing	new
databases.

While	the	default	strategy	is	that	each	class	maps	to	one	cluster,	a	class	can	rely	on	multiple	clusters.	For	instance,	you	can	spawn
records	physically	in	multiple	locations,	thereby	creating	multiple	clusters.

Here,	you	have	a	class		Customer		that	relies	on	two	clusters:

	USA_customers	,	which	is	a	cluster	that	contains	all	customers	in	the	United	States.

	China_customers	,	which	is	a	cluster	that	contains	all	customers	in	China.

In	this	deployment,	the	default	cluster	is		USA_customers	.	Whenever	commands	are	run	on	the		Customer		class,	such	as		INSERT	
statements,	OrientDB	assigns	this	new	data	to	the	default	cluster.

15

Clusters

60



The	new	entry	from	the		INSERT		statement	is	added	to	the		USA_customers		cluster,	given	that	it's	the	default.	Inserting	data	into	a	non-
default	cluster	would	require	that	you	specify	the	cluster	you	want	to	insert	the	data	into	in	your	statement.

When	you	run	a	query	on	the		Customer		class,	such	as		SELECT		queries,	for	instance:

OrientDB	scans	all	clusters	associated	with	the	class	in	looking	for	matches.

In	the	event	that	you	know	the	cluster	in	which	the	data	is	stored,	you	can	query	that	cluster	directly	to	avoid	scanning	all	others	and
optimize	the	query.

Clusters

61



Here,	OrientDB	only	scans	the		China_customers		cluster	of	the		Customer		class	in	looking	for	matches

Note:	The	method	OrientDB	uses	to	select	the	cluster,	where	it	inserts	new	records,	is	configurable	and	extensible.	For	more
information,	see	Cluster	Selection.

Working	with	Clusters
In	OrientDB	there	are	two	types	of	clusters:

Physical	Cluster	(known	as	local)	which	is	persistent	because	it	writes	directly	to	the	file	system
Memory	Cluster	where	everything	is	volatile	and	will	be	lost	on	termination	of	the	process	or	server	if	the	database	is	remote

For	most	cases,	physical	clusters	are	preferred	because	databases	must	be	persistent.	OrientDB	creates	physical	clusters	by	default.

You	may	also	find	it	beneficial	to	locate	different	clusters	on	different	servers,	physically	separating	where	you	store	records	in	your
database.	The	advantages	of	this	include:

Optimization	Faster	query	execution	against	clusters,	given	that	you	need	only	search	a	subset	of	the	clusters	in	a	class.
Indexes	With	good	partitioning,	you	can	reduce	or	remove	the	use	of	indexes.
Parallel	Queries:	Queries	can	be	run	in	parallel	when	made	to	data	on	multiple	disks.
Sharding:	You	can	shard	large	data-sets	across	multiple	instances.

Adding	Clusters

When	you	create	a	class,	OrientDB	creates	a	default	cluster	of	the	same	name.	In	order	for	you	to	take	advantage	of	the	power	of
clusters,	you	need	to	create	additional	clusters	on	the	class.	This	is	done	with	the		ALTER	CLASS		statement	in	conjunction	with	the
	ADDCLUSTER		parameter.

To	add	a	cluster	to	the		Customer		class,	use	an		ALTER	CLASS		statement	in	the	console:

orientdb>	ALTER	CLASS	Customer	ADDCLUSTER	UK_Customers

Class	updated	successfully

You	now	have	a	third	cluster	for	the		Customer		class,	covering	those	customers	located	in	the	United	Kingdom.

Viewing	Records	in	a	Cluster
Clusters	store	the	records	contained	by	a	class	in	OrientDB.	You	can	view	all	records	that	belong	to	a	cluster	using	the		BROWSE	CLUSTER	
command	and	the	data	belonging	to	a	particular	record	with	the		DISPLAY	RECORD		command.

Clusters

62



In	the	above	example,	you	added	a	cluster	to	a	class	for	storing	records	customer	information	based	on	their	locations	around	the	world,
but	you	did	not	create	these	records	or	add	any	data.	As	a	result,	running	these	commands	on	the		Customer		class	returns	no	results.
Instead,	for	the	examples	below,	consider	the		ouser		cluster.

OrientDB	ships	with	a	number	of	default	clusters	to	store	data	from	its	default	classes.	You	can	see	these	using	the		CLUSTERS	
command.	Among	these,	there	is	the		ouser		cluster,	which	stores	data	of	the	users	on	your	database.

To	see	records	stored	in	the		ouser		cluster,	run	the		BROWSE	CLUSTER		command:

orientdb>	BROWSE	CLUSTER	OUser

---+------+--------+--------+----------------------------------+--------+-------+

	#	|	@RID	|	@CLASS	|	name			|	password																									|	status	|	roles	|

---+------+-------+--------+-----------------------------------+--------+-------+

	0	|	#5:0	|	OUser	|	admin		|	{SHA-256}8C6976E5B5410415BDE90...	|	ACTIVE	|	[1]			|

	1	|	#5:1	|	OUser	|	reader	|	{SHA-256}3D0941964AA3EBDCB00CC...	|	ACTIVE	|	[1]			|

	2	|	#5:2	|	OUser	|	writer	|	{SHA-256}B93006774CBDD4B299389...	|	ACTIVE	|	[1]			|

---+------+--------+--------+----------------------------------+--------+-------+

The	results	are	identical	to	executing		BROWSE	CLASS		on	the		OUser		class,	given	that	there	is	only	one	cluster	for	the		OUser		class	in	this
example.

In	the	example,	you	are	listing	all	of	the	users	of	the	database.	While	this	is	fine	for	your	initial	setup	and	as	an
example,	it	is	not	particularly	secure.	To	further	improve	security	in	production	environments,	see	Security.

When	you	run		BROWSE	CLUSTER	,	the	first	column	in	the	output	provides	the	identifier	number,	which	you	can	use	to	display	detailed
information	on	that	particular	record.

To	show	the	first	record	browsed	from	the		ouser		cluster,	run	the		DISPLAY	RECORD		command:

orientdb>	DISPLAY	RECORD	0

------------------------------------------------------------------------------+

	Document	-	@class:	OUser																						@rid:	#5:0						@version:	1				|

----------+-------------------------------------------------------------------+

					Name	|	Value																																																													|

----------+-------------------------------------------------------------------+

					name	|	admin																																																													|

	password	|	{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873F8A81F6F2AB...	|

			status	|	ACTIVE																																																												|

				roles	|	[#4:0=#4:0]																																																							|

----------+-------------------------------------------------------------------+

Bear	in	mind	that	this	command	references	the	last	call	of		BROWSE	CLUSTER	.	You	can	continue	to	display	other	records,	but	you	cannot
display	records	from	another	cluster	until	you	browse	that	particular	cluster.

Clusters

63



Record	ID
In	OrientDB,	each	record	has	its	own	self-assigned	unique	ID	within	the	database	called	Record	ID	or	RID.	It	is	composed	of	two	parts:

#<cluster-id>:<cluster-position>

That	is,

	<cluster-id>		The	cluster	identifier.
	<cluster-position>		The	position	of	the	data	within	the	cluster.

Each	database	can	have	a	maximum	of	32,767	clusters,	or	2 	-	1.	Each	cluster	can	handle	up	to	9,223,372,036,780,000	records,	or	2 ,
namely	9,223,372	trillion	records.

The	maximum	size	of	a	database	is	2 	records,	or	302,231,454,903	trillion	records.	Due	to	limitations	in	hardware	resources,
OrientDB	has	not	been	tested	at	such	high	numbers,	but	there	are	users	working	with	OrientDB	in	the	billions	of	records	range.

Loading	Records
Each	record	has	a	Record	ID,	which	notes	the	physical	position	of	the	record	inside	the	database.	What	this	means	is	that	when	you	load
a	record	by	its	RID,	the	load	is	significantly	faster	than	it	would	be	otherwise.

In	document	and	relational	databases,	the	more	data	that	you	have,	the	slower	the	database	responds.	OrientDB	handles	relationships	as
physical	links	to	the	records.	The	relationship	is	assigned	only	once,	when	the	edge	is	created		O(1)	.	You	can	compare	this	to	relational
databases,	which	compute	the	relationship	every	time	the	database	is	run		O(log	N)	.	In	OrientDB,	the	size	of	a	database	does	not	effect
the	traverse	speed.	The	speed	remains	constant,	whether	for	one	record	or	one	hundred	billion	records.	This	is	a	critical	feature	in	the	age
of	Big	Data.

To	directly	load	a	record,	use	the		LOAD	RECORD		command	in	the	console.

orientdb>	LOAD	RECORD	#12:4

--------------------------------------------------------

	ODocument	-	@class:	Company		@rid:	#12:4		@version:	8	

-------------+------------------------------------------

								Name	|	Value

-------------+------------------------------------------

			addresses	|	[NOT	LOADED:	#19:159]

						salary	|	0.0

			employees	|	100004

										id	|	4

								name	|	Microsoft4

	initialized	|	false

					salary2	|	0.0

		checkpoint	|	true

					created	|	Sat	Dec	29	23:13:49	CET	2012

-------------+------------------------------------------

The		LOAD	RECORD		command	returns	some	useful	information	about	this	record.	It	shows:

that	it	is	a	document.	OrientDB	supports	different	types	of	records,	but	document	is	the	only	type	covered	in	this	chapter.

that	it	belongs	to	the		Company		class.

that	its	current	version	is		8	.	OrientDB	uses	an	MVCC	system.	Every	time	you	update	a	record,	its	version	increments	by	one.

15 63

78

Record	ID

64



that	we	have	different	field	types:	floats	in		salary		and		salary2	,	integers	for		employees		and		id	,	string	for		name	,	booleans
for		initialized		and		checkpoint	,	and	date-time	for		created	.

that	the	field		addresses		has	been		NOT	LOADED	.	It	is	also	a		LINK		to	another	record,		#19:159	.	This	is	a	relationship.	For	more
information	on	this	concept,	see	Relationships.

Record	ID

65



Relationships
One	of	the	most	important	features	of	Graph	databases	lies	in	how	they	manage	relationships.	Many	users	come	to	OrientDB	from
MongoDB	due	to	OrientDB	having	more	efficient	support	for	relationships.

Relations	in	Relational	Databases

Most	database	developers	are	familiar	with	the	Relational	model	of	databases	and	with	relational	database	management	systems,	such	as
MySQL	and	MS-SQL.	Given	its	more	than	thirty	years	of	dominance,	this	has	long	been	thought	the	best	way	to	handle	relationships.
By	contrast,	Graph	databases	suggest	a	more	modern	approach	to	this	concept.

Consider,	as	an	example,	a	database	where	you	need	to	establish	relationships	between		Customer		and		Address		tables.

1-to-1	Relationship

Relational	databases	store	the	value	of	the	target	record	in	the		address		row	of	the		Customer		table.	This	is	the	Foreign	Key.	The
foreign	key	points	to	the	Primary	Key	of	the	related	record	in	the		Address		table.

Consider	a	case	where	you	want	to	view	the	address	of	a	customer	named	Luca.	In	a	Relational	database,	like	MySQL,	this	is	how	you
would	query	the	table:

mysql>	SELECT	B.location	FROM	Customer	A,	Address	B

										WHERE	A.name='Luca'	AND	A.address=B.id;

What	happens	here	is	a		JOIN	.	That	is,	the	contents	of	two	tables	are	joined	to	form	the	results.	The	database	executes	the		JOIN		every
time	you	retrieve	the	relationship.

1-to-Many	Relationship

Given	that	Relational	databases	have	no	concept	of	a	collections,	the		Customer		table	cannot	have	multiple	foreign	keys.	The	only	way
to	manage	a	1-to-Many	Relationship	in	databases	of	this	kind	is	to	move	the	Foreign	Key	to	the		Address		table.

Relationships

66



For	example,	consider	a	case	where	you	want	to	return	all	addresses	connected	to	the	customer	Luca,	this	is	how	you	would	query	the
table:

mysql>	SELECT	B.location	FROM	Customer	A,	Address	B

										WHERE	A.name='Luca'	AND	B.customer=A.id;

Many-to-Many	relationship

The	most	complicated	case	is	the	Many-to-Many	relationship.	To	handle	associations	of	this	kind,	Relational	databases	require	a
separate,	intermediary	table	that	matches	rows	from	both		Customer		and		Address		tables	in	all	required	combinations.	This	results	in	a
double		JOIN		per	record	at	runtime.

For	example,	consider	a	case	where	you	want	to	return	all	address	for	the	customer	Luca,	this	is	how	you	would	query	the	table:

mysql>	SELECT	B.location	FROM	Customer	A,	CustomerAddress	B,	Address	C

										WHERE	A.name='Luca'	AND	B.id=A.id	AND	B.address=C.id;

Understanding	 	JOIN	

Relationships

67



In	document	and	relational	database	systems,	the	more	data	that	you	have,	the	slower	the	database	responds	and		JOIN		operations	have
a	heavy	runtime	cost.

For	relational	database	systems,	the	database	computes	the	relationship	every	time	you	query	the	server.	That	translates	to		O(log	N	/
block_size)	.	OrientDB	handles	relationships	as	physical	links	to	the	records	and	assigns	them	only	once,	when	the	edge	is	created.
That	is,		O(1)	.

In	OrientDB,	the	speed	of	traversal	is	not	affected	by	the	size	of	the	database.	It	is	always	constant	regardless	of	whether	it	has	one
record	or	one	hundred	billion	records.	This	is	a	critical	feature	in	the	age	of	Big	Data.

Searching	for	an	identifier	at	runtime	each	time	you	execute	a	query,	for	every	record	will	grow	very	expensive.	The	first	optimization
with	relational	databases	is	the	use	of	indexing.	Indexes	speed	up	searches,	but	they	slow	down		INSERT	,		UPDATE	,	and		DELETE	
operations.	Additionally,	they	occupy	a	substantial	amount	of	space	on	the	disk	and	in	memory.

Consider	also	whether	searching	an	index	is	actually	fast.

Indexes	and		JOIN	

In	the	database	industry,	there	are	a	number	of	indexing	algorithms	available.	The	most	common	in	both	relational	and	NoSQL	database
systems	is	the	B+	Tree.

Balance	trees	all	work	in	a	similar	manner.	For	example,	consider	a	case	where	you're	looking	for	an	entry	with	the	name		Luca	:	after
only	five	hops,	the	record	is	found.

While	this	is	fine	on	a	small	database,	consider	what	would	happen	if	there	were	millions	or	billions	of	records.	The	database	would	have
to	go	through	many,	many	more	hops	to	find		Luca	.	And,	the	database	would	execute	this	operation	on	every		JOIN		per	record.
Picture:	joining	four	tables	with	thousands	of	records.	The	number	of		JOIN		operations	could	run	in	the	millions.

Relations	in	OrientDB
There	is	no		JOIN		in	OrientDB.	Instead,	it	uses		LINK	.		LINK		is	a	relationship	managed	by	storing	the	target	Record	ID	in	the	source
record.	It	is	similar	to	storing	the	pointer	between	two	objects	in	memory.

When	you	have		Invoice		linked	to		Customer	,	then	you	have	a	pointer	to		Customer		inside		Invoice		as	an	attribute.	They	are	exactly
the	same.	In	this	way,	it's	as	though	your	database	was	kept	in	memory:	a	memory	of	several	exabytes.

Types	of	Relationships

In	1-to-N	relationships,	OrientDB	handles	the	relationship	as	a	collection	of	Record	ID's,	as	you	would	when	managing	objects	in
memory.

Relationships

68

http://en.wikipedia.org/wiki/B%2B_tree


OrientDB	supports	several	different	kinds	of	relationships:

	LINK		Relationship	that	points	to	one	record	only.
	LINKSET		Relationship	that	points	to	several	records.	It	is	similar	to	Java	sets,	the	same	Record	ID	can	only	be	included	once.	The
pointers	have	no	order.
	LINKLIST		Relationship	that	points	to	several	records.	It	is	similar	to	Java	lists,	they	are	ordered	and	can	contain	duplicates.
	LINKMAP		Relationship	that	points	to	several	records	with	a	key	stored	in	the	source	record.	The	Map	values	are	the	Record	ID's.
It	is	similar	to	Java		Map<?,Record>	.

Relationships

69



Working	with	Graphs
In	graph	databases,	the	database	system	graphs	data	into	network-like	structures	consisting	of	vertices	and	edges.	In	the	OrientDB
Graph	model,	the	database	represents	data	through	the	concept	of	a	property	graph,	which	defines	a	vertex	as	an	entity	linked	with
other	vertices	and	an	edge,	as	an	entity	that	links	two	vertices.

OrientDB	ships	with	a	generic	vertex	persistent	class,	called		V	,	as	well	as	a	class	for	edges,	called		E	.	As	an	example,	you	can	create	a
new	vertex	using	the		INSERT		command	with		V	.

orientdb>	INSERT	INTO	V	SET	name='Jay'

Created	record	with	RID	#9:0

In	effect,	the	Graph	model	database	works	on	top	of	the	underlying	document	model.	But,	in	order	to	simplify	this	process,	OrientDB
introduces	a	new	set	of	commands	for	managing	graphs	from	the	console.	Instead	of		INSERT	,	use		CREATE	VERTEX	

orientdb>	CREATE	VERTEX	V	SET	name='Jay'

Created	vertex	with	RID	#9:1

By	using	the	graph	commands	over	the	standard	SQL	syntax,	OrientDB	ensures	that	your	graphs	remain	consistent.	For	more
information	on	the	particular	commands,	see	the	following	pages:

CREATE	VERTEX
DELETE	VERTEX
CREATE	EDGE
DELETE	EDGE

Use	Case:	Social	Network	for	Restaurant	Patrons

While	you	have	the	option	of	working	with	vertexes	and	edges	in	your	database	as	they	are,	you	can	also	extend	the	standard		V		and
	E		classes	to	suit	the	particular	needs	of	your	application.	The	advantages	of	this	approach	are,

It	grants	better	understanding	about	the	meaning	of	these	entities.
It	allows	for	optional	constraints	at	the	class	level.
It	improves	performance	through	better	partitioning	of	entities.
It	allows	for	object-oriented	inheritance	among	the	graph	elements.

For	example,	consider	a	social	network	based	on	restaurants.	You	need	to	start	with	a	class	for	individual	customers	and	another	for	the
restaurants	they	patronize.	Create	these	classes	to	extend	the		V		class.

orientdb>	CREATE	CLASS	Person	EXTENDS	V

orientdb>	CREATE	CLASS	Restaurant	EXTENDS	V

Doing	this	creates	the	schema	for	your	social	network.	Now	that	the	schema	is	ready,	populate	the	graph	with	data.

Working	with	Graphs

70



orientdb>	CREATE	VERTEX	Person	SET	name='Luca'

Created	record	with	RID	#11:0

orientdb>	CREATE	VERTEX	Person	SET	name='Bill'

Created	record	with	RID	#11:1

orientdb>	CREATE	VERTEX	Person	SET	name='Jay'

Created	record	with	RID	#11:2

orientdb>	CREATE	VERTEX	Restaurant	SET	name='Dante',	type='Pizza'

Created	record	with	RID	#12:0

orientdb>	CREATE	VERTEX	Restaurant	SET	name='Charlie',	type='French'

Created	record	with	RID	#12:1

This	adds	three	vertices	to	the		Person		class,	representing	individual	users	in	the	social	network.	It	also	adds	two	vertices	to	the
	Restaurant		class,	representing	the	restaurants	that	they	patronize.

Creating	Edges

For	the	moment,	these	vertices	are	independent	of	one	another,	tied	together	only	by	the	classes	to	which	they	belong.	That	is,	they	are
not	yet	connected	by	edges.	Before	you	can	make	these	connections,	you	first	need	to	create	a	class	that	extends		E	.

orientdb>	CREATE	CLASS	Eat	EXTENDS	E

This	creates	the	class		Eat	,	which	extends	the	class		E	.		Eat		represents	the	relationship	between	the	vertex		Person		and	the	vertex
	Restaurant	.

When	you	create	the	edge	from	this	class,	note	that	the	orientation	of	the	vertices	is	important,	because	it	gives	the	relationship	its
meaning.	For	instance,	creating	an	edge	in	the	opposite	direction,	(from		Restaurant		to		Person	),	would	call	for	a	separate	class,	such
as		Attendee	.

The	user	Luca	eats	at	the	pizza	joint	Dante.	Create	an	edge	that	represents	this	connection:

orientdb>	CREATE	EDGE	Eat	FROM	(	SELECT	FROM	Person	WHERE	name='Luca'	)

										TO	(	SELECT	FROM	Restaurant	WHERE	name='Dante'	)

Creating	Edges	from	Record	ID

In	the	event	that	you	know	the	Record	ID	of	the	vertices,	you	can	connect	them	directly	with	a	shorter	and	faster	command.	For
example,	the	person	Bill	also	eats	at	the	restaurant	Dante	and	the	person	Jay	eats	at	the	restaurant	Charlie.	Create	edges	in	the	class
	Eat		to	represent	these	connections.

orientdb>	CREATE	EDGE	Eat	FROM	#11:1	TO	#12:0

orientdb>	CREATE	EDGE	Eat	FROM	#11:2	TO	#12:1

Working	with	Graphs

71



Querying	Graphs

In	the	above	example	you	created	and	populated	a	small	graph	of	a	social	network	of	individual	users	and	the	restaurants	at	which	they
eat.	You	can	now	begin	to	experiment	with	queries	on	a	graph	database.

To	cross	edges,	you	can	use	special	graph	functions,	such	as:

	OUT()		To	retrieve	the	adjacent	outgoing	vertices
	IN()		To	retrieve	the	adjacent	incoming	vertices
	BOTH()		To	retrieve	the	adjacent	incoming	and	outgoing	vertices

For	example,	to	know	all	of	the	people	who	eat	in	the	restaurant	Dante,	which	has	a	Record	ID	of		#12:0	,	you	can	access	the	record	for
that	restaurant	and	traverse	the	incoming	edges	to	discover	which	entries	in	the		Person		class	connect	to	it.

orientdb>	SELECT	IN()	FROM	Restaurant	WHERE	name='Dante'

-------+----------------+

	@RID		|	in													|

-------+----------------+

	#-2:1	|	[#11:0,	#11:1]	|

-------+----------------+

This	query	displays	the	record	ID's	from	the		Person		class	that	connect	to	the	restaurant	Dante.	In	cases	such	as	this,	you	can	use	the
	EXPAND()		special	function	to	transform	the	vertex	collection	in	the	result-set	by	expanding	it.

orientdb>	SELECT	EXPAND(	IN()	)	FROM	Restaurant	WHERE	name='Dante'

-------+-------------+-------------+---------+

	@RID		|	@CLASS						|	Name								|	out_Eat	|

-------+-------------+-------------+---------+

	#11:0	|	Person						|	Luca								|	#12:0			|

	#11:1	|	Person						|	Bill								|	#12:0			|

-------+-------------+-------------+---------+

Creating	Edge	to	Connect	Users

Your	application	at	this	point	shows	connections	between	individual	users	and	the	restaurants	they	patronize.	While	this	is	interesting,
it	does	not	yet	function	as	a	social	network.	To	do	so,	you	need	to	establish	edges	that	connect	the	users	to	one	another.

To	begin,	as	before,	create	a	new	class	that	extends		E	:

orientdb>	CREATE	CLASS	Friend	EXTENDS	E

The	users	Luca	and	Jay	are	friends.	They	have	Record	ID's	of		#12:0		and		#11:2	.	Create	an	edge	that	connects	them.

orientdb>	CREATE	EDGE	Friend	FROM	#12:0	TO	#11:2

In	the		Friend		relationship,	orientation	is	not	important.	That	is,	if	Luca	is	a	friend	of	Jay's	then	Jay	is	a	friend	of	Luca's.	Therefore,
you	should	use	the		BOTH()		function.

Working	with	Graphs

72



orientdb>	SELECT	EXPAND(	BOTH(	'Friend'	)	)	FROM	Person	WHERE	name	=	'Luca'

-------+-------------+-------------+---------+-----------+

	@RID		|	@CLASS						|	Name								|	out_Eat	|	in_Friend	|

-------+-------------+-------------+---------+-----------+

	#11:2	|	Person						|	Jay									|	#12:1			|	#12:0					|

-------+-------------+-------------+---------+-----------+

Here,	the		BOTH()		function	takes	the	edge	class		Friend		as	an	argument,	crossing	only	relationships	of	the	Friend	kind,	(that	is,	it	skips
the		Eat		class,	at	this	time).	Note	in	the	result-set	that	the	relationship	with	Luca,	with	a	Record	ID	of		#12:0		in	the		in_		field.

You	can	also	now	view	all	the	restaurants	patronized	by	friends	of	Luca.

orientdb>	SELECT	EXPAND(	BOTH('Friend').out('Eat')	)	FROM	Person

										WHERE	name='Luca'

-------+-------------+-------------+-------------+--------+

	@RID		|	@CLASS						|	Name								|	Type								|	in_Eat	|

-------+-------------+-------------+-------------+--------+

	#12:1	|	Restaurant		|	Charlie					|	French						|	#11:2		|

-------+-------------+-------------+-------------+--------+

Lightweight	Edges
In	version	1.4.x,	OrientDB	begins	to	manage	some	edges	as	Lightweight	Edges.	Lightweight	Edges	do	not	have	Record	ID's,	but	are
physically	stored	as	links	within	vertices.	Note	that	OrientDB	only	uses	a	Lightweight	Edge	only	when	the	edge	has	no	properties,
otherwise	it	uses	the	standard	Edge.

From	the	logic	point	of	view,	Lightweight	Edges	are	Edges	in	all	effects,	so	that	all	graph	functions	work	with	them.	This	is	to	improve
performance	and	reduce	disk	space.

Because	Lightweight	Edges	don't	exist	as	separate	records	in	the	database,	some	queries	won't	work	as	expected.	For	instance,

orientdb>	SELECT	FROM	E

For	most	cases,	an	edge	is	used	connecting	vertices,	so	this	query	would	not	cause	any	problems	in	particular.	But,	it	would	not	return
Lightweight	Edges	in	the	result-set.	In	the	event	that	you	need	to	query	edges	directly,	including	those	with	no	properties,	disable	the
Lightweight	Edge	feature.

To	disable	the	Lightweight	Edge	feature,	execute	the	following	command.

orientdb>	ALTER	DATABASE	CUSTOM	useLightweightEdges=FALSE

You	only	need	to	execute	this	command	once.	OrientDB	now	generates	new	edges	as	the	standard	Edge,	rather	than	the	Lightweight
Edge.	Note	that	this	does	not	affect	existing	edges.

For	troubleshooting	information	on	Lightweight	Edges,	see	Why	I	can't	see	all	the	edges.	For	more	information	in	the	Graph	model	in
OrientDB,	see	Graph	API.

Working	with	Graphs

73



Using	Schema	with	Graphs
OrientDB,	through	the	Graph	API,	offers	a	number	of	features	above	and	beyond	the	traditional	Graph	Databases	given	that	it	supports
concepts	drawn	from	both	the	Document	Database	and	the	Object	Oriented	worlds.	For	instance,	consider	the	power	of	graphs,	when
used	in	conjunction	with	schemas	and	constraints.

Use	Case:	Car	Database

For	this	example,	consider	a	graph	database	that	maps	the	relationship	between	individual	users	and	their	cars.	First,	create	the	graph
schema	for	the		Person		and		Car		vertex	classes,	as	well	as	the		Owns		edge	class	to	connect	the	two:

orientdb>	CREATE	CLASS	Person	EXTENDS	V

orientdb>	CREATE	CLASS	Car	EXTENDS	V

orientdb>	CREATE	CLASS	Owns	EXTENDS	E

These	commands	lay	out	the	schema	for	your	graph	database.	That	is,	they	define	two	vertex	classes	and	an	edge	class	to	indicate	the
relationship	between	the	two.	With	that,	you	can	begin	to	populate	the	database	with	vertices	and	edges.

orientdb>	CREATE	VERTEX	Person	SET	name	=	'Luca'

Created	vertex	'Person#11:0{name:Luca}	v1'	in	0,012000	sec(s).

orientdb>	CREATE	VERTEX	Car	SET	name	=	'Ferrari	Modena'

Created	vertex	'Car#12:0{name:Ferrari	Modena}	v1'	in	0,001000	sec(s).

orientdb>	CREATE	EDGE	Owns	FROM	(	SELECT	FROM	Person	)	TO	(	SELECT	FROM	Car	)

Created	edge	'[e[#11:0->#12:0][#11:0-Owns->#12:0]]'	in	0,005000	sec(s).

Querying	the	Car	Database

In	the	above	section,	you	create	a	car	database	and	populated	it	with	vertices	and	edges	to	map	out	the	relationship	between	drivers	and
their	cars.	Now	you	can	begin	to	query	this	database,	showing	what	those	connections	are.	For	example,	what	is	Luca's	car?	You	can	find
out	by	traversing	from	the	vertex	Luca	to	the	outgoing	vertices	following	the		Owns		relationship.

orientdb>	SELECT	NAME	FROM	(	SELECT	EXPAND(	OUT('Owns')	)	FROM	Person

										WHERE	name='Luca'	)

----+-------+-----------------+

	#		|	@RID		|	name												|

----+-------+-----------------+

	0		|	#-2:1	|	Ferrari	Modena		|

----+-------+-----------------+

As	you	can	see,	the	query	returns	that	Luca	owns	a	Ferrari	Modena.	Now	consider	expanding	your	database	to	track	where	each	person
lives.

Using	Schema	with	Graphs

74



Adding	a	Location	Vertex

Consider	a	situation,	in	which	you	might	want	to	keep	track	of	the	countries	in	which	each	person	lives.	In	practice,	there	are	a	number
of	reasons	why	you	might	want	to	do	this,	for	instance,	for	the	purposes	of	promotional	material	or	in	a	larger	database	to	analyze	the
connections	to	see	how	residence	affects	car	ownership.

To	begin,	create	a	vertex	class	for	the	country,	in	which	the	person	lives	and	an	edge	class	that	connects	the	individual	to	the	place.

orientdb>	CREATE	CLASS	Country	EXTENDS	V

orientdb>	CREATE	CLASS	Lives	EXTENDS	E

This	creates	the	schema	for	the	feature	you're	adding	to	the	cars	database.	The	vertex	class		Country		recording	countries	in	which
people	live	and	the	edge	class		Lives		to	connect	individuals	in	the	vertex	class		Person		to	entries	in		Country	.

With	the	schema	laid	out,	create	a	vertex	for	the	United	Kingdom	and	connect	it	to	the	person	Luca.

orientdb>	CREATE	VERTEX	Country	SET	name='UK'

Created	vertex	'Country#14:0{name:UK}	v1'	in	0,004000	sec(s).

orientdb>	CREATE	EDGE	Lives	FROM	(	SELECT	FROM	Person	)	TO	(	SELECT	FROM	Country

Created	edge	'[e[#11:0->#14:0][#11:0-Lives->#14:0]]'	in	0,006000	sec(s).

The	second	command	creates	an	edge	connecting	the	person	Luca	to	the	country	United	Kingdom.	Now	that	your	cars	database	is
defined	and	populated,	you	can	query	it,	such	as	a	search	that	shows	the	countries	where	there	are	users	that	own	a	Ferrari.

orientdb>	SELECT	name	FROM	(	SELECT	EXPAND(	IN('Owns').OUT('Lives')	)

										FROM	Car	WHERE	name	LIKE	'%Ferrari%'	)

---+-------+--------+

	#	|	@RID		|	name			|

---+-------+--------+

	0	|	#-2:1	|	UK					|

---+-------+--------+

Using		in		and		out		Constraints	on	Edges

In	the	above	sections,	you	modeled	the	graph	using	a	schema	without	any	constraints,	but	you	might	find	it	useful	to	use	some.	For
instance,	it	would	be	good	to	require	that	an		Owns		relationship	only	exist	between	the	vertex		Person		and	the	vertex		Car	.

orientdb>	CREATE	PROPERTY	Owns.out	LINK	Person

orientdb>	CREATE	PROPERTY	Owns.in	LINK	Car

These	commands	link	outgoing	vertices	of	the		Person		class	to	incoming	vertices	of	the		Car		class.	That	is,	it	configures	your	database
so	that	a	user	can	own	a	car,	but	a	car	cannot	own	a	user.

Using		MANDATORY		Constraints	on	Edges

By	default,	when	OrientDB	creates	an	edge	that	lacks	properties,	it	creates	it	as	a	Lightweight	Edge.	That	is,	it	creates	an	edge	that	has
no	physical	record	in	the	database.	Using	the		MANDATORY		setting,	you	can	stop	this	behavior,	forcing	it	to	create	the	standard	Edge,
without	outright	disabling	Lightweight	Edges.

Using	Schema	with	Graphs

75



orientdb>	ALTER	PROPERTY	Owns.out	MANDATORY=TRUE

orientdb>	ALTER	PROPERTY	Owns.in	MANDATORY=TRUE

Using		UNIQUE		with	Edges

For	the	sake	of	simplicity,	consider	a	case	where	you	want	to	limit	the	way	people	are	connected	to	cars	to	where	the	user	can	only
match	to	the	car	once.	That	is,	if	Luca	owns	a	Ferrari	Modena,	you	might	prefer	not	to	have	a	double	entry	for	that	car	in	the	event	that
he	buys	a	new	one	a	few	years	later.	This	is	particularly	important	given	that	our	database	covers	make	and	model,	but	not	year.

To	manage	this,	you	need	to	define	a		UNIQUE		index	against	both	the	out	and	in	properties.

orientdb>	CREATE	INDEX	UniqueOwns	ON	Owns(out,in)	UNIQUE

Created	index	successfully	with	0	entries	in	0,023000	sec(s).

The	index	returns	tells	us	that	no	entries	are	indexed.	You	have	already	created	the		Onws		relationship	between	Luca	and	the	Ferrari
Modena.	In	that	case,	however,	OrientDB	had	created	a	Lightweight	Edge	before	you	set	the	rule	to	force	the	creation	of	documents	for
	Owns		instances.	To	fix	this,	you	need	to	drop	and	recreate	the	edge.

orientdb>	DELETE	EDGE	FROM	#11:0	TO	#12:0

orientdb>	CREATE	EDGE	Owns	FROM	(	SELECT	FROM	Person	)	TO	(	SELECT	FROM	Car	)

To	confirm	that	this	was	successful,	run	a	query	to	check	that	a	record	was	created:

orientdb>	SELECT	FROM	Owns

---+-------+-------+--------+

	#	|	@RID		|	out			|	in					|

---+-------+-------+--------+

	0	|	#13:0	|	#11:0	|	#12:0		|

---+-------+-------+--------+

This	shows	that	a	record	was	indeed	created.	To	confirm	that	the	constraints	work,	attempt	to	create	an	edge	in		Owns		that	connects
Luca	to	the	United	Kingdom.

orientdb>	CREATE	EDGE	Owns	FROM	(	SELECT	FROM	Person	)	TO	(	SELECT	FROM	Country	)

Error:	com.orientechnologies.orient.core.exception.OCommandExecutionException:

Error	on	execution	of	command:	sql.create	edge	Owns	from	(select	from	Person)...

Error:	com.orientechnologies.orient.core.exception.OValidationException:	The

field	'Owns.in'	has	been	declared	as	LINK	of	type	'Car'	but	the	value	is	the

document	#14:0	of	class	'Country'

This	shows	that	the	constraints	effectively	blocked	the	creation,	generating	a	set	of	errors	to	explain	why	it	was	blocked.

You	now	have	a	typed	graph	with	constraints.	For	more	information,	see	Graph	Schema.

Using	Schema	with	Graphs

76



Graph	Consistency
Before	OrientDB	v2.1.7,	the	graph	consistency	could	be	assured	only	by	using	transactions.	The	problems	with	using	transactions	for
simple	operations	like	creation	of	edges	are:

speed,	the	transaction	has	a	cost	in	comparison	with	non-transactional	operations
management	of	optimistic	retry	at	application	level.	Furthermore,	with	'remote'	connections	this	means	high	latency
low	scalability	on	high	concurrency	(this	will	be	resolved	in	OrientDB	v3.0,	where	commits	will	not	lock	the	database	anymore)

As	of	v2.1.7,	OrientDB	provides	a	new	mode	to	manage	graphs	without	using	transactions.	It	uses	the	Java	class		OrientGraphNoTx		or
via	SQL	by	changing	the	global	setting		sql.graphConsistencyMode		to	one	of	the	following	values:

	tx	,	the	default,	uses	transactions	to	maintain	consistency.	This	was	the	only	available	setting	before	v2.1.7
	notx_sync_repair	,	avoids	the	use	of	transactions.	Consistency,	in	case	of	a	JVM	crash,	is	guaranteed	through	a	database	repair
operation,	which	runs	at	startup	in	synchronous	mode.	The	database	cannot	be	used	until	the	repair	is	finished.
	notx_async_repair	,	also	avoids	the	use	of	transactions.	Consistency,	in	case	of	JVM	crash,	is	guaranteed	through	a	database	repair
operation,	which	runs	at	startup	in	asynchronous	mode.	The	database	can	be	used	immediately,	as	the	repair	procedure	will	run	in
the	background.

Both	the	new	modes		notx_sync_repair		and		notx_async_repair		will	manage	conflicts	automatically,	with	a	configurable	RETRY
(default=50).	In	case	changes	to	the	graph	occur	concurrently,	any	conflicts	are	caught	transparently	by	OrientDB	and	the	operations	are
repeated.	The	operations	that	support	the	auto-retry	are:

	CREATE	EDGE	

	DELETE	EDGE	

	DELETE	VERTEX	

Usage

To	use	consistency	modes	that	don't	use	transactions,	set	the		sql.graphConsistencyMode		global	setting	to		notx_sync_repair		or
	notx_async_repair		in	OrientDB		bin/server.sh		script	or	in	the		config/orientdb-server-config.xml		file	under	properties	section.
Example:

...

<properties>

		...

		<entry	name="sql.graphConsistencyMode"	value="notx_sync_repair"/>

		...

</properties>

The	same	could	be	set	by	code,	before	you	open	any	Graph.	Example:

OGlobalConfiguration.SQL_GRAPH_CONSISTENCY_MODE.setValue("notx_sync_repair");

To	make	this	setting	persistent,	set	the		txRequiredForSQLGraphOperations		property	in	the	storage	configuration,	so	during	the	following
opening	of	the	Graph,	you	don't	need	to	set	the	global	setting	again:

g.getRawGraph().getStorage().getConfiguration().setProperty("txRequiredForSQLGraphOperations",	"false");

Usage	via	Java	API

In	order	to	use	non-transactional	graphs,	after	having	configured	the	consistency	mode	(as	above),	you	can	now	work	with	the
	OrientGraphNoTx		class.	Example:

OrientGraphNoTx	g	=	new	OrientGraphNoTx("plocal:/temp/mydb");

...

v1.addEdge(	"Friend",	v2	);

Graph	Consistency

77



Concurrent	threads	that	change	the	graph	will	retry	the	graph	change	in	case	of	concurrent	modification	(MVCC).	The	default	value	for
maximum	retries	is	50.	To	change	this	value,	call	the		setMaxRetries()		API:

OrientGraphNoTx	g	=	new	OrientGraphNoTx("plocal:/temp/mydb");

g.setMaxRetries(100);

This	setting	will	be	used	on	the	active	graph	instance.	You	can	have	multiple	threads,	which	work	on	the	same	graph	by	using	multiple
graph	instances,	one	per	thread.	Each	thread	can	then	have	different	settings.	It's	also	allowed	to	wirk	with	threads,	which	use
transactions	(	OrientGraph		class)	and	to	work	with	concurrent	threads,	which	don't	use	transactions.

Graph	Consistency

78



Fetching	Strategies
Fetchplans	are	used	in	two	different	scopes:

1.	 Connections	that	use	the	Binary	Protocol	can	early	load	records	on	the	client's.	On	traversing	of	connected	records,	the	client	hasn't
to	execute	further	remote	calls	to	the	server,	because	the	requested	records	are	already	on	the	client's	cache

2.	 Connections	that	use	the	HTTP/JSON	Protocol	can	expand	the	resulting	JSON	to	include	connected	records	as	embedded	in	the
same	JSON.	This	is	useful	on	HTTP	protocol	to	fetch	all	the	connected	records	in	just	one	call

Format	for	Fetch	Plans

In	boths	scopes,	the	fetchplan	syntax	is	the	same.	In	terms	of	their	use,	Fetch	Plans	are	strings	that	you	can	use	at	run-time	on	queries
and	record	loads.	The	syntax	for	these	strings	is,

[[levels]]fieldPath:depthLevel

Levels	Is	an	optional	value	that	tells	which	levels	to	use	with	the	Fetch	Plans.	Levels	start	from		0	.	As	of	version	2.1,	levels	use
the	following	syntax:

Level	The	specific	level	on	which	to	use	the	Fetch	Plan.	For	example,	using	the	level		[0]		would	apply	only	to	the	first	level.
Range	The	range	of	levels	on	which	to	use	the	Fetch	Plan.	For	example,		[0-2]		means	to	use	it	on	the	first	to	third	level.	You
can	also	use	the	partial	range	syntax:		[-3]		means	from	the	first	to	fourth	level	while		[4-]		means	from	the	fifth	level	to
infinity.
Any	The	wildcard	variable	indicates	that	you	want	to	use	the	Fetch	Plan	on	all	levels.	For	example,		[*]	.

Field	Path	Is	the	field	name	path,	which	OrientDB	expects	in	dot	notation.	The	path	begins	from	either	the	root	record	or	the
wildcard	variable		*		to	indicate	any	field.	You	can	also	use	the	wildcard	at	the	end	of	the	path	to	specify	all	paths	taht	start	for	a
name.
Depth	Level	Is	the	depth	of	the	level	requested.	The	depth	level	variable	uses	the	following	syntax:

	0		Indicates	to	load	the	current	record.
	1-N		Indicates	to	load	the	current	record	to	the	nth	record.
	-1		Indicates	an	unlimited	level.
	-2		Indicates	an	excluded	level.

In	the	event	that	you	want	to	express	multiple	rules	for	your	Fetch	Plans,	separate	them	by	spaces.

Consider	the	following	Fetch	Plans	for	use	with	the	example	above:

Fetch	Plan Description

	*:-1	 Fetches	recursively	the	entire	tree.

	*:-1	orders:0	

Fetches	recursively	all	records,	but	uses	the	field		orders		in	the	root	class.	Note	that	the	field
	orders		only	loads	its	direct	content,	(that	is,	the	records		8:12	,		8:19	,	and		8:23	).	No	other
records	inside	of	them	load.

	*:0

address.city.country:0	

Fetches	only	non-document	fields	in	the	root	class	and	the	field		address.city.country	,	(that	is,
records		10:1	,	11:2		and		12:3	).

	[*]in_*:-2	out_*:-2	 Fetches	all	properties,	except	for	edges	at	any	level.

Early	loading	of	records

By	default,	OrientDB	loads	linked	records	in	a	lazy	manner.	That	is	to	say,	it	does	not	load	linked	fields	until	it	traverses	these	fields.	In
situations	where	you	need	the	entire	tree	of	a	record,	this	can	prove	costly	to	performance.	For	instance,

Fetching	Strategies

79



Invoice

	3:100

			|

			|	customer

			+--------->	Customer

			|												5:233

			|	address												city												country

			+--------->	Address--------->	City	--------->	Country

			|												10:1													11:2													12:3

			|

			|	orders

			+--------->*	[OrderItem	OrderItem	OrderItem]

																[		8:12						8:19						8:23			]

Here,	you	have	a	class		Invoice	,	with	linked	fields		customer	,		city		and		orders	.	If	you	were	to	run	a		SELECT		query	on		Invoice	,
it	would	not	load	the	linked	class,	it	would	require	seven	different	loads	to	build	the	return	value.	In	the	event	that	you	have	a	remote
connection	that	means	seven	network	calls,	as	well.

In	order	to	avoid	performance	issues	that	may	arise	from	this	behavior,	OrientDB	supports	fetching	strategies,	called	Fetch	Plans,	that
allow	you	to	customize	how	it	loads	linked	records.	The	aim	of	a	Fetch	Plan	is	to	pre-load	connected	records	in	a	single	call,	rather	than
several.	The	best	use	of	Fetch	Plans	is	on	records	loaded	through	remote	connections	and	when	using	JSON	serializers	to	produce	JSON
with	nested	records.

NOTE	OrientDB	handles	circular	dependencies	to	avoid	any	loops	while	it	fetches	linking	records.

Remote	Connections

Under	the	default	configuration,	when	a	client	executes	a	query	or	loads	directly	a	single	record	to	a	remote	database,	it	continues	to	send
network	calls	for	each	linked	record	involved	in	the	query,	(that	is,	through		OLazyRecordList	).	You	can	mitigate	this	with	a	Fetch	Plan.

When	the	client	executes	a	query,	set	a	Fetch	Plan	with	a	level	different	from		0	.	This	causes	the	server	to	traverse	all	the	records	of	the
return	result-set,	sending	them	in	response	to	a	single	call.	OrientDB	loads	all	connected	records	into	the	local	client,	meaning	that	the
collections	remain	lazy,	but	when	accessing	content,	the	record	is	loaded	from	the	local	cache	to	mitigate	the	need	for	additional
connections.

Examples	using	the	Java	APIs

Execute	a	query	with	a	custom	fetch	plan

List<ODocument>	resultset	=	database.query(new	OSQLSynchQuery<ODocument>("select	*	from	Profile").setFetchPlan("*:-1"));

Export	a	document	and	its	nested	documents	in	JSON

Export	an	invoice	and	its	customer:

invoice.toJSON("fetchPlan:customer:1");

Export	an	invoice,	its	customer	and	orders:

invoice.toJSON("fetchPlan:customer:1	orders:2");

Export	an	invoice	and	all	the	connected	records	up	to	3rd	level	of	depth:

invoice.toJSON("fetchPlan:*:3");

From	SQL:

SELECT	@this.toJSON('fetchPlan:out_Friend:4')	FROM	#10:20

Fetching	Strategies

80



Export	path	in	outgoing	direction	by	removing	all	the	incoming	edges	by	using	wildcards	(Since	2.0):

SELECT	@this.toJSON('fetchPlan:in_*:-2')	FROM	#10:20

NOTES::

To	avoid	looping,	the	record	already	traversed	by	fetching	are	exported	only	by	their	RIDs	(RecordID)	form
"fetchPlan"	setting	is	case	sensitive

Browse	objects	using	a	custom	fetch	plan

for	(Account	a	:	database.browseClass(Account.class).setFetchPlan("*:0	addresses:-1"))	{

		System.out.println(	a.getName()	);

}

NOTE:	Fetching	Object	will	mean	their	presence	inside	your	domain	entities.	So	if	you	load	an	object	using	fetchplan		*:0		all
LINK	type	references	won't	be	loaded.

Fetching	Strategies

81



Use	Cases
This	page	contains	the	solution	to	the	most	common	use	cases.	Please	don't	consider	them	as	the	definitive	solution,	but	as	suggestions
where	to	get	the	idea	to	solve	your	needs.

Use	cases

Time	Series
Chat
Use	OrientDB	as	a	Key/Value	DBMS
Persistent,	Distributed	and	Transactional	Queues

Use	Cases

82



Time	Series	Use	Case
Managing	records	related	to	historical	information	is	pretty	common.	When	you	have	millions	of	records,	indexes	start	show	their
limitations,	because	the	cost	to	find	the	records	is	O(logN).	This	is	also	the	main	reason	why	Relational	DBMS	are	so	slow	with	huge
databases.

So	when	you	have	millions	of	record	the	best	way	to	scale	up	linearly	is	avoid	using	indexes	at	all	or	as	much	as	you	can.	But	how	can
you	retrieve	records	in	a	short	time	without	indexes?	Should	OrientDB	scan	the	entire	database	at	every	query?	No.	You	should	use	the
Graph	properties	of	OrientDB.	Let's	look	at	a	simple	example,	where	the	domain	are	logs.

A	typical	log	record	has	some	information	about	the	event	and	a	date.	Below	is	the	Log	record	to	use	in	our	example.	We're	going	to	use
the	JSON	format	to	simplify	reading:

{

		"date"	:	12293289328932,

		"priority"	:	"critical",

		"note"	:	"System	reboot"

}

Now	let's	create	a	tree	(that	is	a	directed,	non	cyclic	graph)	to	group	the	Log	records	based	on	the	granularity	we	need.	Example:

Year	->	month	(map)	->	Month	->	day	(map)	->	Day	->	hour		(map)	->	Hour

Where	Year,	Month,	Day	and	Hour	are	vertex	classes.	Each	Vertex	links	the	other	Vertices	of	smaller	type.	The	links	should	be	handled
using	a	Map	to	make	easier	the	writing	of	queries.

Create	the	classes:

CREATE	CLASS	Year

CREATE	CLASS	Month

CREATE	CLASS	Day

CREATE	CLASS	Hour

CREATE	PROPERTY	Year.month	LINKMAP	Month

CREATE	PROPERTY	Month.day	LINKMAP	Day

CREATE	PROPERTY	Day.hour	LINKMAP	Hour

Example	to	retrieve	the	vertex	relative	to	the	date	March	2012,	20th	at	10am	(2012/03/20	10:00:00):

SELECT	month[3].day[20].hour[10].logs	FROM	Year	WHERE	year	=	"2012"

If	you	need	more	granularity	than	the	Hour	you	can	go	ahead	until	the	Time	unit	you	need:

Hour	->	minute	(map)	->	Minute	->	second	(map)	->	Second

Now	connect	the	record	to	the	right	Calendar	vertex.	If	the	usual	way	to	retrieve	Log	records	is	by	hour	you	could	link	the	Log	records
in	the	Hour.	Example:

Year	->	month	(map)	->	Month	->	day	(map)	->	Day	->	hour		(map)	->	Hour	->	log	(set)	->	Log

The	"log"	property	connects	the	Time	Unit	to	the	Log	records.	So	to	retrieve	all	the	log	of	March	2012,	20th	at	10am:

SELECT	expand(	month[3].day[20].hour[10].logs	)	FROM	Year	WHERE	year	=	"2012"

That	could	be	used	as	starting	point	to	retrieve	only	a	sub-set	of	logs	that	satisfy	certain	rules.	Example:

Time	Series

83



SELECT	FROM	(

		SELECT	expand(	month[3].day[20].hour[10].logs	)	FROM	Year	WHERE	year	=	"2012"

)	WHERE	priority	=	'critical'

That	retrieves	all	the	CRITICAL	logs	of	March	2012,	20th	at	10am.

Join	multiple	hours
If	you	need	multiple	hours/days/months	as	result	set	you	can	use	the	UNION	function	to	create	a	unique	result	set:

SELECT	expand(	records	)	from	(

		SELECT	union(	month[3].day[20].hour[10].logs,	month[3].day[20].hour[11].logs	)	AS	records

		FROM	Year	WHERE	year	=	"2012"

)

In	this	example	we	create	a	union	between	the	10th	and	11th	hours.	But	what	about	extracting	all	the	hours	of	a	day	without	writing	a
huge	query?	The	shortest	way	is	using	the	Traverse.	Below	the	Traverse	to	get	all	the	hours	of	one	day:

TRAVERSE	hour	FROM	(

		SELECT	expand(	month[3].day[20]	)	FROM	Year	WHERE	year	=	"2012"

)

So	putting	all	together	this	query	will	extract	all	the	logs	of	all	the	hours	in	a	day:

SELECT	expand(	logs	)	FROM	(

		SELECT	union(	logs	)	AS	logs	FROM	(

				TRAVERSE	hour	FROM	(

					SELECT	expand(	month[3].day[20]	)	FROM	Year	WHERE	year	=	"2012"

				)

		)

)

Aggregate
Once	you	built	up	a	Calendar	in	form	of	a	Graph	you	can	use	it	to	store	aggregated	values	and	link	them	to	the	right	Time	Unit.
Example:	store	all	the	winning	ticket	of	Online	Games.	The	record	structure	in	our	example	is:

{

		"date"	:	12293289328932,

		"win"	:	10.34,

		"machine"	:	"AKDJKD7673JJSH",

}

You	can	link	this	record	to	the	closest	Time	Unit	like	in	the	example	above,	but	you	could	sum	all	the	records	in	the	same	Day	and	link	it
to	the	Day	vertex.	Example:

Create	a	new	class	to	store	the	aggregated	daily	records:

CREATE	CLASS	DailyLog

Create	the	new	record	from	an	aggregation	of	the	hour:

INSERT	INTO	DailyLog

SET	win	=	(

		SELECT	SUM(win)	AS	win	FROM	Hour	WHERE	date	BETWEEN	'2012-03-20	10:00:00'	AND	'2012-03-20	11:00:00'

)

Link	it	in	the	Calendar	graph	assuming	the	previous	command	returned	#23:45	as	the	RecordId	of	the	brand	new	DailyLog	record:

Time	Series

84



UPDATE	(

		SELECT	expand(	month[3].day[20]	)	FROM	Year	WHERE	year	=	"2012"

)	ADD	logs	=	#23:45

Time	Series

85



Chat	Use	Case
OrientDB	allows	modeling	of	rich	and	complex	domains.	If	you	want	to	develop	a	chat	based	application,	you	can	use	whatever	you
want	to	create	the	relationships	between	User	and	Room.

We	suggest	avoiding	using	Edges	or	Vertices	connected	with	edges	for	messages.	The	best	way	is	using	the	document	API	by	creating
one	class	per	chat	room,	with	no	index,	to	have	super	fast	access	to	last	X	messages.	In	facts,	OrientDB	stores	new	records	in	append
only,	and	the	@rid	is	auto	generated	as	incrementing.

The	2	most	common	use	cases	in	a	chat	are:

writing	a	message	in	a	chat	room
load	last	page	of	messages	in	a	chat	room

Create	the	initial	schema

In	order	to	work	with	the	chat	rooms,	the	rule	of	the	thumb	is	creating	a	base	abstract	class	("ChatRoom")	and	then	let	to	the	concrete
classes	to	represent	individual	ChatRooms.

Create	the	base	ChatRoom	class

create	class	ChatRoom

alter	class	ChatRoom	abstract	true

create	property	ChatRoom.date	datetime

create	property	ChatRoom.text	string

create	property	ChatRoom.user	LINK	OUser

Create	a	new	ChatRoom

create	class	ItalianRestaurant	extends	ChatRoom

Class	"ItalianRestaurant"	will	extend	all	the	properties	from	ChatRoom.

Why	creating	a	base	class?	Because	you	could	always	execute	polymorphic	queries	that	are	cross-chatrooms,	like	get	all	the	message
from	user	"Luca":

select	from	ChatRoom	where	user.name	=	'Luca'

Create	a	new	message	in	the	Chat	Room
To	create	a	new	message	in	the	chat	room	you	can	use	this	code:

public	ODocument	addMessage(String	chatRoom,	String	message,	OUser	user)	{

		ODocument	msg	=	new	ODocument(chatRoom);

		msg.field(	"date",	new	Date()	);

		msg.field(	"text",	message	);

		msg.field(	"user",	user	);

		msg.save();

		return	msg;

}

Example:

addMessage("ItalianRestaurant",	"Have	you	ever	been	at	Ponza	island?",	database.getUser());

Chat

86



Retrieve	last	messages

You	can	easily	fetch	pages	of	messages	ordered	by	date	in	descending	order,	by	using	the	OrientDB's		@rid	.	Example:

select	from	ItalianRestaurant	order	by	@rid	desc	skip	0	limit	50

You	could	write	a	generic	method	to	access	to	a	page	of	messages,	like	this:

public	Iterable<ODocument>	loadMessages(String	chatRoom,	fromLast,	pageSize)	{

		return	graph.getRawGraph().command("select	from	"	+	chatRoom	+	"	order	by	@rid	desc	skip	"	+	fromLast	+	"	limit	"	+	pageSize

).execute();

}

Loading	the	2nd	(last)	page	from	chat	"ItalianRestaurant",	would	become	this	query	(with	pageSize	=	50):

select	from	ItalianRestaurant	order	by	@rid	desc	skip	50	limit	50

This	is	super	fast	and	O(1)	even	with	million	of	messages.

Limitations

Since	OrientDB	can	handle	only	32k	clusters,	you	could	have	maximum	32k	chat	rooms.	Unless	you	want	to	rewrite	the	entire
FreeNode,	32k	chat	rooms	will	be	more	than	enough	for	most	of	the	cases.

However,	if	you	need	more	than	32k	chat	rooms,	the	suggested	solution	is	still	using	this	approach,	but	with	multiple	databases	(even
on	the	same	server,	because	one	OrientDB	Server	instance	can	handle	thousands	of	databases	concurrently).

In	this	case	you	could	use	one	database	to	handle	all	the	metadata,	like	the	following	classes:

ChatRoom,	containing	all	the	chatrooms,	and	the	database	where	are	stored.	Example:		{	"@class":	"ChatRoom",	"description":
"OrientDB	public	channel",	"databaseName",	"db1",	"clusterName":	"orientdb"	}	

User,	containing	all	the	information	about	accounts	with	the	edges	to	the	ChatRoom	vertices	where	they	are	subscribed

OrientDB	cannot	handle	cross-database	links,	so	when	you	want	to	know	the	message's	author,	you	have	to	look	up	into	the
"Metadata"	database	by	@RID	(that	is	O(1)).

Chat

87

https://freenode.net/index.shtml


Key	Value	Use	Case
OrientDB	can	also	be	used	as	a	Key	Value	DBMS	by	using	the	super	fast	Indexes.	You	can	have	as	many	Indexes	as	you	need.

HTTP
OrientDB	RESTful	HTTP	protocol	allows	to	talk	with	a	OrientDB	Server	instance	using	the	HTTP	protocol	and	JSON.	OrientDB
supports	also	a	highly	optimized	Binary	protocol	for	superior	performances.

Operations

To	interact	against	OrientDB	indexes	use	the	four	methods	of	the	HTTP	protocol	in	REST	fashion:

PUT,	to	create	or	modify	an	entry	in	the	database
GET,	to	retrieve	an	entry	from	the	database.	It's	idempotent	that	means	no	changes	to	the	database	happen.	Remember	that	in	IE6
the	URL	can	be	maximum	of	2,083	characters.	Other	browsers	supports	longer	URLs,	but	if	you	want	to	stay	compatible	with	all
limit	to	2,083	characters
DELETE,	to	delete	an	entry	from	the	database

Create	an	entry

To	create	a	new	entry	in	the	database	use	the	Index-PUT	API.

Syntax:		http://<server>:[<port>]/index/<index-name>/<key>	

Example:

HTTP	PUT:		http://localhost:2480/index/customers/jay	

{

		"name"	:	"Jay",

		"surname"	:	"Miner"

}

HTTP	Response	204	is	returned.

Retrieve	an	entry

To	retrieve	an	entry	from	the	database	use	the	Index-GET	API.

Syntax:		http://<server>:[<port>]/index/<index-name>/<key>	

Example:

HTTP	GET:		http://localhost:2480/index/customers/jay	

HTTP	Response	200	is	returned	with	this	JSON	as	payload:

{

		"name"	:	"Jay",

		"surname"	:	"Miner"

}

Remove	an	entry

Key	Value

88



To	remove	an	entry	from	the	database	use	the	Index-DELETE	API.

Syntax:		http://<server>:[<port>]/index/<index-name>/<key>	

Example:

HTTP	DELETE:		http://localhost:2480/index/customers/jay	

HTTP	Response	200	is	returned

Step-by-Step	tutorial
Before	to	start	assure	you've	a	OrientDB	server	up	and	running.	In	this	example	we'll	use	curl	considering	the	connection	to	localhost	to
the	default	HTTP	post	2480.	The	default	"admin"	user	is	used.

Create	a	new	index
To	use	OrientDB	as	a	Key/Value	store	we	need	a	brand	new	manual	index,	let's	call	it	"mainbucket".	We're	going	to	create	it	as	UNIQUE
because	keys	cannot	be	duplicated.	If	you	can	have	multiple	keys	consider:

creating	the	index	as	NOTUNIQUE
leave	it	as	UNIQUE	but	as	value	handle	array	of	documents

Create	the	new	manual	unique	index	"mainbucket":

>	curl	--basic	-u	admin:admin	localhost:2480/command/demo/sql	-d	"create	index	mainbucket	UNIQUE"

Response:

{	"result"	:	[	

				{	"@type"	:	"d"	,	"@version"	:	0,	"value"	:	0,	"@fieldTypes"	:	"value=l"	}

		]

}

Store	the	first	entry

Below	we're	going	to	insert	the	first	entry	by	using	the	HTTP	PUT	method	passing	"jay"	as	key	in	the	URL	and	as	value	the	entire
document	in	form	of	JSON:

>	curl	--basic	-u	admin:admin	-X	PUT	localhost:2480/index/demo/mainbucket/jay	-d	"{'name':'Jay','surname':'Miner'}"

Response:

Key	'jay'	correctly	inserted	into	the	index	mainbucket.

Retrieve	the	entry	just	inserted
Below	we're	going	to	retrieve	the	entry	we	just	entered	by	using	the	HTTP	GET	method	passing	"jay"	as	key	in	the	URL:

>	curl	--basic	-u	admin:admin	localhost:2480/index/demo/mainbucket/jay

Response:

Key	Value

89



[{

		"@type"	:	"d"	,	"@rid"	:	"#3:477"	,	"@version"	:	0,

		"name"	:	"Jay",

		"surname"	:	"Miner"

}]

Note	that	an	array	is	always	returned	in	case	multiple	records	are	associated	to	the	same	key	(if	NOTUNIQUE	index	is	used).	Look	also
at	the	document	has	been	created	with	RID	#3:477.	You	can	load	it	directly	if	you	know	the	RID.	Remember	to	remove	the	#	character.
Example:

>	curl	--basic	-u	admin:admin	localhost:2480/document/demo/3:477

Response:

{

		"@type"	:	"d"	,	"@rid"	:	"#3:477"	,	"@version"	:	0,

		"name"	:	"Jay",

		"surname"	:	"Miner"

}

Drop	an	index

Once	finished	drop	the	index	"mainbucket"	created	for	the	example:

>	curl	--basic	-u	admin:admin	localhost:2480/command/demo/sql	-d	"drop	index	mainbucket"

Response:

{	"result"	:	[	

				{	"@type"	:	"d"	,	"@version"	:	0,	"value"	:	0,	"@fieldTypes"	:	"value=l"	}

		]

}

Key	Value

90



Distributed	queues	use	case
Implementing	a	persistent,	distributed	and	transactional	queue	system	using	OrientDB	is	possible	and	easy.	Besides	the	fact	you	don't
need	a	specific	API	accomplish	a	queue,	there	are	multiple	approaches	you	can	follow	depending	by	your	needs.	The	easiest	way	is
using	OrientDB	SQL,	so	this	works	wit	any	driver.

Create	the	queue	class	first:

create	class	queue

You	could	have	one	class	per	queue.	Example	of	push	operation:

insert	into	queue	set	text	=	"this	is	the	first	message",	date	=	date()

Since	OrientDB	by	default	keeps	the	order	of	creation	of	records,	a	simple	delete	from	the	queue	class	with	limit	=	1	gives	to	you	the
perfect	pop:

delete	from	queue	return	before	limit	1

The	"return	before"	allows	you	to	have	the	deleted	record	content.	If	you	need	to	peek	the	queue,	you	can	just	use	the	select:

select	from	queue	limit	1

That's	it.	Your	queue	will	be	persistent,	if	you	want	transactional	and	running	in	cluster	distributed.

Queue	system

91



Administration

OrientDB	has	a	number	of	tools	to	make	administration	of	the	database	easier.	There	is	the	console,	which	allows	you	to	run	a	large
number	of	commands.

There	is	also	the	OrientDB	Studio,	which	allows	you	to	run	queries	and	visually	look	at	the	graph.

OrientDB	also	offers	several	tools	for	the	import	and	export	of	data,	logging	and	trouble	shooting,	along	with	ETL	tools.

All	of	OrientDB's	administration	facilities	are	aimed	to	make	your	usage	of	OrientDB	as	simple	and	as	easy	as	possible.

For	more	information	see:

Command	Reference
Backup	and	Restore
Export	and	Import
Logging
Studio
Trouble	shooting
Performance	Tuning
ETL	Tools

Administration

92



Console	Tool
OrientDB	provides	a	Console	Tool,	which	is	a	Java	application	that	connects	to	and	operates	on	OrientDB	databases	and	Server
instances.

Console	Modes

There	are	two	modes	available	to	you,	while	executing	commands	through	the	OrientDB	Console:	interactive	mode	and	batch	mode.

Interactive	Mode

By	default,	the	Console	starts	in	interactive	mode.	In	this	mode,	the	Console	loads	to	an		orientdb>		prompt.	From	there	you	can
execute	commands	and	SQL	statements	as	you	might	expect	in	any	other	database	console.

You	can	launch	the	console	in	interactive	mode	by	executing	the		console.sh		for	Linux	OS	systems	or		console.bat		for	Windows
systems	in	the		bin		directory	of	your	OrientDB	installation.	Note	that	running	this	file	requires	execution	permissions.

$	cd	$ORIENTDB_HOME/bin

$	./console.sh

OrientDB	console	v.X.X.X	(build	0)	www.orientdb.com

Type	'HELP'	to	display	all	the	commands	supported.

Installing	extensions	for	GREMLIN	language	v.X.X.X

orientdb>

From	here,	you	can	begin	running	SQL	statements	or	commands.	For	a	list	of	these	commands,	see	commands.

Batch	mode

When	the	Console	runs	in	batch	mode,	it	takes	commands	as	arguments	on	the	command-line	or	as	a	text	file	and	executes	the	commands
in	that	file	in	order.	Use	the	same		console.sh		or		console.bat		file	found	in		bin		at	the	OrientDB	installation	directory.

Command-line:	To	execute	commands	in	batch	mode	from	the	command	line,	pass	the	commands	you	want	to	run	in	a	string,
separated	by	a	semicolon.

$	$ORIENTDB_HOME/bin/console.sh	"CONNECT	REMOTE:localhost/demo;SELECT	FROM	Profile"

Script	Commands:	In	addition	to	entering	the	commands	as	a	string	on	the	command-line,	you	can	also	save	the	commands	to	a
text	file	as	a	semicolon-separated	list.

$	vim	commands.txt

		CONNECT	REMOTE:localhost/demo;SELECT	FROM	Profile

$	$ORIENTDB_HOME/bin/console.sh	commands.txt

Ignoring	Errors

When	running	commands	in	batch	mode,	you	can	tell	the	console	to	ignore	errors,	allowing	the	script	to	continue	the	execution,	with	the
	ignoreErrors		setting.

Console	Command	Reference

93



$	vim	commands.txt

		SET	ignoreErrors	TRUE

Enabling	Echo

Regardless	of	whether	you	call	the	commands	as	an	argument	or	through	a	file,	when	you	run	console	commands	in	batch	mode,	you
may	also	need	to	display	them	as	they	execute.	You	can	enable	this	feature	using	the		echo		setting,	near	the	start	of	your	commands
list.

$	vim	commands.txt

		SET	echo	TRUE

Console	commands
OrientDB	implements	a	number	of	SQL	statements	and	commands	that	are	available	through	the	Console.	In	the	event	that	you	need
information	while	working	in	the	console,	you	can	access	it	using	either	the		HELP		or		?		command.

Command Description

	ALTER	CLASS	 Changes	the	class	schema

	ALTER	CLUSTER	 Changes	the	cluster	attributes

	ALTER	DATABASE	 Changes	the	database	attributes

	ALTER	PROPERTY	 Changes	the	class's	property	schema

	BACKUP	DATABASE	 Backup	a	database

	BEGIN	 Begins	a	new	transaction

	BROWSE	CLASS	 Browses	all	the	records	of	a	class

	BROWSE	CLUSTER	 Browses	all	the	records	of	a	cluster

	CLASSES	 Displays	all	the	configured	classes

	CLUSTER	STATUS	 Displays	the	status	of	distributed	cluster	of	servers

	CLUSTERS	 Displays	all	the	configured	clusters

	COMMIT	 Commits	an	active	transaction

	CONFIG	 Displays	the	configuration	where	the	opened	database	is	located	(local	or	remote)

	CONFIG	GET	 Returns	a	configuration	value

	CONFIG	SET	 Set	a	configuration	value

	CONNECT	 Connects	to	a	database

	CREATE	CLASS	 Creates	a	new	class

	CREATE	CLUSTER	 Creates	a	new	cluster	inside	a	database

	CREATE	CLUSTER	 Creates	a	new	record	cluster

	CREATE	DATABASE	 Creates	a	new	database

	CREATE	EDGE	 Create	a	new	edge	connecting	two	vertices

	CREATE	INDEX	 Create	a	new	index

	CREATE	LINK	 Create	a	link	reading	a	RDBMS	JOIN

Console	Command	Reference

94



	CREATE	VERTEX	 Create	a	new	vertex

	DECLARE	INTENT	 Declares	an	intent

	DELETE	 Deletes	a	record	from	the	database	using	the	SQL	syntax.	To	know	more	about	the	SQL	syntax	go	here

	DICTIONARY	KEYS	 Displays	all	the	keys	in	the	database	dictionary

	DICTIONARY	GET	 Loookups	for	a	record	using	the	dictionary.	If	found	set	it	as	the	current	record

	DICTIONARY	PUT	
Inserts	or	modify	an	entry	in	the	database	dictionary.	The	entry	is	composed	by	key=String,	value=record-
id

	DICTIONARY

REMOVE	
Removes	the	association	in	the	dictionary

	DISCONNECT	 Disconnects	from	the	current	database

	DISPLAY	RECORD	 Displays	current	record's	attributes

	DISPLAY	RAW

RECORD	
Displays	current	record's	raw	format

	DROP	CLASS	 Drop	a	class

	DROP	CLUSTER	 Drop	a	cluster

	DROP	DATABASE	 Drop	a	database

	DROP	INDEX	 Drop	an	index

	DROP	PROPERTY	 Drop	a	property	from	a	schema	class

	EXPLAIN	 Explain	a	command	by	displaying	the	profiling	values	while	executing	it

	EXPORT	DATABASE	 Exports	a	database

	EXPORT	RECORD	 Exports	a	record	in	any	of	the	supported	format	(i.e.	json)

	FIND	REFERENCES	 Find	the	references	to	a	record

	FREEZE	DATABASE	
Freezes	the	database	locking	all	the	changes.	Use	this	to	raw	backup.	Once	frozen	it	uses	the		RELEASE
DATABASE		to	release	it

	GET	 Returns	the	value	of	a	property

	GRANT	 Grants	a	permission	to	a	user

	GREMLIN	 Executes	a	Gremlin	script

	IMPORT	DATABASE	 Imports	a	database	previously	exported

	INDEXES	 Displays	information	about	indexes

	INFO	 Displays	information	about	current	status

	INFO	CLASS	 Displays	information	about	a	class

	INSERT	
Inserts	a	new	record	in	the	current	database	using	the	SQL	syntax.	To	know	more	about	the	SQL	syntax	go
here

	JS	 Executes	a	Javascript	in	the	console

	JSS	 Executes	a	Javascript	in	the	server

	LIST	DATABASES	 List	the	available	databases

	LIST

CONNECTIONS	
List	the	available	connections

	LOAD	RECORD	 Loads	a	record	in	memory	and	set	it	as	the	current	one

	PROFILER	 Controls	the	Profiler

	PROPERTIES	 Returns	all	the	configured	properties

	pwd	 Display	current	path

	REBUILD	INDEX	 Rebuild	an	index

Console	Command	Reference

95



	RELEASE

DATABASE	
Releases	a	Console	Freeze	Database	database

	RELOAD	RECORD	 Reloads	a	record	in	memory	and	set	it	as	the	current	one

	RELOAD	SCHEMA	 Reloads	the	schema

	ROLLBACK	 Rollbacks	the	active	transaction	started	with	begin

	RESTORE

DATABASE	
Restore	a	database

	SELECT	
Executes	a	SQL	query	against	the	database	and	display	the	results.	To	know	more	about	the	SQL	syntax	go
here

	REVOKE	 Revokes	a	permission	to	a	user

	SET	 Changes	the	value	of	a	property

	SLEEP	 Sleep	for	the	time	specified.	Useful	on	scripts

	TRAVERSE	 Traverse	a	graph	of	records

	TRUNCATE	CLASS	 Remove	all	the	records	of	a	class	(by	truncating	all	the	underlying	configured	clusters)

	TRUNCATE

CLUSTER	
Remove	all	the	records	of	a	cluster

	TRUNCATE	RECORD	 Truncate	a	record	you	can't	delete	because	it's	corrupted

	UPDATE	
Updates	a	record	in	the	current	database	using	the	SQL	syntax.	To	know	more	about	the	SQL	syntax	go
here

	HELP	 Prints	this	help

	EXIT	 Closes	the	console

Custom	Commands

In	addition	to	the	commands	implemented	by	OrientDB,	you	can	also	develop	custom	commands	to	extend	features	in	your	particular
implementation.	To	do	this,	edit	the	OConsoleDatabaseApp	class	and	add	to	it	a	new	method.	There's	an	auto-discovery	system	in
place	that	adds	the	new	method	to	the	available	commands.	To	provide	a	description	of	the	command,	use	annotations.	The	command
name	must	follow	the	Java	code	convention	of	separating	words	using	camel-case.

For	instance,	consider	a	case	in	which	you	might	want	to	add	a		MOVE	CLUSTER		command	to	the	console:

@ConsoleCommand(description	=	"Move	the	physical	location	of	cluster	files")

public	void	moveCluster(

			@ConsoleParameter(name	=	"cluster-name",	description	=	"The	name	or	the	id	of	the	cluster	to	remove")	String	iClusterName,

			@ConsoleParameter(name	=	"target-path",	description	=	"path	of	the	new	position	where	to	move	the	cluster	files")	String	iN

ewPath	)	{

			checkCurrentDatabase();	//	THE	DB	MUST	BE	OPENED

			System.out.println("Moving	cluster	'"	+	iClusterName	+	"'	to	path	"	+	iNewPath	+	"...");

			}

Once	you	have	this	code	in	place,		MOVE	CLUSTER		now	appears	in	the	listing	of	available	commands	shown	by		HELP	.

Console	Command	Reference

96

https://github.com/orientechnologies/orientdb/blob/master/tools/src/main/java/com/orientechnologies/orient/console/OConsoleDatabaseApp.java


orientdb>	HELP

AVAILABLE	COMMANDS:

AVAILABLE	COMMANDS:

	*	alter	class				Alter	a	class	in	the	database	schema

	*	alter	cluster		Alter	class	in	the	database	schema

	...																												...

	*	move	cluster																	Move	the	physical	location	of	cluster	files

	...																												...

	*	help																									Print	this	help

	*	exit																									Close	the	console

orientdb>		MOVE	CLUSTER	foo	/temp	

Moving	cluster	'foo'	to	path	/tmp...

In	the	event	that	you	develop	a	custom	command	and	find	it	especially	useful	in	your	deployment,	you	can	contribute	your	code	to	the
OrientDB	Community!

Console	Command	Reference

97

https://groups.google.com/forum/#!forum/orient-database


Console	-		BACKUP	
Executes	a	complete	backup	on	the	currently	opened	database.	It	then	compresses	the	backup	file	using	the	ZIP	algorithm.	You	can	then
restore	a	database	from	backups,	using	the		RESTORE	DATABASE		command.	You	can	automate	backups	using	the	Automatic-Backup	server
plugin.

Backups	and	restores	are	similar	to	the		EXPORT	DATABASE		and		IMPORT	DATABASE	,	but	they	offer	better	performance	than	these	options.

NOTE:	OrientDB	Community	Edition	does	not	support	backing	up	remote	databases.	OrientDB	Enterprise	Edition	does
support	this	feature.	For	more	information	on	how	to	implement	this	with	Enterprise	Edition,	see	Remote	Backups.

Syntax:

BACKUP	DATABASE	<output-file>	[-incremental]	[-compressionLevel=<compressionLevel>]	[-bufferSize=<bufferSize>]

	<output-file>		Defines	the	path	to	the	backup	file.
	-incremental		Option	to	execute	an	incremental	backup.	When	enabled,	it	computes	the	data	to	backup	as	all	new	changes	since
the	last	backup.	Available	in	OrientDB	Enterprise	Edition	version	2.2	or	later.
-	compressionLevel		Defines	the	level	of	compression	for	the	backup	file.	Valid	levels	are		0		to		9	.	The	default	is		9	.	Available	in
1.7	or	later.
	-bufferSize		Defines	the	compression	buffer	size.	By	default,	this	is	set	to	1MB.	Available	in	1.7	or	later.

Example:

Backing	up	a	database:

orientdb>	CONNECT	plocal:../databases/mydatabase	admin	admin

orientdb>	BACKUP	DATABASE	/backups/mydb.zip

Backing	current	database	to:	database	mydb.zip

Backup	executed	in	0.52	seconds

Backup	API
In	addition	to	backups	called	through	the	Console,	you	can	also	manage	backups	through	the	Java	API.	Using	this,	you	can	perform
either	a	full	or	incremental	backup	on	your	database.

Full	Backup

In	Java	or	any	other	language	that	runs	on	top	of	the	JVM,	you	can	initiate	a	full	backup	by	using	the		backup()		method	on	a	database
instance.

db.backup(out,	options,	callable,	listener,	compressionLevel,	bufferSize);

	out		Refers	to	the		OutputStream		that	it	uses	to	write	the	backup	content.	Use	a		FileOutputStream		to	make	the	backup
persistent	on	disk.
	options		Defines	backup	options	as	a		Map<String,	Object>		object.
	callable		Defines	the	callback	to	execute	when	the	database	is	locked.
	listener		Defines	the	listened	called	for	backup	messages.
	compressionLevel		Defines	the	level	of	compression	for	the	backup.	It	supports	levels	between		0		and		9	,	where		0		equals	no
compression	and		9		the	maximum.	Higher	compression	levels	do	mean	smaller	files,	but	they	also	mean	the	backup	requires	more
from	the	CPU	at	execution	time.
	bufferSize		Defines	the	buffer	size	in	bytes.	The	larger	the	buffer,	the	more	efficient	the	comrpession.

Example:

Backup

98

http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/enterprise/last/servermanagement.html


ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");

db.open("admin",	"admin");

try{

		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{

				@Override

				public	void	onMessage(String	iText)	{

						System.out.print(iText);

				}

		};

		OutputStream	out	=	new	FileOutputStream("/temp/mydb.zip");

		db.backup(out,null,null,listener,9,2048);

}	finally	{

			db.close();

}

Incremental	Backup

As	of	version	2.2,	OrientDB	Enterprise	Edition	supports	incremental	backups	executed	through	Java	or	any	language	that	runs	on	top	of
the	JVM,	using	the		incrementalBackup()		method	against	a	database	instance.

db.incrementalBackup(backupDirectory);

	backupDirectory		Defines	the	directory	where	it	generates	the	incremental	backup	files.

It	is	important	that	previous	incremental	backup	files	are	present	in	the	same	directory,	in	order	to	compute	the	database	portion	to	back
up,	based	on	the	last	incremental	backup.

Example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");

db.open("admin",	"admin");

try{

		db.backup("/var/backup/orientdb/mydb");

}	finally	{

			db.close();

}

For	more	information,	see:

Restore	Database
Export	Database
Import	Database
Console-Commands
ODatabaseExport	Java	class

Backup

99

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java


Console	-		BEGIN	
Initiates	a	transaction.	When	a	transaction	is	open,	any	commands	you	execute	on	the	database	remain	temporary.	In	the	event	that	you
are	satisfied	with	the	changes,	you	can	call	the		COMMIT		command	to	commit	them	to	the	database.	Otherwise,	you	can	call	the
	ROLLBACK		command,	to	roll	the	changes	back	to	the	point	where	you	called		BEGIN	.

Syntax:

BEGIN

Examples

Begin	a	transaction:

orientdb>	BEGIN

Transaction	1	is	running

Attempting	to	begin	a	transaction	when	one	is	already	open:

orinetdb>	BEGIN

Error:	an	active	transaction	is	currently	open	(id=1).		Commit	or	rollback	

before	starting	a	new	one.

Making	changes	when	a	transaction	is	open:

orientdb>	INSERT	INTO	Account	(name)	VALUES	('tx	test')	SELECT	FROM	Account	WHERE	name	LIKE	'tx%'

	---+-------+----------

		#	|	RID			|	name				

	---+-------+----------

		0	|	#9:-2	|	tx	test

	---+-------+----------

	

When	a	transaction	is	open,	new	records	all	have	temporary	Record	ID's,	which	are	given	negative	values,	(for	instance,	like	the		#9:-2	
shown	above).	These	remain	in	effect	until	you	run		COMMIT	

For	more	information	on	Transactions,	see

Transactions
Console	Command	COMMIT
Console	Command	ROLLBACK
Console	Commands

Begin

100



Console	-		BROWSE	CLASS	
Displays	all	records	associated	with	the	given	class.

Syntax:

BROWSE	CLASS	<class-name>

	<class-name>		Defines	the	class	for	the	records	you	want	to	display.

Example:

Browse	records	associated	with	the	class		City	:

orientdb>	BROWSE	CLASS	City

----+------+-------------------

		#	|	RID		|	NAME

----+------+-------------------

		0	|	-6:0	|	Rome

		1	|	-6:1	|	London

		2	|	-6:2	|	Honolulu

----+------+-------------------

For	more	information	on	other	commands,	see	Console	Commands.

Browse	Class

101



Console	-		BROWSE	CLUSTER	
Displays	all	records	associated	with	the	given	cluster.

Syntax:

BROWSE	CLUSTER	<cluster-name>

	<cluster-name>		Defines	the	cluster	for	the	records	you	want	to	display.

Example:

Browse	records	associated	with	the	cluster		City	:

orientdb>	BROWSE	CLUSTER	City

----+------+-------------------

		#	|	RID		|	NAME

----+------+-------------------

		0	|	-6:0	|	Rome

		1	|	-6:1	|	London

		2	|	-6:2	|	Honolulu

----+------+-------------------

For	more	information	on	other	commands,	see	Console	Commands.

Browse	Cluster

102



Console	-		LIST	CLASSES	
Displays	all	configured	classes	in	the	current	database.

Syntax:

Long	Syntax:

LIST	CLASSES

Short	Syntax:

CLASSES

Example

List	current	classes	in	the	database:

orientdb>	LIST	CLASSES

CLASSES

-------------+------+-------------+-----------

	NAME								|		ID		|	CLUSTERS				|	ELEMENTS		

-------------+------+-------------+-----------

	Person						|				0	|	person						|									7	

	Animal						|				1	|	animal						|									5	

	AnimalRace		|				2	|	AnimalRace		|									0	

	AnimalType		|				3	|	AnimalType		|									1	

	OrderItem			|				4	|	OrderItem			|									0	

	Order							|				5	|	Order							|									0	

	City								|				6	|	City								|									3	

-------------+------+-------------+-----------

	TOTAL																																					16	

-----------------------------------------------

For	more	information	on	other	commands,	see	Console	Commands.

List	Classes

103



Console	-		CLUSTER	STATUS	
Displays	the	status	of	the	cluster	in	distributed	configuration.

Syntax:

CLUSTER	STATUS

Example:

Display	the	status	of	the	cluster:

orientdb>	CLUSTER	STATUS

{

				"localName":	"_hzInstance_1_orientdb",

				"localId":	"3735e690-9a7b-44d2-b4bc-27089da065e2",

				"members":	[

								{

												"id":	"3735e690-9a7b-44d2-b4bc-27089da065e2",

												"name":	"node1",

												"startedOn":	"2015-05-14	17:06:40:418",

												"listeners":	[

																{

																				"protocol":	"ONetworkProtocolBinary",

																				"listen":	"10.3.15.55:2424"

																},

																{

																				"protocol":	"ONetworkProtocolHttpDb",

																				"listen":	"10.3.15.55:2480"

																}

												],

												"databases":	[]

								}

				]

}

For	more	information	on	other	commands,	see	Console	Commands.

Cluster	Status

104



Console	-		LIST	CLUSTERS	
Displays	all	configured	clusters	in	the	current	database.

Syntax:

Long	Syntax:

LIST	CLUSTERS

Short	Syntax:

CLUSTERS

Example:

List	current	clusters	on	database:

orientdb>	LIST	CLUSTERS

CLUSTERS

-------------+------+-----------+-----------

	NAME								|		ID		|	TYPE						|	ELEMENTS		

-------------+------+-----------+-----------

	metadata				|				0	|	Physical		|								11	

	index							|				1	|	Physical		|									0	

	default					|				2	|	Physical		|							779	

	csv									|				3	|	Physical		|						1000	

	binary						|				4	|	Physical		|						1001	

	person						|				5	|	Physical		|									7	

	animal						|				6	|	Physical		|									5	

	animalrace		|			-2	|	Logical			|									0	

	animaltype		|			-3	|	Logical			|									1	

	orderitem			|			-4	|	Logical			|									0	

	order							|			-5	|	Logical			|									0	

	city								|			-6	|	Logical			|									3	

-------------+------+-----------+-----------

	TOTAL																																	2807	

--------------------------------------------

For	information	on	creating	new	clusters	in	the	current	database,	see	the		CREATE	CLUSTER		command.	For	more	information	on
other	commands,	see	Console	Commands.

List	Clusters

105



Console	-		LIST	SERVERS	
Displays	all	active	servers	connected	within	a	cluster.

This	command	was	introduced	in	OrientDB	version	2.2.

Syntax:

LIST	SERVERS

Example:

List	the	servers	currently	connected	to	the	cluster:

orientdb>	LIST	SERVERS

CONFIGURED	SERVERS

-+----+------+-----------+-------------+-----------+-----------+-----------+----------

+---------

#|Name|Status|Connections|StartedOn					|Binary				|HTTP							|UsedMemory	

|FreeMemory|MaxMemory

-+----+------+-----------+-------------+-----------+-----------+-----------+----------

+---------

0|no2	|ONLINE|0										|2015-10-

30...|192.168.0.6|192.168.0.6|80MB(8.80%)|215MB(23%)|910MB	

1|no1	|ONLINE|0										|2015-10-30...|192.168.0.6|192.168.0.6|90MB(2.49%)|195MB(5%)	

|3.5GB			

-+----+------+-----------+-------------+-----------+-----------+-----------+----------

+---------

Use	the		DISPLAY		command	to	show	information	on	a	specific	server:

orientdb>	DISPLAY	0

-------------+------------------------------

								Name	|	Value																								

-------------+------------------------------

								Name	|	node2

						Status	|	ONLINE

	Connections	|	0

			StartedOn	|	Fri	Oct	30	21:41:07	CDT	2015

						Binary	|	192.168.0.6:2425	

								HTTP	|	192.168.0.6:2481

		UsedMemory	|	80,16MB	(8,80%)

		FreeMemory	|	215,34MB	(23,65%)

			MaxMemory	|	910,50MB

-------------+------------------------------

For	more	information	on	other	commands,	see	Console	Commands.

List	Servers

106



Console	-	LIST	SERVER	USERS
This	feature	was	introduced	in	OrientDB	version	2.2.

Displays	all	configured	users	on	the	server.	In	order	to	display	the	users,	the	current	system	user	that	is	running	the	console	must	have
permissions	to	read	the		$ORINETDB_HOME/config/orientdb-server-config.xml		configuration	file.	For	more	information,	see	OrientDB
Server	Security.

Syntax:

LIST	SERVER	USERS

Example:

List	configured	users	on	a	server:

orientdb>	LIST	SERVER	USERS

SERVER	USERS

-	'root',	permissions:	*

-	'guest',	permissions:	connect,server.listDatabases,server.dblist

For	more	information,	see

	SET	SERVER	USER	

	DROP	SERVER	USER	

For	more	information	on	other	console	commands,	see	Console	Commands.

List	Server	Users

107



Console	-	COMMIT
Closes	a	transaction,	committing	the	changes	you	have	made	to	the	database.	Use	the		BEGIN		command	to	open	a	transaction.	If	you
don't	want	to	save	the	changes	you've	made,	use	the		ROLLBACK		command	to	revert	the	database	state	back	to	the	point	where	you
opened	the	transaction.

For	more	information,	see	Transactions.

Syntax

COMMIT

Example

Initiate	a	transaction,	using	the		BEGIN		command:

orientdb>	BEGIN

Transaction	2	is	running

For	the	sake	of	example,	attempt	to	open	another	transaction:

orientdb>	BEGIN

Error:	an	active	transaction	is	currently	open	(id=2).	Commit	or	rollback	

before	starting	a	new	one.

Insert	data	into	the	class		Account	,	using	an		INSERT		statement:

orientdb>	INSERT	INTO	Account	(name)	VALUES	('tx	test')

Inserted	record	'Account#9:-2{name:tx	test}	v0'	in	0,000000	sec(s).

Commit	the	transaction	to	the	database:

orientdb>	COMMIT

Transaction	2	has	been	committed	in	4ms

Display	the	new	content,	using	a		SELECT		query:

orientdb>	SELECT	FROM	Account	WHERE	name	LIKE	'tx%'

---+---------+----------

	#	|	RID					|	name

---+---------+----------

	0	|	#9:1107	|	tx	test

---+---------+----------

1	item(s)	found.	Query	executed	in	0.041	sec(s).

When	a	transaction	is	open,	all	new	records	use	a	temporary	Record	ID	that	features	negative	numbers.	After	the	commit,	they	have	a
permanent	Record	ID	that	uses	with	positive	numbers.

Commit

108



For	more	information,	see

Transactions
	BEGIN	

	ROLLBACK	

Console	Commands

Commit

109



Console	-		CONFIG	
Displays	the	configuration	information	on	the	current	database,	as	well	as	whether	it	is	local	or	remote.

Syntax

CONFIG

Examples

Display	the	configuration	of	the	current	database:

orientdb>	CONFIG

REMOTE	SERVER	CONFIGURATION:

+------------------------------------+--------------------------------+

|	NAME																															|	VALUE																										|

+------------------------------------+--------------------------------+

|	treemap.lazyUpdates																|	300																												|

|	db.cache.enabled																			|	false																										|

|	file.mmap.forceRetry															|	5																														|

|	treemap.optimizeEntryPointsFactor		|	1.0																												|

|	storage.keepOpen																			|	true																											|

|	treemap.loadFactor																	|	0.7																												|

|	file.mmap.maxMemory																|	110000000																						|

|	network.http.maxLength													|	10000																										|

|	storage.cache.size																	|	5000																											|

|	treemap.nodePageSize															|	1024																											|

|	...																																|	...																												|

|	treemap.entryPoints																|	30																													|

+------------------------------------+--------------------------------+

You	can	change	configuration	variables	displayed	here	using	the		CONFIG	SET		command.	To	display	the	value	set	to	one
configuration	variable,	use	the		CONFIG	GET		command.

For	more	information	on	other	commands,	see	Console	Commands.

Config

110



Console	-		CONFIG	GET	
Displays	the	value	of	the	requested	configuration	variable.

Syntax

CONFIG	GET	<config-variable>

	<config-variable>		Defines	the	configuration	variable	you	want	to	query.

Examples

Display	the	value	to	the		tx.log.fileType		configuration	variable:

orientdb>	CONFIG	GET	tx.log.fileType

Remote	configuration:	tx.log.fileType	=	classic

You	can	display	all	configuration	variables	using	the		CONFIG		command.	To	change	the	values,	use	the		CONFIG	SET		command.

For	more	information	on	other	commands,	see	Config	Commands.

Config	Get

111



Console	-		CONFIG	SET	
Updates	a	configuration	variable	to	the	given	value.

Syntax

CONFIG	SET	<config-variable>	<config-value>

	<config-variable>		Defines	the	configuration	variable	you	want	to	change.
	<config-value>		Defines	the	value	you	want	to	set.

Example

Display	the	current	value	for		tx.autoRetry	:

orientdb>	CONFIG	GET	tx.autoRetry

Remote	configuration:	tx.autoRetry	=	1

Change	the		tx.autoRetry		value	to		5	:

orientdb>	CONFIG	SET	tx.autoRetry	5

Remote	configuration	value	changed	correctly.

Display	new	value:

orientdb>	CONFIG	GET	tx.autoRetry

Remote	configuration:	tx.autoRetry	=	5

You	can	display	all	configuration	variables	with	the		CONFIG		command.	You	can	view	the	current	value	on	a	configuration	variable
using	the		CONFIG	GET		command.

For	more	information	on	other	commands,	see	Console	Commands

Config	Set

112



Console	-		CONNECT	
Opens	a	database.

Syntax

CONNECT	<database-url>	<user>	<password>

	<database-url>		Defines	the	URL	of	the	database	you	want	to	connect	to.	It	uses	the	format		<mode>:<path>	
	<mode>		Defines	the	mode	you	want	to	use	in	connecting	to	the	database.	It	can	be		PLOCAL		or		REMOTE	.
	<path>		Defines	the	path	to	the	database.

	<user>		Defines	the	user	you	want	to	connect	to	the	database	with.
	<password>		Defines	the	password	needed	to	connect	to	the	database,	with	the	defined	user.

Examples:

Connect	to	a	local	database	as	the	user		admin	,	loading	it	directly	into	the	console:

orientdb>	CONNECT	PLOCAL:../databases/GratefulDeadConcerts	admin	my_admin_password

Connecting	to	database	[plocal:../databases/GratefulDeadConcerts]...OK

Connect	to	a	remote	database:

orientdb>	CONNECT	REMOTE:192.168.1.1/GratefulDeadConcerts	admin	my_admin_password

Connecting	to	database	[remote:192.168.1.1/GratefulDeadConcerts]...OK

For	more	information	on	other	commands,	see	Console	Commands.

Connect

113



Console	-		CREATE	CLUSTER	
Creates	a	new	cluster	in	the	current	database.	The	cluster	you	create	can	either	be	physical	or	in	memory.	OrientDB	saves	physical
clusters	to	disk.	Memory	clusters	are	volatile,	so	any	records	you	save	to	them	are	lost,	should	the	server	be	stopped.

Syntax

CREATE	CLUSTER	<cluster-name>	<cluster-type>	<data-segment>	<location>	[<position>]

	<cluster-name>		Defines	the	name	of	the	cluster.
	<cluster-type>		Defines	whether	the	cluster	is		PHYSICAL		or		LOGICAL	.
	<data-segment>		Defines	the	data	segment	you	want	to	use.

	DEFAULT		Sets	the	cluster	to	the	default	data	segment.
	<location>		Defines	the	location	for	new	cluster	files,	if	applicable.	Use		DEFAULT		to	save	these	to	the	database	directory.
	<position>		Defines	where	to	add	new	cluster.	Use		APPEND		to	create	it	as	the	last	cluster.	Leave	empty	to	replace.

Example

Create	a	new	cluster		documents	:

orientdb>	CREATE	CLUSTER	documents	PHYSICAL	DEFAULT	DEFAULT	APPEND

Creating	cluster	[documents]	of	type	'PHYSICAL'	in	database	demo	as	last	one...

PHYSICAL	cluster	created	correctly	with	id	#68

You	can	display	all	configured	clusters	in	the	current	database	using	the		CLUSTERS		command.	To	delete	an	existing	cluster,	use
the		DROP	CLUSTER		command.

For	more	information	on	other	commands,	see	Console	Commands

Create	Cluster

114



Console	-		CREATE	DATABASE	
Creates	and	connects	to	a	new	database.

Syntax

CREATE	DATABASE	<database-url>	[<user>	<password>	<storage-type>	[<db-type>]]

	<database-url>		Defines	the	URL	of	the	database	you	want	to	connect	to.	It	uses	the	format		<mode>:<path>	
	<mode>		Defines	the	mode	you	want	to	use	in	connecting	to	the	database.	It	can	be		PLOCAL		or		REMOTE	.
	<path>		Defines	the	path	to	the	database.

	<user>		Defines	the	user	you	want	to	connect	to	the	database	with.
	<password>		Defines	the	password	needed	to	connect	to	the	database,	with	the	defined	user.
	<storage-type>		Defines	the	storage	type	that	you	want	to	use.	You	can	choose	between		PLOCAL		and		MEMORY	.
	<db-type>		Defines	the	database	type.	You	can	choose	between		GRAPH		and		DOCUMENT	.	The	default	is		GRAPH	.

Examples

Create	a	local	database		demo	:

orientdb>	CREATE	DATABASE	PLOCAL:/usr/local/orientdb/databases/demo

Creating	database	[plocal:/usr/local/orientdb/databases/demo]...

Connecting	to	database	[plocal:/usr/local/orientdb/databases/demo]...OK

Database	created	successfully.

Current	database	is:	plocal:/usr/local/orientdb/databases/demo

orientdb	{db=demo}>

Create	a	remote	database		trick	:

orientdb>	CREATE	DATABASE	REMOTE:192.168.1.1/trick	root	

										E30DD873203AAA245952278B4306D94E423CF91D569881B7CAD7D0B6D1A20CE9	PLOCAL

Creating	database	[remote:192.168.1.1/trick	]...

Connecting	to	database	[remote:192.168.1.1/trick	]...OK

Database	created	successfully.

Current	database	is:	remote:192.168.1.1/trick

orientdb	{db=trick}>

To	create	a	static	database	to	use	from	the	server,	see		Server	pre-configured	storage	types	.

To	remove	a	database,	see		DROP	DATABASE	.	To	change	database	configurations	after	creation,	see		ALTER	DATABASE	.

For	more	information	on	other	commands,	see	Console	Commands.

Create	Database

115



Console	-		CREATE	INDEX	
Create	an	index	on	a	given	property.	OrientDB	supports	three	index	algorithms	and	several	index	types	that	use	these	algorithms.

SB-Tree	Algorithm
	UNIQUE		Does	not	allow	duplicate	keys,	fails	when	it	encounters	duplicates.
	NOTUNIQUE		Does	allow	duplicate	keys.
	FULLTEXT		Indexes	to	any	single	word	of	text.
	DICTIONARY		Does	not	allow	duplicate	keys,	overwrites	when	it	encounters	duplicates.

Hash	Index	Algorithm
	UNIQUE_HASH_INDEX		Does	not	allow	duplicate	keys,	it	fails	when	it	encounters	duplicates.
	NOTUNIQUE_HASH_INDEX		Does	allow	duplicate	keys.
	FULLTEXT_HASH_INDEX		Indexes	to	any	single	word.
	DICTIONARY		Does	not	allow	duplicate	keys,	it	overwrites	when	it	encounters	duplicates.

Lucene	Engine
	LUCENE		Full	text	index	type	using	the	Lucene	Engine.
	SPATIAL		Spatial	index	using	the	Lucene	Engine.

For	more	information	on	indexing,	see	Indexes.

Syntax

CREATE	INDEX	<index-name>	[ON	<class-name>	(<property-names>)]	<index-type>	[<key-type>]

	<index-name>		Defines	a	logical	name	for	the	index.	Optionally,	you	can	use	the	format		<class-name>.<property-name>	,	to	create
an	automatic	index	bound	to	the	schema	property.

NOTE	Because	of	this	feature,	index	names	cannot	contain	periods.

	<class-name>		Defines	the	class	to	index.	The	class	must	already	exist	in	the	database	schema.

	<property-names>		Defines	a	comma-separated	list	of	properties	that	you	want	to	index.	These	properties	must	already	exist	in	the
database	schema.
	<index-type>		Defines	the	index	type	that	you	want	to	use.
	<key-type>		Defines	the	key	that	you	want	to	use.	On	automatic	indexes,	this	is	auto-determined	by	reading	the	target	schema
property	where	you	create	the	index.	When	not	specified	for	manual	indexes,	OrientDB	determines	the	type	at	run-time	during	the
first	insertion	by	reading	the	type	of	the	class.

Examples

Create	an	index	that	uses	unique	values	and	the	SB-Tree	index	algorithm:

orientdb>	CREATE	INDEX	jobs.job_id	UNIQUE

The	SQL		CREATE	INDEX		page	provides	more	information	on	creating	indexes.	More	information	on	indexing	can	be	found	under
Indexes.	Further	SQL	information	can	be	found	under		SQL	Commands	.

For	more	information	on	other	commands,	see	Console	Commands

Create	Index

116



Console	-		CREATE	LINK	
Creates	a	link	between	two	or	more	records	of	the	Document	type.

Syntax

CREATE	LINK	<link-name>	FROM	<source-class>.<source-property>	TO	<target-class>.<target-property>

	<link-name>		Defines	the	logical	name	of	the	property	for	the	link.	When	not	expressed,	it	overwrites	the		<target-property>	
field.
	<source-class>		Defines	the	source	class	for	the	link.
	<source-property>		Defines	the	source	property	for	the	link.
	<target-class>		Defines	the	target	class	for	the	link.
	<target-property>		Defines	the	target	property	for	the	link.

Examples

Create	a	1-n	link	connecting	comments	to	posts:

orientdb>	CREATE	LINK	comments	FROM	Comments.!PostId	TO	Posts.Id	INVERSE

Understanding	Links

Links	are	useful	when	importing	data	from	a	Relational	database.	In	the	Relational	world,	the	database	resolves	relationships	as	foreign
keys.	For	instance,	consider	the	above	example	where	you	need	to	show	instances	in	the	class		Post		as	having	a	1-n	relationship	to
instances	in	class		Comment	.	That	is,		Post	1	--->	*	Comment	.

In	a	Relational	database,	where	classes	are	tables,	you	might	have	something	like	this:

reldb>	SELECT	*	FROM	Post;

+----+----------------+

|	Id	|	Title										|

+----+----------------+

|	10	|	NoSQL	movement	|

|	20	|	New	OrientDB			|

+----+----------------+

2	rows	in	(0.01	sec)

reldb>	SELECT	*	FROM	Comment;

+----+--------+--------------+

|	Id	|	PostId	|	Text									|

+----+--------+--------------+

|		0	|			10			|	First								|

|		1	|			10			|	Second							|

|	21	|			10			|	Another						|

|	41	|			20			|	First	again		|

|	82	|			20			|	Second	Again	|

+----+--------+--------------+

5	rows	in	sec	(0.03	sec)

In	OrientDB,	you	have	a	direct	relationship	in	your	object	model.	Navigation	runs	from		Post		to		Comment		and	not	vice	versa,	(as	in
the	Relational	database	model).	For	this	reason,	you	need	to	create	a	link	as		INVERSE	.

Create	Link

117



For	more	information	on	SQL	commands,	see	SQL	Commands.
For	more	information	on	other	commands,	see	Console	Commands.

Create	Link

118



Console	-		CREATE	PROPERTY	
Creates	a	new	property	on	the	given	class.	The	class	must	already	exist.

Syntax

CREATE	PROPERTY	<class-name>.<property-name>	<property-type>	[<linked-type>][	<linked-class>]

	<class-name>		Defines	the	class	you	want	to	create	the	property	in.
	<property-name>		Defines	the	logical	name	of	the	property.
	<property-type>		Defines	the	type	of	property	you	want	to	create.	Several	options	are	available:

	<linked-type>		Defines	the	container	type,	used	in	container	property	types.
	<linked-class>		Defines	the	container	class,	used	in	container	property	types.

NOTE:	There	are	several	property	and	link	types	available.

Examples

Create	the	property		name		on	the	class		User	,	of	the	string	type:

orientdb>	CREATE	PROPERTY	User.name	STRING

Create	a	list	of	strings	as	the	property		tags		in	the	class		Profile	,	using	an	embedded	list	of	the	string	type.

orientdb>	CREATE	PROPERTY	Profile.tags	EMBEDDEDLIST	STRING

Create	the	embedded	map	property		friends		in	the	class		Profile	,	link	it	to	the	class		Profile	.

orientdb>	CREATE	PROPERTY	Profile.friends	EMBEDDEDMAP	Profile

This	forms	a	circular	reference.

To	remove	a	property,	use	the		DROP	PROPERTY		command.

Property	Types
When	creating	properties,	you	need	to	define	the	property	type,	so	that	OrientDB	knows	the	kind	of	data	to	expect	in	the	field.	There
are	several	standard	property	types	available:

	BOOLEAN	 	INTEGER	 	SHORT	 	LONG	

	FLOAT	 	DATE	 	STRING	 	EMBEDDED	

	LINK	 	BYTE	 	BINARY	 	DOUBLE	

In	addition	to	these,	there	are	several	more	property	types	that	function	as	containers.	These	form	lists,	sets	and	maps.	Using	container
property	types	requires	that	you	also	define	a	link	type	or	class.

	EMBEDDEDLIST	 	EMBEDDEDSET	 	EMBEDDEDMAP	

	LINKLIST	 	LINKSET	 	LINKMAP	

Link	Types

The	link	types	available	are	the	same	as	those	available	as	the	standard	property	types:

Create	Property

119



	BOOLEAN	 	INTEGER	 	SHORT	 	LONG	

	FLOAT	 	DOUBLE	 	DATE	 	STRING	

	BINARY	 	EMBEDDED	 	LINK	 	BYTE	

For	more	information,	see	SQL	Commands	and	Console	Commands.

Create	Property

120



Console	-		DECLARE	INTENT	
Declares	an	intent	for	the	current	database.	Intents	allow	you	to	tell	the	database	what	you	want	to	do.

Syntax

DECLARE	INTENT	<intent-name>

	<intent-name>		Defines	the	name	of	the	intent.	OrientDB	supports	three	intents:
	NULL		Removes	the	current	intent.
	MASSIVEINSERT	

	MASSIVEREAD	

Examples

Declare	an	intent	for	a	massive	insert:

orientdb>	DECLARE	INTENT	MASSIVEINSERT

After	the	insert,	clear	the	intent:

orientdb>	DECLARE	INTENT	NULL

For	more	information	on	other	commands,	see	Console	Commands.

Declare	Intent

121



Console	-	DELETE
Remove	one	or	more	records	from	the	database.	You	can	determine	which	records	get	deleted	using	the		WHERE		clause.

Syntax

DELETE	FROM	<target-name>	[LOCK	<lock-type>]	[RETURN	<return-type>]

		[WHERE	<condition>*]	[LIMIT	<MaxRecords>]	[TIMEOUT	<timeout-value>]

	<target-name>		Defines	the	target	from	which	you	want	to	delete	records.	Use	one	of	the	following	target	names:
	<class-name>		Determines	what	class	you	want	to	delete	from.
	CLUSTER:<cluster-name>		Determines	what	cluster	you	want	to	delete	from.
	INDEX:<index-name>		Determines	what	index	you	want	to	delete	from.

	LOCK	<lock-type>		Defines	how	the	record	locks	between	the	load	and	deletion.	It	takes	one	of	two	types:
	DEFAULT		Operation	uses	no	locks.	In	the	event	of	concurrent	deletions,	the	MVCC	throws	an	exception.
	RECORD		Locks	the	record	during	the	deletion.

	RETURN	<return-type>		Defines	what	the	Console	returns.	There	are	two	supported	return	types:
	COUNT		Returns	the	number	of	deleted	records.	This	is	the	default	return	type.
	BEFORE		Returns	the	records	before	the	deletion.

	WHERE	<condition>		Defines	the	condition	used	in	selecting	records	for	deletion.
	LIMIT		Defines	the	maximum	number	of	records	to	delete.
	TIMEOUT		Defines	the	time-limit	to	allow	the	operation	to	run	before	it	times	out.

NOTE:	When	dealing	with	vertices	and	edges,	do	not	use	the	standard	SQL		DELETE		command.	Doing	so	can	disrupt	graph
integrity.	Instead,	use	the		DELETE	VERTEX		or	the		DELETE	EDGE		commands.

Examples

Remove	all	records	from	the	class		Profile	,	where	the	surname	is	unknown,	ignoring	case:

orientdb>	DELETE	FROM	Profile	WHERE	surname.toLowerCase()	=	'unknown'

For	more	information	on	other	commands,	see	SQL	Commands	and	Console	Commands.

Delete

122



Console	-		DICTIONARY	GET	
Displays	the	value	of	the	requested	key,	loaded	from	the	database	dictionary.

Syntax

DICTIONARY	GET	<key>

	<key>		Defines	the	key	you	want	to	access.

Example

In	a	dictionary	of	U.S.	presidents,	display	the	entry	for	Barack	Obama:

orientdb>	DICTIONARY	GET	obama

-------------------------------------------------------------------------

Class:	Person	id:	5:4	v.1

-------------------------------------------------------------------------

				parent:	null

	children	:	[Person@5:5{parent:Person@5:4,children:null,name:Malia	Ann,

												surname:Obama,city:null},	Person@5:6{parent:Person@5:4,

												children:null,name:Natasha,surname:Obama,city:null}]

					name	:	Barack

		surname	:	Obama

					city	:	City@-6:2{name:Honolulu}

-------------------------------------------------------------------------

You	can	display	all	keys	stored	in	a	database	using	the		DICTIONARY	KEYS		command.	For	more	information	on	indexes,	see
Indexes.

For	more	information	on	other	commands,	see	Console	Commands.

Dictionary	Get

123



Console	-		DICTIONARY	KEYS	
Displays	all	the	keys	stored	in	the	database	dictionary.

Syntax

DICTIONARY	KEYS

Example

Display	all	the	keys	stored	in	the	database	dictionary:

orientdb>	DICTIONARY	KEYS

Found	4	keys:

#0:	key-148

#1:	key-147

#2:	key-146

#3:	key-145

To	load	the	records	associated	with	these	keys,	use	the		DICTIONARY	GET		command.	For	more	information	on	indexes,	see
Indexes.

For	more	information	on	other	commands,	see	Console	Commands.

Dictionary	Keys

124



Console	-		DICTIONARY	PUT	
Binds	a	record	to	a	key	in	the	dictionary	database,	making	it	accessible	to	the		DICTIONARY	GET		command.

Syntax

DICTIONARY	PUT	<key>	<record-id>

	<key>		Defines	the	key	you	want	to	bind.
	<record-id>		Defines	the	ID	for	the	record	you	want	to	bind	to	the	key.

Example

In	the	database	dictionary	of	U.S.	presidents,	bind	the	record	for	Barack	Obama	to	the	key		obama	:

orientdb>	DICTIONARY	PUT	obama	5:4

------------------------------------------------------------------------

	Class:	Person		id:	5:4		v.1

------------------------------------------------------------------------

				parent	:	null

		children	:	[Person@5:5{parent:Person@5:4,children:null,name:Malia	Ann,

													surname:Obama,city:null},	Person@5:6{parent:Person@5:4,

													children:null,name:Natasha,surname:Obama,city:null}]

						name	:	Barack

			surname	:	Obama

						city	:	City@-6:2{name:Honolulu}

------------------------------------------------------------------------

The	entry	obama=5:4	has	been	inserted	in	the	database	dictionary

To	see	all	the	keys	stored	in	the	database	dictionary,	use	the		DICTIONARY	KEYS		command.	For	more	information	on	dictionaries
and	indexes,	see	Indexes.

For	more	information	on	other	commands,	see	Console	Commands.

Dictionary	Put

125



Console	-		DICTIONARY	REMOVE	
Removes	the	association	from	the	database	dictionary.

Syntax

DICTIONARY	REMOVE	<key>

	<key>		Defines	the	key	that	you	want	to	remove.

Example

In	a	database	dictionary	of	U.S.	presidents,	remove	the	key	for	Barack	Obama:

orientdb>	DICTIONARY	REMOVE	obama

Entry	removed	from	the	dictionary.	Last	value	of	entry	was:

------------------------------------------------------------------------

Class:	Person			id:	5:4			v.1

------------------------------------------------------------------------

			parent	:	null

	children	:	[Person@5:5{parent:Person@5:4,children:null,name:Malia	Ann,

												surname:Obama,city:null},	Person@5:6{parent:Person@5:4,

												children:null,name:Natasha,surname:Obama,city:null}]

					name	:	Barack

		surname	:	Obama

					city	:	City@-6:2{name:Honolulu}

------------------------------------------------------------------------

You	can	display	information	for	all	keys	stored	in	the	database	dictionary	using	the		DICTIONARY	KEY		command.	For	more
information	on	dictionaries	and	indexes,	see	Indexes.

For	more	information	on	other	commands,	see	Console	Commands.

Dictionary	Remove

126



Console	-	DISCONNECT
Closes	the	currently	opened	database.

Syntax

DISCONNECT

Example

Disconnect	from	the	current	database:

orientdb>	DISCONNECT

Disconnecting	from	the	database	[../databases/petshop/petshop]...OK

To	connect	to	a	database,	see		CONNECT	.	For	more	information	on	other	commands,	see	Console	Commands.

Disconnect

127



Console	-	DISPLAYS	RECORD
Displays	details	on	the	given	record	from	the	last	returned	result-set.

Syntax

DISPLAY	RECORD	<record-number>

	<record-number>		Defines	the	relative	position	of	the	record	in	the	last	result-set.

Example

Query	the	database	on	the	class		Person		to	generate	a	result-set:

orientdb>	SELECT	FROM	Person

---+-----+--------+----------+-----------+-----------+------

	#	|	RID	|	PARENT	|	CHILDREN	|	NAME						|	SURNAME			|	City

---+-----+--------+----------+-----------+-----------+------

	0	|	5:0	|	null			|	null					|	Giuseppe		|	Garibaldi	|	-6:0

	1	|	5:1	|	5:0				|	null					|	Napoleon		|	Bonaparte	|	-6:0

	2	|	5:2	|	5:3				|	null					|	Nicholas		|	Churchill	|	-6:1

	3	|	5:3	|	5:2				|	null					|	Winston			|	Churchill	|	-6:1

	4	|	5:4	|	null			|	[2]						|	Barack				|	Obama					|	-6:2

	5	|	5:5	|	5:4				|	null					|	Malia	Ann	|	Obama					|	null

	6	|	5:6	|	5:4				|	null					|	Natasha			|	Obama					|	null

---+-----+--------+----------+-----------+-----------+------

7	item(s)	found.	Query	executed	in	0.038	sec(s).

With	the	result-set	ready,	display	record	number	four	in	the	result-set,	(for	Malia	Ann	Obama):

orientdb>	DISPLAY	RECORD	5

------------------------------------------------------------------------

Class:	Person			id:	5:5			v.0

------------------------------------------------------------------------

		parent	:	Person@5:4{parent:null,children:[Person@5:5,	Person@5:6],

											name:Barack,surname:Obama,city:City@-6:2}

	children	:	null

					name	:	Malia	Ann

		surname	:	Obama

						city	:	null

------------------------------------------------------------------------

For	more	information	on	other	commands,	see	Console	Commands.

Display	Record

128



Console	-		DISPLAYS	RAW	RECORD	
Displays	details	on	the	given	record	from	the	last	returned	result-set	in	a	binary	format.

Syntax

DISPLAY	RAW	RECORD	<record-number>

	<record-number>		Defines	the	relative	position	of	the	record	in	the	last	result-set.

Example

Query	the	database	on	the	class		V		to	generate	a	result-set:

orientdb	{db=GratefulDeadConcerts}>	SELECT	song_type,	name,	performances	FROM	V	LIMIT	6

-----+-------+--------+----------+-------------------------+--------------

	#			|	@RID		|	@CLASS	|	song_type	|	name																			|	performances

-----+-------+--------+----------+-------------------------+--------------

	0			|	#9:1		|	V						|	cover					|	HEY	BO	DIDDLEY									|	5																	

	1			|	#9:2		|	V						|	cover					|	IM	A	MAN															|	1																	

	2			|	#9:3		|	V						|	cover					|	NOT	FADE	AWAY										|	531															

	3			|	#9:4		|	V						|	original		|	BERTHA																	|	394															

	4			|	#9:5		|	V						|	cover					|	GOING	DOWN	THE	ROAD...	|	293															

	5			|	#9:6		|	V						|	cover					|	MONA																			|	1																

	6			|	#9:7		|	V						|	null						|	Bo_Diddley													|	null							

-----+-------+--------+-----------+------------------------+-------------

LIMIT	EXCEEDED:	resultset	contains	more	items	not	displayed	(limit=6)

6	item(s)	found.	Query	executed	in	0.136	sec(s).

Display	raw	record	on	the	song	"Hey	Bo	Diddley"	from	the	result-set:

orientdb	{db=GratefulDeadConcerts}>	DISPLAY	RAW	RECORD	0

Raw	record	content.	The	size	is	292	bytes,	while	settings	force	to	print	first	150	

bytes:

Vsong_typenametypeperformancesout_followed_byout_written_byout_sung_byin_followed_byco

verHEY	BO	D

For	more	information	on	other	commands	available,	see	Console	Commands.

Display	Raw	Record

129



Console	-		DROP	CLUSTER	
Removes	a	cluster	from	the	database	completely,	deleting	it	with	all	records	and	caches	in	the	cluster.

Syntax

DROP	CLUSTER	<cluster-name>

	<cluster-name>		Defines	the	name	of	the	cluster	you	want	to	drop.

NOTE:	When	you	drop	a	cluster,	the	cluster	and	all	records	and	caches	in	the	cluster	are	gone.	Unless	you	have	made	backups,
there	is	no	way	to	restore	the	cluster	after	you	drop	it.

Examples

Drop	a	cluster		person		from	the	current,	local	database:

orientdb>	DROP	CLUSTER	person

This	removes	both	the	cluster		Person		and	all	records	of	the		Person		class	in	that	cluster.

You	can	create	a	new	cluster	using	the		CREATE	CLUSTER		command.

For	information	on	other	commands,	see	SQL	and	Console	commands.

Drop	Cluster

130



Console	-		DROP	DATABASE	
Removes	a	database	completely.	If	the	database	is	open	and	a	database	name	not	given,	it	removes	the	current	database.

Syntax

DROP	DATABASE	[<database-name>	<server-username>	<server-user-password>]

	<database-name		Defines	the	database	you	want	to	drop.	By	default	it	uses	the	current	database,	if	it's	open.
	<server-username>		Defines	the	server	user.	This	user	must	have	the	privileges	to	drop	the	database.
	<server-user-password>		Defines	the	password	for	the	server	user.

NOTE:	When	you	drop	a	database,	it	deletes	the	database	and	all	records,	caches	and	schema	information	it	contains.	Unless	you
have	made	backups,	there	is	no	way	to	restore	the	database	after	you	drop	it.

Examples

Remove	the	current	local	database:

orientdb>	DROP	DATABASE

Remove	the	database		demo		at	localhost:

orientdb>	DROP	DATABASE	REMOTE:localhost/demo	root	root_password

You	can	create	a	new	database	using	the		CREATE	DATABASE		command.	To	make	changes	to	an	existing	database,	use	the		ALTER
DATABASE		command.

For	more	information	on	other	commands,	see	SQL	and	Console	commands.

Drop	Database

131



Console	-		DROP	SERVER	USER	
Removes	a	user	from	the	server.	In	order	to	do	so,	the	current	system	user	running	the	Console,	must	have	permissions	to	write	to	the
	$ORIENTDB_HOME/config/orientdb-server-config.xmL		configuration	file.

Syntax

DROP	SERVER	USER	<user-name>

	<user-name>		Defines	the	user	you	want	to	drop.

NOTE:	For	more	information	on	server	users,	see	OrientDB	Server	Security.

This	feature	was	introduced	in	version	2.2.

Example

Remove	the	user		editor		from	the	Server:

orientdb>	DROP	SERVER	USER	editor

Server	user	'editor'	dropped	correctly

To	view	the	current	server	users,	see	the		LIST	SERVER	USERS		command.	To	create	or	update	a	server	user,	see	the		SET	SERVER
USER		command.

For	more	information	on	other	commands,	see	Console	Commands.

Drop	Server	User

132



Console	-		EXPORT	
Exports	the	current	database	to	a	file.	OrientDB	uses	a	JSON-based	Export	Format.	By	default,	it	compresses	the	file	using	the	GZIP
algorithm.

With	the		IMPORT		command,	this	allows	you	to	migrate	the	database	between	different	versions	of	OrientDB	without	losing	data.

If	you	receive	an	error	about	the	database	version,	export	the	database	using	the	same	version	of	OrientDB	that	has	generated	the
database.

Bear	in	mind,	exporting	a	database	browses	it,	rather	than	locking	it.	While	this	does	mean	that	concurrent	operations	can	execute	during
the	export,	it	also	means	that	you	cannot	create	an	exact	replica	of	the	database	at	the	point	when	the	command	is	issued.	In	the	event
that	you	need	to	create	a	snapshot,	use	the		BACKUP		command.

You	can	restore	a	database	from	an	export	using	the		IMPORT	.

NOTE:	While	the	export	format	is	JSON,	there	are	some	constraints	in	the	field	order.	Editing	this	file	or	adjusting	its	indentation
may	cause	imports	to	fail.

Syntax

By	default,	this	command	exports	the	full	database.	Use	its	options	to	disable	the	parts	you	don't	need	to	export.

EXPORT	DATABASE	<output-file>

						[-excludeAll]

						[-includeClass=<class-name>*]

						[-excludeClass=<class-name>*]

						[-includeCluster=<cluster-name>*]

						[-excludeCluster=<cluster-name>*]

						[-includeInfo=<true|false>]

						[-includeClusterDefinitions=<true|false>]

						[-includeSchemsa=<true|false>]

						[-includeSecurity=<true|false>]

						[-includeRecords=<true|false>]

						[-includeIndexDefinitions=<true|false>]

						[-includeManualIndexes=<true|false>]

						[-compressionLevel=<0-9>]

						[-compressionBuffer=<bufferSize>]

	<output-file>		Defines	the	path	to	the	output	file.
	-excludeAll		Sets	the	export	to	exclude	everything	not	otherwise	included	through	command	options
	-includeClass		Export	includes	certain	classes,	specifically	those	defined	by	a	space-separated	list.	In	case	you	specify	multiple
class	names,	you	have	to	wrap	the	list	between	quotes,	eg.		-includeClass="Foo	Bar	Baz"	
	-excludeClass		Export	excludes	certain	classes,	specifically	those	defined	by	a	space-separated	list.
	-includeCluster		Export	includes	certain	clusters,	specifically	those	defined	by	a	space-separated	list.
	-excludeCluster		Export	excludes	certain	clusters,	specifically	those	defined	by	a	space-separated	list.
	-includeInfo		Defines	whether	the	export	includes	database	information.
	-includeClusterDefinitions		Defines	whether	the	export	includes	cluster	definitions.
	-includeSchema		Defines	whether	the	export	includes	the	database	schema.
	-includeSecurity		Defines	whether	the	export	includes	database	security	parameters.
	-includeRecords		Defines	whether	the	export	includes	record	contents.
	-includeIndexDefinitions		Defines	whether	the	export	includes	the	database	index	definitions.
	-includeManualIndexes		Defines	whether	the	export	includes	manual	index	contents.
	-compressionLevel		Defines	the	compression	level	to	use	on	the	export,	in	a	range	between		0		(no	compression)	and		9	
(maximum	compression).	The	default	is		1	.	(Feature	introduced	in	version	1.7.6.)
	-compressionBuffer		Defines	the	compression	buffer	size	in	bytes	to	use	in	compression.	The	default	is	16kb.	(Feature	introduced
in	version	1.7.6.)

Examples

Export	the	current	database,	including	everything:

Export	Database

133



orientdb>	EXPORT	DATABASE	C:\temp\petshop.export

Exporting	current	database	to:	C:\temp\petshop.export...

Exporting	database	info...OK

Exporting	dictionary...OK

Exporting	schema...OK

Exporting	clusters...

-	Exporting	cluster	'metadata'	(records=11)	->	...........OK

-	Exporting	cluster	'index'	(records=0)	->	OK

-	Exporting	cluster	'default'	(records=779)	->	OK

-	Exporting	cluster	'csv'	(records=1000)	->	OK

-	Exporting	cluster	'binary'	(records=1001)	->	OK

-	Exporting	cluster	'person'	(records=7)	->	OK

-	Exporting	cluster	'animal'	(records=5)	->	OK

-	Exporting	cluster	'animalrace'	(records=0)	->	OK

-	Exporting	cluster	'animaltype'	(records=1)	->	OK

-	Exporting	cluster	'orderitem'	(records=0)	->	OK

-	Exporting	cluster	'order'	(records=0)	->	OK

-	Exporting	cluster	'city'	(records=3)	->	OK

Export	of	database	completed.

Export	the	current	database,	including	only	its	functions:

orientdb>	EXPORT	DATABASE	functions.gz	-includeClass=OFunction	-includeInfo=FALSE	

										-includeClusterDefinitions=FALSE	-includeSchema=FALSE	

										-includeIndexDefinitions=FALSE	-includeManualIndexes=FALSE

Alternatively,	you	can	simplify	the	above	by	excluding	all,	then	including	only	those	features	that	you	need.	For	instance,	export
the	current	database,	including	only	the	schema:

orientdb>	EXPORT	DATABASE	schema.gz	-excludeALL	-includeSchema=TRUE

Export	API

In	addition	to	the	Console,	you	can	also	trigger	exports	through	Java	and	any	other	language	that	runs	on	the	JVM,	by	using	the
ODatabaseExport	class.

For	example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");

db.open("admin",	"admin");

try{

		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{

				@Override

				public	void	onMessage(String	iText)	{

						System.out.print(iText);

				}

		};

		ODatabaseExport	export	=	new	ODatabaseExport(db,	"/temp/export",	listener);

		export.exportDatabase();

		export.close();

}	finally	{

		db.close();

}

Export	Database

134

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java


For	more	information	on	backups	and	restores,	imports	and	exports,	see	the	following	commands:

IMPORT	DATABASE
BACKUP	DATABASE
RESTORE	DATABASE

as	well	as	the	following	pages:

Export	File	Format
	ODatabaseExport		Java	Class

For	more	information	on	other	commands,	see	Console	Commands.

Export	Database

135

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java


Console	-		EXPORT	RECORD	
Exports	the	current	record,	using	the	requested	format.	In	the	event	that	you	give	a	format	that	OrientDB	does	not	support,	it	provides
a	list	of	supported	formats.

Syntax

EXPORT	RECORD	<format>

	<format>		Defines	the	export	format	you	want	to	use.

Examples

Use		SELECT		to	create	a	record	for	export:

orientdb>	SELECT	name,	surname,	parent,	children,	city	FROM	Person	WHERE	

										name='Barack'	AND	surname='Obama'

---+-----+--------+---------+--------+------------+------

	#	|	RID	|	name			|	surname	|	parent	|	children			|	city

---+-----+--------+---------+--------+------------+------

	0	|	5:4	|	Barack	|	Obama			|	null			|	[5:5,	5:6]	|	-6:2

---+-----+--------+---------+--------+------------+------

Export	JSON	data	from	this	record:

orientdb>	EXPORT	RECORD	JSON

{

		'name':	'Barack',

		'surname':	'Obama',

		'parent':	null,

		'children':	[5:5,	5:6],

		'city':	-6:2

}

Use	a	bad	format	value	to	determine	what	export	formats	are	available	on	your	database:

	

orientdb>	EXPORT	RECORD	GIBBERISH

ERROR:	Format	'GIBBERISH'	was	not	found.

Supported	formats	are:

-	json

-	ORecordDocument2csv

For	more	information	on	other	commands,	see	Console	Commands.

Export	Record

136



Console	-		FREEZE	DATABASE	
Flushes	all	cached	content	to	disk	and	restricts	permitted	operations	to	read	commands.	With	the	exception	of	reads,	none	of	the
commands	made	on	a	frozen	database	execute.	It	remains	in	this	state	until	you	run	the		RELEASE		command.

Executing	this	command	requires	server	administration	rights.	You	can	only	execute	it	on	remote	databases.	If	you	would	like	to	freeze	or
release	a	local	database,	use	the		ODatabase.freeze()		and		ODatabase.release()		methods	directly	through	the	OrientDB	API.

You	may	find	this	command	useful	in	the	event	that	you	would	like	to	perform	backups	on	a	live	database.	To	do	so,	freeze	the
database,	perform	a	file	system	snapshot,	then	release	the	database.	You	can	now	copy	the	snapshot	anywhere	you	want.

This	works	best	when	the	backup	doesn't	take	very	long	to	run.

Syntax

FREEZE	DATABASE

Example

Freezes	the	current	database:

orientdb>	FREEZE	DATABASE

To	unfreeze	a	database,	use	the		RELEASE	DATABASE		command.

For	more	information	on	other	commands,	see	SQL	and	Console	commands.

Freeze	DB

137



Console	-		GET	
Returns	the	value	of	the	requested	property.

Syntax

GET	<property-name>

	<property-name>		Defines	the	name	of	the	property.

Example

Find	the	default	limit	on	your	database:

orientdb>	GET	LIMIT

limit	=	20

To	display	all	available	properties	configured	on	your	database,	use	the		PROPERTIES		command.

For	more	information	on	other	commands,	see	Console	Commands.

Get

138



Console	-		GREMLIN	
Executes	commands	in	the	Gremlin	language	from	the	Console.

Gremlin	is	a	graph	traversal	language.	OrientDB	supports	it	from	the	Console,	API	and	through	a	Gremlin	shell	launched	from
	$ORIENTDB_HOME/bin/gremlin.sh	.

Syntax

GREMLIN	<command>

	<command>		Defines	the	commands	you	want	to	know.

NOTE:	OrientDB	parses	Gremlin	commands	as	multi-line	input.	It	does	not	execute	the	command	until	you	type		end	.	Bear	in
mind,	the		end		here	is	case-sensitive.

Examples

Create	a	vertex	using	Gremlin:

orientdb>	GREMLIN	v1	=	g.addVertex();

[Started	multi-line	command.		Type	just	'end'	to	finish	and	execute.]

orientdb>	end

v[#9:0]

Script	executed	in	0,100000	sec(s).

For	more	information	on	the	Gremlin	language,	see	Gremlin.	For	more	information	on	other	commands,	see	Console	Commands.

GREMLIN

139



Console	-		IMPORT	
Imports	an	exported	database	into	the	current	one	open.

The	input	file	must	use	the	JSON	Export	Format,	as	generated	by	the		EXPORT		command.	By	default,	this	file	is	compressed	using	the
GZIP	algorithm.

With		EXPORT	,	this	command	allows	you	to	migrate	between	releases	without	losing	data,	by	exporting	data	from	the	old	version	and
importing	it	into	the	new	version.

Syntax

IMPORT	DATABASE	<input-file>	[-preserveClusterIDs	=	<true|false>]

																													[-merge	=	<true|false>]

																													[-migrateLinks	=	<true|false>]

																													[-rebuildIndexes	=	<true|false>]

	<inputy-file>		Defines	the	path	to	the	file	you	want	to	import.
	-preserveClusterIDs		Defines	whether	you	want	to	preserve	cluster	ID's	during	the	import.	When	turned	off,	the	import	creates
temporary	cluster	ID's,	which	can	sometimes	fail.	This	option	is	only	valid	with	PLocal	storage.
	-merge		Defines	whether	you	want	to	merge	the	import	with	the	data	already	in	the	current	database.	When	turned	off,	the	default,
the	import	overwrites	current	data,	with	the	exception	of	security	classes,	(	ORole	,		OUser	,		OIdentity	),	which	it	always
preserves.	This	feature	was	introduced	in	version	1.6.1.
	-migrateLinks		Defines	whether	you	want	to	migrate	links	after	the	import.	When	enabled,	this	updates	all	references	from	the	old
links	to	the	new	Record	ID's.	By	default,	it	is	enabled.	Advisable	that	you	only	turn	it	off	when	merging	and	you're	certain	no	other
existent	records	link	to	those	you're	importing.	This	feature	was	introduced	in	version	1.6.1.
	-rebuildIndexes		Defines	whether	you	want	to	rebuild	indexes	after	the	import.	By	default,	it	does.	You	can	set	it	to	false	to
speed	up	the	import,	but	do	so	only	when	you're	certain	the	import	doesn't	affect	indexes.	This	feature	was	introduced	in	version
1.6.1.

Example

Import	the	database		petshop.export	:

orientdb>	IMPORT	DATABASE	C:/temp/petshop.export	-preserveClusterIDs=true

Importing	records...

-	Imported	records	into	the	cluster	'internal':	5	records

-	Imported	records	into	the	cluster	'index':	4	records

-	Imported	records	into	the	cluster	'default':	1022	records

-	Imported	records	into	the	cluster	'orole':	3	records

-	Imported	records	into	the	cluster	'ouser':	3	records

-	Imported	records	into	the	cluster	'csv':	100	records

-	Imported	records	into	the	cluster	'binary':	101	records

-	Imported	records	into	the	cluster	'account':	1005	records

-	Imported	records	into	the	cluster	'company':	9	records

-	Imported	records	into	the	cluster	'profile':	9	records

-	Imported	records	into	the	cluster	'whiz':	1000	records

-	Imported	records	into	the	cluster	'address':	164	records

-	Imported	records	into	the	cluster	'city':	55	records

-	Imported	records	into	the	cluster	'country':	55	records

-	Imported	records	into	the	cluster	'animalrace':	3	records

-	Imported	records	into	the	cluster	'ographvertex':	102	records

-	Imported	records	into	the	cluster	'ographedge':	101	records

-	Imported	records	into	the	cluster	'graphcar':	1	records

Import	Database

140



For	more	information	on	backups,	restores,	and	exports,	see:		BACKUP	,		RESTORE		and		EXPORT		commands,	and	the
	ODatabaseImport		Java	class.	For	the	JSON	format,	see	Export	File	Format.

For	more	information	on	other	commands,	see	Console	Commands.

Import	API

In	addition	to	the	Console,	you	can	also	manage	imports	through	the	Java	API,	and	with	any	language	that	runs	on	top	of	the	JVM,
using	the		ODatabaseImport		class.

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");

db.open("admin",	"admin");

try{

		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{

				@Override

				public	void	onMessage(String	iText)	{

						System.out.print(iText);

				}

		};

		ODatabaseImport	import	=	new	ODatabaseImport(db,	"/temp/export/export.json.gz",	listener);

		import.importDatabase();

		import.close();

}	finally	{

		db.close();

}

Troubleshooting

Validation	Errors

Occasionally,	you	may	encounter	validation	errors	during	imports,	usually	shown	as	an		OValidationException		exception.	Beginning
with	version	2.2,	you	can	disable	validation	at	the	database-level	using	the		ALTER	DATABASE		command,	to	allow	the	import	to	go
through.

1.	 Disable	validation	for	the	current	database:

orientdb>	ALTER	DATABASE	validation	false

2.	 Import	the	exported	database:

orientdb>	IMPORT	DATABASE	/path/to/my_data.export	-preserveClusterIDs=TRUE

3.	 Re-enable	validation:

orientdb>	ALTER	DATABASE	validation	true

Cluster	ID's

During	imports	you	may	occasionally	encounter	an	error	that	reads:		Imported	cluster	'XXX'	has	id=6	different	from	the	original:	5	.
Typically	occurs	in	databases	that	were	created	in	much	older	versions	of	OrientDB.	You	can	correct	it	using	the		DROP	CLASS		on	the
class		ORIDs	,	then	attempting	the	import	again.

1.	 Import	the	database:

Import	Database

141

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java
https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java


orientdb>	IMPORT	DATABASE	/path/to/old_data.export

Importing	records...

-	Creating	cluster	'company'...Error	on	database	import	happened	just	before	line

16,	column	52	com.orientechnologies.orient.core.exception.OConfigurationException:

Imported	cluster	'company	has	id=6	different	from	the	original:	5	at	

com.orientechnologies.orient.core.db.tool.ODatabaseImport.importClusters(

ODatabaseImport.java:500)	at	

com.orientechnologies.orient.core.db.tool.ODatabaseIMport.importDatabase(

ODatabaseImport.java:121)

2.	 Drop	the		ORIDs		class:

orientdb>	DROP	CLASS	ORIDs

3.	 Import	the	database:

	orientdb>	IMPORT	DATABASE	/path/to/old_data.export

	

The	database	now	imports	without	error.

Import	Database

142



Console	-		INDEXES	
Displays	all	indexes	in	the	current	database.

Syntax

INDEXES

Example

Display	indexes	in	the	current	database:

orientdb	{db=GratefulDeadConcerts}>	INDEXES

INDEXES

--------------+------------+-------+--------+---------

	NAME									|	TYPE							|	CLASS	|	FIELDS	|	RECORDS	

--------------+------------+-------+--------+---------

	dictionary			|	DICTIONARY	|							|								|							0	

	Group.Grp_Id	|	UNIQUE					|	Group	|	Grp_Id	|							1	

	ORole.name			|	UNIQUE					|	ORole	|	name			|							3	

	OUser.name			|	UNIQUE					|	OUser	|	name			|							4	

--------------+------------+----------------+---------

	TOTAL	=	4																																										8	

------------------------------------------------------

For	more	information	on	other	commands,	see	Console	Commands.

Indexes

143



Console	-		INFO	
Displays	all	information	on	the	current	database.

Syntax

INFO

Example

Display	information	on	database		petshop	:

orientdb	{db=petshop}>	INFO

Current	database:	../databases/petshop/petshop

CLUSTERS:

------------+------+----------+----------

	NAME							|		ID		|	TYPE					|	ELEMENTS	

------------+------+----------+----------

	metadata			|				0	|	Physical	|							11	

	index						|				1	|	Physical	|								0	

	default				|				2	|	Physical	|						779	

	csv								|				3	|	Physical	|					1000	

	binary					|				4	|	Physical	|					1001	

	person					|				5	|	Physical	|								7	

	animal					|				6	|	Physical	|								5	

	animalrace	|			-2	|	Logical		|								0	

	animaltype	|			-3	|	Logical		|								1	

	orderitem		|			-4	|	Logical		|								0	

	order						|			-5	|	Logical		|								0	

	city							|			-6	|	Logical		|								3	

------------+------+----------+----------

	TOTAL																														2807	

-----------------------------------------

CLASSES:

------------+----+------------+----------

	NAME							|	ID	|	CLUSTERS			|	ELEMENTS	

------------+----+------------+----------

	Person					|		0	|	person					|								7	

	Animal					|		1	|	animal					|								5	

	AnimalRace	|		2	|	AnimalRace	|								0	

	AnimalType	|		3	|	AnimalType	|								1	

	OrderItem		|		4	|	OrderItem		|								0	

	Order						|		5	|	Order						|								0	

	City							|		6	|	City							|								3	

------------+----+------------+----------

	TOTAL																																16	

-----------------------------------------	

For	more	information	on	other	commands,	see	Console	Commands.

Info

144



Console	-		INFO	CLASS	
Displays	all	information	on	givne	class.

Syntax

INFO	CLASS	<class-name>

	<class-name>		Defines	what	class	you	want	information	on.

Example

Display	information	on	class		Profile	

orientdb>	INFO	CLASS	Profile

Default	cluster......:	profile	(id=10)

Supported	cluster	ids:	[10]

Properties:

--------+----+----------+-----------+---------+-----------+----------+-----+----

	NAME			|	ID	|	TYPE					|	LINK	TYPE	|	INDEX			|	MANDATORY	|	NOT	NULL	|	MIN	|	MAX

--------+----+----------+-----------+---------+-----------+----------+-----+----

	nick			|		3	|	STRING			|	null						|									|	false					|	false				|	3			|	30	

	name			|		2	|	STRING			|	null						|NOTUNIQUE|	false					|	false				|	3			|	30	

	surname|		1	|	STRING			|	null						|									|	false					|	false				|	3			|	30	

	...				|				|	...						|	...							|	...					|	...							|	...						|...		|	...

	photo		|		0	|	TRANSIENT|	null						|									|	false					|	false				|					|				

--------+----+----------+-----------+---------+-----------+----------+-----+----

For	more	information	on	other	commands,	see	Console	Commands.

Info	Class

145



Console	-		INFO	PROPERTY	
Displays	all	information	on	the	given	property.

Syntax

INFO	PROPERTY	<class-name>.<property-name>

	<class-name>		Defines	the	class	to	which	the	property	belongs.
	<property-name>		Defines	the	property	you	want	information	on.

Example

Display	information	on	the	property		name		in	the	class		OUser	:

orientdb>	INFO	PROPERTY	OUser.name

PROPERTY	'OUser.name'

Type.................:	STRING

Mandatory............:	true

Not	null.............:	true

Read	only............:	false

Default	value........:	null

Minimum	value........:	null

Maximum	value........:	null

REGEXP...............:	null

Collate..............:	{OCaseInsensitiveCollate	:	name	=	ci}

Linked	class.........:	null

Linked	type..........:	null

INDEXES	(1	altogether)

--------------------+------------

	NAME															|	PROPERTIES	

--------------------+------------

	OUser.name									|	name							

--------------------+------------

For	more	information	on	other	commands,	see	Console	Commands.

Info	Property

146



Console	-		INSERT	
Inserts	a	new	record	into	the	current	database.	Remember,	OrientDB	can	work	in	schema-less	mode,	meaning	that	you	can	create	any
field	on	the	fly.

Syntax

INSERT	INTO	<<class-name>|CLUSTER:<cluster-name>>	(<field-names>)	VALUES	(	<field-values>	)

	<class-name>		Defines	the	class	you	want	to	create	the	record	in.
	CLUSTER:<cluster-name>		Defines	the	cluster	you	want	to	create	the	record	in.
	<field-names>		Defines	the	fields	you	want	to	add	the	records	to,	in	a	comma-separated	list.
	<field-values>		Defines	the	values	you	want	to	insert,	in	a	comma-separated	list.

Examples

Insert	a	new	record	into	the	class		Profile	,	using	the	name		Jay		and	surname		Miner	:

orientdb>	INSERT	INTO	Profile	(name,	surname)	VALUES	('Jay',	Miner')

Inserted	record	in	0,060000	sec(s).

Insert	a	new	record	into	the	class		Employee	,	while	defining	a	relationship:

orientdb>	INSERT	INTO	Employee	(name,	boss)	VALUES	('Jack',	11:99)

Insert	a	new	record,	adding	a	collection	of	relationships:

orientdb>	INSERT	INTO	Profile	(name,	friends)	VALUES	('Luca',	[10:3,	10:4])

For	more	information	on	other	commands,	see	SQL	and	Console	commands.

Insert

147



Console	-		LIST	DATABASES	
Displays	all	databases	hosted	on	the	current	server.	Note	that	this	command	requires	you	connect	to	the	OrientDB	Server.

Syntax

LIST	DATABASES

Example

Connect	to	the	server:

orientdb>	CONNECT	REMOTE:localhost	admin	admin_password

List	the	databases	hosted	on	the	server:

orientdb	{server=remote:localhost/}>	LIST	DATABASES

Found	4	databases:

*	ESA	(plocal)

*	Napster	(plocal)

*	Homeland	(plocal)

*	GratefulDeadConcerts	(plocal)

For	more	information	on	other	commands,	see	Console	Commands.

List	Databases

148



Console	-		LIST	CONNECTIONS	
Displays	all	active	connections	to	the	OrientDB	Server.	Command	introduced	in	version	2.2.

Syntax

LIST	CONNECTIONS

Example

List	the	current	connections	to	the	OrientDB	Server:

orientdb	{server=remote:localhost/}>	LIST	CONNECTIONS

---+----+--------------+------+-------------------+--------+-----+--------+--------

	#	|	ID	|REMOTE_ADDRESS|PROTOC|LAST_OPERATION_ON		|DATABASE|USER	|COMMAND	|TOT_REQS

---+----+--------------+------+-------------------+--------+-----+--------+--------

	0	|	17	|/127.0.0.1				|binary|2015-10-12	19:22:34|-							|-				|info				|	1							

	1	|	16	|/127.0.0.1				|binary|1970-01-01	01:00:00|-							|-				|-							|	0							

	5	|	1		|/127.0.0.1				|http		|1970-01-01	00:59:59|pokec			|admin|Listen		|	32						

---+----+--------------+------+-------------------+--------+-----+--------+--------

For	more	information	on	other	commands,	see	Console	Commands.

List	Connections

149



Console	-		LOAD	RECORD	
Loads	a	record	the	given	Record	ID	from	the	current	database.

Syntax

LOAD	RECORD	<record-id>

	<record-id		Defines	the	Record	ID	of	the	record	you	want	to	load.

In	the	event	that	you	don't	have	a	Record	ID,	execute	a	query	to	find	the	one	that	you	want.

Example

Load	the	record	for		#5:5	:

orientdb>	LOAD	RECORD	#5:5

--------------------------------------------------------------------------------

	Class:	Person			id:	#5:5			v.0

--------------------------------------------------------------------------------

			parent	:	Person@5:4{parent:null,children:[Person@5:5,	Person@5:6],name:Barack,

												surname:Obama,city:City@-6:2}

	children	:	null

					name	:	Malia	Ann

		surname	:	Obama

					city	:	null

--------------------------------------------------------------------------------

For	more	information	on	other	commands,	see	Console	Commands.

Load	Record

150



Console	-		PROFILER	
Controls	the	Profiler.

Syntax

PROFILER	ON|OFF|DUMP|RESET

	ON		Turn	on	the	Profiler	and	begin	recording.
	OFF		Turn	off	the	Profiler	and	stop	recording.
	DUMP		Dump	the	Profiler	data.
	RESET		Reset	the	Profiler	data.

Example

Turn	the	Profiler	on:

orientdb>	PROFILER	ON

Profiler	is	ON	now,	use	'profiler	off'	to	turn	off.

Dump	Profiler	data:

orientdb>	PROFILER	DUMP

For	more	information	on	other	commands,	see	Console	Commands.

Profiler

151



Console	-		PROPERTIES	
Displays	all	configured	properties.

Syntax

PROPERTIES

Example

List	configured	properties:

orientdb>	PROPERTIES

PROPERTIES:

------------------------+-----------

	NAME																			|	VALUE

------------------------+-----------

	limit																		|	20	

	backupBufferSize							|	1048576

	backupCompressionLevel	|	9						

	collectionMaxItems					|	10					

	verbose																|	2						

	width																		|	150				

	maxBinaryDisplay							|	150				

	debug																		|	false		

	ignoreErrors											|	false		

------------------------+-----------

To	change	a	property	value,	use	the		SET		command.

For	more	information	on	other	commands,	see	Console	Commands.

Properties

152



Console	-		RELEASE	DATABASE	
Releases	database	from	a	frozen	state,	from	where	it	only	allows	read	operations	back	to	normal	mode.	Execution	requires	server
administration	rights.

You	may	find	this	command	useful	in	the	event	that	you	want	to	perform	live	database	backups.	Run	the		FREEZE	DATABASE		command	to
take	a	snapshot,	you	can	then	copy	the	snapshot	anywhere	you	want.	Use	such	approach	when	you	want	to	take	short-term	backups.

Syntax

RELEASE	DATABASE

Example

Release	the	current	database	from	a	freeze:

orientdb>	RELEASE	DATABASE

To	freeze	a	database,	see	the		FREEZE	DATABASE		command.

For	more	information	on	other	commands,	see	Console	and	SQL	commands.

Release	DB

153



Console	-		RELOAD	RECORD	
Reloads	a	record	from	the	current	database	by	its	Record	ID,	ignoring	the	cache.

You	may	find	this	command	useful	in	cases	where	external	applications	change	the	record	and	you	need	to	see	the	latest	update.

Syntax

RELOAD	RECORD	<record-id>

	<record-id>		Defines	the	unique	Record	ID	for	the	record	you	want	to	reload.	If	you	don't	have	the	Record	ID,	execute	a	query
first.

Examples

Reload	record	with	the	ID	of		5:5	:

orientdb>	RELOAD	RECORD	5:5

------------------------------------------------------------------------

Class:	Person			id:	5:5			v.0

------------------------------------------------------------------------

			parent	:	Person@5:4{parent:null,children:[Person@5:5,	Person@5:6],

												name:Barack,surname:Obama,city:City@-6:2}

	children	:	null

					name	:	Malia	Ann

		surname	:	Obama

					city	:	null

------------------------------------------------------------------------

For	more	information	on	other	commands,	see	Console	Commands.

Reload	Record

154



Console	-		RESTORE	DATABASE	
Restores	a	database	from	a	backup.	It	must	be	done	against	a	new	database.	It	does	not	support	restores	that	merge	with	an	existing
database.	If	you	need	to	backup	and	restore	to	an	existing	database,	use	the		EXPORT	DATABASE		and		IMPORT	DATABASE		commands.

OrientDB	Enterprise	Edition	version	2.2	and	major,	support	incremental	backup.

To	create	a	backup	file	to	restore	from,	use	the		BACKUP	DATABASE		command.

Syntax

RESTORE	DATABASE	<backup-file>|<incremental-backup-directory>

	<backup-file>		Defines	the	database	file	you	want	to	restore.
	<incremental-backup-directory>		Defines	the	database	directory	you	want	to	restore	from	an	incremental	backup.	Available	only
in	OrientDB	Enterprise	Edition	version	2.2	and	major.

Example	of	full	restore

Create	a	new	database	to	receive	the	restore:

orientdb>	CREATE	DATABASE	PLOCAL:/tmp/mydb

Restore	the	database	from	the		mydb.zip		backup	file:

orientdb	{db=/tmp/mydb}>	RESTORE	DATABASE	/backups/mydb.zip

Example	of	incremental	restore

This	is	available	only	in	OrientDB	Enterprise	Edition	version	2.2	and	major.

Open	a	database	to	receive	the	restore:

orientdb>	CONNECT	PLOCAL:/tmp/mydb

Restore	the	database	from	the		/backup		backup	directory:

orientdb	{db=/tmp/mydb}>	RESTORE	DATABASE	/backup

For	more	information,	see	the		BACKUP	DATABASE	,		EXPORT	DATABASE	,		IMPORT	DATABASE		commands.	For	more	information	on
other	commands,	see	Console	Commands.

Restore	API

In	addition	to	the	console	commands,	you	can	also	execute	restores	through	the	Java	API	or	with	any	language	that	can	run	on	top	of	the
JVM	using	the		restore()		method	against	the	database	instance.

db.restore(in,	options,	callable,	listener);

	in		Defines	the		InputStream		used	to	read	the	backup	content.	Uses	a		FileInputStream		to	read	the	backup	content	from	disk.
	options		Defines	backup	options,	such	as		Map<String,	Object>		object.
	callable		Defines	the	callback	to	execute	when	the	database	is	locked.
	listener		Listener	called	for	backup	messages.
	compressionLevel		Defines	the	Zip	Compression	level,	between		0		for	no	compression	and		9		for	maximum	compression.	The
greater	the	compression	level,	the	smaller	the	final	backup	content	and	the	greater	the	CPU	and	time	it	takes	to	execute.

Restore

155



	bufferSize		Buffer	size	in	bytes,	the	greater	the	buffer	the	more	efficient	the	compression.

Example

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");

db.open("admin",	"admin");

try{

		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{

				@Override

				public	void	onMessage(String	iText)	{

						System.out.print(iText);

				}

		};

		InputStream	out	=	new	FileInputStream("/temp/mydb.zip");

		db.restore(in,null,null,listener);

}	finally	{

			db.close();

}

Restore

156



Console	-		ROLLBACK	
Aborts	a	transaction,	rolling	the	database	back	to	its	save	point.

Syntax

BEGIN

For	more	information	on	transactions,	see	Transactions.	To	initiate	a	transaction,	use	the		BEGIN		command.	To	save	changes,	see
	COMMIT		command.

Example

Initiate	a	new	transaction:

orientdb>	BEGIN

Transaction	1	is	running

Attempt	to	start	a	new	transaction,	while	another	is	open:

orientdb>	BEGIN

Error:	an	active	transaction	is	currently	open	(id=1).	Commit	or	rollback	before	

starting	a	new	one.

Make	changes	to	the	database:

orientdb>	INSERT	INTO	Account	(name)	VALUES	('tx	test')

Inserted	record	'Account#9:-2{name:tx	test}	v0'	in	0,004000	sec(s).

View	changes	in	database:

orientdb>	SELECT	FROM	Account	WHERE	name	LIKE	'tx%'

---+-------+--------------------

	#	|	RID			|	name

---+-------+--------------------

	0	|	#9:-2	|	tx	test

---+-------+--------------------

1	item(s)	found.	Query	executed	in	0.076	sec(s).

Abort	the	transaction:

orientdb>	ROLLBACK

Transaction	1	has	been	rollbacked	in	4ms

View	rolled	back	database:

Rollback

157



orientdb>	SELECT	FROM	Account	WHERE	name	LIKE	'tx%'

0	item(s)	found.	Query	executed	in	0.037	sec(s).

For	more	information	on	other	commands,	see	Console	Commands.

Rollback

158



Console	-		SET	
Changes	the	value	of	a	property.

Syntax

SET	<property-name>	<property-value>

	<property-name>		Defines	the	name	of	the	property
	<property-value>		Defines	the	value	you	want	to	change	the	property	to.

Example

Change	the		LIMIT		property	to	one	hundred:

orientdb>	SET	LIMIT	100

Previous	value	was:	20

limit	=	100

To	display	all	properties	use	the		PROPERTIES		command.	To	display	the	value	of	a	particular	property,	use	the		GET		command.

For	more	information	on	other	commands,	see	Console	Commands.

Set

159



Console	-		SET	SERVER	USER	
Creates	a	server	user.	If	the	server	user	already	exists,	it	updates	the	password	and	permissions.

In	order	to	create	or	modify	the	user,	the	current	system	user	must	have	write	permissions	on	the		$ORIENTDB_HOME/config/orientdb-
server-config.xml		configuration	file.

Syntax

SET	SERVER	USER	<user-name>	<user-password>	<user-permissions>

	<user-name>		Defines	the	server	username.
	<user-password>		Defines	the	password	for	the	server	user.
	<user-permissions>		Defines	the	permissions	for	the	server	user.

For	more	information	on	security,	see	OrientDB	Server	Security.	Feature	introduced	in	version	2.2.

Example

Create	the	server	user		editor	,	give	it	all	permissions:

orientdb>	SET	SERVER	USER	editor	my_password	*

Server	user	'editor'	set	correctly

To	display	all	server	users,	see	the		LIST	SERVER	USERS		command.	To	remove	a	server	user,	see		DROP	SERVER	USER		command.

For	more	information	on	other	commands,	see	Console	Commands.

Set	Server	User

160



Console	-		SLEEP	
Pauses	the	console	for	the	given	amount	a	time.	You	may	find	this	command	useful	in	working	with	batches	or	to	simulate	latency.

Syntax

SLEEP	<time>

	<time>		Defines	the	time	the	Console	should	pause	in	milliseconds.

Example

Pause	the	console	for	three	seconds:

orientdb	{server=remote:localhost/}>	SLEEP	3000

For	more	information	on	other	commands,	see	Console	Commands.

Sleep

161



Upgrading

OrientDB	uses	the	Semantic	Versioning	System	(http://semver.org),	where	the	version	numbers	follow	this	format
MAJOR.MINOR.PATCH,	Here	are	the	meanings	of	the	increments:

MAJOR	version	entails	incompatible	API	changes,
MINOR	version	entails	functionality	in	a	backward-compatible	manner
PATCH	version	entails	backward-compatible	bug	fixes.

So	between	PATCH	versions,	the	compatibility	is	assured	(example	1.7.0	->	1.7.8).	Between	MINOR	and	MAJOR	versions,	you	may
need	to	export	and	re-import	the	database.	To	find	out	if	your	upgrade	must	be	done	over	exporting	and	importing	the	database,	see
below	in	the	column	"Database":

Compatibility	Matrix

FROM TO Guide Blueprints Database Binary
Protocol

HTTP
Protocol

2.0.x 2.1.x Release	2.1.x Final
v2.6.0 Automatic 30 10

1.7.x 2.0.x
Migration-
from-1.7.x-
to-2.0.x

Final
v2.6.0 Automatic 25 10

1.6.x 1.7.x
Migration-
from-1.6.x-
to-1.7.x

Final
v2.5.0 Automatic 20,	21 10

1.5.x 1.6.x
Migration-
from-1.5.x-
to-1.6.x

Changed
v2.5.x Automatic 18,	19 10

1.4.x 1.5.x
Migration-
from-1.4.x-
to-1.5.x

Changed
v2.4.x Automatic 16,	17 10

1.3.x 1.4.x
Migration-
from-1.3.x-
to-1.4.x

Changed
v2.3.x Automatic 14,	15 n.a.

1.2.x 1.3.x n.a. Changed
v2.2.x OK OK OK

Need
export
&	Re-
import

12,
13 n.a.

References:

Binary	Network	Protocol:	Network	Binary	Protocol
HTTP	Network	Protocol:	OrientDB	REST

Migrate	from	LOCAL	storage	engine	to	PLOCAL

Starting	from	version	1.5.x	OrientDB	comes	with	a	brand	new	storage	engine:	PLOCAL	(Paginated	LOCAL).	It's	persistent	like	the
LOCAL,	but	stores	information	in	a	different	way.	Below	are	the	main	differences	with	LOCAL:

records	are	stored	in	cluster	files,	while	with	LOCAL	was	split	between	cluster	and	data-segments
more	durable	than	LOCAL	because	the	append-on-write	mode
minor	contention	locks	on	writes:	this	means	more	concurrency
it	doesn't	use	Memory	Mapping	techniques	(MMap)	so	the	behavior	is	more	"predictable"

Upgrading

162

http://semver.org


To	migrate	your	LOCAL	storage	to	the	new	PLOCAL,	you	need	to	export	and	reimport	the	database	using	PLOCAL	as	storage	engine.
Follow	the	steps	below:

1)	open	a	new	shell	(Linux/Mac)	or	a	Command	Prompt	(Windows)

2)	export	the	database	using	the	console.	Example	by	exporting	the	database	under	/temp/db:

$	bin/console.sh	(or	bin/console.bat	under	Windows)

orientdb>	CONNECT	DATABASE	local:/temp/db	admin	admin

orientdb>	EXPORT	DATABASE	/temp/db.json.gzip

orientdb>	DISCONNECT

3)	now	always	in	the	console	create	a	new	database	using	the	"plocal"	engine:

a)	on	a	local	filesystem:

		orientdb>	CREATE	DATABASE	plocal:/temp/newdb	admin	admin	plocal	graph

b)	on	a	remote	server	(use	the	server's	credentials	to	access):

		orientdb>	CREATE	DATABASE	remote:localhost/newdb	root	password	plocal	graph

4)	now	always	in	the	console	import	the	old	database	in	the	new	one:

orientdb>	IMPORT	DATABASE	/temp/db.json.gzip	-preserveClusterIDs=true

orientdb>	QUIT

5)	If	you	access	to	the	database	in	the	same	JVM	remember	to	change	the	URL	from	"local:"	to	"plocal:"

Migrate	graph	to	RidBag
As	of	OrientDB	1.7	the	RidBag	is	default	collection	that	manages	adjacency	relations	in	graphs.	While	the	older	database	managed	by	an
MVRB-Tree	are	fully	compatible,	you	can	update	your	database	to	the	more	recent	format.

You	can	upgrade	your	graph	via	console	or	using	the	ORidBagMigration	class

Using	console

Connect	to	database		CONNECT	plocal:databases/GratefulDeadConcerts	
Run		upgrade	graph		command

Using	the	API

Create	OGraphMigration	instance.	Pass	database	connection	to	constructor.
Invoke	method	execute()

Upgrading

163



Backward	Compatibility

OrientDB	supports	binary	compatibility	between	previous	releases	and	latest	release.	Binary	compatibility	is	supported	at	least
between	last	2	minor	versions.

For	example,	lets	suppose	that	we	have	following	releases	1.5,	1.5.1,	1.6.1,	1.6.2,	1.7,	1.7.1	then	binary	compatibility	at	least	between
1.6.1,	1.6.2,	1.7,	1.7.1	releases	will	be	supported.

If	we	have	releases	1.5,	1.5.1,	1.6.1,	1.6.2,	1.7,	1.7.1,	2.0	then	binary	compatibility	will	be	supported	at	least	between	releases	1.7,	1.7.1,
2.0.

Binary	compatibility	feature	is	implemented	using	following	algorithm:

1.	 When	storage	is	opened,	version	of	binary	format	which	is	used	when	storage	is	created	is	read	from	storage	configuration.
2.	 Factory	of	objects	are	used	to	present	disk	based	data	structures	for	current	binary	format	is	created.

Only	features	and	database	components	which	were	exist	at	the	moment	when	current	binary	format	was	latest	one	will	be	used.	It
means	that	you	can	not	use	all	database	features	available	in	latest	release	if	you	use	storage	which	was	created	using	old	binary	format
version.	It	also	means	that	bugs	which	are	fixed	in	new	versions	may	be	(but	may	be	not)	reproducible	on	storage	created	using	old
binary	format.

To	update	binary	format	storage	to	latest	one	you	should	export	database	in	JSON	format	and	import	it	back.	Using	either	console
commands	export	database	and	import	database	or	Java	API	look	at		com.orientechnologies.orient.core.db.tool.ODatabaseImport	,
	com.orientechnologies.orient.core.db.tool.ODatabaseExport		classes	and
	com.orientechnologies.orient.test.database.auto.DbImportExportTest		test.

Current	binary	format	version	can	be	read	from
	com.orientechnologies.orient.core.db.record.OCurrentStorageComponentsFactory#binaryFormatVersion		proporty.
Instance	of		OCurrentStorageComponentsFactory		class	can	be	retrieved	by	call	of
	com.orientechnologies.orient.core.storage.OStorage#getComponentsFactory		method.
Latest	binary	format	version	can	be	read	from	here
	com.orientechnologies.orient.core.config.OStorageConfiguration#CURRENT_BINARY_FORMAT_VERSION	.

Please	note	that	binary	compatibility	is	supported	since	1.7-rc2	version	for	plocal	storage	(as	exception	you	can	read	database	created	in
1.5.1	version	by	1.7-rc2	version).

Return	to	Upgrade.

Backward	compatibility

164



Release	2.2.x

What's	new?

Direct	Memory

Starting	from	v2.2,	OrientDB	uses	direct	memory.	The	new	server.sh	(and	.bat)	already	set	the	maximum	size	value	to	512GB	of
memory	by	setting	the	JVM	configuration

-XX:MaxDirectMemorySize=512g

If	you	run	OrientDB	embedded	or	with	a	different	script,	please	set		MaxDirectMemorySize		to	a	high	value,	like		512g	.

Command	Cache

OrientDB	2.2	has	a	new	component	called	Command	Cache,	disabled	by	default,	but	that	can	make	a	huge	difference	in	performance	on
some	use	cases.	Look	at	Command	Cache	to	know	more.

Sequences

-In	progress-

Parallel	queries

Starting	from	v2.2,	the	OrientDB	SQL	executor	will	decide	if	execute	or	not	a	query	in	parallel.	Before	v2.2	executing	parallel	queries
could	be	done	only	manually	by	appending	the		PARALLEL		keyword	at	the	end	of	SQL	SELECT.	Issue	4578.

Automatic	usage	of	Multiple	clusters

Starting	from	v2.2,	when	a	class	is	created,	the	number	of	underlying	clusters	will	be	the	number	of	cores.	Issue	4518.

Encryption	at	rest

OrientDB	v2.2	can	encrypt	database	at	file	system	level	89.

New	ODocument.eval()

To	execute	quick	expression	starting	from	a	ODocument	and	Vertex/Edge	objects,	use	the	new		.eval()		method.	The	old	syntax
	ODocument.field("city[0].country.name")		is	not	supported	anymore.	Issue	4505.

Migration	from	2.1.x	to	2.2.x
Databases	created	with	release	2.1.x	are	compatible	with	2.2.x,	so	you	don't	have	to	export/import	the	database.

Security	and	speed

OrientDB	v2.2	increase	security	by	using	SALT.	This	means	that	hashing	of	password	is	much	slower	than	OrientDB	v2.1.	You	can
configure	the	number	of	cycle	for	SALT:	more	is	harder	to	decode	but	is	slower.	Change	setting		security.userPasswordSaltIterations	
to	the	number	of	cycles.	Default	is	65k	cycles.	The	default	password	hashing	algorithm	is	now		PBKDF2WithHmacSHA256		this	is	not
present	in	any	environment	so	you	can	change	it	setting		security.userPasswordDefaultAlgorithm		possible	alternatives	values	are
	PBKDF2WithHmacSHA1		or		SHA-256	

To	improve	performance	consider	also	avoiding	opening	and	closing	connection,	but	rather	using	a	connection	pool.

From	2.1.x	to	2.2.x

165

https://github.com/orientechnologies/orientdb/issues/4578
https://github.com/orientechnologies/orientdb/issues/4518
https://github.com/orientechnologies/orientdb/issues/89
https://github.com/orientechnologies/orientdb/issues/4505
https://github.com/orientechnologies/orientdb/issues/1229


API	changes

ODocument.field()

To	execute	quick	expression	starting	from	a	ODocument	and	Vertex/Edge	objects,	use	the	new		.eval()		method.	The	old	syntax
	ODocument.field("city[0].country.name")		is	not	supported	anymore.	This	is	because	we	simplified	the		.field()		method	to	don't
accept	expressoion	anymore.	This	allows	to	boost	up	performance	on	such	used	method.	Issue	4505.

Schema.dropClass()

On	drop	class	are	dropped	all	the	cluster	owned	by	the	class,	and	not	just	the	default	cluster.

Configuration	Changes

Since	2.2	you	can	force	to	not	ask	for	a	root	password	setting		<isAfterFirstTime>true</isAfterFirstTime>		inside	the		<orient-server>	
element	in	the	orientdb-server-config.xml	file.

SQL	and	Console	commands	Changes

Strict	SQL	parsing	is	now	applied	also	to	statements	for	Schema	Manipulation	(CREATE	CLASS,	ALTER	CLASS,	CREATE
PROPERTY,	ALTER	PROPERTY	etc.)

ALTER	DATABASE:	A	statement	like

ALTER	DATABASE	dateformat	yyyy-MM-dd

is	correctly	executed,	but	is	interpreted	in	the	WRONG	way:	the		yyyy-MM-dd		is	interpreted	as	an	expression	(two	subtractions)	and	not
as	a	single	date	format.	Please	re-write	it	as	(see	quotes)

ALTER	DATABASE	dateformat	'yyyy-MM-dd'

CREATE	FUNCTION

In	some	cases	a	variant	the	syntax	with	curly	braces	was	accepted	(not	documented),	eg.

CREATE	FUNCTION	testCreateFunction	{return	'hello	'+name;}	PARAMETERS	[name]	IDEMPOTENT	true	LANGUAGE	Javascript

Now	it's	not	supported	anymore,	the	right	syntax	is

CREATE	FUNCTION	testCreateFunction	"return	'hello	'+name;"	PARAMETERS	[name]	IDEMPOTENT	true	LANGUAGE	Javascript

ALTER	PROPERTY

The	ALTER	PROPERTY	command,	in	previous	versions,	accepted	any	unformatted	value	as	last	argument,	eg.

ALTER	PROPERTY	Foo.name	min	2015-01-01	00:00:00

In	v.2.2	the	value	must	be	a	valid	expression	(eg.	a	string):

ALTER	PROPERTY	Foo.name	min	"2015-01-01	00:00:00"

From	2.1.x	to	2.2.x

166

https://github.com/orientechnologies/orientdb/issues/4505


Release	2.1.x

What's	new?

Live	Query

OrientDB	2.1	includes	the	first	experimental	version	of	LiveQuery.	See	details	here.

Migration	from	2.0.x	to	2.1.x
Databases	created	with	release	2.0.x	are	compatible	with	2.1,	so	you	don't	have	to	export/import	the	database.

Difference	function

In	2.0.x	difference()	function	had	inconsistent	behavior:	it	actually	worked	as	a	symmetric	difference	(see	4366,	3969)	In	2.1	it	was
refactored	to	perform	normal	difference	(https://proofwiki.org/wiki/Definition:Set_Difference)	and	another	function	was	created	for
symmetric	difference	(called	"symmetricDifference()").

If	for	some	reason	you	application	relied	on	the	(wrong)	behavior	of	difference()	function,	please	change	your	queries	to	invoke
symmetricDifference()	instead.

Strict	SQL	parser

V	2.1	introduces	a	new	implementation	of	the	new	SQL	parser.	This	implementation	is	more	strict,	so	some	queries	that	were	allowed	in
2.0.x	could	not	work	now.

For	backward	compatibility,	you	can	disable	the	new	parser	from	Studio	->	DB	->	Configuration	->	remove	the	flag	from	strictSql
(bottom	right	of	the	page).

Or	via	console	by	executing	this	command,	just	once:

ALTER	DATABASE	custom	strictSql=false

Important	improvements	of	the	new	parser	are:

full	support	for	named	(:param)	and	unnamed	(?)	input	parameters:	now	you	can	use	input	parameters	almost	everywhere	in	a
query:	in	subqueries,	function	parameters,	between	square	brackets,	as	a	query	target
better	management	of	blank	spaces	and	newline	characters:	the	old	parser	was	very	sensitive	to	presence	or	absence	of	blank	spaces
(especially	in	particular	points,	eg.	before	and	after	square	brackets),	now	the	problem	is	completely	fixed
strict	validation:	the	old	parser	in	some	cases	failed	to	detect	invalid	queries	(eg.	a	macroscopic	example	was	a	query	with	two
WHERE	conditions,	like	SELECT	FORM	Foo	WHERE	a	=	2	WHERE	a	=	3),	now	all	these	problems	are	completely	fixed

Writing	the	new	parser	was	a	good	opportunity	to	validate	our	query	language.	We	discovered	some	ambiguities	and	we	had	to	remove
them.	Here	is	a	short	list	of	these	problems	and	how	to	manage	them	with	the	new	parser:

	-		as	a	valid	character	for	identifiers	(property	and	class	names):	in	the	old	implementation	you	could	define	a	property	name	like
"simple-name"	and	do		SELECT	simple-name	FROM	Foo	.	This	is	not	allowed	anymore,	because		-		character	is	used	for	arithmetic
operations	(subtract).	To	use	names	with		-		character,	use	backticks.	Example:		SELECT	`simple-name`	FROM	Foo	
reserved	keywords	as	identifiers:	words	like		select	,		from	,		where	...	could	be	used	as	property	or	class	name,	eg.	this	query
was	valid		SELECT	FROM	FROM	FROM	.	In	v	2.1	all	the	reserved	keywords	have	to	be	quoted	with	a	backtick	to	be	used	as	valid

From	2.0.x	to	2.1.x

167

https://github.com/orientechnologies/orientdb-docs/blob/master/Live-Query.md
https://github.com/orientechnologies/orientdb/issues/4366
https://github.com/orientechnologies/orientdb/issues/3969
https://proofwiki.org/wiki/Definition:Set_Difference


identifiers:		SELECT	`FROM`	FROM	`FROM`		

Object	database

Before	2.1	entity	class	cache	was	static,	so	you	could	not	manage	multiple	OObjectDatabase	connections	in	the	same	VM.	In	2.1
registerEntityClass()	works	at	storage	level,	so	you	can	open	multiple	OObjectDatabase	connections	in	the	same	VM.

IMPORTANT:	in	2.1	if	you	close	and	re-open	the	storage,	you	have	to	re-register	your	POJO	classes.

Distributed	architecture

Starting	from	release	2.1.6	it's	not	possible	to	hot	upgrade	a	distributed	architecture	node	by	node,	because	the	usage	of	the	last	recent
version	of	Hazelcast	that	breaks	such	network	compatibility.	If	you're	upgrading	a	distributed	architecture	you	should	power	off	the
entire	cluster	and	restart	it	with	the	new	release.

API	changes

ODatabaseDocumentTx.activateOnCurrentThread()

If	by	upgading	to	v2.1	you	see	errors	of	kind	"Database	instance	is	not	set	in	current	thread...",	this	means	that	you	used	the	same
ODatabase	instance	across	multiple	threads.	This	was	always	forbidden,	but	some	users	did	it	with	unpredictable	results	and	random
errors.	For	this	reason	in	v2.1	OrientDB	always	checks	that	the	ODatabase	instance	was	bound	to	the	current	thread.

We	introduced	a	new	API	to	allow	moving	a	ODatabase	instance	across	threads.	Before	to	use	a	ODatabase	instance	call	the	method
	ODatabaseDocumentTx.activateOnCurrentThread()		and	the	ODatabase	instance	will	be	bound	to	the	current	thread.	Example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal/temp/mydb").open("admin",	"admin");

new	Thread(){

		public	void	run()	{

				db.activateOnCurrentThread();	//	<----	BINDS	THE	DATABASE	ON	CURRENT	THREAD

				db.command(new	OCommandSQL("select	from	MyProject	where	thisSummerIsVeryHot	=	true")).execute();

		}

}.start();

From	2.0.x	to	2.1.x

168



Migration	from	1.7.x	to	2.0.x

Databases	created	with	release	1.7.x	are	compatible	with	2.0,	so	you	don't	have	to	export/import	the	database	like	in	the	previous
releases.	Check	your	database	directory:	if	you	have	a	file	*.wal,	delete	it	before	migration.

Use	the	new	binary	serialization
To	use	the	new	binary	protocol	you	have	to	export	and	reimport	the	database	into	a	new	one.	This	will	boost	up	your	database
performance	of	about	+20%	against	old	database.

To	export	and	reimport	your	database	follow	these	steps:

1)	Stop	any	OrientDB	server	running

2)	Open	a	new	shell	(Linux/Mac)	or	a	Command	Prompt	(Windows)

2)	Export	the	database	using	the	console.	Move	into	the	directory	where	you've	installed	OrientDB	2.0	and	execute	the	following
commands:

>	cd	bin

>	./console.sh	(or	bin/console.bat	under	Windows)

orientdb>	CONNECT	plocal:/temp/mydb	admin	admin

orientdb>	EXPORT	DATABASE	/temp/mydb.json.gz

orientdb>	DISCONNECT

orientdb>	CREATE	DATABASE	plocal:/temp/newdb

orientdb>	IMPORT	DATABASE	/temp/mydb.json.gz

Now	your	new	database	is:	/temp/newdb.

API	changes

ODocument	pin()	and	unpin()	methods

We	removed	pin()	and	unpin()	methods	to	force	the	cache	behavior.

ODocument	protecting	of	internal	methods

We	have	hidden	some	methods	considered	internal	to	avoid	users	call	them.	However,	if	your	usage	of	OrientDB	is	quite	advanced	and
you	still	need	them,	you	can	access	from	Internal	helper	classes.	Please	still	consider	them	as	internals	and	could	change	in	the	future.
Below	the	main	ones:

ORecordAbstract.addListener(),	uses	ORecordListenerManager.addListener()	instead

ODatabaseRecord.getStorage()

We	moved	getStorage()	method	to	ODatabaseRecordInternal.

ODatabaseDocumentPool

We	replaced	ODatabaseDocumentPool	Java	class	(now	deprecated)	with	the	new,	more	efficient
com.orientechnologies.orient.core.db.OPartitionedDatabasePool.

Caches

We	completely	removed	Level2	cache.	Now	only	Level1	and	Storage	DiskCache	are	used.	This	change	should	be	transparent	with	code
that	run	on	previous	versions,	unless	you	enable/disable	Level2	cache	in	your	code.

From	1.7.x	to	2.0.x

169



Furthermore	it's	not	possible	anymore	to	disable	Cache,	so	method		setEnable()		has	been	removed.

Changes

Context 1.7.x 2.0.x

API ODatabaseRecord.getLevel1Cache() ODatabaseRecord.getLocalCache()

API ODatabaseRecord.getLevel2Cache() Not	available

Configuration OGlobalConfiguration.CACHE_LEVEL1_ENABLED OGlobalConfiguration.CACHE_LOCAL_ENABLED

Configuration OGlobalConfiguration.CACHE_LEVEL2_ENABLED Not	available

No	more	LOCAL	engine

We	completely	dropped	the	long	deprecated	LOCAL	Storage.	If	your	database	were	created	using	"LOCAL:"	then	you	have	to	export	it
with	the	version	you	were	using,	then	import	it	in	a	fresh	new	database	created	with	OrientDB	2.0.

Server

First	run	ask	for	root	password

At	first	run,	OrientDB	asks	for	the	root's	password.	Leave	it	blank	to	auto	generate	it	(like	with	1.7.x).	This	is	the	message:

+----------------------------------------------------+

|										WARNING:	FIRST	RUN	CONFIGURATION										|

+----------------------------------------------------+

|	This	is	the	first	time	the	server	is	running.						|

|	Please	type	a	password	of	your	choice	for	the						|

|	'root'	user	or	leave	it	blank	to	auto-generate	it.	|

+----------------------------------------------------+

Root	password	[BLANK=auto	generate	it]:	_

If	you	set	the	system	setting	or	environment	variable		ORIENTDB_ROOT_PASSWORD	,	then	its	value	will	be	taken	as	root	password.	If	it's
defined,	but	empty,	a	password	will	be	automatically	generated.

Distributed

First	run	ask	for	node	name

At	first	run	as	distributed,	OrientDB	asks	for	the	node	name.	Leave	it	blank	to	auto	generate	it	(like	with	1.7.x).	This	is	the	message:

+----------------------------------------------------+

|				WARNING:	FIRST	DISTRIBUTED	RUN	CONFIGURATION				|

+----------------------------------------------------+

|	This	is	the	first	time	that	the	server	is	running		|

|	as	distributed.	Please	type	the	name	you	want						|

|	to	assign	to	the	current	server	node.														|

+----------------------------------------------------+

Node	name	[BLANK=auto	generate	it]:	_

If	you	set	the	system	setting	or	environment	variable		ORIENTDB_NODE_NAME	,	then	its	value	will	be	taken	as	node	name.	If	it's	defined,	but
empty,	a	name	will	be	automatically	generated.

Multi-Master	replication

From	1.7.x	to	2.0.x

170



With	OrientDB	2.0	each	record	cluster	selects	assigns	the	first	server	node	in	the		servers		list	node	as	master	for	insertion	only.	In	99%
of	the	cases	you	insert	per	class,	not	per	cluster.	When	you	work	per	class,	OrientDB	auto-select	the	cluster	where	the	local	node	is	the
master.	In	this	way	we	completely	avoid	conflicts	(like	in	1.7.x).

Example	of	configuration	with	2	nodes	replicated	(no	sharding):

INSERT	INTO	Customer	(name,	surname)	VALUES	('Jay',	'Miner')

If	you	execute	this	command	against	a	node1,	OrientDB	will	assign	the	cluster-id	where	node1	is	master,	i.e.	#13:232.	With	node2	would
be	different:	it	couldn't	never	be	#13.

For	more	information	look	at:	http://www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding.html.

Asynchronous	replication

OrientDB	2.0	supports	configurable	execution	mode	through	the	new	variable		executionMode	.	It	can	be:

	undefined	,	the	default,	means	synchronous
	synchronous	,	to	work	in	synchronous	mode
	asynchronous	,	to	work	in	asynchronous	mode

{

				"autoDeploy":	true,

				"hotAlignment":	false,

				"executionMode":	"undefined",

				"readQuorum":	1,

				"writeQuorum":	2,

				"failureAvailableNodesLessQuorum":	false,

				"readYourWrites":	true,

				"clusters":	{

								"internal":	{

								},

								"index":	{

								},

								"*":	{

												"servers"	:	[	"<NEW_NODE>"	]

								}

				}

}

Set	to	"asynchronous"	to	speed	up	the	distributed	replication.

Graph	API

Multi-threading

Starting	from	OrientDB	2.0,	instances	of	both	classes	OrientGraph	and	OrientGraphNoTx	can't	be	shared	across	threads.	Create	and
destroy	instances	from	the	same	thread.

Edge	collections

OrientDB	2.0	disabled	the	auto	scale	of	edge.	In	1.7.x,	if	a	vertex	had	1	edge	only,	a	LINK	was	used.	As	soon	as	a	new	edge	is	added	the
LINK	is	auto	scaled	to	a	LINKSET	to	host	2	edges.	If	you	want	this	setting	back	you	have	to	call	these	two	methods	on	graph	instance
(or	OrientGraphFactory	before	to	get	a	Graph	instance):

graph.setAutoScaleEdgeType(true);

graph.setEdgeContainerEmbedded2TreeThreshold(40);

From	1.7.x	to	2.0.x

171

http://www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding.html


Migration	from	1.6.x	to	1.7.x

Databases	created	with	release	1.6.x	are	compatible	with	1.7,	so	you	don't	have	to	export/import	the	database	like	in	the	previous
releases.

Engine
OrientDB	1.7	comes	with	the	PLOCAL	engine	as	default	one.	For	compatibility	purpose	we	still	support	"local"	database,	but	this	will
be	removed	soon.	So	get	the	chance	to	migrate	your	old	"local"	database	to	the	new	"plocal"	follow	the	steps	in:	Migrate	from	local
storage	engine	to	plocal.

From	1.6.x	to	1.7.x

172



Migration	from	1.5.x	to	1.6.x

Databases	created	with	release	1.5.x	need	to	be	exported	and	reimported	in	OrientDB	1.6.x.

From	OrientDB	1.5.x:

Open	the	console	under	"bin/"	directory	calling:
./console.sh	(or	.bat	on	Windows)

Connect	to	the	database	and	export	it,	example:
orientdb>	connect	plocal:/temp/db	admin	admin
orientdb>	export	database	/temp/db.zip

Run	OrientDB	1.6.x	console
./console.sh	(or	.bat	on	Windows)

Create	a	new	database	and	import	it,	example:
orientdb>	create	database	plocal:/temp/db	admin	admin	plocal
orientdb>	import	database	/temp/db.zip

For	any	problem	on	import,	look	at	Import	Troubleshooting.

Engine
OrientDB	1.6.x	comes	with	the	new	PLOCAL	engine.	To	migrate	a	database	create	with	the	old	"local"	to	such	engine	follow	the	steps
in:	Migrate	from	local	storage	engine	to	plocal.

From	1.5.x	to	1.6.x

173



Migration	from	1.4.x	to	1.5.x

OrientDB	1.5.x	automatic	upgrades	any	databases	created	with	version	1.4.x,	so	export	and	import	is	not	needed.

Engine
OrientDB	1.5.x	comes	with	the	new	PLOCAL	engine.	To	migrate	to	such	engine	follow	the	steps	in:	Migrate	from	local	storage	engine	to
plocal.

From	1.4.x	to	1.5.x

174



Migration	from	1.3.x	to	1.4.x

GraphDB

OrientDB	1.4.x	uses	a	new	optimized	structure	to	manage	graphs.	You	can	use	the	new	OrientDB	1.4.x	API	against	graph	databases
created	with	OrientDB	1.3.x	setting	few	properties	at	database	level.	In	this	way	you	can	continue	to	work	with	your	database	but
remember	that	this	doesn't	use	the	new	structure	so	it's	strongly	suggested	to	export	and	import	the	database.

The	new	Engine	uses	some	novel	techniques	based	on	the	idea	of	a	dynamic	Graph	that	change	shape	at	run-time	based	on	the	settings
and	content.	The	new	Engine	is	much	faster	than	before	and	needs	less	space	in	memory	and	disk.	Below	the	main	improvements:

avoid	creation	of	edges	as	document	if	haven't	properties.	With	Graphs	wit	no	properties	on	edges	this	can	save	more	than	50%	of
space	on	disk	and	therefore	memory	with	more	chances	to	have	a	big	part	of	database	in	cache.	Furthermore	this	speed	up	traversal
too	because	requires	one	record	load	less.	As	soon	as	the	first	property	is	set	the	edge	is	converted	transparently
Vertex	"in"	and	"out"	fields	aren't	defined	in	the	schema	anymore	because	can	be	of	different	types	and	change	at	run-time	adapting
to	the	content:

no	connection	=	null	(no	space	taken)
1	connection	=	store	as	LINK	(few	bytes)

1	connections	=	use	the	Set	of	LINKS	(using	the	MVRBTreeRIDSet	class)

binding	of	Blueprints	"label"	concept	to	OrientDB	sub-classes.	If	you	create	an	edge	with	label	"friend",	then	the	edge	sub-type
"friend"	will	be	used	(created	by	the	engine	transparently).	This	means:	1	field	less	in	document	(the	field	"label")	and	therefore	less
space	and	the	ability	to	use	the	technique	1	(see	above)
edges	are	stored	on	different	files	at	file	system	level	because	are	used	different	clusters
better	partitioning	against	multiple	disks	(and	in	the	future	more	parallelism)
direct	queries	like	"select	from	friend"	rather	than	"select	from	E"	and	then	filtering	the	result-set	looking	for	the	edge	with	the
wanted	label	property
multiple	properties	for	edges	of	different	labels.	Not	anymore	a	"in"	and	"out"	in	Vertex	but	"out_friend"	to	store	all	the	outgoing
edges	of	class	"friend".	This	means	faster	traversal	of	edges	giving	one	or	multiple	labels	avoiding	to	scan	the	entire	Set	of	edges	to
find	the	right	one

Blueprints	changes

If	you	was	using	Blueprints	look	also	to	the	Blueprints	changes	1.x	and	2.x.

Working	with	database	created	with	1.3.x

Execute	these	commands	against	the	open	database:

ALTER	DATABASE	custom	useLightweightEdges=false

ALTER	DATABASE	custom	useClassForEdgeLabel=false

ALTER	DATABASE	custom	useClassForVertexLabel=false

ALTER	DATABASE	custom	useVertexFieldsForEdgeLabels=false

Base	class	changed	for	Graph	elements

Before	1.4.x	the	base	classes	for	Vertices	was	"OGraphVertex"	with	alias	"V"	and	for	Edges	was	"OGraphEdge"	with	alias	"E".	Starting
from	v1.4	the	base	class	for	Vertices	is	"V"	and	"E"	for	Edges.	So	if	in	your	code	you	referred	"V"	and	"E"	for	inheritance	nothing	is
changed	(because	"V"	and	"E"	was	the	aliases	of	OGraphVertex	and	"OGraphEdge"),	but	if	you	used	directly	"OGraphVertex"	and
"OGraphEdge"	you	need	to	replace	them	into	"V"	and	"E".

If	you	don't	export	and	import	the	database	you	can	rename	the	classes	by	hand	typing	these	commands:

From	1.3.x	to	1.4.x

175

https://github.com/tinkerpop/blueprints/wiki/The-Major-Differences-Between-Blueprints-1.x-and-2.x


ALTER	CLASS	OGraphVertex	shortname	null

ALTER	CLASS	OGraphVertex	name	V

ALTER	CLASS	OGraphEdge	shortname=null

ALTER	CLASS	OGraphEdge	name	E

Export	and	re-import	the	database

Use	GREMLIN	and	GraphML	format.

If	you're	exporting	the	database	using	the	version	1.4.x	you've	to	set	few	configurations	at	database	level.	See	above	Working	with
database	created	with	1.3.x.

Export	the	database

$	cd	$ORIENTDB_HOME/bin

$	./gremlin.sh

									\,,,/

									(o	o)

-----oOOo-(_)-oOOo-----

gremlin>	g	=	new	OrientGraph("local:/temp/db");

==>orientgraph[local:/temp/db]

gremlin>	g.saveGraphML("/temp/export.xml")

==>null

Import	the	exported	database

gremlin>	g	=	new	OrientGraph("local:/temp/newdb");

==>orientgraph[local:/temp/newdb]

gremlin>	g.loadGraphML("/temp/export.xml");

==>null

gremlin>

Your	new	database	will	be	created	under	"/temp/newdb"	directory.

General	Migration

If	you	want	to	migrate	from	release	1.3.x	to	1.4.x	you've	to	export	the	database	using	the	1.3.x	and	re-import	it	using	1.4.x.	Example:

Export	the	database	using	1.3.x

From	1.3.x	to	1.4.x

176



$	cd	$ORIENTDB_HOME/bin

$	./console.sh

OrientDB	console	v.1.3.0	-	www.orientechnologies.com

Type	'help'	to	display	all	the	commands	supported.

orientdb>	CONNECT	local:../databases/mydb	admin	admin

Connecting	to	database	[local:../databases/mydb]	with	user	'admin'...

OK

orientdb>	EXPORT	DATABASE	/temp/export.json.gz

Exporting	current	database	to:	database	/temp/export.json.gz...

Started	export	of	database	'mydb'	to	/temp/export.json.gz...

Exporting	database	info...OK

Exporting	clusters...OK	(24	clusters)

Exporting	schema...OK	(23	classes)

Exporting	records...

-	Cluster	'internal'	(id=0)...OK	(records=3/3)

-	Cluster	'index'	(id=1)...OK	(records=0/0)

-	Cluster	'manindex'	(id=2)...OK	(records=1/1)

-	Cluster	'default'	(id=3)...OK	(records=0/0)

-	Cluster	'orole'	(id=4)...OK	(records=3/3)

-	Cluster	'ouser'	(id=5)...OK	(records=3/3)

-	Cluster	'ofunction'	(id=6)...OK	(records=1/1)

-	Cluster	'oschedule'	(id=7)...OK	(records=0/0)

-	Cluster	'orids'	(id=8).............OK	(records=428/428)

-	Cluster	'v'	(id=9).............OK	(records=809/809)

-	Cluster	'e'	(id=10)...OK	(records=0/0)

-	Cluster	'followed_by'	(id=11).............OK	(records=7047/7047)

-	Cluster	'sung_by'	(id=12)...OK	(records=2/2)

-	Cluster	'written_by'	(id=13)...OK	(records=1/1)

-	Cluster	'testmodel'	(id=14)...OK	(records=2/2)

-	Cluster	'vertexwithmandatoryfields'	(id=15)...OK	(records=1/1)

-	Cluster	'artist'	(id=16)...OK	(records=0/0)

-	Cluster	'album'	(id=17)...OK	(records=0/0)

-	Cluster	'track'	(id=18)...OK	(records=0/0)

-	Cluster	'sing'	(id=19)...OK	(records=0/0)

-	Cluster	'has'	(id=20)...OK	(records=0/0)

-	Cluster	'person'	(id=21)...OK	(records=2/2)

-	Cluster	'restaurant'	(id=22)...OK	(records=1/1)

-	Cluster	'eat'	(id=23)...OK	(records=0/0)

Done.	Exported	8304	of	total	8304	records

Exporting	index	info...

-	Index	dictionary...OK

OK	(1	indexes)

Exporting	manual	indexes	content...

-	Exporting	index	dictionary	...OK	(entries=0)

OK	(1	manual	indexes)

Database	export	completed	in	1913ms

Re-import	the	exported	database	using	OrientDB	1.4.x:

From	1.3.x	to	1.4.x

177



$	cd	$ORIENTDB_HOME/bin

$	./console.sh

OrientDB	console	v.1.3.0	-	www.orientechnologies.com

Type	'help'	to	display	all	the	commands	supported.

orientdb>	CREATE	DATABASE	local:../databases/newmydb	admin	admin	local

Creating	database	[local:../databases/newmydb]	using	the	storage	type	[local]...

Database	created	successfully.

Current	database	is:	local:../databases/newmydb

orientdb>	IMPORT	DATABASE	/temp/export.json.gz

Importing	database	database	/temp/export.json.gz...

Started	import	of	database	'local:../databases/newmydb'	from	/temp/export.json.gz...

Importing	database	info...OK

Importing	clusters...

-	Creating	cluster	'internal'...OK,	assigned	id=0

-	Creating	cluster	'default'...OK,	assigned	id=3

-	Creating	cluster	'orole'...OK,	assigned	id=4

-	Creating	cluster	'ouser'...OK,	assigned	id=5

-	Creating	cluster	'ofunction'...OK,	assigned	id=6

-	Creating	cluster	'oschedule'...OK,	assigned	id=7

-	Creating	cluster	'orids'...OK,	assigned	id=8

-	Creating	cluster	'v'...OK,	assigned	id=9

-	Creating	cluster	'e'...OK,	assigned	id=10

-	Creating	cluster	'followed_by'...OK,	assigned	id=11

-	Creating	cluster	'sung_by'...OK,	assigned	id=12

-	Creating	cluster	'written_by'...OK,	assigned	id=13

-	Creating	cluster	'testmodel'...OK,	assigned	id=14

-	Creating	cluster	'vertexwithmandatoryfields'...OK,	assigned	id=15

-	Creating	cluster	'artist'...OK,	assigned	id=16

-	Creating	cluster	'album'...OK,	assigned	id=17

-	Creating	cluster	'track'...OK,	assigned	id=18

-	Creating	cluster	'sing'...OK,	assigned	id=19

-	Creating	cluster	'has'...OK,	assigned	id=20

-	Creating	cluster	'person'...OK,	assigned	id=21

-	Creating	cluster	'restaurant'...OK,	assigned	id=22

-	Creating	cluster	'eat'...OK,	assigned	id=23

Done.	Imported	22	clusters

Importing	database	schema...OK	(23	classes)

Importing	records...

-	Imported	records	into	cluster	'internal'	(id=0):	3	records

-	Imported	records	into	cluster	'orole'	(id=4):	3	records

-	Imported	records	into	cluster	'ouser'	(id=5):	3	records

-	Imported	records	into	cluster	'internal'	(id=0):	1	records

-	Imported	records	into	cluster	'v'	(id=9):	809	records

-	Imported	records	into	cluster	'followed_by'	(id=11):	7047	records

-	Imported	records	into	cluster	'sung_by'	(id=12):	2	records

-	Imported	records	into	cluster	'written_by'	(id=13):	1	records

-	Imported	records	into	cluster	'testmodel'	(id=14):	2	records

-	Imported	records	into	cluster	'vertexwithmandatoryfields'	(id=15):	1	records

-	Imported	records	into	cluster	'person'	(id=21):	2	records

Done.	Imported	7874	records

Importing	indexes	...

-	Index	'dictionary'...OK

Done.	Created	1	indexes.

Importing	manual	index	entries...

-	Index	'dictionary'...OK	(0	entries)

Done.	Imported	1	indexes.

Delete	temporary	records...OK	(0	records)

Database	import	completed	in	2383	ms

orientdb>

Your	new	database	will	be	created	under	"../databases/newmydb"	directory.

From	1.3.x	to	1.4.x

178



Backup	&	Restore
OrientDB	supports	back	and	and	restore	operations,	like	any	database	management	system.

The		BACKUP	DATABASE		command	executes	a	complete	backup	on	the	currently	open	database.	It	compresses	the	backup	the	backup
using	the	ZIP	algorithm.	To	restore	the	database	from	the	subsequent		.zip		file,	you	can	use	the		RESTORE	DATABASE		command.

Backups	and	restores	are	much	faster	than	the		EXPORT	DATABASE		and		IMPORT	DATABASE		commands.	You	can	also	automate	backups
using	the	Automatic	Backup	server	plugin.	Additionally,	beginning	with	version	2.2	of	Enterprise	Edition	OrientDB	introduces	major
support	for	incremental	backups.

Backups	versus	Exports
During	backups,	the		BACKUP	DATABASE		command	produces	a	consistent	copy	of	the	database.	During	this	process,	the	database	locks	all
write	operations,	waiting	for	the	backup	to	finish.	If	you	need	perform	reads	and	writes	on	the	database	during	backups,	set	up	a
distributed	cluster	of	nodes.

By	contrast,	the		EXPORT	DATABASE		command	doesn't	lock	the	database,	allowing	concurrent	writes	to	occur	during	the	export	process.
Consequentially,	the	export	may	include	changes	made	after	you	initiated	the	export,	which	may	result	in	inconsistencies.

Using	the	Backup	Script

Beginning	in	version	1.7.8,	OrientDB	introduces	a		backup.sh		script	found	in	the		$ORIENTDB_HOME/bin		directory.	This	script	allows
you	to	initiate	backups	from	the	system	console.

Syntax

./backup.sh	<db-url>	<user>	<password>	<destination>	[<type>]

	<db-url>		Defines	the	URL	for	the	database	to	back	up.
	<user>		Defines	the	user	to	run	the	backup.
	<password>		Defines	the	password	for	the	user.
	<destination>		Defines	the	path	to	the	backup	file	the	script	creates,	(use	the		.zip		extension).
	<type>		Defines	the	backup	type.	Supported	types:

	default		Locks	the	database	during	the	backup.
	lvm		Executes	an	LVM	copy-on-write	snapshot	in	the	background.

Examples

Backup	a	database	opened	using		plocal	:

$	$ORIENTDB_HOME/bin/backup.sh	plocal:../database/testdb	\

						admin	adminpasswd	\

						/path/to/backup.zip

Perform	a	non-blocking	LVM	backup,	using		plocal	:

$	$ORIENTDB_HOME/bin/backup.sh	plocal:../database/testdb	\

						admin	adminpasswd	\

						/path/to/backup.zip	\

						lvm

Perform	a	non-blocking	LVM	backup,	using	a	remote	database	hosted	at		localhost	:

Backup	and	Restore

179



$	$ORIENTDB_HOME/bin/backup.sh	remote:localhost/testdb	\

						root	rootpasswd	\

						/path/to/backup.zip	\

						lvm

Perform	a	backup	using	the	OrientDB	Console	with	the		BACKUP		command:

orientdb>	CONNECT	PLOCAL:../database/testdb/	admin	adminpasswd

orientdb>	BACKUP	DATABASE	/path/to/backup.zip

Backup	executed	in	0.52	seconds.

NOTE	Non-blocking	backups	require	that	the	operating	system	support	LVM.	For	more	information,	see

LVM
File	system	snapshots	with	LVM
LVM	snapshot	backup

Restoring	Databases

Once	you	have	created	your		backup.zip		file,	you	can	restore	it	to	the	database	either	through	the	OrientDB	Console,	using	the
	RESTORE	DATABASE		command.

orientdb>	RESTORE	DATABASE	/backups/mydb.zip

Restore	executed	in	6.33	seconds

Bear	in	mind	that	OrientDB	does	not	support	merging	during	restores.	If	you	need	to	merge	the	old	data	with	new	writes,	instead	use
	EXPORT	DATABASE		and		IMPORT	DATABASE		commands,	instead.

For	more	information,	see

	BACKUP	DATABASE	

	RESTORE	DATABASE	

	EXPORT	DATABASE	

	IMPORT	DATABASE	

Console	Commands

Backup	and	Restore

180

http://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29
http://arstechnica.com/information-technology/2004/10/linux-20041013/
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html


Export	and	Import
OrientDB	supports	export	and	import	operations,	like	any	database	management	system.

The		EXPORT	DATABASE		command	exports	the	current	opened	database	into	a	file.	The	exported	file	is	in	the	Export	JSON	format.	By
default,	it	compresses	the	file	using	the	GZIP	algorithm.

Using	exports	with	the		IMPORT	DATABASE		command,	you	can	migrate	the	database	between	different	releases	of	OrientDB	without
losing	data.	When	doing	this,	if	you	receive	an	error	relating	to	the	database	version,	export	the	database	using	the	same	version	of
OrientDB	on	which	you	created	the	database.

orientdb>	EXPORT	DATABASE	/temp/petshop.export

Exporting	current	database	to:	/temp/petshop.export...

Exporting	database	info...OK

Exporting	dictionary...OK

Exporting	schema...OK

Exporting	clusters...

-	Exporting	cluster	'metadata'	(records=11)	->	...........OK

-	Exporting	cluster	'index'	(records=0)	->	OK

-	Exporting	cluster	'default'	(records=779)	->	OK

-	Exporting	cluster	'csv'	(records=1000)	->	OK

-	Exporting	cluster	'binary'	(records=1001)	->	OK

-	Exporting	cluster	'person'	(records=7)	->	OK

-	Exporting	cluster	'animal'	(records=5)	->	OK

-	Exporting	cluster	'animalrace'	(records=0)	->	OK

-	Exporting	cluster	'animaltype'	(records=1)	->	OK

-	Exporting	cluster	'orderitem'	(records=0)	->	OK

-	Exporting	cluster	'order'	(records=0)	->	OK

-	Exporting	cluster	'city'	(records=3)	->	OK

Export	of	database	completed.

Exports	versus	Backups
Exports	don't	lock	the	database.	Instead,	they	browse	the	contents.	This	means	that	OrientDB	can	execute	concurrent	operations	during
the	export,	but	the	exported	database	may	not	be	an	exact	replica	from	the	time	when	you	issued	the	command.	If	you	need	a	database
snapshot,	use	backups.

The		BACKUP	DATABASE		command	does	create	a	consistent	copy	of	the	database,	but	it	locks	the	database.	During	the	backup,	the
database	remains	in	read-only	mode,	all	concurrent	write	operations	are	blocked	until	the	backup	finishes.	In	the	event	that	you	need	a
database	snapshot	and	the	ability	to	perform	read/write	operations	during	the	backup,	set	up	a	distributed	cluster	of	nodes.

NOTE:	Even	though	the	export	file	is	100%	JSON,	there	are	some	constraints	in	the	JSON	format,	where	the	field	order	must	be
kept.	Modifying	the	file	to	adjust	the	indentation	may	make	the	file	unusable	in	database	imports.

Importing	Databases
Once	you	have	exported	your	database,	you	can	import	it	using	the		IMPORT	DATABASE		command.

Export	and	Import

181



orientdb>	IMPORT	DATABASE	/temp/petshop.export	-preserveClusterIDs=true

Importing	records...

-	Imported	records	into	the	cluster	'internal':	5	records

-	Imported	records	into	the	cluster	'index':	4	records

-	Imported	records	into	the	cluster	'default':	1022	records

-	Imported	records	into	the	cluster	'orole':	3	records

-	Imported	records	into	the	cluster	'ouser':	3	records

-	Imported	records	into	the	cluster	'csv':	100	records

-	Imported	records	into	the	cluster	'binary':	101	records

-	Imported	records	into	the	cluster	'account':	1005	records

-	Imported	records	into	the	cluster	'company':	9	records

-	Imported	records	into	the	cluster	'profile':	9	records

-	Imported	records	into	the	cluster	'whiz':	1000	records

-	Imported	records	into	the	cluster	'address':	164	records

-	Imported	records	into	the	cluster	'city':	55	records

-	Imported	records	into	the	cluster	'country':	55	records

-	Imported	records	into	the	cluster	'animalrace':	3	records

-	Imported	records	into	the	cluster	'ographvertex':	102	records

-	Imported	records	into	the	cluster	'ographedge':	101	records

-	Imported	records	into	the	cluster	'graphcar':	1	records

For	more	information,	see

JSON	Export	Format
	RESTORE	DATABASE	

	EXPORT	DATABASE	

	IMPORT	DATABASE	

Console	Commands

Export	and	Import

182



Export	Format
When	you	run	the		EXPORT	DATABASE		command,	OrientDB	exports	the	database	into	a	zipped	file	using	a	special	JSON	format.	When
you	run	the		IMPORT	DATABASE		command,	OrientDB	unzips	the	file	and	parses	the	JSON,	making	the	import.

Sections

Export	files	for	OrientDB	use	the	following	sections.	Note	that	while	the	export	format	is	100%	JSON,	there	are	some	constraints	in	the
format,	where	the	field	order	must	be	kept.	Additionally,	modifying	the	file	to	adjust	the	indentation	(as	has	been	done	in	the	examples
below),	may	make	it	unusable	in	database	imports.

Info	Section

The	first	section	contains	the	resuming	database	information	as	well	as	all	versions	used	during	the	export.	OrientDB	uses	this
information	to	check	for	compatibility	during	the	import.

"info":	{

		"name":	"demo",

		"default-cluster-id":	2,

		"exporter-format":	2,

		"engine-version":	"1.7-SNAPSHOT",

		"storage-config-version":	2,

		"schema-version":	4,

		"mvrbtree-version":	0

}

Parameter Description JSON	Type

	"name"	 Defines	the	name	of	the	database. String

	"default-cluster-id"	 Defines	the	Cluster	ID	to	use	by	default.	Range:	0-32,762. Integer

	"exporter-format"	 Defines	the	version	of	the	database	exporter. Integer

	"engine-version"	 Defines	the	version	of	OrientDB. String

	"storage-version"	 Defines	the	version	of	the	Storage	layer. Integer

	"schema-version"	 Defines	the	version	of	the	schema	exporter. Integer

	"mvrbtree-version"	 Defines	the	version	of	the	MVRB-Tree. Integer

Clusters	Section

This	section	defines	the	database	structure	in	clusters.	It	is	formed	from	a	list	with	an	entry	for	each	cluster	in	the	database.

"clusters":	[

		{"name":	"internal",	"id":	0,	"type":	"PHYSICAL"},

		{"name":	"index",	"id":	1,	"type":	"PHYSICAL"},

		{"name":	"default",	"id":	2,	"type":	"PHYSICAL"}

]

Parameter Description JSON	Type

	"name"	 Defines	the	logical	name	of	the	cluster. String

	"id"	 Defines	the	Cluster	ID.	Range:	0-32,	767. Integer

	"type"	 Defines	the	cluster	type:		PHYSICAL	,		LOGICAL		and		MEMORY	. String

Schema	Section

Export	format

183



This	section	defines	the	database	schema	as	classes	and	properties.

"schema":{

		"version":	210,

		"classes":	[

				{"name":	"Account",	"default-cluster-id":	9,	"cluster-ids":	[9],

						"properties":	[

								{"name":	"binary",	"type":	"BINARY",	"mandatory":	false,	"not-null":	false},

								{"name":	"birthDate",	"type":	"DATE",	"mandatory":	false,	"not-null":	false},

								{"name":	"id",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}

						]

				}

		]

}

Parameter Description JSON	Type

	"version"	 Defines	the	version	of	the	record	storing	the	schema.	Range:	0-2,147,483,647. Integer

	"classes"	 Defines	a	list	of	entries	for	each	class	in	the	schema. Array

Parameters	for	the	Classes	Subsection:

Parameter Description JSON	Type

	"name"	 Defines	the	logical	name	of	the	class. String

	"default-

cluster-id"	

Defines	the	default	Cluster	ID	for	the	class.	It	represents	the	cluster	that	stores	the
class	records. Integer

	"cluster-ids"	
Defines	an	array	of	Cluster	ID's	that	store	the	class	records.	The	first	ID	is	always	the
default	Cluster	ID.

Array	of
Integers

	"properties"	 Defines	a	list	of	entries	for	each	property	for	the	class	in	the	schema. Array

Parameters	for	the	Properties	Sub-subsection:

Parameter Description JSON	Type

	"name"	 Defines	the	logical	name	of	the	property. String

	"type"	 Defines	the	property	type. String

	"mandatory"	 Defines	whether	the	property	is	mandatory. Boolean

	"not-null"	 Defines	whether	the	property	accepts	a		NULL		value. Boolean

Records	Section

This	section	defines	the	exported	record	with	metadata	and	fields.	Entries	for	metadata	are	distinguished	from	fields	by	the		@		symbol.

"records":	[

			{"@type":	"d",	"@rid":	"#12:476",	"@version":	0,	"@class":	"Account",

				"account_id":	476,

				"date":	"2011-12-09	00:00:00:0000",

				"@fieldTypes":	["account_id=i",	"date=t"]

			},

			{"@type":	"d",	"@rid":	"#12:477",	"@version":	0,				"@class":	"Whiz",

				"id":	477,

				"date":	"2011-12-09	00:00:00:000",

				"text":	"He	in	office	return	He	inside	electronics	for	$500,000	Jay",

				"@fieldTypes":	"date=t"

			}

]

Parameters	for	Metadata

Export	format

184



Parameter Description JSON	Type

	"@type"	 Defines	the	record-type:		d		for	Document,		b		for	Binary. String

	"@rid"	 Defines	the	Record	ID,	using	the	format:		<cluster-id>:<cluster-position>	. String

	"@version"	 Defines	the	record	version.	Range:	0-2,	147,	483,	647. Integer

	"@class"	 Defines	the	logical	class	name	for	the	record. String

	"@fieldTypes"	 Defines	an	array	of	the	types	for	each	field	in	this	record. Any

Supported	Field	Types

Value Type

	l	 Long

	f	 Float

	d	 Double

	s	 Short

	t	 Datetime

	d	 Date

	c	 Decimal

	b	 Byte

Full	Example

{

		"info":{

				"name":	"demo",

				"default-cluster-id":	2,

				"exporter-version":	2,

				"engine-version":	"1.0rc8-SNAPSHOT",

				"storage-config-version":	2,

				"schema-version":	4,

				"mvrbtree-version":	0

		},

		"clusters":	[

				{"name":	"internal",	"id":	0,	"type":	"PHYSICAL"},

				{"name":	"index",	"id":	1,	"type":	"PHYSICAL"},

				{"name":	"default",	"id":	2,	"type":	"PHYSICAL"},

				{"name":	"orole",	"id":	3,	"type":	"PHYSICAL"},

				{"name":	"ouser",	"id":	4,	"type":	"PHYSICAL"},

				{"name":	"orids",	"id":	5,	"type":	"PHYSICAL"},

				{"name":	"csv",	"id":	6,	"type":	"PHYSICAL"},

				{"name":	"binary",	"id":	8,	"type":	"PHYSICAL"},

				{"name":	"account",	"id":	9,	"type":	"PHYSICAL"},

				{"name":	"company",	"id":	10,	"type":	"PHYSICAL"},

				{"name":	"profile",	"id":	11,	"type":	"PHYSICAL"},

				{"name":	"whiz",	"id":	12,	"type":	"PHYSICAL"},

				{"name":	"address",	"id":	13,	"type":	"PHYSICAL"},

				{"name":	"city",	"id":	14,	"type":	"PHYSICAL"},

				{"name":	"country",	"id":	15,	"type":	"PHYSICAL"},

				{"name":	"dummy",	"id":	16,	"type":	"PHYSICAL"},

				{"name":	"ographvertex",	"id":	26,	"type":	"PHYSICAL"},

				{"name":	"ographedge",	"id":	27,	"type":	"PHYSICAL"},

				{"name":	"graphvehicle",	"id":	28,	"type":	"PHYSICAL"},

				{"name":	"graphcar",	"id":	29,	"type":	"PHYSICAL"},

				{"name":	"graphmotocycle",	"id":	30,	"type":	"PHYSICAL"},

				{"name":	"newv",	"id":	31,	"type":	"PHYSICAL"},

				{"name":	"mappoint",	"id":	33,	"type":	"PHYSICAL"},

				{"name":	"person",	"id":	35,	"type":	"PHYSICAL"},

				{"name":	"order",	"id":	36,	"type":	"PHYSICAL"},

				{"name":	"post",	"id":	37,	"type":	"PHYSICAL"},

				{"name":	"comment",	"id":	38,	"type":	"PHYSICAL"}

Export	format

185



		],

		"schema":{

				"version":	210,

				"classes":	[

						{"name":	"Account",	"default-cluster-id":	9,	"cluster-ids":	[9],

								"properties":	[

										{"name":	"binary",	"type":	"BINARY",	"mandatory":	false,	"not-null":	false},

										{"name":	"birthDate",	"type":	"DATE",	"mandatory":	false,	"not-null":	false},

										{"name":	"id",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"Address",	"default-cluster-id":	13,	"cluster-ids":	[13]

						},

						{"name":	"Animal",	"default-cluster-id":	17,	"cluster-ids":	[17]

						},

						{"name":	"AnimalRace",	"default-cluster-id":	18,	"cluster-ids":	[18]

						},

						{"name":	"COMMENT",	"default-cluster-id":	38,	"cluster-ids":	[38]

						},

						{"name":	"City",	"default-cluster-id":	14,	"cluster-ids":	[14]

						},

						{"name":	"Company",	"default-cluster-id":	10,	"cluster-ids":	[10],	"super-class":	"Account",

								"properties":	[

								]

						},

						{"name":	"Country",	"default-cluster-id":	15,	"cluster-ids":	[15]

						},

						{"name":	"Dummy",	"default-cluster-id":	16,	"cluster-ids":	[16]

						},

						{"name":	"GraphCar",	"default-cluster-id":	29,	"cluster-ids":	[29],	"super-class":	"GraphVehicle",

								"properties":	[

								]

						},

						{"name":	"GraphMotocycle",	"default-cluster-id":	30,	"cluster-ids":	[30],	"super-class":	"GraphVehicle",

								"properties":	[

								]

						},

						{"name":	"GraphVehicle",	"default-cluster-id":	28,	"cluster-ids":	[28],	"super-class":	"OGraphVertex",

								"properties":	[

								]

						},

						{"name":	"MapPoint",	"default-cluster-id":	33,	"cluster-ids":	[33],

								"properties":	[

										{"name":	"x",	"type":	"DOUBLE",	"mandatory":	false,	"not-null":	false},

										{"name":	"y",	"type":	"DOUBLE",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"OGraphEdge",	"default-cluster-id":	27,	"cluster-ids":	[27],	"short-name":	"E",

								"properties":	[

										{"name":	"in",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class":	"OGraphVertex"},

										{"name":	"out",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class":	"OGraphVertex"}

								]

						},

						{"name":	"OGraphVertex",	"default-cluster-id":	26,	"cluster-ids":	[26],	"short-name":	"V",

								"properties":	[

										{"name":	"in",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class":	"OGraphEdge"},

										{"name":	"out",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class":	"OGraphEdge"}

								]

						},

						{"name":	"ORIDs",	"default-cluster-id":	5,	"cluster-ids":	[5]

						},

						{"name":	"ORole",	"default-cluster-id":	3,	"cluster-ids":	[3],

								"properties":	[

										{"name":	"mode",	"type":	"BYTE",	"mandatory":	false,	"not-null":	false},

										{"name":	"name",	"type":	"STRING",	"mandatory":	true,	"not-null":	true},

										{"name":	"rules",	"type":	"EMBEDDEDMAP",	"mandatory":	false,	"not-null":	false,	"linked-type":	"BYTE"}

								]

						},

						{"name":	"OUser",	"default-cluster-id":	4,	"cluster-ids":	[4],

								"properties":	[

										{"name":	"name",	"type":	"STRING",	"mandatory":	true,	"not-null":	true},

										{"name":	"password",	"type":	"STRING",	"mandatory":	true,	"not-null":	true},

										{"name":	"roles",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class":	"ORole"}

								]

						},

						{"name":	"Order",	"default-cluster-id":	36,	"cluster-ids":	[36]

Export	format

186



						},

						{"name":	"POST",	"default-cluster-id":	37,	"cluster-ids":	[37],

								"properties":	[

										{"name":	"comments",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class":	"COMMENT"}

								]

						},

						{"name":	"Person",	"default-cluster-id":	35,	"cluster-ids":	[35]

						},

						{"name":	"Person2",	"default-cluster-id":	22,	"cluster-ids":	[22],

								"properties":	[

										{"name":	"age",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},

										{"name":	"firstName",	"type":	"STRING",	"mandatory":	false,	"not-null":	false},

										{"name":	"lastName",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"Profile",	"default-cluster-id":	11,	"cluster-ids":	[11],

								"properties":	[

										{"name":	"hash",	"type":	"LONG",	"mandatory":	false,	"not-null":	false},

										{"name":	"lastAccessOn",	"type":	"DATETIME",	"mandatory":	false,	"not-null":	false,	"min":	"2010-01-01	00:00:00"},

										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false,	"min":	"3",	"max":	"30"},

										{"name":	"nick",	"type":	"STRING",	"mandatory":	false,	"not-null":	false,	"min":	"3",	"max":	"30"},

										{"name":	"photo",	"type":	"TRANSIENT",	"mandatory":	false,	"not-null":	false},

										{"name":	"registeredOn",	"type":	"DATETIME",	"mandatory":	false,	"not-null":	false,	"min":	"2010-01-01	00:00:00"},

										{"name":	"surname",	"type":	"STRING",	"mandatory":	false,	"not-null":	false,	"min":	"3",	"max":	"30"}

								]

						},

						{"name":	"PropertyIndexTestClass",	"default-cluster-id":	21,	"cluster-ids":	[21],

								"properties":	[

										{"name":	"prop1",	"type":	"STRING",	"mandatory":	false,	"not-null":	false},

										{"name":	"prop2",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},

										{"name":	"prop3",	"type":	"BOOLEAN",	"mandatory":	false,	"not-null":	false},

										{"name":	"prop4",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},

										{"name":	"prop5",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"SQLDropIndexTestClass",	"default-cluster-id":	23,	"cluster-ids":	[23],

								"properties":	[

										{"name":	"prop1",	"type":	"DOUBLE",	"mandatory":	false,	"not-null":	false},

										{"name":	"prop2",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"SQLSelectCompositeIndexDirectSearchTestClass",	"default-cluster-id":	24,	"cluster-ids":	[24],

								"properties":	[

										{"name":	"prop1",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},

										{"name":	"prop2",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"TestClass",	"default-cluster-id":	19,	"cluster-ids":	[19],

								"properties":	[

										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false},

										{"name":	"testLink",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class":	"TestLinkClass"}

								]

						},

						{"name":	"TestLinkClass",	"default-cluster-id":	20,	"cluster-ids":	[20],

								"properties":	[

										{"name":	"testBoolean",	"type":	"BOOLEAN",	"mandatory":	false,	"not-null":	false},

										{"name":	"testString",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"Whiz",	"default-cluster-id":	12,	"cluster-ids":	[12],

								"properties":	[

										{"name":	"account",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class":	"Account"},

										{"name":	"date",	"type":	"DATE",	"mandatory":	false,	"not-null":	false,	"min":	"2010-01-01"},

										{"name":	"id",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},

										{"name":	"replyTo",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class":	"Account"},

										{"name":	"text",	"type":	"STRING",	"mandatory":	true,	"not-null":	false,	"min":	"1",	"max":	"140"}

								]

						},

						{"name":	"classclassIndexManagerTestClassTwo",	"default-cluster-id":	25,	"cluster-ids":	[25]

						},

						{"name":	"newV",	"default-cluster-id":	31,	"cluster-ids":	[31],	"super-class":	"OGraphVertex",

								"properties":	[

										{"name":	"f_int",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"vertexA",	"default-cluster-id":	32,	"cluster-ids":	[32],	"super-class":	"OGraphVertex",

Export	format

187



								"properties":	[

										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}

								]

						},

						{"name":	"vertexB",	"default-cluster-id":	34,	"cluster-ids":	[34],	"super-class":	"OGraphVertex",

								"properties":	[

										{"name":	"map",	"type":	"EMBEDDEDMAP",	"mandatory":	false,	"not-null":	false},

										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}

								]

						}

				]

		},

		"records":	[{

										"@type":	"d",	"@rid":	"#12:476",	"@version":	0,	"@class":	"Whiz",

										"id":	476,

										"date":	"2011-12-09	00:00:00:000",

										"text":	"Los	a	went	chip,	of	was	returning	cover,	In	the",

										"@fieldTypes":	"date=t"

								},{

										"@type":	"d",	"@rid":	"#12:477",	"@version":	0,	"@class":	"Whiz",

										"id":	477,

										"date":	"2011-12-09	00:00:00:000",

										"text":	"He	in	office	return	He	inside	electronics	for	$500,000	Jay",

										"@fieldTypes":	"date=t"

								}

		]

}

Export	format

188



Import	from	RDBMS
NOTE:	As	of	OrientDB	2.0,	you	can	use	the	OrientDB-ETL	module	to	import	data	from	an	RDBMS.	You	can	use	ETL	also	with	1.7.x	by
installing	it	as	a	separate	module.

OrientDB	supports	a	subset	of	SQL,	so	importing	a	database	created	as	"Relational"	is	straightforward.	For	the	sake	of	simplicity,
consider	your	Relational	database	having	just	these	two	tables:

POST
COMMENT

Where	the	relationship	is	between	Post	and	comment	as	One-2-Many.

TABLE	POST:

+----+----------------+

|	id	|	title										|

+----+----------------+

|	10	|	NoSQL	movement	|

|	20	|	New	OrientDB			|

+----+----------------+

TABLE	COMMENT:

+----+--------+--------------+

|	id	|	postId	|	text									|

+----+--------+--------------+

|		0	|			10			|	First								|

|		1	|			10			|	Second							|

|	21	|			10			|	Another						|

|	41	|			20			|	First	again		|

|	82	|			20			|	Second	Again	|

+----+--------+--------------+

Import	using	the	Document	Model	(relationships	as	links)
Import	using	the	Graph	Model	(relationships	as	edges)

Import	From	RDBMS

189

https://github.com/orientechnologies/orientdb-etl/wiki/Import-from-DBMS


Import	from	a	Relational	Database
Relational	databases	typically	query	and	manipulate	data	with	SQL.	Given	that	OrientDB	supports	a	subset	of	SQL,	it	is	relatively
straightfoward	to	import	data	from	a	Relational	databases	to	OrientDB.	You	can	manage	imports	using	the	Java	API,	OrientDB	Studio
or	the	OrientDB	Console.	The	examples	below	use	the	Console.

This	guide	covers	importing	into	the	Document	Model.	Beginning	with	version	2.0,	you	can	import	into	the	Graph	Model	using
the	ETL	Module.	From	version	1.7.x	you	can	still	use	ETL	by	installing	it	as	a	separate	module

For	these	examples,	assume	that	your	Relational	database,	(referred	to	as		reldb		in	the	code),	contains	two	tables:		Post		and
	Comment	.	The	relationship	between	these	tables	is	one-to-many.

reldb>	SELECT	*	FROM	post;

+----+----------------+

|	id	|	title										|

+----+----------------+

|	10	|	NoSQL	movement	|

|	20	|	New	OrientDB			|

+----+----------------+

reldb>	SELECT	*	FROM	comment;

+----+--------+--------------+

|	id	|	postId	|	text									|

+----+--------+--------------+

|		0	|			10			|	First								|

|		1	|			10			|	Second							|

|	21	|			10			|	Another						|

|	41	|			20			|	First	again		|

|	82	|			20			|	Second	Again	|

+----+--------+--------------+

Given	that	the	Relational	Model	doesn't	use	concepts	from	Object	Oriented	Programming,	there	are	some	things	to	consider	in	the
transition	from	a	Relational	database	to	OrientDB.

In	Relational	databases	there	is	no	concept	of	class,	so	in	the	import	to	OrientDB	you	need	to	create	on	class	per	table.

In	Relational	databases,	one-to-many	references	invert	from	the	target	table	to	the	source	table.

Table	POST				<-	(foreign	key)	Table	COMMENT

In	OrientDB,	it	follows	the	Object	Oriented	Model,	so	you	have	a	collection	of	links	connecting	instances	of		Post		and		Comment	.

Class	POST	->*	(collection	of	links)	Class	COMMENT

Exporting	Relational	Databases

Most	Relational	database	management	systems	provide	a	way	to	export	the	database	into	SQL	format.	What	you	specifically	need	from
this	is	a	text	file	that	contains	the	SQL		INSERT		commands	to	recreate	the	database	from	scratch.	For	example,

MySQL:	the		mysqldump		utility.
Oracle	Database:	the	Datapump	utilities.
Microsoft	SQL	Server:	the	Import	and	Export	Wizard.

Import	From	RDBMS

190

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
http://www.orafaq.com/wiki/Data_Pump
https://msdn.microsoft.com/en-us/library/ms141209.aspx


When	you	run	this	utility	on	the	example	database,	it	produces	an		.sql		file	that	contains	the	exported	SQL	of	the	Relational	database.

DROP	TABLE	IF	EXISTS	post;

CREATE	TABLE	post	(

id	INT(11)	NOT	NULL	AUTO_INCREMENT,

title	VARCHAR(128),

PRIMARY	KEY	(id)

);

DROP	TABLE	IF	EXISTS	comment;

CREATE	TABLE	comment	(

id	INT(11)	NOT	NULL	AUTO_INCREMENT,

postId	INT(11),

text	TEXT,

PRIMARY	KEY	(id),

CONSTRAINT	`fk_comments`

				FOREIGN	KEY	(`postId`	)

				REFERENCES	`post`	(`id`	)

);

INSERT	INTO	POST	(id,	title)	VALUES(	10,	'NoSQL	movement'	);

INSERT	INTO	POST	(id,	title)	VALUES(	20,	'New	OrientDB'	);

INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	0,	10,	'First'	);

INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	1,	10,	'Second'	);

INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	21,	10,	'Another'	);

INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	41,	20,	'First	again'	);

INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	82,	20,	'Second	Again'	);

Modifying	the	Export	File

Importing	from	the	Relational	database	requires	that	you	modify	the	SQL	file	to	make	it	usable	by	OrientDB.	In	order	to	do	this,	you
need	to	open	the	SQL	file,	(called		export.sql		below),	in	a	text	editor	and	modify	the	commands	there.	Once	this	is	done,	you	can
execute	the	file	on	the	Console	using	batch	mode.

Database

In	order	to	import	a	data	into	OrientDB,	you	need	to	have	a	database	ready	to	receive	the	import.	Note	that	the	example		export.sql	
file	doesn't	include	statements	to	create	the	database.	You	can	either	create	a	new	database	or	use	an	existing	one.

Using	New	Databases

In	creating	a	database	for	the	import,	you	can	either	create	a	volatile	in-memory	database,	(one	that	is	only	available	while	OrientDB	is
running),	or	you	can	create	a	persistent	disk-based	database.	For	a	persistent	database,	you	can	create	it	on	a	remote	server	or	locally
through	the	PLocal	mode.

The	recommended	method	is	PLocal,	given	that	it	offers	better	performance	on	massive	inserts.

Using	the	embedded	Plocal	mode:

$	vim	export.sql

CREATE	DATABASE	PLOCAL:/tmp/db/blog	admin_user	admin_passwd	PLOCAL	DOCUMENT

Here,	the		CREATE	DATABASE		command	creates	a	new	database	at		/tmp/db/blog	.

Using	the	Remote	mode:

$	vim	export.sql

CREATE	DATABASE	REMOTE:localhost/blog	root_user	dkdf383dhdsj	PLOCAL	DOCUMENT

This	creates	a	database	at	the	URL		http://localhost/blog	.

Import	From	RDBMS

191



NOTE:	When	you	create	remote	databases,	you	need	the	server	credentials	to	access	it.	The	user		root		and	its	password	are
stored	in	the		$ORIENTDB_HOME/config/orientdb-server-config.xml		configuration	file.

Using	Existing	Databases

In	the	event	that	you	already	have	a	database	set	up	and	ready	for	the	import,	instead	of	creating	a	database	add	a	line	that	connects	to
that	databases,	using	the		CONNECT		command.

Using	the	embedded	PLocal	mode:

$	vim	export.sh

CONNECT	PLOCAL:/tmp/db/blog	admin_user	admin_passwd

This	connects	to	the	database	at		/tmp/db/blog	.

Using	the	Remote	mode:

$	vim	export.sql

CONNECT	REMOTE:localhost/blog	admin_user	admin_passwd

This	connects	to	the	database	at	the	URL		http://localhost/blog	.

Declaring	Intent

In	the	SQL	file,	after	you	create	or	connect	to	the	database,	you	need	to	declare	your	intention	to	perform	a	massive	insert.	Intents	allow
you	to	utilize	automatic	tuning	OrientDB	for	maximum	performance	on	particular	operations,	such	as	large	inserts	or	reads.

$	vim	export.sh

...

DECLARE	INTENT	MASSIVEINSERT

Creating	Classes

Relational	databases	have	no	parallel	to	concepts	in	Object	Oriented	programming,	such	as	classes.	Conversely,	OrientDB	doesn't	have	a
concept	of	tables	in	the	Relational	sense.

Modify	the	SQL	file,	changing		CREATE	TABLE		statements	to		CREATE	CLASS		commands:

$	vim	export.sql

...

CREATE	CLASS	Post

CREATE	CLASS	Comment

NOTE:	In	cases	where	your	Relational	database	was	created	using	Object	Relational	Mapping,	or	ORM,	tools,	such	as	Hibernate
or	Data	Nucleus,	you	have	to	rebuild	the	original	Object	Oriented	Structure	directly	in	OrientDB.

Create	Links

In	the	Relational	database,	the	relationship	between	the		post		and		comment		was	handled	through	foreign	keys	on	the		id		fields.
OrientDB	handles	relationships	differently,	using	links	between	two	or	more	records	of	the	Document	type.

By	default,	the		CREATE	LINK		command	creates	a	direct	relationship	in	your	object	model.	Navigation	goes	from		Post		to		Comment		and
not	vice	versa,	which	is	the	case	for	the	Relational	database.	You'll	need	to	use	the		INVERSE		keyword	to	make	the	links	work	in	both
directions.

Add	the	following	line	after	the		INSERT		statements.

Import	From	RDBMS

192

http://www.hibernate.org
http://www.datanucleus.org


$	vim	export.sql

...

CREATE	LINK	comments	TYPE	LINKSET	FROM	comment.postId	TO	post.id	INVERSE

Remove	Constraints

Unlike	how	Relational	databases	handle	tables,	OrientDB	does	not	require	you	to	create	a	strict	schema	on	your	classes.	The	properties
on	each	class	are	defined	through	the		INSERT		statements.	That	is,		id		and		title		on		Post		and		id	,		postId		and		text		on
	Comment	.

Given	that	you	created	a	link	in	the	above	section,	the	property		postId		is	no	longer	necessary.	Instead	of	modifying	each		INSERT	
statement,	you	can	use	the		UPDATE		command	to	remove	them	at	the	end:

$	vim	export.sql

...

UPDATE	comment	REMOVE	postId

Bear	in	mind,	this	is	an	optional	step.	The	database	will	still	function	if	you	leave	this	field	in	place.

Expected	Output

When	you've	finished,	remove	any	statements	that	OrientDB	does	not	support.	With	the	changes	above	this	leaves	you	with	a	file
similar	to	the	one	below:

$	cat	export.sql

CONNECT	plocal:/tmp/db/blog	admin	admin

DECLARE	INTENT	MASSIVEINSERT

CREATE	CLASS	Post

CREATE	CLASS	Comment

INSERT	INTO	Post	(id,	title)	VALUES(	10,	'NoSQL	movement'	)

INSERT	INTO	Post	(id,	title)	VALUES(	20,	'New	OrientDB'	)

INSERT	INTO	Comment	(id,	postId,	text)	VALUES(	0,	10,	'First'	)

INSERT	INTO	Comment	(id,	postId,	text)	VALUES(	1,	10,	'Second'	)

INSERT	INTO	Comment	(id,	postId,	text)	VALUES(	21,	10,	'Another'	)

INSERT	INTO	Comment	(id,	postId,	text)	VALUES(	41,	20,	'First	again'	)

INSERT	INTO	Comment	(id,	postId,	text)	VALUES(	82,	20,	'Second	Again'	)

CREATE	LINK	comments	TYPE	LINKSET	FROM	Comment.postId	TO	Post.id	INVERSE

UPDATE	Comment	REMOVE	postId

Importing	Databases
When	you	finish	modifying	the	SQL	file,	you	can	execute	it	through	the	Console	in	batch	mode.	This	is	done	by	starting	the	Console
with	the	SQL	file	given	as	the	first	argument.

$	$ORIENTDB_HOME/bin/console.sh	export.sql

When	the	OrientDB	starts,	it	executes	each	of	the	commands	given	in	the	SQL	files,	creating	or	connecting	to	the	database,	creating	the
classes	and	inserting	the	data	from	the	Relational	database.	You	now	have	a	working	instance	of	OrientDB	to	use.

Import	From	RDBMS

193



Using	the	Database

You	now	have	an	OrientDB	Document	database	where	relationships	are	direct	and	handled	without	the	use	of	joins.

Query	for	all	posts	with	comments:

orientdb>	SELECT	FROM	Post	WHERE	comments.size()	>	0

Query	for	all	posts	where	the	comments	contain	the	word	"flame"	in	the		text		property:

orientdb>	SELECT	FROM	Post	WHERE	comments	CONTAINS(text	

										LIKE	'%flame%')

Query	for	all	posts	with	comments	made	today,	assuming	that	you	have	added	a		date		property	to	the		Comment		class:

orientdb>	SELECT	FROM	Post	WHERE	comments	CONTAINS(date	>	

										'2011-04-14	00:00:00')

For	more	information,	see

SQL	commands
Console-Commands

Import	From	RDBMS

194



Import	from	RDBMS	to	Graph	Model
To	import	from	RDBMS	to	OrientDB	using	the	Graph	Model	the	ETL	tool	is	the	suggested	way	to	do	it.	Take	a	look	at:	Import	from
CSV	to	a	Graph.

Import	From	RDBMS

195

http://www.orientechnologies.com/docs/last/orientdb-etl.wiki/Import-from-CSV-to-a-Graph.html


Import	from	Neo4j
Neo4j	is	an	open-source	graph	database	that	queries	and	manipulates	data	using	its	own	Cypher	Query	Language	and	can	export	in
GraphML,	an	XML-based	file	format	for	graphs.	Given	that	OrientDB	can	read	GraphML,	it	is	relatively	straightforward	to	import
data	from	Neo4j	into	OrientDB.	You	can	manage	the	imports	using	the	Console	or	the	Java	API.

Neo4j	is	a	registered	trademark	of	Neo	Technology,	Inc.	For	more	information	on	the	differences	between	Neo4j	and	OrientDB,
see	OrientDB	vs.	Neo4j.

Exporting	GraphML

In	order	to	export	data	from	Neo4j	into	GraphML,	you	need	to	install	the	Neo4j	Shell	Tools	plugin.	Once	you	have	this	package
installed,	you	can	use	the		export-graphml		utility	to	export	the	database.

1.	 Change	into	the	Neo4j	home	directory:

$	cd	/path/to/neo4j-community-2.3.2

2.	 Download	the	Neo4j	Shell	Tools:

$	curl	http://dist.neo4j.org/jexp/shell/neo4j-shell-tools_2.3.2.zip	\

						-o	neo4j-shell-tools.zip

3.	 Unzip	the		neo4j-shell-tools.zip		file	into	the		lib		directory:

$	unzip	neo4j-shell-tools.zip	-d	lib

4.	 Restart	the	Neo4j	Server.	In	the	event	that	it's	not	running,		start		it:

$	./bin/neo4j	restart

5.	 Once	you	have	Neo4j	restarted	with	the	Neo4j	Shell	Tools,	launch	the	Neo4j	Shell	tool,	located	in	the		bin/		directory:

$	./bin/neo4j-shell

Welcome	to	the	Neo4j	Shell!	Enter	'help'	for	a	list	of	commands

NOTE:	Remote	Neo4j	graph	database	service	'shell'	at	port	1337

neo4j-sh	(0)$

6.	 Export	the	database	into	GraphML:

neo4j-sh	(0)$	export-graphml	-t	-o	/tmp/out.graphml

Wrote	to	GraphML-file	/tmp/out.graphml	0.	100%:	nodes	=	302	rels	=	834

properties	=	4221	time	59	sec	total	59	sec

This	exports	the	database	to	the	path		/tmp/out.graphml	.

Importing	GraphML
There	are	three	methods	available	in	importing	the	GraphML	file	into	OrientDB:	through	the	Console,	through	Gremlin	or	through	the
Java	API.

Import	From	Neo4j

196

http://orientdb.com/orientdb-vs-neo4j/
https://github.com/jexp/neo4j-shell-tools
http://docs.neo4j.org/chunked/stable/shell.html


Importing	through	the	OrientDB	Console

For	more	recent	versions	of	OrientDB,	you	can	import	data	from	GraphML	through	the	OrientDB	Console.	If	you	have	version	2.0	or
greater,	this	is	the	recommended	method	given	that	it	can	automatically	translate	the	Neo4j	labels	into	classes.

1.	 Log	into	the	OrientDB	Console.

$	$ORIENTDB_HOME/bin/console.sh

2.	 In	OrientDB,	create	a	database	to	receive	the	import:

orientdb>	CREATE	DATABASE	PLOCAL:/tmp/db/test

Creating	database	[plocal:/tmp/db/test]	using	the	storage	type	[plocal]...

Database	created	successfully.

Current	database	is:	plocal:/tmp/db/test

3.	 Import	the	data	from	the	GraphML	file:

orientdb	{db=test}>	IMPORT	DATABASE	/tmp/out.graphml

Importing	GRAPHML	database	database	from	/tmp/out.graphml...

Transaction	8	has	been	committed	in	12ms

This	imports	the	Neo4j	database	into	OrientDB	on	the		test		database.

Importing	through	the	Gremlin	Console

For	older	versions	of	OrientDB,	you	can	import	data	from	GraphML	through	the	Gremlin	Console.	If	you	have	a	version	1.7	or	earlier,
this	is	the	method	to	use.	It	is	not	recommended	on	more	recent	versions,	given	that	it	doesn't	consider	labels	declared	in	Neo4j.	In	this
case,	everything	imports	as	the	base	vertex	and	edge	classes,	(that	is,		V		and		E	).	This	means	that,	after	importing	through	Gremlin
you	need	to	refactor	you	graph	elements	to	fit	a	more	structured	schema.

To	import	the	GraphML	file	into	OrientDB,	complete	the	following	steps:

1.	 Launch	the	Gremlin	Console:

$	$ORIENTDB_HOME/bin/gremlin.sh

									\,,,/

									(o	o)

-----oOOo-(_)-oOOo-----

2.	 From	the	Gremlin	Console,	create	a	new	graph,	specifying	the	path	to	your	Graph	database,	(here		/tmp/db/test	):

gremlin>	g	=	new	OrientGraph("plocal:/tmp/db/test");

==>orientgraph[plocal:/db/test]

3.	 Load	the	GraphML	file	into	the	graph	object	(that	is,		g	):

gremlin>	g.loadGraphML("/tmp/out.graphml");

==>null

4.	 Exit	the	Gremlin	Console:

Import	From	Neo4j

197



gremlin>	quit

This	imports	the	GraphML	file	into	your	OrientDB	database.

Importing	through	the	Java	API

OrientDB	Console	calls	the	Java	API.	Using	the	Java	API	directly	allows	you	greater	control	over	the	import	process.	For	instance,

new	OGraphMLReader(new	OrientGraph("plocal:/temp/bettergraph")).inputGraph("/temp/neo4j.graphml");

This	line	imports	the	GraphML	file	into	OrientDB.

Defining	Custom	Strategies

Beginning	in	version	2.1,	OrientDB	allows	you	to	modify	the	import	process	through	custom	strategies	for	vertex	and	edge	attributes.	It
supports	the	following	strategies:

	com.orientechnologies.orient.graph.graphml.OIgnoreGraphMLImportStrategy		Defines	attributes	to	ignore.
	com.orientechnologies.orient.graph.graphml.ORenameGraphMLImportStrategy		Defines	attributes	to	rename.

Exammples

Ignore	the	vertex	attribute		type	:

new	OGraphMLReader(new	OrientGraph("plocal:/temp/bettergraph")).defineVertexAttributeStrategy("__type__",	new	OIgnoreGrap

hMLImportStrategy()).inputGraph("/temp/neo4j.graphml");

Ignore	the	edge	attribute		weight	:

new	OGraphMLReader(new	OrientGraph("plocal:/temp/bettergraph")).defineEdgeAttributeStrategy("weight",	new	OIgnoreGraphMLI

mportStrategy()).inputGraph("/temp/neo4j.graphml");

Rename	the	vertex	attribute		type		in	just		type	:

new	OGraphMLReader(new	OrientGraph("plocal:/temp/bettergraph")).defineVertexAttributeStrategy("__type__",	new	ORenameGrap

hMLImportStrategy("type")).inputGraph("/temp/neo4j.graphml");

Import	Tips	and	Tricks

Dealing	with	Memory	Issues

In	the	event	that	you	experience	memory	issues	while	attempting	to	import	from	Neo4j,	you	might	consider	reducing	the	batch	size.	By
default,	the	batch	size	is	set	to		1000	.	Smaller	value	causes	OrientDB	to	process	the	import	in	smaller	units.

Import	with	adjusted	batch	size	through	the	Console:

orientdb	{db=test}>	IMPORT	DATABASE	/tmp/out.graphml	batchSize=100

Import	with	adjusted	batch	size	through	the	Java	API:

new	OGraphMLReader(new	OrientGraph("plocal:/temp/bettergraph")).setBatchSize(100).inputGraph("/temp/neo4j.graphml");

Storing	the	Vertex	ID's

By	default,	OrientDB	updates	the	import	to	use	its	own	ID's	for	vertices.	If	you	want	to	preserve	the	original	vertex	ID's	from	Neo4j,
use	the		storeVertexIds		option.

Import	From	Neo4j

198



Import	with	the	original	vertex	ID's	through	the	Console:

orientdb	{db=test}>	IMPORT	DATABASE	/tmp/out.graphml	storeVertexIds=true

Import	with	the	original	vertex	ID's	through	the	Java	API:

new	OGraphMLReader(new	OrientGraph("plocal:/temp/bettergraph")).setStoreVertexIds(true).inputGraph("/temp/neo4j.graphml")

;

Import	From	Neo4j

199



ETL
The	Extractor	Transformer	and	Loader,	or	ETL,	module	for	OrientDB	provides	support	for	moving	data	to	and	from	OrientDB
databases	using	ETL	processes.

Configuration:	The	ETL	module	uses	a	configuration	file,	written	in	JSON.
Extractor	Pulls	data	from	the	source	database.
Transformers	Convert	the	data	in	the	pipeline	from	its	source	format	to	one	accessible	to	the	target	database.
Loader	loads	the	data	into	the	target	database.

How	ETL	Works

The	ETL	module	receives	a	backup	file	from	another	database,	it	then	converts	the	fields	into	an	accessible	format	and	loads	it	into
OrientDB.

EXTRACTOR	=>	TRANSFORMERS[]	=>	LOADER

For	example,	consider	the	process	for	a	CSV	file.	Using	the	ETL	module,	OrientDB	loads	the	file,	applies	whatever	changes	it	needs,
then	stores	the	reocrd	as	a	document	into	the	current	OrientDB	database.

+-----------+-----------------------+-----------+

|											|														PIPELINE													|

+	EXTRACTOR	+-----------------------+-----------+

|											|					TRANSFORMERS						|		LOADER			|

+-----------+-----------------------+-----------+

|			FILE			==>		CSV->FIELD->MERGE		==>	OrientDB	|

+-----------+-----------------------+-----------+

You	can	modify	this	pipeline,	allowing	the	transformation	and	loading	phases	to	run	in	parallel	by	setting	the	configuration	variable
	"parallel"		to		true	.

{"parallel":	true}

Installation
Beginning	with	version	2.0,	OrientDB	bundles	the	ETL	module	with	the	official	release.	Follow	these	steps	to	use	the	module:

Clone	the	repository	on	your	computer,	by	executing:
	git	clone	https://github.com/orientechnologies/orientdb-etl.git	

Compile	the	module,	by	executing:
	mvn	clean	install	

Copy		script/oetl.sh		(or	.bat	under	Windows)	to	$ORIENTDB_HOME/bin
Copy		target/orientdb-etl-2.0-SNAPSHOT.jar		to	$ORIENTDB_HOME/lib

Usage

To	use	the	ETL	module,	run	the		oetl.sh		script	with	the	configuration	file	given	as	an	argument.

$	$ORIENTDB_HOME/bin/oetl.sh	config-dbpedia.json

ETL

200

http://en.wikipedia.org/wiki/Extract,_transform,_load


NOTE:	If	you	are	importing	data	for	use	in	a	distributed	database,	then	you	must	set
	ridBag.embeddedToSbtreeBonsaiThreshold=Integer.MAX\_VALUE		for	the	ETL	process	to	avoid	replication	errors,
when	the	database	is	updated	online.

Run-time	Configuration

When	you	run	the	ETL	module,	you	can	define	its	configuration	variables	by	passing	it	a	JSON	file,	which	the	ETL	module	resolves	at
run-time	by	passing	them	as	it	starts	up.

You	could	also	define	the	values	for	these	variables	through	command-line	options.	For	example,	you	could	assign	the	database	URL	as
	${databaseURL}	,	then	pass	the	relevant	argument	through	the	command-line:

$	$ORIENTDB_HOME/bin/oetl.sh	config-dbpedia.json	\

						-databaseURL=plocal:/tmp/mydb

When	the	ETL	module	initializes,	it	pulls		/tmp/mydb		from	the	command-line	to	define	this	variable	in	the	configuration	file.

Available	Components

Blocks
Sources
Extractors
Transformers
Loaders

Examples:

Import	the	database	of	Beers
Import	from	CSV	to	a	Graph
Import	from	JSON
Import	DBPedia
Import	from	a	DBMS
Import	from	Parse	(Facebook)

ETL

201



ETL	-	Configuration
OrientDB	manages	configuration	for	the	ETL	module	through	a	single	JSON	configuration	file,	called	at	execution.

Syntax

{

		"config":	{

				<name>:	<value>

		},

		"begin":	[

				{	<block-name>:	{	<configuration>	}	}

		],

		"source"	:	{

				{	<source-name>:	{	<configuration>	}	}

		},

		"extractor"	:	{

				{	<extractor-name>:	{	<configuration>	}	}

		},

		"transformers"	:	[

				{	<transformer-name>:	{	<configuration>	}	}

		],

		"loader"	:	{	<loader-name>:	{	<configuration>	}	},

		"end":	[

			{	<block-name>:	{	<configuration>	}	}

		]

}

	"config"		Manages	all	settings	and	context	variables	used	by	any	component	of	the	process.
	"source"		Manages	the	source	data	to	process.
	"begin"		Defines	a	list	of	blocks	to	execute	in	order	when	the	process	begins.
	"extractor"		Manages	the	extractor	settings.
	"transformers"		Defines	a	list	of	transformers	to	execute	in	the	pipeline.
	"loader"		Manages	the	loader	settings.
	"end"		Defines	a	list	of	blocks	to	execute	in	order	when	the	process	finishes.

Example

Configuration

202



{

		"config":	{

				"log":	"debug",

				"fileDirectory":	"/temp/databases/dbpedia_csv/",

				"fileName":	"Person.csv.gz"

		},

		"begin":	[

			{	"let":	{	"name":	"$filePath",		"value":	"$fileDirectory.append(	$fileName	)"}	},

			{	"let":	{	"name":	"$className",	"value":	"$fileName.substring(	0,	$fileName.indexOf(".")	)"}	}

		],

		"source"	:	{

				"file":	{	"path":	"$filePath",	"lock"	:	true	}

		},

		"extractor"	:	{

				"row":	{}

		},

		"transformers"	:	[

			{	"csv":	{	"separator":	",",	"nullValue":	"NULL",	"skipFrom":	1,	"skipTo":	3	}	},

			{	"merge":	{	"joinFieldName":"URI",	"lookup":"V.URI"	}	},

			{	"vertex":	{	"class":	"$className"}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/temp/databases/dbpedia",

						"dbUser":	"admin",

						"dbPassword":	"admin",

						"dbAutoCreate":	true,

						"tx":	false,

						"batchCommit":	1000,

						"dbType":	"graph",

						"indexes":	[{"class":"V",	"fields":["URI:string"],	"type":"UNIQUE"	}]

				}

		}

}

General	Rules
In	developing	a	configuration	file	for	ETL	module	processes,	consider	the	following:

You	can	use	context	variables	by	prefixing	them	with	the		$		sign.
It	assigns	the		$input		context	variable	before	each	transformation.
You	can	execute	an	expression	in	OrientDB	SQL	with	the		={<expression>}		syntax.	For	instance,

"field":	={EVAL('3	*	5)}

Conditional	Execution

In	conditional	execution,	OrientDB	only	runs	executable	blocks,	such	as	transformers	and	blocks,	when	a	condition	is	found	true,	such	as
with	a		WHERE		clause.

For	example,

{	"let":	{

				"name":	"path",

				"value":	"C:/Temp",

				"if":	"${os.name}	=	'Windows'"

		}

},

{	"let":	{

				"name":	"path",

				"value":	"/tmp",

				"if":	"${os.name}.indexOf('nux')"

		}

}

Log	setting

Configuration

203



Most	blocks,	such	transformers	and	blocks,	support	the		"log"		setting.	Logs	take	one	of	the	following	logging	levels,	(which	are	case-
insensitive),:		NONE	,		ERROR	,		INFO	,		DEBUG	.	By	default,	it	uses	the		INFO		level.

Setting	the	log-level	to		DEBUG		displays	more	information	on	execution.	It	also	slows	down	execution,	so	use	it	only	for	development
and	debugging	purposes.

{	"http":	{

				"url":	"http://ip.jsontest.com/",

				"method":	"GET",

				"headers":	{

						"User-Agent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_9_4)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/36.0.1985.12

5	Safari/537.36"

				},

				"log":	"DEBUG"

		}

}

Configuration	Variables

The	ETL	module	binds	all	values	declared	in	the		"config"		block	to	the	execution	context	and	are	accessible	to	ETL	processing.	There
are	also	some	special	variables	used	by	the	ETL	process.

Variable Description Type Default
value

	"log"	

Defines	the	global	logging	level.	The	accepted	levels	are:		NONE	,		ERROR	,		INFO	,
and		DEBUG	.	This	parameter	is	useful	to	debug	a	ETL	process	or	single
component.

string 	INFO	

	"maxRetries"	
Defines	the	maximum	number	of	retries	allowed,	in	the	event	that	the	loader
raises	an		ONeedRetryException	,	for	concurrent	modification	of	the	same	record. integer 10

	"parallel"	
Defines	whether	the	ETL	module	executes	pipelines	in	parallel,	using	all	available
cores. boolean 	false	

	"haltOnError"	

Defines	whether	the	ETL	module	halts	the	process	when	it	encounters
unmanageable	errors.	When	set	to		false	,	the	process	continues	in	the	event	of
errors.	It	reports	the	number	of	errors	it	encounters	at	the	end	of	the	import.	This
feature	was	introduced	in	version	2.0.9.

boolean 	true	

Split	Configuration	on	Multiple	Files

You	can	split	the	configuration	into	several	files	allowing	for	the	composition	of	common	parts	such	as	paths,	URL's	and	database
references.

For	example,	you	might	split	the	above	configuration	into	two	files:	one	with	the	input	paths	for		Person.csv		specifically,	while	the
other	would	contain	common	configurations	for	the	ETL	module.

Configuration

204



$	cat	personConfig.json

{

		"config":	{

				"log":	"debug",

				"fileDirectory":	"/temp/databases/dbpedia_csv/",

				"fileName":	"Person.csv.gz"

		}

}

$	cat	commonConfig.json

{

		"begin":	[

			{	"let":	{	"name":	"$filePath",		"value":	"$fileDirectory.append(	$fileName	)"}	},

			{	"let":	{	"name":	"$className",	"value":	"$fileName.substring(	0,	$fileName.indexOf(".")	)"}	}

		],

		"source"	:	{

				"file":	{	"path":	"$filePath",	"lock"	:	true	}

		},

		"extractor"	:	{

				"row":	{}

		},

		"transformers"	:	[

			{	"csv":	{	"separator":	",",	"nullValue":	"NULL",	"skipFrom":	1,	"skipTo":	3	}	},

			{	"merge":	{	"joinFieldName":"URI",	"lookup":"V.URI"	}	},

			{	"vertex":	{	"class":	"$className"}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/temp/databases/dbpedia",

						"dbUser":	"admin",

						"dbPassword":	"admin",

						"dbAutoCreate":	true,

						"tx":	false,

						"batchCommit":	1000,

						"dbType":	"graph",

						"indexes":	[{"class":"V",	"fields":["URI:string"],	"type":"UNIQUE"	}]

				}

		}

}

Then,	when	you	can	call	both	configuration	files	when	you	run	the	ETL	module:

$	$ORIENTDB_HOME/bin/oetl.sh	commonConfig.json	personConfig.json

Run-time	configuration

In	the	configuration	file	for	the	ETL	module,	you	can	define	variables	that	the	module	resolves	at	run-time	by	passing	them	as	command-
line	options.	Values	passed	in	this	manner	override	the	values	defined	in	the		"config"		section,	even	when	you	use	multiple
configuration	files.

For	instance,	you	might	set	the	configuration	variable	in	the	file	to		${databaseURL}	,	then	define	it	through	the	command-line	using:

$	$ORIENTDB_HOME/bin/oetl.sh	config-dbpedia.json	\

						-databaseURL=plocal:/tmp/mydb

In	this	case,	the		databaseURL		parameter	is	set	in	the		"config"		section	to		/tmp/mydb	,	overriding	any	value	given	the	file.

Configuration

205



{

		"config":	{

				"log":	"debug",

				"fileDirectory":	"/temp/databases/dbpedia_csv/",

				"fileName":	"Person.csv.gz"

				"databaseUrl":	"plocal:/temp/currentDb"

		},

		...

Configuration

206



ETL	-	Blocks
When	OrientDB	executes	the	ETL	module,	blocks	in	the	ETL	configuration	define	components	to	execute	in	the	process.	The	ETL
module	in	OrientDB	supports	the	following	types	of	blocks:

	"let"	

	"code"	

	"console"	

Let	Blocks

In	a		"let"		block,	you	can	define	variables	to	the	ETL	process	context.

Component	name:		let	

Syntax

Parameter Description Type Mandatory Default
value

	"name"	
Defines	the	variable	name.	The	ETL	process	ignores	any	values
with	the		$		prefix. string yes

	"value"	 Defines	the	fixed	value	to	assign. an

	"expression"	
Defines	an	expression	in	the	OrientDB	SQL	language	to	evaluate
and	assign. string

Examples

Assign	a	value	to	the	file	path	variable

{	

		"let":	{	

				"name":	"$filePath",

				"value":	"/temp/myfile"

		}	

}

Concat	the		$fileName		variable	to	the		$fileDirectory		to	create	a	new	variable	for		$filePath	:

{	

			"let":	{	

						"name":	"$filePath",		

						"expression":	"$fileDirectory.append($fileName	)"

			}	

}

Code	Block

In	the		"code"		block,	you	can	configure	code	snippets	to	execute	in	any	JVM-supported	languages.	The	default	language	is	JavaScript.

Component	name:		code	

Syntax

Parameter Description Type Mandatory Default	value

	"language"	 Defines	the	programming	language	to	use. string Javascript

	"code"	 Defines	the	code	to	execute. string yes

Blocks

207



Examples

Execute	a		Hello,	World!		program	in	JavaScript,	through	the	ETL	module:

{	

			"code":	{	

						"language":	"Javascript",

						"code":	"print('Hello	World!');"

			}

}

Console	Block

In	a		"console"		block,	you	can	define	commands	OrientDB	executes	through	the	Console.

Component	name:		console	

Syntax

Parameter Description Type Mandatory Default
value

	"file"	
Defines	the	path	to	a	file	containing	the	commands	you	want
to	execute. string

	"commands"	
Defines	an	array	of	commands,	as	strings,	to	execute	in
sequence.

string
array

Example

Invoke	the	console	with	a	file	containing	the	commands:

{	

			"console":	{	

						"file":	"/temp/commands.sql"

			}	

	}

Invoke	the	console	with	an	array	of	commands:

{	

			"console":	{

						"commands":	[

									"CONNECT	plocal:/temp/db/mydb	admin	admin",

									"INSERT	INTO	Account	set	name	=	'Luca'"

						]

		}

}

Blocks

208



ETL	-	Sources
When	OrientDB	executes	the	ETL	module,	source	components	define	the	source	of	the	data	you	want	to	extract.	In	the	case	of	some
extractors	like	JDBCExtractor	work	without	source,	making	this	component	optional.	The	ETL	module	in	OrientDB	supports	the
following	types	of	sources:

	"file"	

	"input"	

	"http"	

File	Sources

In	the	file	source	component,	the	variables	represent	a	source	file	containing	the	data	you	want	the	ETL	module	to	read.	You	can	use	text
files	or	files	comprssed	to		tar.gz	.

Component	name:		file	

Syntax

Parameter Description Type Mandatory Default	value

	"path"	 Defines	the	path	to	the	file string yes

	"lock"	 Defines	whether	to	lock	the	file	during	the	extraction	phase. boolean 	false	

	"encoding"	 Defines	the	encoding	for	the	file. string 	UTF-8	

Examples

Extract	data	from	the	file	at		/tmp/actor.tar.gz	:

{	

			"file":	{	

						"path":	"/tmp/actor.tar.gz",	

						"lock"	:	true	,	

						"encoding"	:	"UTF-8"	

			}

}

Input	Sources
In	the	input	source	component,	the	ETL	module	extracts	data	from	console	input.	You	may	find	this	useful	in	cases	where	the	ETL
module	operates	in	a	pipe	with	other	tools.

Component	name:		input	

Syntax

oetl.sh	"<input>"

Example

Cat	a	file,	piping	its	output	into	the	ETL	module:

$	cat	/etc/csv	|	$ORIENTDB_HOME/bin/oetl.sh	\

						"{transformers:[{csv:{}}]}"

HTTP	Sources

Sources

209



In	the	HTTP	source	component,	the	ETL	module	extracts	data	from	an	HTTP	address	as	source.

Component	name:		http	

Syntax

Parameter Description Type Mandatory Default
value

	"url"	 Defines	the	URL	to	look	to	for	source	data. string yes

	"method"	

Defines	the	HTTP	method	to	use	in	extracting	data.	Supported
methods	are:		GET	,		POST	,		PUT	,		DELETE	,		HEAD	,		OPTIONS	,
and		TRACE	.

string 	GET	

	"headers"	 Defines	the	request	headers	as	an	inner	document	key/value. document

Examples

Execute	an	HTTP	request	in	a		GET	,	setting	the	user	agent	in	the	header:

{	

			"http":	{

						"url":	"http://ip.jsontest.com/",

						"method":	"GET",

						"headers":	{

									"User-Agent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_9_4)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/36.0

.1985.125	Safari/537.36"

						}

			}

}

Sources

210



ETL	-	Extractors
When	OrientDB	executes	the	ETL	module,	extractor	components	handle	data	extraction	from	source.	They	are	the	first	part	of	the	ETL
process.	The	ETL	module	in	OrientDB	supports	the	following	extractors:

Row
CSV
JDBC
JSON
XML

Row	Extractor

When	the	ETL	module	runs	with	a	Row	Extractor,	it	extracts	content	row	by	row.	It	outputs	a	string	array	class.

Compnent	name:		row	
Output	Class:		[	string	]	

Syntax

Parameter Description Type Mandatory Default
value

	"multiLine"	
Defines	whether	the	process	supports	multiline.	Useful	with
CSV's	supporting	linefeed	inside	of	string. boolean 	true	

	"linefeed"	 Defines	the	linefeed	to	use	in	the	event	of	multiline	processing. string 	\r\n	

The		"multiLine"		and		"linefeed"		parameters	were	introduced	in	version	2.0.9.

Examples

Use	the	row	extractor	with	its	default	configuration:

{	

			"row":	{}	

}

CSV	Extractor

When	the	ETL	module	runs	the	CSV	Extractor,	it	parses	a	file	formated	to	Apache	Commons	CSV	and	extracts	the	data	into	OrientDB.
This	component	was	introduced	in	version	2.1.4	and	is	unavailable	in	older	releases	of	OrientDB.

Component	name:		csv	
Output	class:		[	ODocument	]	

Syntax

Extractors

211

https://commons.apache.org/proper/commons-csv


Parameter Description Type Mandatory Default
value

	"separator"	 Defines	the	column	separator. char 	,	

	"columnsOnFirstLine"	
Defines	whether	the	first	line	contains	column
descriptors. boolean 	true	

	"columns"	
Defines	array	for	names	and	(optionally)	types	to
write.

string
array

	"nullValue"	 Defines	the	null	value	in	the	file. string 	NULL	

	"dateFormat"	 Defines	the	format	to	use	in	parsing	dates	from	file. string 	yyyy-mm-

dd	

	"quote"	 Defines	string	character	delimiter. char 	"	

	"skipFrom"	 Defines	the	line	number	you	want	to	skip	from. integer

	"skipTo"	 Defines	the	line	number	you	want	to	skip	to. integer

	"ignoreEmptyLines"	 Defines	whether	it	should	ignore	empty	lines. boolean 	false	

	"predefinedFormat"	 Defines	the	CSV	format	you	want	to	use. string

For	the		"columns"		parameter,	specify	the	type	by	postfixing	it	to	the	value.	Specifying	types	guarantees	better	performance.

For	the		"predefinedFormat"		parameter,	the	available	formats	are:		Default	,		Excel	,		MySQL	,		RFC4180	,		TDF	.

Examples

Extract	lines	from	CSV	to	the		ODocument		class,	using	commas	as	the	separator,	considering		NULL		as	the	null	value	and	skipping
rows	two	through	four:

		{	"csv":	

						{		"separator":	",",	

									"nullValue":	"NULL",

									"skipFrom":	1,	

									"skipTo":	3	

						}

		}

Extract	lines	from	a	CSV	exported	from	MySQL:

{	"csv":	

				{		"predefinedFormat":	"MySQL"}

}

Extract	lines	from	a	CSV	with	the	default	formatting,	using		N/A		as	the	null	value	and	a	custom	date	format:

{	"csv":	

				{		"predefinedFormat":	"Default",

							"nullValue"	:	"N/A",

							"dateFormat"	:	"dd-mm-yyyy	HH:MM"

				}

}

JDBC	Extractor

When	the	ETL	module	runs	the	JDBC	Extractor,	it	can	access	any	database	management	system	that	supports	the	JDBC	driver.

In	order	for	the	ETL	component	to	connect	to	the	source	database,	put	the	source	database's	JDBC	driver	in	the	classpath,	or	in	the
	$ORIENTDB_HOME/lib		directory.

Component	name:		jdbc	
Output	class:		[	ODocument	]	

Extractors

212

http://en.wikipedia.org/wiki/JDBC_driver


Syntax

Parameter Description Type Mandatory Default
value

	"driver"	 Defines	the	JDBC	Driver	class. string yes

	"url"	 Defines	the	JDBC	URL	to	connect	to. string yes

	"userName"	 Defines	the	username	to	use	on	the	source	database. string yes

	"userPassword"	 Defines	the	user	password	to	use	on	the	source	database. string yes

	"query"	 Defines	the	query	to	extract	the	record	you	want	to	import. string yes

	"queryCount"	
Defines	query	that	returns	the	count	of	the	fetched	records,
(used	to	provide	a	correct	progress	indicator). string

Example

Extract	the	contents	of	the		client		table	on	the	MySQL	database		test		at	localhost:

{	"jdbc":	{

				"driver":	"com.mysql.jdbc.Driver",

				"url":	"jdbc:mysql://localhost/test",

				"userName":	"root",

				"userPassword":	"my_mysql_passwd",

				"query":	"SELECT	*	FROM	client"

		}

}

JSON	Extractor

When	the	ETL	module	runs	with	a	JSON	Extractor,	it	extracts	data	by	parsing	JSON	objects.	If	the	data	has	more	than	one	JSON	items,
you	must	enclose	the	in		[]		brackets.

Component	name:		json	
Output	class:		[	ODocument	]	

Example

Extract	data	from	a	JSON	file.

{	"json":	{}	}

XML	Extractor
When	the	ETL	module	runs	with	the	XML	extractor,	it	extracts	data	by	parsing	XML	elements.	This	feature	was	introduced	in	version
2.2.

Component	name:		xml	
Output	class:		[	ODocument	]	

Syntax

Parameter Description Type Mandatory Default
value

	"rootNode"	
Defines	the	root	node	to	extract	in	the	XML.	By	default,	it
builds	from	the	root	element	in	the	file. string

	"tagsAsAttribute"	

Defines	an	array	of	elements,	where	child	elements	are
considered	as	attributes	of	the	document	and	the	attribute
values	as	the	text	within	the	element.

string
array

Examples

Extractors

213



Extract	data	from	an	XML	file,	where	the	XML	file	reads	as:

<?xml	version="1.0"	encoding="UTF-8"?>

<a>

		<b>

						<c	name='Ferrari'	color='red'>ignore</c>

						<c	name='Maserati'	color='black'/>

		</b>

</a>

While	the	OrientDB-ETL	configuration	file	reads	as:

{	"source":	

		{	"file":	

				{	"path":	"src/test/resources/simple.xml"	}	

		},	

		"extractor"	:	

				{	"xml":	{}	},	

				"loader":	

						{	"test":	{}	}	

}

This	extracts	the	data	as:

{

		"a":	{

				"b":	{

						"c":	[

								{

										"color":	"red",

										"name":	"Ferrari"

								},

								{

										"color":	"black",

										"name":	"Maserati"

								}

						]

				}

		}

}

Extract	a	collection	from	XML,	where	the	XML	file	reads	as:

<?xml	version="1.0"	encoding="UTF-8"?>

<CATALOG>

				<CD>

								<TITLE>Empire	Burlesque</TITLE>

								<ARTIST>Bob	Dylan</ARTIST>

								<COUNTRY>USA</COUNTRY>

								<COMPANY>Columbia</COMPANY>

								<PRICE>10.90</PRICE>

								<YEAR>1985</YEAR>

				</CD>

				<CD>

								<TITLE>Hide	your	heart</TITLE>

								<ARTIST>Bonnie	Tyler</ARTIST>

								<COUNTRY>UK</COUNTRY>

								<COMPANY>CBS	Records</COMPANY>

								<PRICE>9.90</PRICE>

								<YEAR>1988</YEAR>

				</CD>

				<CD>

								<TITLE>Greatest	Hits</TITLE>

								<ARTIST>Dolly	Parton</ARTIST>

								<COUNTRY>USA</COUNTRY>

								<COMPANY>RCA</COMPANY>

								<PRICE>9.90</PRICE>

								<YEAR>1982</YEAR>

				</CD>

</CATALOG>

Extractors

214



While	the	OrientDB-ETL	configuration	file	reads:

{	"source":	

		{	"file":	

				{	"path":	"src/test/resources/music.xml"	}	

		},	"extractor"	:	

				{	"xml":	

						{	"rootNode":	"CATALOG.CD",	

								"tagsAsAttribute":	["CATALOG.CD"]	

						}	

				},	

				"loader":	{	"test":	{}	}	

}

This	extracts	the	data	as:

{

		"TITLE":	"Empire	Burlesque",

		"ARTIST":	"Bob	Dylan",

		"COUNTRY":	"USA",

		"COMPANY":	"Columbia",

		"PRICE":	"10.90",

		"YEAR":	"1985"

}

{

		"TITLE":	"Hide	your	heart",

		"ARTIST":	"Bonnie	Tyler",

		"COUNTRY":	"UK",

		"COMPANY":	"CBS	Records",

		"PRICE":	"9.90",

		"YEAR":	"1988"

}

{

		"TITLE":	"Greatest	Hits",

		"ARTIST":	"Dolly	Parton",

		"COUNTRY":	"USA",

		"COMPANY":	"RCA",

		"PRICE":	"9.90",

		"YEAR":	"1982"

}

Extractors

215



ETL	Transformers
When	OrientDB	runs	the	ETL	module,	transformer	components	execute	in	a	pipeline	to	modify	the	data	before	it	gets	loaded	into	the
OrientDB	database.	The	operate	on	received	input	and	return	output.

Before	execution,	it	always	initalizes	the		$input		variable,	so	that	if	you	need	to	you	can	access	it	at	run-time.

CSV
FIELD
MERGE
VERTEX
CODE
LINK
EDGE
FLOW
LOG
BLOCK
COMMAND

CSV	Transformer
Beginning	with	version	2.1.4,	the	CSV	Transformer	has	been	deprecated	in	favor	of	the	CSV	Extractor.

Converts	a	string	in	a	Document,	parsing	it	as	CSV

Component	description.

Component	name:	csv
Supported	inputs	types:	[String]
Output:	ODocument

Syntax

Parameter Description Type Mandatory Default
value

	"separator"	 Defines	the	column	separator. char 	,	

	"columnsOnFirstLine"	
Defines	whether	the	first	line	contains	column
descriptions. boolean 	true	

	"columns"	
Defines	array	containing	column	names,	you	can	define
types	by	postfixing	the	names	with		:<type>	.

string
array

	"nullValue"	 Defines	the	value	to	interpret	as	null. string

	"stringCharacter"	 Defines	string	character	delimiter. char 	"	

	"skipFrom"	 Defines	the	line	number	to	skip	from. integer yes

	"skipTo"	 Defines	the	line	number	to	skip	to. integer yes

For	the		"columns"		parameter,	specifying	type	guarantees	better	performance.

Example

Transform	a	row	in	CSV	(as		ODocument		class),	using	commas	as	the	separator,	considering		NULL		as	a	null	value	and	skipping
rows	two	through	four.

{	"csv":	{	"separator":	",",	"nullValue":	"NULL",

											"skipFrom":	1,	"skipTo":	3	}	}

Transformers

216



Field	Transformer

When	the	ETL	module	calls	the	Field	Transformer,	it	executes	an	SQL	transformer	against	the	field.

Component	description.

Component	name:	vertex
Supported	inputs	types:	[ODocument]
Output:	ODocument

Syntax

Parameter Description Type Mandatory Default
value

	"fieldName"	 Defines	the	document	field	name	to	use. string

	"expression"	
Defines	the	expression	you	want	to	evaluate,	using	OrientDB
SQL. string yes

	"value"	
Defines	the	value	to	set.	If	the	value	is	taken	or	computed	at	run-
time,	use		"expression"		instead. any

	"operation"	
Defines	the	operation	to	execute	against	the	fields:		SET		or
	REMOVE	. string 	SET	

	"save"	
Defines	whether	to	save	the	vertex,	edge	or	document	right	after
setting	the	fields. boolean 	false	

The		"fieldName"		parameter	was	introduced	in	version	2.1.

Examples

Transform	the	field		class		into	the		ODocument		class,	by	prefixing	it	with		_	:

{	"field":	

		{	"fieldName":	"@class",	

				"expression":	"class.prefix('_')"

		}	

}

Apply	the	class	name,	based	on	the	value	of	another	field:

{	"field":	

		{	"fieldName":	"@class",	

				"expression":	"if(	(	fileCount	>=	0	),	'D',	'F')"

		}

}

Assign	the	last	part	of	a	path	to	the		name		field:

{	"field":	

		{	"fieldName":	"name",

				"expression":	"path.substring(	eval(	'$current.path.lastIndexOf(\"/\")	+	1')	)"	

		}

}

Asign	the	field	a	fixed	value:

{	"field":	

		{	"fieldName":	"counter",	

				"value":	0

		}

}

Rename	the	field	from		salary		to		renumeration	:

Transformers

217



		{	"field":	

				{	"fieldName":	"remuneration",	

						"expression":	"salary"

				}	

		},

		{	"field":	

				{	"fieldName":	"salary",	

						"operation":	"remove"

				}	

		}

Rename	multiple	fields	in	one	call.

{	"field":	

		{	"fieldNames":	

				[	"remuneration",	"salary"	],	

				"operation":	"remove"

		}	

}

This	feature	was	introduced	in	version	2.1.

Merge	Transformer
When	the	ETL	module	calls	the	Merge	Transformer,	it	takes	input	from	one		ODocument		instance	to	output	into	another,	loaded	by
lookup.	THe	lookup	can	either	be	a	lookup	against	an	index	or	a		SELECT		query.

Component	description.

Component	name:	merge
Supported	inputs	types:	[ODocument,	OrientVertex]
Output:	ODocument

Syntax

Parameter Description Type Mandatory Default
value

	"joinFieldName"	 Defines	the	field	containing	the	join	value. string yes

	"lookup"	
Defines	the	index	on	which	to	execute	th	elookup,	or	a
	SELECT		query. string yes

	"unresolvedLinkAction"	
Defines	the	action	to	execute	in	the	event	that	the	join
hasn't	been	resolved. string 	NOTHING	

For	the		"unresolvedLinkAction"		parameter,	the	supported	actions	are:

Action Description

	NOTHING	 Tells	the	transformer	to	do	nothing.

	WARNING	 Tells	the	transformer	to	increment	warnings.

	ERROR	 Tells	the	transformer	to	increment	errors.

	HALT	 Tells	the	transformer	to	interrupt	the	process.

	SKIP	 Tells	the	transformer	to	skip	the	current	row.

Example

Merge	the	current	record	against	the	record	returned	by	the	lookup	on	index		V.URI	,	with	the	value	contained	in	the	field		URI		of
the	input	document:

Transformers

218



{	"merge":	

		{	"joinFieldName":	"URI",	

				"lookup":"V.URI"	

		}	

}

Vertex	Transformer
When	the	ETL	module	runs	the	Vertex	Transformer,	it	transforms		ODocument		input	to	output		OrientVertex	.

Component	description.

Component	name:	vertex
Supported	inputs	types:	[ODocument,	OrientVertex]
Output:	OrientVertex

Syntax

Parameter Description Type Mandatory Default
value

	"class"	 Defines	the	vertex	class	to	use. string 	V	

	"skipDuplicates"	
Defines	whether	it	skips	duplicates.	When	class	has	a
	UNIQUE		constraint,	ETL	ignores	duplicates. boolean 	false	

The		"skipDuplicates"		parameter	was	introduced	in	version	2.1.

Example

Transform		ODocument		input	into	a	vertex,	setting	the	class	value	to	the		$classname		variable:

{	"vertex":	

		{	"class":	"$className",	

				"skipDuplicates":	true	

		}	

}

Edge	Transformer
When	the	ETL	modules	calls	the	Edge	Transformer,	it	converts	join	values	in	one	or	more	edges	between	the	current	vertex	and	all
vertices	returned	by	the	lookup.	The	lookup	can	either	be	made	against	an	index	or	a		SELECT	.

Component	description.

Component	name:	EDGE
Supported	inputs	types:	[ODocument,	OrientVertex]
Output:	OrientVertex

Syntax

Transformers

219



Parameter Description Type Mandatory Default
value

	"joinFieldName"	 Defines	the	field	containing	the	join	value. string yes

	"direction"	 Defines	the	edge	direction. string 	out	

	"class"	 Defines	the	edge	class. string 	E	

	"lookup"	
Defines	the	index	on	which	to	execute	the	lookup	or
a		SELECT	. string yes

	"targetVertexFields"	 Defines	the	field	on	which	to	set	the	target	vertex. object

	"edgeFields"	 Defines	the	fields	to	set	in	th	eedge. object

	"skipDuplicates"	

Defines	whether	to	skip	duplicate	edges	when	the
	UNIQUE		constraint	is	set	on	both	the		out		and		in	
properties.

boolean 	false	

	"unresolvedLinkAction"	
Defines	the	action	to	execute	in	the	event	that	the
join	hasn't	been	resolved. string 	NOTHING	

The		"targetVertexFields"		andx		"edgeFields"		parameter	were	introduced	in	version	2.1.

For	the		"unresolvedLinkAction"		parameter,	the	following	actions	are	supported:

Action Description

	NOTHING	 Tells	the	transformer	to	do	nothing.

	CREATE	 Tells	the	transformer	to	create	an	instance	of		OrientVertex	,	setting	the	primary	key	to	the	join	value.

	WARNING	 Tells	the	transformer	to	increment	warnings.

	ERROR	 Tells	the	transformer	to	increment	errors.

	HALT	 Tells	the	transformer	to	interrupt	the	process.

	SKIP	 Tells	the	transformer	to	skup	the	current	row.

Examples

Create	an	edge	from	the	current	vertex,	with	the	class	set	to		Parent	,	to	all	vertices	returned	by	the	lookup	on	the		D.inode		index
with	the	value	contained	in	the	filed		inode_parent		of	the	input's	vertex:

{	"edge":	

		{	"class":	"Parent",	

				"joinFieldName":	"inode_parent",

				"lookup":"D.inode",				

				"unresolvedLinkAction":	"CREATE"

		}	

}

Transformer	a	single-line	CSV	that	contains	both	vertices	and	edges:

Transformers

220



{	"source":	

		{	"content":	

				{	"value":	"id,name,surname,friendSince,friendId,friendName,friendSurname\n0,Jay,Miner,1996,1,Luca,Garulli"

				}

		},

		"extractor":	

				{	"row":	{}	},

		"transformers":	

				[	

						{	"csv":	{}	},

						{	"vertex":	

								{	"class":	"V1"	}

						},

						{	"edge":	

								{	"unresolvedLinkAction":	"CREATE",

										"class":	"Friend",

										"joinFieldName":	"friendId",

										"lookup":	"V2.fid",

										"targetVertexFields":	

												{	"name":	"${input.friendName}",

															"surname":	"${input.friendSurname}"

												},

												"edgeFields":	

														{	"since":	"${input.friendSince}"	}

														}

								},

								{	"field":	

										{	"fieldNames":	

												[	"friendSince",

														"friendId",

														"friendName",

														"friendSurname"

												],

												"operation":	"remove"

										}

								}

						],

						"loader":	

								{	"orientdb":	

										{	"dbURL":	"memory:ETLBaseTest",

												"dbType":	"graph",

												"useLightweightEdges":	false

										}

						}

		}

Flow	Transformer
When	the	ETL	module	calls	the	Flow	Transformer,	it	modifies	the	flow	through	the	pipeline.	Supported	operations	are		skip		and
	halt	.	Typically,	this	transformer	operates	with	the		if		attribute.

Component	description.

Component	name:	flow
Supported	inputs	types:	Any
Output:	same	type	as	input

Syntax

Parameter Description Type Mandatory Default	value

	"operation"	 Defines	the	flow	operation:		skip		or		halt	. string yes

Example

Skip	the	current	record	if		name		is	null:

Transformers

221



{	"flow":	

		{	"if":	"name	is	null",	

				"operation"	:	"skip"	

		}	

}

Code	Transformer
When	the	ETL	module	calls	the	Code	Transformer,	it	executes	a	snippet	of	code	in	any	JVM	supported	language.	The	default	is
JavaScript.	The	last	object	in	the	code	is	returned	as	output.

In	the	execution	context:

	input		The	input	object	received.
	record		The	record	extracted	from	the	input	object,	when	possible.	In	the	event	that	input	object	is	a	vertex	or	edge,	it	assigns	the
underlying		ODocument		to	the	variable.

Component	description.

Component	name:	code
Supported	inputs	types:	[Object]
Output:	Object

Syntax

Parameter Description Type Mandatory Default	value

	"language"	 Defines	the	programming	language	to	use. string JavaScript

	"code"	 Defines	the	code	to	execute. string yes

Example

Display	the	current	record	and	return	the	parent:

{	"code":	

		{	"language":	"Javascript",

				"code":	"print('Current	record:	'	+	record);	record.field('parent');"

		}

}

Link	Transformer

When	the	ETL	module	calls	the	Link	Transformer,	it	converts	join	values	into	links	within	the	current	record,	using	the	result	of	the
lookup.	The	lookup	can	be	made	against	an	index	or	a		SELECT	.

Component	description.

Component	name:	link
Supported	inputs	types:	[ODocument,	OrientVertex]
Output:	ODocument

Syntax

Transformers

222



Parameter Description Type Mandatory Default
value

	"joinFieldName"	 Defines	the	field	containing	hte	join	value. string

	"joinValue"	 Defines	the	value	to	look	up. string

	"linkFieldName"	 Defines	the	field	containing	the	link	to	set. string yes

	"linkFieldType"	 Defines	the	link	type. string yes

	"lookup"	
Defines	the	index	on	which	to	execute	the	lookup	or	a
	SELECT		query. string yes

	"unresolvedLinkAction"	
Defines	the	action	to	execute	in	the	event	that	the	join
doesn't	resolve. string 	NOTHING	

For	the		"linkFieldType"		parameter,	supported	link	types	are:		LINK	,		LINKSET		and		LINKLIST	.

For	the		"unresolvedLinkAction"		parameter	the	following	actions	are	supported:

Action Description

	NOTHING	 Tells	the	transformer	to	do	nothing.

	CREATE	 Tells	the	transformer	to	create	an		ODocument		instance,	setting	the	primary	key	as	the	join	value.

	WARNING	 Tells	the	transformer	to	increment	warnings.

	ERROR	 Tells	the	transformer	to	increment	errors.

	HALT	 Tells	the	transformer	to	interrupt	the	process.

	SKIP	 Tells	the	transformer	to	skip	the	current	row.

Example

Transform	a	JSON	value	into	a	link	within	the	current	record,	set	as		parent		of	the	type		LINK	,	with	the	result	of	the	lookup	on
the	index		D.node		with	the	value	contained	in	the	field		inode_parent		on	the	input	document.

{	"link":	

		{	"linkFieldName":	"parent",	

				"linkFieldType":	"LINK",

				"joinFieldName":	"inode_parent",	

				"lookup":"D.inode",		

				"unresolvedLinkAction":"CREATE"

		}	

}

Log	Transformer

When	the	ETL	module	uses	the	Log	Transformer,	it	logs	the	input	object	to		System.out	.

Component	description.

Component	name:	log
Supported	inputs	types:	Any
Output:	Any

Syntax

Parameter Description Type Mandatory Default	value

	"prefix"	 Defines	what	it	writes	before	the	content. string

	"postfix"	 Defines	what	it	writes	after	the	content. string

Examples

Log	the	current	value:

Transformers

223



{	"log":	{}	}

Log	the	currnt	value	with		->		as	the	prefix:

{	"log":	

		{	"prefix"	:	"->	"	}	

}

Block	Transformer

When	the	ETL	module	calls	the	Block	Transformer,	it	executes	an	ETL	Block	component	as	a	transformation	step.

Component	description.

Component	name:	block
Supported	inputs	types:	[Any]
Output:	Any

Syntax

Parameter Description Type Mandatory Default	value

	"block"	 Defines	the	block	to	execute. document yes

Example

Log	the	current	value:

{	"block":	

		{	"let":	

				{	"name":	"id",

						"value":	"={eval('$input.amount	*	2')}"

				}

		}

}

Command	Transformer
When	the	ETL	module	calls	the	Command	Transformer,	it	executes	the	given	command.

Component	description.

Component	name:	command
Supported	inputs	types:	[ODocument]
Output:	ODocument

Syntax

Parameter Description Type Mandatory Default	value

	"language"	 Defines	the	command	language:	SQL	or	Gremlin. string 	sql	

	"command"	 Defines	the	command	to	execute. string yes

Example

Execute	a		SELECT		and	output	an	edge:

{	"command"	:	

		{	"command"	:	"SELECT	FROM	E	WHERE	id	=	${edgeid}",

				"output"	:	"edge"

		}

}

Transformers

224



Transformers

225



ETL	-	Loaders
When	the	ETL	module	executes,	Loaders	handle	the	saving	of	records.	They	run	at	the	last	stage	of	the	process.	The	ETL	module	in
OrientDB	supports	the	following	loaders:

Output
OrientDB

Output	Loader

When	the	ETL	module	runs	the	Output	Loader,	it	prints	the	transformer	results	to	the	console	output.	This	is	the	loader	that	runs	by
default.

Component	name:	output
Accepted	input	classes:	[Object]

OrientDB	Loader
When	the	ETL	module	runs	the	OrientDB	Loader,	it	loads	the	records	and	vertices	from	the	transformers	into	the	OrientDB	database.

Component	name:		orientdb	
Accepted	input	classes:		[	ODocument,	OrientVertex	]	

Syntax

Loaders

226



Parameter Description Type Mandatory Default
value

	"dbURL"	 Defines	the	database	URL. string yes

	"dbUser"	 Defines	the	user	name. string 	admin	

	"dbPassword"	 Defines	the	user	password. string 	admin	

	"dbAutoCreate"	

Defines	whether	it	automatically	creates	the
database,	in	the	event	that	it	doesn't	exist
already.

boolean 	true	

	"dbAutoCreateProperties"	
Defnes	whether	it	automatically	creates
properties	in	the	schema. boolean 	false	

	"dbAutoDropIfExists"	
Defines	whether	it	automatically	drops	the
database	if	it	exists	already. boolean 	false	

	"tx"	 Defines	whether	it	uses	transactions boolean 	false	

	"txUseLog"	 Defines	whether	it	uses	log	in	transactions. boolean

	"wal"	
Defines	whether	it	uses	write	ahead	logging.
Disable	to	achieve	better	performance. boolean 	true	

	"batchCommit"	

When	using	transactions,	defines	the	batch
of	entries	it	commits.	Helps	avoid	having
one	large	transaction	in	memory.

integer 	0	

	"dbType"	
Defines	the	database	type:		graph		or
	document	. string 	document	

	"class"	
Defines	the	class	to	use	in	storing	new
record. string

	"cluster"	
Defines	the	cluster	in	which	to	store	the
new	record. string

	"classes"	
Defines	whether	it	creates	classes,	if	not
defined	already	in	the	database.

inner
document

	"indexes"	

Defines	indexes	to	use	on	the	ETL	process.
Before	starting,	it	creates	any	declared
indexes	not	present	in	the	database.	Indexes
must	have		"type"	,		"class"		and
	"fields"	.

inner
document

	"useLightweightEdges"	
Defines	whether	it	changes	the	default
setting	for	Lightweight	Edges. boolean 	false	

	"standardELementConstraints"	

Defines	whether	it	changes	the	default
setting	for	TinkerPop	BLueprint
constraints.	Value	cannot	be	null	and	you
cannot	use		id		as	a	property	name.

boolean 	true	

For	the		"txUseLog"		parameter,	when	WAL	is	disabled	you	can	still	achieve	reliable	transactions	through	this	parameter.	You	may	find	it
useful	to	group	many	operations	into	a	batch,	such	as		CREATE	EDGE	.

Classes

When	using	the		"classes"		parameter,	it	defines	an	inner	document	that	contains	additional	configuration	variables.

Parameter Description Type Mandatory Default	value

	"name"	 Defines	the	class	name. string yes

	"extends"	 Defines	the	super-class	name. string

	"clusters"	 Defines	the	number	of	cluster	to	create	under	the	class. integer 	1	

NOTE:	The		"clusters"		parameter	was	introduced	in	version	2.1.

Loaders

227



Indexes

Parameter Description Type Mandatory Default
value

	"name"	 Defines	the	index	name. string

	"class"	 Defines	the	class	name	in	which	to	create	the	index. string yes

	"type"	 Defines	the	index	type. string yes

	"fields"	
Defines	an	array	of	fields	to	index.	To	specify	the	field	type,	use	the
syntax:		<field>.<type>	. string yes

	"metadata"	 Defines	additional	index	metadata. string

Examples

Configuration	to	load	data	into	the	database		dbpedia		on	OrientDB,	in	the	directory		/temp/databases		using	the	PLocal	protocol	and	a
Graph	database.	The	load	is	transactional,	performing	commits	in	thousand	insert	batches.	It	creates	two	lookup	vertices	with	indexes
against	the	property	string		URI		in	the	base	vertex	class		V	.	The	index	is	unique.

"orientdb":	{

						"dbURL":	"plocal:/temp/databases/dbpedia",

						"dbUser":	"importer",

						"dbPassword":	"IMP",

						"dbAutoCreate":	true,

						"tx":	false,

						"batchCommit":	1000,

						"wal"	:	false,

						"dbType":	"graph",

						"classes":	[

								{"name":"Person",	"extends":	"V"	},

								{"name":"Customer",	"extends":	"Person",	"clusters":8	}

						],

						"indexes":	[

								{"class":"V",	"fields":["URI:string"],	"type":"UNIQUE"	},

								{"class":"Person",	"fields":["town:string"],	"type":"NOTUNIQUE"	,

												metadata	:	{	"ignoreNullValues"	:	false	}

								}

						]

				}

Loaders

228



Import	Database	of	Beers	in	OrientDB

First,	create	a	new	folder	somewhere	on	your	hard	drive.	For	this	test	we'll	assume		/temp/openbeer	.

$	mkdir	/temp/openbeer

Download	Beers	Database	in	CSV	format

$	curl	http://openbeerdb.com/data_files/openbeerdb_csv.zip	>	openbeerdb_csv.zip

$	unzip	openbeerdb_csv.zip

Install	OrientDB

$	curl	"http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-community-2.0.9.zip&os=multi"	>	orientdb-comm

unity-2.0.9.zip

$	unzip	orientdb-community-2.0.9.zip

Import	Beer	Categories
These	are	the	first	2	lines	of		categories.csv		file:

"id","cat_name","last_mod"

"1","British	Ale","2010-10-24	13:50:10"

In	order	to	import	this	file	in	OrientDB,	we	have	to	create	the	following	file	as		categories.json	:

{

		"source":	{	"file":	{	"path":	"/temp/openbeer/openbeerdb_csv/categories.csv"	}	},

		"extractor":	{	"csv":	{}	},

		"transformers":	[

				{	"vertex":	{	"class":	"Category"	}	}

		],

		"loader":	{

				"orientdb":	{

							"dbURL":	"plocal:../databases/openbeerdb",

							"dbType":	"graph",

							"classes":	[

									{"name":	"Category",	"extends":	"V"}

							],	"indexes":	[

									{"class":"Category",	"fields":["id:integer"],	"type":"UNIQUE"	}

							]

				}

		}

}

Import	the	database	of	Beers

229



Now	to	import	it	into	OrientDB,	move	into	the	"bin"	directory	of	OrientDB	distribution.

$	cd	orientdb-community-2.0.9/bin

And	run	OrientDB	ETL.

$	./oetl.sh	/temp/openbeer/categories.json

OrientDB	etl	v.2.0.9	(build	@BUILD@)	www.orientechnologies.com

BEGIN	ETL	PROCESSOR

END	ETL	PROCESSOR

+	extracted	12	rows	(0	rows/sec)	-	12	rows	->	loaded	11	vertices	(0	vertices/sec)	Total	time:	77ms	[0	warnings,	0	errors]

Import	Beer	Styles
Now	let's	import	the	Beer	Styles.	These	are	the	first	2	lines	of	the		styles.csv		file.

"id","cat_id","style_name","last_mod"

"1","1","Classic	English-Style	Pale	Ale","2010-10-24	13:53:31"

In	this	case,	we'll	correlate	the	Style	with	the	Category	created	earlier.	This	is	the		styles.json		to	use	with	OrientDB	ETL	for	the	next
step.

{

		"source":	{	"file":	{	"path":	"/temp/openbeer/openbeerdb_csv/styles.csv"	}	},

		"extractor":	{	"csv":	{}	},

		"transformers":	[

				{	"vertex":	{	"class":	"Style"	}	},

				{	"edge":	{	"class":	"HasCategory",		"joinFieldName":	"cat_id",	"lookup":	"Category.id"	}	}

		],

		"loader":	{

				"orientdb":	{

							"dbURL":	"plocal:../databases/openbeerdb",

							"dbType":	"graph",

							"classes":	[

									{"name":	"Style",	"extends":	"V"},

									{"name":	"HasCategory",	"extends":	"E"}

							],	"indexes":	[

									{"class":"Style",	"fields":["id:integer"],	"type":"UNIQUE"	}

							]

				}

		}

}

Now	import	the	styles.

$	./oetl.sh	/temp/openbeer/styles.json

OrientDB	etl	v.2.0.9	(build	@BUILD@)	www.orientechnologies.com

BEGIN	ETL	PROCESSOR

END	ETL	PROCESSOR

+	extracted	142	rows	(0	rows/sec)	-	142	rows	->	loaded	141	vertices	(0	vertices/sec)	Total	time:	498ms	[0	warnings,	0	errors]

Import	Breweries

Now	it's	time	for	the	Breweries.	These	are	the	first	2	lines	of	the		breweries.csv		file.

"id","name","address1","address2","city","state","code","country","phone","website","filepath","descript","last_mod"

"1","(512)	Brewing	Company","407	Radam,	F200",,"Austin","Texas","78745","United	States","512.707.2337","http://512brewing.com/

",,"(512)	Brewing	Company	is	a	microbrewery	located	in	the	heart	of	Austin	that	brews	for	the	community	using	as	many	local,	d

omestic	and	organic	ingredients	as	possible.","2010-07-22	20:00:20"

Import	the	database	of	Beers

230



Breweries	have	no	outgoing	relations	with	other	entities,	so	this	is	a	plain	import	similar	to	categories.	This	is	the		breweries.json		to
use	with	OrientDB	ETL	for	the	next	step.

{

		"source":	{	"file":	{	"path":	"/temp/openbeer/openbeerdb_csv/breweries.csv"	}	},

		"extractor":	{	"csv":	{}	},

		"transformers":	[

				{	"vertex":	{	"class":	"Brewery"	}	}

		],

		"loader":	{

				"orientdb":	{

							"dbURL":	"plocal:../databases/openbeerdb",

							"dbType":	"graph",

							"classes":	[

									{"name":	"Brewery",	"extends":	"V"}

							],	"indexes":	[

									{"class":"Brewery",	"fields":["id:integer"],	"type":"UNIQUE"	}

							]

				}

		}

}

Run	the	import	for	breweries.

$	./oetl.sh	/temp/openbeer/breweries.json

OrientDB	etl	v.2.0.9	(build	@BUILD@)	www.orientechnologies.com

BEGIN	ETL	PROCESSOR

END	ETL	PROCESSOR

+	extracted	1.395	rows	(0	rows/sec)	-	1.395	rows	->	loaded	1.394	vertices	(0	vertices/sec)	Total	time:	830ms	[0	warnings,	0	er

rors]

Import	Beers
Now	it's	time	for	the	last	and	most	important	file:	the	Beers!	These	are	the	first	2	lines	of	the		beers.csv		file.

"id","brewery_id","name","cat_id","style_id","abv","ibu","srm","upc","filepath","descript","last_mod",,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,

"1","812","Hocus	Pocus","11","116","4.5","0","0","0",,"Our	take	on	a	classic	summer	ale.		A	toast	to	weeds,	rays,	and	summer	h

aze.		A	light,	crisp	ale	for	mowing	lawns,	hitting	lazy	fly	balls,	and	communing	with	nature,	Hocus	Pocus	is	offered	up	as	a	s

ummer	sacrifice	to	clodless	days.

As	you	can	see	each	beer	is	connected	to	other	entities	through	the	following	fields:

	brewery_id		->	Brewery
	cat_id		->	Category
	style_id		->	Style

This	is	the		breweries.json		to	use	with	OrientDB	ETL	for	the	next	step.

Import	the	database	of	Beers

231



{

		"config"	:	{	"haltOnError":	false	},

		"source":	{	"file":	{	"path":	"/temp/openbeer/openbeerdb_csv/beers.csv"	}	},

		"extractor":	{	"csv":	{	"columns":	["id","brewery_id","name","cat_id","style_id","abv","ibu","srm","upc","filepath","descrip

t","last_mod"],

																																"columnsOnFirstLine":	true	}	},

		"transformers":	[

				{	"vertex":	{	"class":	"Beer"	}	},

				{	"edge":	{	"class":	"HasCategory",		"joinFieldName":	"cat_id",	"lookup":	"Category.id"	}	},

				{	"edge":	{	"class":	"HasBrewery",		"joinFieldName":	"brewery_id",	"lookup":	"Brewery.id"	}	},

				{	"edge":	{	"class":	"HasStyle",		"joinFieldName":	"style_id",	"lookup":	"Style.id"	}	}

		],

		"loader":	{

				"orientdb":	{

							"dbURL":	"plocal:../databases/openbeerdb",

							"dbType":	"graph",

							"classes":	[

									{"name":	"Beer",	"extends":	"V"},

									{"name":	"HasCategory",	"extends":	"E"},

									{"name":	"HasStyle",	"extends":	"E"},

									{"name":	"HasBrewery",	"extends":	"E"}

							],	"indexes":	[

									{"class":"Beer",	"fields":["id:integer"],	"type":"UNIQUE"	}

							]

				}

		}

}

Run	the	final	import	for	beers.

$	./oetl.sh	/temp/openbeer/beers.json

OrientDB	etl	v.2.0.9	(build	@BUILD@)	www.orientechnologies.com

BEGIN	ETL	PROCESSOR

...

+	extracted	5.862	rows	(1.041	rows/sec)	-	5.862	rows	->	loaded	4.332	vertices	(929	vertices/sec)	Total	time:	10801ms	[0	warnin

gs,	27	errors]

END	ETL	PROCESSOR

_Note:	27	errors	are	due	to	the	27	wrong	content	lines	that	have	no	id.

This	database	is	available	online.	Install	it	with:

Studio:	in	the	login	page	press	the	"Cloud"	button,	put	server's	credential	and	press	on	download	button	on	"OpenBeer"	line
Download	it	manually	from	http://orientdb.com/public-databases/OpenBeer.zip	and	unzip	it	in	a	OpenBeer	folder	inside
OrientDB's	server	"databases"	directory

Import	the	database	of	Beers

232

http://orientdb.com/public-databases/OpenBeer.zip


Import	from	a	CSV	file	to	a	Graph
This	example	describes	the	process	for	importing	from	a	CSV	file	into	OrientDB	as	a	Graph.	For	the	sake	of	simplicity,	consider	only
these	2	entities:

POST
COMMENT

Also	consider	the	relationship	between	Post	and	Comment	as	One-2-Many.	One	Post	can	have	multiple	Comments.	We're	representing
them	as	they	would	appear	in	an	RDBMS,	but	the	source	could	be	anything.

With	an	RDBMS	Post	and	Comment	would	be	stored	in	2	separate	tables:

TABLE	POST:

+----+----------------+

|	id	|	title										|

+----+----------------+

|	10	|	NoSQL	movement	|

|	20	|	New	OrientDB			|

+----+----------------+

TABLE	COMMENT:

+----+--------+--------------+

|	id	|	postId	|	text									|

+----+--------+--------------+

|		0	|			10			|	First								|

|		1	|			10			|	Second							|

|	21	|			10			|	Another						|

|	41	|			20			|	First	again		|

|	82	|			20			|	Second	Again	|

+----+--------+--------------+

With	an	RDBMS,	one-2-many	references	are	inverted	from	the	target	table	(Comment)	to	the	source	one	(Post).	This	is	due	to	the
inability	of	an	RDBMS	to	handle	a	collection	of	values.

In	comparison,	using	the	OrientDB	Graph	model,	relationships	are	modeled	as	you	would	think,	when	you	design	an	application:
POSTs	have	edges	to	COMMENTs.

So,	with	an	RDBMS	you	have:

Table	POST				<-	(foreign	key)	Table	COMMENT

With	OrientDB,	the	Graph	model	uses	Edges	to	manage	relationships:

Class	POST	->*	(collection	of	edges)	Class	COMMENT

(1)	Export	to	CSV

If	you're	using	an	RDBMS	or	any	other	source,	export	your	data	in	CSV	format.	The	ETL	module	is	also	able	to	extract	from	JSON	and
an	RDBMS	directly	through	JDBC	drivers.	However,	for	the	sake	of	simplicity,	in	this	example	we're	going	to	use	CSV	as	the	source
format.

Consider	having	2	CSV	files:

File	posts.csv

posts.csv	file,	containing	all	the	posts

id,title

10,NoSQL	movement

20,New	OrientDB

Import	from	CSV	to	a	Graph

233



File	comments.csv

comments.csv	file,	containing	all	the	comments,	with	the	relationship	to	the	commented	post

id,postId,text

0,10,First

1,10,Second

21,10,Another

41,20,First	again

82,20,Second	Again

(2)	ETL	Configuration

The	OrientDB	ETL	tool	requires	only	a	JSON	file	to	define	the	ETL	process	as	Extractor,	a	list	of	Transformers	to	be	executed	in	the
pipeline,	and	a	Loader,	to	load	graph	elements	into	the	OrientDB	database.

Below	are	2	files	containing	the	ETL	to	import	Posts	and	Comments	separately.

post.json	ETL	file

{

		"source":	{	"file":	{	"path":	"/temp/datasets/posts.csv"	}	},

		"extractor":	{	"csv":	{}	},

		"transformers":	[

				{	"vertex":	{	"class":	"Post"	}	}

		],

		"loader":	{

				"orientdb":	{

							"dbURL":	"plocal:/temp/databases/blog",

							"dbType":	"graph",

							"classes":	[

									{"name":	"Post",	"extends":	"V"},

									{"name":	"Comment",	"extends":	"V"},

									{"name":	"HasComments",	"extends":	"E"}

							],	"indexes":	[

									{"class":"Post",	"fields":["id:integer"],	"type":"UNIQUE"	}

							]

				}

		}

}

The	Loader	contains	all	the	information	to	connect	to	an	OrientDB	database.	We	have	used	a	plocal	database,	because	it's	faster.
However,	if	you	have	an	OrientDB	server	up	&	running,	use	"remote:"	instead.	Note	the	classes	and	indexes	declared	in	the	Loader.	As
soon	as	the	Loader	is	configured,	the	classes	and	indexes	are	created,	if	they	do	not	already	exist.	We	have	created	the	index	on	the
Post.id	field	to	assure	that	there	are	no	duplicates	and	that	the	lookup	on	the	created	edges	(see	below)	will	be	fast	enough.

comments.json	ETL	file

Import	from	CSV	to	a	Graph

234



{

		"source":	{	"file":	{	"path":	"/temp/datasets/comments.csv"	}	},

		"extractor":	{	"csv":	{}	},

		"transformers":	[

				{	"vertex":	{	"class":	"Comment"	}	},

				{	"edge":	{	"class":	"HasComments",

																"joinFieldName":	"postId",

																"lookup":	"Post.id",

																"direction":	"in"

												}

								}

		],

		"loader":	{

				"orientdb":	{

							"dbURL":	"plocal:/temp/databases/blog",

							"dbType":	"graph",

							"classes":	[

									{"name":	"Post",	"extends":	"V"},

									{"name":	"Comment",	"extends":	"V"},

									{"name":	"HasComments",	"extends":	"E"}

							],	"indexes":	[

									{"class":"Post",	"fields":["id:integer"],	"type":"UNIQUE"	}

							]

				}

		}

}

This	file	is	similar	to	the	previous	one,	but	the	Edge	transformer	does	the	job.	Since	the	link	found	in	the	CSV	goes	in	the	opposite
direction	(Comment->Post),	while	we	want	to	model	directly	(Post->Comment),	we	used	the	direction	"in"	(default	is	always	"out").

(3)	Run	the	ETL	process

Now	allow	the	ETL	to	run	by	executing	both	imports	in	sequence.	Open	a	shell	under	the	OrientDB	home	directory,	and	execute	the
following	steps:

$	cd	bin

$	./oetl.sh	post.json

$	./oetl.sh	comment.json

Once	both	scripts	execute	successfully,	you'll	have	your	Blog	imported	into	OrientDB	as	a	Graph!

(4)	Check	the	database
Open	the	database	under	the	OrientDB	console	and	execute	the	following	commands	to	check	that	the	import	is	ok:

Import	from	CSV	to	a	Graph

235



$	./console.sh

OrientDB	console	v.2.0-SNAPSHOT	(build	2565)	www.orientechnologies.com

Type	'help'	to	display	all	the	supported	commands.

Installing	extensions	for	GREMLIN	language	v.2.6.0

orientdb>	connect	plocal:/temp/databases/blog	admin	admin

Connecting	to	database	[plocal:/temp/databases/blog]	with	user	'admin'...OK

orientdb	{db=blog}>	select	expand(	out()	)	from	Post	where	id	=	10

----+-----+-------+----+------+-------+--------------

#			|@RID	|@CLASS	|id		|postId|text			|in_HasComments

----+-----+-------+----+------+-------+--------------

0			|#12:0|Comment|0			|10				|First		|[size=1]

1			|#12:1|Comment|1			|10				|Second	|[size=1]

2			|#12:2|Comment|21		|10				|Another|[size=1]

----+-----+-------+----+------+-------+--------------

3	item(s)	found.	Query	executed	in	0.002	sec(s).

orientdb	{db=blog}>	select	expand(	out()	)	from	Post	where	id	=	20

----+-----+-------+----+------+------------+--------------

#			|@RID	|@CLASS	|id		|postId|text								|in_HasComments

----+-----+-------+----+------+------------+--------------

0			|#12:3|Comment|41		|20				|First	again	|[size=1]

1			|#12:4|Comment|82		|20				|Second	Again|[size=1]

----+-----+-------+----+------+------------+--------------

2	item(s)	found.	Query	executed	in	0.001	sec(s).

Import	from	CSV	to	a	Graph

236



Import	a	tree	structure
If	you	have	a	tree	structure	in	an	RDBMS	or	CSV	file	and	you	want	to	import	it	in	OrientDB,	the	ETL	can	come	to	your	rescue.	In	this
example,	we	use	CSV	for	the	sake	of	simplicity,	but	it's	the	same	with	JDBC	input	and	a	SQL	query	against	an	RDBMS.

source.csv

ID,PARENT_ID,LAST_YEAR_INCOME,DATE_OF_BIRTH,STATE

0,-1,10000,1990-08-11,Arizona

1,0,12234,1976-11-07,Missouri

2,0,21322,1978-01-01,Minnesota

3,0,33333,1960-05-05,Iowa

etl.json

{

		"source":	{	"file":	{	"path":	"source.csv"	}	},

		"extractor":	{	"row":	{}	},

		"transformers":	[

				{	"csv":	{}	},

				{	"vertex":	{	"class":	"User"	}	},

				{	"edge":	{

								"class":	"ParentOf",

								"joinFieldName":	"PARENT_ID",

								"direction":	"in",

								"lookup":	"User.ID",

																"unresolvedLinkAction":	"SKIP"

								}

				}

		],

		"loader":	{

				"orientdb":	{

							"dbURL":	"plocal:/temp/mydb",

							"dbType":	"graph",

							"classes":	[

									{"name":	"User",	"extends":	"V"},

									{"name":	"ParentOf",	"extends":	"E"}

							],	"indexes":	[

									{"class":"User",	"fields":["ID:Long"],	"type":"UNIQUE"	}

							]

				}

		}

}

Import	a	tree	structure

237



Import	form	JSON
If	you	are	migrating	from	MongoDB	or	any	other	DBMS	that	exports	data	in	JSON	format,	the	JSON	extractor	is	what	you	need.	For
more	information	look	also	at:	Import-from-PARSE.

This	is	the	input	file	stored	in		/tmp/database.json		file:

[

	{

		"name":	"Joe",

		"id":	1,

		"friends":	[2,4,5],

		"enemies":	[6]

	},

	{

		"name":	"Suzie",

		"id":	2,

		"friends":	[1,4,6],

		"enemies":	[5,2]

	}

]

Note	that		friends		and		enemies		represent	relationships	with	nodes	of	the	same	type.	They	are	in	the	form	of	an	array	of	IDs.	This	is
what	we	need:

Use	the	Vertex	class	"Account"	to	store	nodes
Use	the	Edge	classes	"Friend"	and	"Enemy"	to	connect	vertices
Merge	and	Lookups	will	be	on		id		property	of	Account	class	that	will	be	unique
In	case	the	connected	friend	hasn't	been	inserted	yet,	create	it	("unresolvedLinkAction":	"CREATE")
To	speed	up	lookups,	a	unique	index	will	be	created	on		Account.it	

And	this	pipeline	(log	is	at		debug		level	to	show	all	the	messages):

Import	from	JSON

238



{

		"config":	{

				"log":	"debug"

		},

		"source"	:	{

				"file":	{	"path":	"/tmp/database.json"	}

		},

		"extractor"	:	{

				"json":	{}

		},

		"transformers"	:	[

				{	"merge":	{	"joinFieldName":	"id",	"lookup":	"Account.id"	}	},

				{	"vertex":	{	"class":	"Account"}	},

				{	"edge":	{

						"class":	"Friend",

						"joinFieldName":	"friends",

						"lookup":	"Account.id",

						"unresolvedLinkAction":	"CREATE"

				}	},

				{	"edge":	{

						"class":	"Enemy",

						"joinFieldName":	"enemies",

						"lookup":	"Account.id",

						"unresolvedLinkAction":	"CREATE"

				}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/tmp/databases/db",

						"dbUser":	"admin",

						"dbPassword":	"admin",

						"dbAutoDropIfExists":	true,

						"dbAutoCreate":	true,

						"standardElementConstraints":	false,

						"tx":	false,

						"wal":	false,

						"batchCommit":	1000,

						"dbType":	"graph",

						"classes":	[{"name":	"Account",	"extends":"V"},	{"name":	"Friend",	"extends":"E"},	{"name":	'Enemy',	"extends":"E"}],

						"indexes":	[{"class":"Account",	"fields":["id:integer"],	"type":"UNIQUE_HASH_INDEX"	}]

				}

		}

}

Note	also	the	setting

						"standardElementConstraints":	false,

This	is	needed,	in	order	to	allow	importing	the	property	"id"	in	the	OrientDB	Loader.	Without	this	option,	the	Blueprints	standard
would	reject	it,	because	"id"	is	a	reserved	name.

By	executing	the	ETL	process,	this	is	the	output:

Import	from	JSON

239



OrientDB	etl	v.2.1-SNAPSHOT	www.orientechnologies.com

feb	09,	2015	2:46:42	AM	com.orientechnologies.common.log.OLogManager	log

INFORMAZIONI:	OrientDB	auto-config	DISKCACHE=10.695MB	(heap=3.641MB	os=16.384MB	disk=42.205MB)

[orientdb]	INFO	Dropping	existent	database	'plocal:/tmp/databases/db'...

BEGIN	ETL	PROCESSOR

[file]	DEBUG	Reading	from	file	/tmp/database.json

[orientdb]	DEBUG	-	OrientDBLoader:	created	vertex	class	'Account'	extends	'V'

[orientdb]	DEBUG	orientdb:	found	0	vertices	in	class	'null'

[orientdb]	DEBUG	-	OrientDBLoader:	created	edge	class	'Friend'	extends	'E'

[orientdb]	DEBUG	orientdb:	found	0	vertices	in	class	'null'

[orientdb]	DEBUG	-	OrientDBLoader:	created	edge	class	'Enemy'	extends	'E'

[orientdb]	DEBUG	orientdb:	found	0	vertices	in	class	'null'

[orientdb]	DEBUG	-	OrientDBLoader:	created	property	'Account.id'	of	type:	integer

[orientdb]	DEBUG	-	OrientDocumentLoader:	created	index	'Account.id'	type	'UNIQUE_HASH_INDEX'	against	Class	'Account',	fields	[

id:integer]

[0:merge]	DEBUG	Transformer	input:	{name:Joe,id:1,friends:[3],enemies:[1]}

[0:merge]	DEBUG	joinValue=1,	lookupResult=null

[0:merge]	DEBUG	Transformer	output:	{name:Joe,id:1,friends:[3],enemies:[1]}

[0:vertex]	DEBUG	Transformer	input:	{name:Joe,id:1,friends:[3],enemies:[1]}

[0:vertex]	DEBUG	Transformer	output:	v(Account)[#11:0]

[0:edge]	DEBUG	Transformer	input:	v(Account)[#11:0]

[0:edge]	DEBUG	joinCurrentValue=2,	lookupResult=null

[0:edge]	DEBUG	created	new	vertex=Account#11:1{id:2}	v1

[0:edge]	DEBUG	created	new	edge=e[#12:0][#11:0-Friend->#11:1]

[0:edge]	DEBUG	joinCurrentValue=4,	lookupResult=null

[0:edge]	DEBUG	created	new	vertex=Account#11:2{id:4}	v1

[0:edge]	DEBUG	created	new	edge=e[#12:1][#11:0-Friend->#11:2]

[0:edge]	DEBUG	joinCurrentValue=5,	lookupResult=null

[0:edge]	DEBUG	created	new	vertex=Account#11:3{id:5}	v1

[0:edge]	DEBUG	created	new	edge=e[#12:2][#11:0-Friend->#11:3]

[0:edge]	DEBUG	Transformer	output:	v(Account)[#11:0]

[0:edge]	DEBUG	Transformer	input:	v(Account)[#11:0]

[0:edge]	DEBUG	joinCurrentValue=6,	lookupResult=null

[0:edge]	DEBUG	created	new	vertex=Account#11:4{id:6}	v1

[0:edge]	DEBUG	created	new	edge=e[#13:0][#11:0-Enemy->#11:4]

[0:edge]	DEBUG	Transformer	output:	v(Account)[#11:0]

[1:merge]	DEBUG	Transformer	input:	{name:Suzie,id:2,friends:[3],enemies:[2]}

[1:merge]	DEBUG	joinValue=2,	lookupResult=Account#11:1{id:2,in_Friend:[#12:0]}	v2

[1:merge]	DEBUG	merged	record	Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2]}	v2	with	found	record={na

me:Suzie,id:2,friends:[3],enemies:[2]}

[1:merge]	DEBUG	Transformer	output:	Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2]}	v2

[1:vertex]	DEBUG	Transformer	input:	Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2]}	v2

[1:vertex]	DEBUG	Transformer	output:	v(Account)[#11:1]

[1:edge]	DEBUG	Transformer	input:	v(Account)[#11:1]

[1:edge]	DEBUG	joinCurrentValue=1,	lookupResult=Account#11:0{name:Joe,id:1,friends:[3],enemies:[1],out_Friend:[#12:0,	#12:1,	#

12:2],out_Enemy:[#13:0]}	v5

[1:edge]	DEBUG	created	new	edge=e[#12:3][#11:1-Friend->#11:0]

[1:edge]	DEBUG	joinCurrentValue=4,	lookupResult=Account#11:2{id:4,in_Friend:[#12:1]}	v2

[1:edge]	DEBUG	created	new	edge=e[#12:4][#11:1-Friend->#11:2]

[1:edge]	DEBUG	joinCurrentValue=6,	lookupResult=Account#11:4{id:6,in_Enemy:[#13:0]}	v2

[1:edge]	DEBUG	created	new	edge=e[#12:5][#11:1-Friend->#11:4]

[1:edge]	DEBUG	Transformer	output:	v(Account)[#11:1]

[1:edge]	DEBUG	Transformer	input:	v(Account)[#11:1]

[1:edge]	DEBUG	joinCurrentValue=5,	lookupResult=Account#11:3{id:5,in_Friend:[#12:2]}	v2

[1:edge]	DEBUG	created	new	edge=e[#13:1][#11:1-Enemy->#11:3]

[1:edge]	DEBUG	joinCurrentValue=2,	lookupResult=Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2],out_Fri

end:[#12:3,	#12:4,	#12:5],out_Enemy:[#13:1]}	v6

[1:edge]	DEBUG	created	new	edge=e[#13:2][#11:1-Enemy->#11:1]

[1:edge]	DEBUG	Transformer	output:	v(Account)[#11:1]

END	ETL	PROCESSOR

+	extracted	2	entries	(0	entries/sec)	-	2	entries	->	loaded	2	vertices	(0	vertices/sec)	Total	time:	228ms	[0	warnings,	0	error

s]

Once	ready,	let's	open	the	database	with	Studio	and	this	is	the	result:

Import	from	JSON

240



Import	from	JSON

241



ETL	-	Import	from	RDBMS
Most	of	DBMSs	support	JDBC	driver.	All	you	need	is	to	gather	the	JDBC	driver	and	put	it	in	classpath	or	simply	in	the
$ORIENTDB_HOME/lib	directory.

With	the	configuration	below	all	the	records	from	the	table	"Client"	are	imported	in	OrientDB	from	MySQL	database.

Example	importing	a	flat	table

{

		"config":	{

				"log":	"debug"

		},

		"extractor"	:	{

				"jdbc":	{	"driver":	"com.mysql.jdbc.Driver",

														"url":	"jdbc:mysql://localhost/mysqlcrm",

														"userName":	"root",

														"userPassword":	"",

														"query":	"select	*	from	Client"	}

		},

		"transformers"	:	[

			{	"vertex":	{	"class":	"Client"}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/temp/databases/orientdbcrm",

						"dbAutoCreate":	true

				}

		}

}

Example	loading	records	from	2	connected	tables

With	this	example	we	want	to	import	a	database	that	contains	Blog	posts	in	the	following	tables:

Authors,	in	TABLE	Author,	with	the	following	columns:	id	and	name
Posts,	in	TABLE	Post,	with	the	following	columns:	author_id,	title	and	text

To	import	them	into	OrientDB	we'd	need	2	ETL	processes.

Importing	of	Authors

{

		"config":	{

				"log":	"debug"

		},

		"extractor"	:	{

				"jdbc":	{	"driver":	"com.mysql.jdbc.Driver",

														"url":	"jdbc:mysql://localhost/mysql",

														"userName":	"root",

														"userPassword":	"",

														"query":	"select	*	from	Author"	}

		},

		"transformers"	:	[

			{	"vertex":	{	"class":	"Author"}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/temp/databases/orientdb",

						"dbAutoCreate":	true

				}

		}

}

Import	from	RDBMS

242

http://en.wikipedia.org/wiki/JDBC_driver


Importing	of	Posts

{

		"config":	{

				"log":	"debug"

		},

		"extractor"	:	{

				"jdbc":	{	"driver":	"com.mysql.jdbc.Driver",

														"url":	"jdbc:mysql://localhost/mysql",

														"userName":	"root",

														"userPassword":	"",

														"query":	"select	*	from	Post"	}

		},

		"transformers"	:	[

			{	"vertex":	{	"class":	"Post"}	},

			{	"edge":	{	"class":	"Wrote",	"direction"	:	"in",	

												"joinFieldName":	"author_id",

												"lookup":"Author.id",	"unresolvedLinkAction":"CREATE"}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/temp/databases/orientdb",

						"dbAutoCreate":	true

				}

		}

}

Note	the	edge	configuration	has	the	direction	as	"in",	that	means	starts	from	the	Author	and	finishes	to	Post.

Import	from	RDBMS

243



Import	from	DB-Pedia
DBPedia	exports	all	the	entities	as	GZipped	CSV	files.	Features:

First	line	contains	column	names,	second,	third	and	forth	has	meta	information,	which	we'll	skip	(look	at		"skipFrom":	1,	"skipTo":
3	in	CSV	transformer)
The	vertex	class	name	is	created	automatically	based	on	the	file	name,	so	we	can	use	the	same	file	against	any	DBPedia	file
The	Primary	Key	is	the	"URI"	field,	where	a	UNIQUE	index	has	also	been	created	(refer	to	"ORIENTDB"	loader)
The	"merge"	transformer	is	used	to	allow	to	re-import	or	update	any	file	without	generating	duplicates

Configuration

{

		"config":	{

				"log":	"debug",

				"fileDirectory":	"/temp/databases/dbpedia_csv/",

				"fileName":	"Person.csv.gz"

		},

		"begin":	[

			{	"let":	{	"name":	"$filePath",		"value":	"$fileDirectory.append(	$fileName	)"}	},

			{	"let":	{	"name":	"$className",	"value":	"$fileName.substring(	0,	$fileName.indexOf('.')	)"}	}

		],

		"source"	:	{

				"file":	{	"path":	"$filePath",	"lock"	:	true	}

		},

		"extractor"	:	{

			{	"csv":	{	"separator":	",",	"nullValue":	"NULL",	"skipFrom":	1,	"skipTo":	3	}	},

		},

		"transformers"	:	[

			{	"merge":	{	"joinFieldName":"URI",	"lookup":"V.URI"	}	},

			{	"vertex":	{	"class":	"$className"}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/temp/databases/dbpedia",

						"dbUser":	"admin",

						"dbPassword":	"admin",

						"dbAutoCreate":	true,

						"tx":	false,

						"batchCommit":	1000,

						"dbType":	"graph",

						"indexes":	[{"class":"V",	"fields":["URI:string"],	"type":"UNIQUE"	}]

				}

		}

}

Import	from	DB-Pedia

244

http://oldwiki.dbpedia.org/DBpediaAsTables


Import	from	Parse
Parse	is	a	very	popular	BaaS	(Backend	as	a	Service),	acquired	by	Facebook.	Parse	uses	MongoDB	as	a	database	and	allows	to	export	the
database	in	JSON	format.	The	format	is	an	array	of	JSON	objects.	Example:

[

				{

								"user":	{

												"__type":	"Pointer",

												"className":	"_User",

												"objectId":	"Ldlskf4mfS"

								},

								"address":	{

												"__type":	"Pointer",

												"className":	"Address",

												"objectId":	"lvkDfj4dmS"

								},

								"createdAt":	"2013-11-15T18:15:59.336Z",

								"updatedAt":	"2014-02-27T23:47:00.440Z",

								"objectId":	"Ldk39fDkcj",

								"ACL":	{

												"Lfo33mfDkf":	{

																"write":	true

												},

												"*":	{

																"read":	true

												}

								}

				},	{

								"user":	{

												"__type":	"Pointer",

												"className":	"_User",

												"objectId":	"Lflfem3mFe"

								},

								"address":	{

												"__type":	"Pointer",

												"className":	"Address",

												"objectId":	"Ldldjfj3dd"

								},

								"createdAt":	"2014-01-01T18:04:02.321Z",

								"updatedAt":	"2014-01-23T20:12:23.948Z",

								"objectId":	"fkfj49fjFFN",

								"ACL":	{

												"dlfnDJckss":	{

																"write":	true

												},

												"*":	{

																"read":	true

												}

								}

				}

]

Notes:

Each	object	has	its	own		objectId		that	identifies	the	object	in	the	entire	database.
Parse	has	the	concept	of		class	,	like	OrientDB.
Links	are	similar	to	OrientDB	RID	(but	it	requires	a	costly	JOIN	to	be	traversed),	but	made	as	an	embedded	object	containing:

	className		as	target	class	name
	objectId		as	target	objectId

Parse	has	ACL	at	record	level,	like	OrientDB.

In	order	to	import	a	PARSE	file,	you	need	to	create	the	ETL	configuration	using	JSON	as	Extractor.

Example

Import	from	Parse	(Facebook)

245

https://parse.com/
http://www.orientechnologies.com/docs/last/orientdb.wiki/Security.html#record-level-security


In	this	example,	we're	going	to	import	the	file	extracted	from	Parse	containing	all	the	records	of	the		user		class.	Note	the	creation	of	the
class		User		in	OrientDB,	which	extends		V		(Base	Vertex	class).	We	created	an	index	against	property		User.objectId		to	use	the	same
ID,	similar	to	Parse.	If	you	execute	this	ETL	import	multiple	times,	the	records	in	OrientDB	will	be	updated	thanks	to	the		merge	
feature.

{

		"config":	{

				"log":	"debug"

		},

		"source"	:	{

				"file":	{	"path":	"/temp/parse-user.json",	"lock"	:	true	}

		},

		"extractor"	:	{

				"json":	{}

		},

		"transformers"	:	[

			{	"merge":	{	"joinFieldName":"objectId",	"lookup":"User.objectId"	}	},

			{	"vertex":	{	"class":	"User"}	}

		],

		"loader"	:	{

				"orientdb":	{

						"dbURL":	"plocal:/temp/databases/parse",

						"dbUser":	"admin",

						"dbPassword":	"admin",

						"dbAutoCreate":	true,

						"tx":	false,

						"batchCommit":	1000,

						"dbType":	"graph",

						"classes":	[

								{"name":	"User",	"extends":	"V"}

						],						

						"indexes":	[

								{"class":"User",	"fields":["objectId:string"],	"type":"UNIQUE_HASH_INDEX"	}

						]

				}

		}

}

See	also:

Import	from	JSON.

Import	from	Parse	(Facebook)

246



Logging
OrientDB	handles	logs	using	the	Java	Logging	Framework,	which	is	bundled	with	the	JVM.	The	specific	format	it	uses	derives	from	the
	OLogFormatter		class,	which	defaults	to:

<date>	<level>	<message>	[<requester>]

	<date>		Shows	the	date	of	the	log	entry,	using	the	date	format		YYYY-MM-DD	HH:MM:SS:SSS	.
	<level>		Shows	the	log	level.
	<message>		Shows	the	log	message.
	<class>		Shows	the	Java	class	that	made	the	entry,	(optional).

The	supported	levels	are	those	contained	in	the	JRE	class		java.util.logging.Level	.	From	highest	to	lowest:

	SEVERE	

	WARNING	

	INFO	

	CONFIG	

	FINE	

	FINER	

	FINEST	

By	default,	OrientDB	installs	two	loggers:

	console	:	Logs	to	the	shell	or	command-prompt	that	starts	the	application	or	the	server.	You	can	modify	it	by	setting	the
	log.console.level		variable.
	file	:	Logs	to	the	log	file.	You	can	modify	it	by	setting	the		log.file.level		variable.

Configuration	File

You	can	configure	logging	strategies	and	policies	by	creating	a	configuration	file	that	follows	the	Java	Logging	Messages	configuration
syntax.	For	example,	consider	the	following	from	the		orientdb-server-log.properties		file:

#	Specify	the	handlers	to	create	in	the	root	logger

#	(all	loggers	are	children	of	the	root	logger)

#	The	following	creates	two	handlers

handlers	=	java.util.logging.ConsoleHandler,	java.util.logging.FileHandler

#	Set	the	default	logging	level	for	the	root	logger

.level	=	ALL

#	Set	the	default	logging	level	for	new	ConsoleHandler	instances

java.util.logging.ConsoleHandler.level	=	INFO

#	Set	the	default	formatter	for	new	ConsoleHandler	instances

java.util.logging.ConsoleHandler.formatter	=	com.orientechnologies.common.log.OLogFormatter

#	Set	the	default	logging	level	for	new	FileHandler	instances

java.util.logging.FileHandler.level	=	INFO

#	Naming	style	for	the	output	file

java.util.logging.FileHandler.pattern=../log/orient-server.log

#	Set	the	default	formatter	for	new	FileHandler	instances

java.util.logging.FileHandler.formatter	=	com.orientechnologies.common.log.OLogFormatter

#	Limiting	size	of	output	file	in	bytes:

java.util.logging.FileHandler.limit=10000000

#	Number	of	output	files	to	cycle	through,	by	appending	an

#	integer	to	the	base	file	name:

java.util.logging.FileHandler.count=10

When	the	log	properties	file	is	ready,	you	need	to	tell	the	JVM	to	use	t,	by	setting		java.util.logging.config.file		system	property.

Logging

247

http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html
http://www.javapractices.com/topic/TopicAction.do?Id=143


$	java	-Djava.util.logging.config.file=mylog.properties

Setting	the	Log	Level
To	change	the	log	level	without	modifying	the	logging	configuration,	set	the		log.console.level		and		log.file.level		system	variables.
These	system	variables	are	accessible	both	at	startup	and	at	runtime.

Configuring	Log	Level	at	Startup

You	can	configure	log	level	at	startup	through	both	the		orientdb-server-config.xml		configuration	file	and	by	modifying	the	JVM
before	you	start	the	server:

Using	the	Configuration	File

To	configure	log	level	from	the	configuration	file,	update	the	following	elements	in	the		<properties>		section:

<properties>

			<entry	value="info"	name="log.console.level"	/>

			<entry	value="fine"	name="log.file.level"	/>

			...

</properties>

Using	the	JVM

To	configure	log	level	from	the	JVM	before	starting	the	server,	run	the		java		command	to	configure	the		log.console.level		and
	log.file.level		variables:

$	java	-Dlog.console.level=INFO	-Dlog.file.level=FINE

Configuring	Log	Level	at	Runtime

You	can	configure	log	level	at	runtime	through	both	the	Java	API	and	by	executing	an	HTTP		POST		against	the	remote	server.

Using	Java	Code

Through	the	Java	API,	you	can	set	the	system	variables	for	logging	at	startup	through	the		System.setProperty()		method.	For	instance,

public	void	main(String[]	args){

		System.setProperty("log.console.level",	"FINE");

		...

}

Using	HTTP	POST

Through	the	HTTP	requests,	you	can	update	the	logging	system	variables	by	executing	a		POST		against	the	URL:		/server/log.
<type>/<level>	.

	<type>		Defines	the	log	type:		console		or		file	.
	<level>		Defines	the	log	level.

Examples

The	examples	below	use	cURL	to	execute	the	HTTP		POST		commands	against	the	OrientDB	server.	It	uses	the	server		root		user	and
password.

Enable	the	finest	tracing	level	to	the	console:

Logging

248

https://en.wikipedia.org/wiki/CURL


$	curl	-u	root:root	-X	POST	http://localhost:2480/server/log.console/FINEST

Enable	the	finest	tracing	level	to	file:

$	curl	-u	root:root	-X	POST	http://localhost:2480/server/log.file/FINEST

Install	Log	Formatter

OrientDB	Server	uses	its	own	log	formatter.	In	order	to	enable	the	same	for	your	application,	you	need	to	include	the	following	line:

OLogManager.installCustomFormatter();

The	Server	automatically	installs	the	log	formatter.	To	disable	it,	use		orientdb.installCustomFormatter	.

$	java	-Dorientdb.installCustomFormatter=false

Logging

249



Studio	Home	page
Studio	is	a	web	interface	for	the	administration	of	OrientDB	that	comes	in	bundle	with	the	OrientDB	distribution.

If	you	run	OrientDB	in	your	machine	the	web	interface	can	be	accessed	via	the	URL:

http://localhost:2480

This	is	the	new	Studio	2.0	Homepage.

From	here,	you	can	:

Connect	to	an	existing	database
Drop	an	existing	database
Create	a	new	database
Import	a	public	database
Go	to	the	Server	Management	UI

Connect	to	an	existing	database

To	Login,	select	a	database	from	the	databases	list	and	use	any	database	user.	By	default	reader/reader	can	read	records	from	the
database,	writer/writer	can	read,	create,	update	and	delete	records.	admin/admin	has	all	rights.

Drop	an	existing	database

Select	a	database	from	the	databases	list	and	click	the	trash	icon.	Studio	will	open	a	confirmation	popup	where	you	have	to	insert

Server	User
Server	Password

and	then	click	the	"Drop	database"	button.	You	can	find	the	server	credentials	in	the	$ORIENTDB_HOME/config/orientdb-server-
config.xml	file:

<users>

		<user	name="root"	password="pwd"	resources="*"	/>

</users>

Studio

250



Create	a	new	database

To	create	a	new	database,	click	the	"New	DB"	button	from	the	Home	Page

Some	information	is	needed	to	create	a	new	database:

Database	name
Database	type	(Document/Graph)
Storage	type	(plocal/memory)
Server	user
Server	password

You	can	find	the	server	credentials	in	the	$ORIENTDB_HOME/config/orientdb-server-config.xml	file:

<users>

		<user	name="root"	password="pwd"	resources="*"	/>

</users>

Once	created,	Studio	will	automatically	login	to	the	new	database.

Import	a	public	database
Studio	2.0	allows	you	to	import	databases	from	a	public	repository.	These	databases	contains	public	data	and	bookmarked	queries	that
will	allow	you	to	start	playing	with	OrientDB	and	OrientDB	SQL.	The	classic	bundle	database	'GratefulDeadConcerts'	will	be	moved	to
this	public	repository.

Studio

251



To	install	a	public	database,	you	will	need	the	Server	Credentials.	Then,	click	the	download	button	of	the	database	that	you	are
interested	in.	Then	Studio	will	download	and	install	in	to	your	$ORIENTDB_HOME/databases	directory.	Once	finished,	Studio	will
automatically	login	to	the	newly	installed	database.

Studio

252



Execute	a	query
Studio	supports	auto	recognition	of	the	language	you're	using	between	those	supported:	SQL	and	Gremlin.	While	writing,	use	the	auto-
complete	feature	by	pressing	Ctrl	+	Space.

Other	shortcuts	are	available	in	the	query	editor:

Ctrl	+	Return	to	execute	the	query	or	just	click	the	Run	button
Ctrl/Cmd	+	Z	to	undo	changes
Ctrl/Cmd	+	Shift	+	Z	to	redo	changes
Ctrl/Cmd	+	F	to	search	in	the	editor
Ctrl/Cmd	+	/	to	toggle	a	comment

Note:	If	you	have	multiple	queries	in	the	editor,	you	can	select	a	single	query	with	text	selection	and	execute	it	with	Ctrl	+
Return	or	the	Run	button

By	clicking	any	@rid	value	in	the	result	set,	you	will	go	into	document	edit	mode	if	the	record	is	a	Document,	otherwise	you	will	go	into
vertex	edit.

You	can	bookmark	your	queries	by	clicking	the	star	icon	in	the	results	set	or	in	the	editor.	To	browse	bookmarked	queries,	click	the
Bookmarks	button.	Studio	will	open	the	bookmarks	list	on	the	left,	where	you	can	edit/delete	or	rerun	queries.

Query

253



Studio	saves	the	executed	queries	in	the	Local	Storage	of	the	browser,	in	the	query	settings,	you	can	configure	how	many	queries	studio
will	keep	in	history.	You	can	also	search	a	previously	executed	query,	delete	all	the	queries	from	the	history	or	delete	a	single	query.

From	Studio	2.0,	you	can	send	the	result	set	of	a	query	to	the	Graph	Editor	by	clicking	on	the	circle	icon	in	the	result	set	actions.	This
allows	you	to	visualize	your	data	graphically.

Look	at	the	JSON	output
Studio	communicates	with	the	OrientDB	Server	using	HTTP/RESt+JSON	protocol.	To	see	the	output	in	JSON	format,	press	the	RAW
tab.

Query

254



Edit	Document

Edit	Document

255



Edit	Vertex

Edit	Vertex

256



Schema	Manager
OrientDB	can	work	in	schema-less	mode,	schema	mode	or	a	mix	of	both.	Here	we'll	discuss	the	schema	mode.	To	know	more	about
schema	in	OrientDB	go	here

Here	you	can	:

Browse	all	the	Classes	of	your	database
Create	a	new	Class
Rename/Drop	a	Class
Change	the	cluster	selection	for	a	Class
Edit	a	class	by	clicking	on	a	class	row	in	the	table
View	all	indexes	created

Create	a	new	Class

To	create	a	new	Class,	just	click	the	New	Class	button.	Some	information	is	required	to	create	the	new	class.

Name
SuperClass
Alias	(Optional)
Abstract

Schema

257



Here	you	can	find	more	information	about	Classes	

View	all	indexes

When	you	want	to	have	an	overview	of	all	indexes	created	in	your	database,	just	click	the	All	indexes	button	in	the	Schema	UI.	This
will	provide	quick	access	to	some	information	about	indexes	(name,	type,	properties,	etc)	and	you	can	drop	or	rebuild	them	from	here.

Schema

258



Class	Edit

Property

Add	Property

Indexes

Create	new	index

Class

259



Class

260



Graph	Editor
Since	Studio	2.0	we	have	a	new	brand	graph	editor.	Not	only	you	can	visualize	your	data	in	a	graph	way	but	you	can	also	interact	with
the	graph	and	modify	it.

To	populate	the	graph	area	just	type	a	query	in	the	query	editor	or	use	the	functionality	Send	To	Graph	from	the	Browse	UI

Supported	operations	in	the	Graph	Editor	are:

Add	Vertices
Save	the	Graph	Rendering	Configuration
Clear	the	Graph	Rendering	Canvas
Delete	Vertices
Remove	Vertices	from	Canvas
Edit	Vertices
Inspect	Vertices
Change	the	Rendering	Configuration	of	Vertices
Navigating	Relationships
Create	Edges	between	Vertices
Delete	Edges	between	Vertices
Inspect	Edges
Edit	Edges

Add	Vertices
To	add	a	new	Vertex	in	your	Graph	Database	and	in	the	Graph	Canvas	area	you	have	to	press	the	button	Add	Vertex.	This	operation	is
done	in	two	steps.

The	first	step	you	have	to	choose	the	class	for	the	new	Vertex	and	then	click	Next

Graph	Editor

261



In	the	second	step	you	have	to	insert	the	fields	values	of	the	new	vertex,	you	can	also	add	custom	fields	as	OrientDB	supports	Schema-
Less	mode.	To	make	the	new	vertex	persistent	click	to	Save	changes	and	the	vertex	will	be	saved	into	the	database	and	added	to	the
canvas	area

Delete	Vertices
Open	the	circular	menu	by	clicking	on	the	Vertex	that	you	want	to	delete,	open	the	sub-menu	by	passing	hover	the	mouse	to	the	menu
entry	more	(...)	and	then	click	the	trash	icon.

Remove	Vertices	from	Canvas
Open	the	circular	menu	,	open	the	sub-menu	by	passing	hover	the	mouse	to	the	menu	entry	more	(...)	and	then	click	the	eraser	icon.

Edit	Vertices

Graph	Editor

262



Open	the	circular	menu	and	then	click	to	the	edit	icon,	Studio	will	open	a	popup	where	you	can	edit	the	vertex	properties.

Inspect	Vertices

If	you	want	to	take	a	quick	look	to	the	Vertex	property,	click	to	the	eye	icon.

Change	the	Rendering	Configuration	of	Vertices

Navigating	Relationships

Create	Edges	between	Vertices

Delete	Edges	between	Vertices

Graph	Editor

263



Inspect	Edges

Edit	Edges

Graph	Editor

264



Functions
OrientDB	allows	to	extend	the	SQL	language	by	providing	Functions.	Functions	can	be	used	also	to	create	data-driven	micro	services.
For	more	information	look	at	Functions.

Functions

265



Security
Studio	2.0	includes	the	new	Security	Management	where	you	can	manage	Users	and	Roles	in	a	graphical	way.	For	detailed	information
about	Security	in	OrientDB,	visit	here

Users

Here	you	can	manage	the	database	users:

Search	Users
Add	Users
Delete	Users
Edit	User:	roles	can	be	edited	in-line,	for	name,	status	and	password	click	the	Edit	button

Add	Users

To	add	a	new	User,	click	the	Add	User	button,	complete	the	information	for	the	new	user	(name,	password,	status,	roles)	and	then	save
to	add	the	new	user	to	the	database.

Security

266



Roles

Here	you	can	manage	the	database	roles:

Search	Role
Add	Role
Delete	Role
Edit	Role

Add	Role

To	add	a	new	User,	click	the	Add	Role	button,	complete	the	information	for	the	new	role	(name,	parent	role,	mode)	and	then	save	to	add
the	new	role	to	the	database.

Add	Rule	to	a	Role

To	add	a	new	security	rule	for	the	selected	role,	click	the	Add	Rule	button.	This	will	ask	you	the	string	of	the	resource	that	you	want	to
secure.	For	a	list	of	available	resources,	visit	the	official	documentation	here

Then	you	can	configure	the	CRUD	permissions	on	the	newly	created	resource.

Security

267



Security

268



Database	Management
This	is	the	panel	containing	all	the	information	about	the	current	database.

Structure
Represents	the	database	structure	as	clusters.	Each	cluster	has	the	following	information:

	ID	,	is	the	cluster	ID
	Name	,	is	the	name	of	the	cluster
	Records	,	are	the	total	number	of	records	stored	in	the	cluster
	Conflict	Strategy	,	is	the	conflict	strategy	used.	I	empty,	the	database's	strategy	is	used	as	default

Configuration
Contains	the	database	configuration	and	custom	properties.	Here	you	can	display	and	change	the	following	settings:

	dateFormat	,	is	the	date	format	used	in	the	database	by	default.	Example:	yyyy-MM-dd
	dateTimeFormat		is	the	datetime	format	used	in	the	database	by	default.	Example:	yyyy-MM-dd	HH:mm:ss
	localeCountry	,	is	the	country	used.	"NO"	means	no	country	set
	localeLanguage	,	is	the	language	used.	"no"	means	no	language	set
	charSet	,	is	the	charset	used.	Default	is	UTF-8
	timezone	,	is	the	timezone	used.	Timezone	is	taken	on	database	creation
	definitionVersion	,	is	the	internal	version	used	to	store	the	metadata
	clusterSelection	,	is	the	strategy	used	on	selecting	the	cluster	on	creation	of	new	record	of	a	class
	minimumClusters	,	minimum	number	of	clusters	to	create	whenat	class	creation
	conflictStrategy	,	is	the	database	strategy	for	resolving	conflicts

Database	Management

269



Export

Allows	to	export	the	current	database	in	GZipped	JSON	format.	To	import	the	file	into	another	database,	use	the	Import	Console
Command.

Database	Management

270



Server	Management
This	is	the	section	to	work	with	OrientDB	Server	as	DBA/DevOps.	Starting	from	OrientDB	2.1	Studio	has	been	enriched	of	features
taken	from	the	Enterprise	Edition.

Statistics

This	page	summarizes	all	the	most	important	information	about	the	current	server	and	the	other	servers	connected	in	cluster	if	any:

	Server	status	

	Operations	per	second	

	Active	Connections	

	Warnings	

	CPU	,		RAM		and		DISK		used
	Live	chart		with	CRUD	operations	in	real-time

Connections
Displays	all	the	active	connections	to	the	server.	Each	connection	reports	the	following	information:

	Session	ID	,	as	the	unique	session	number
	Client	,	as	the	unique	client	number
	Address	,	is	the	connection	source
	Database	,	the	database	name	used
	User	,	the	database	user
	Total	Requests	,	as	the	total	number	of	requests	executed	by	the	connection
	Command	Info	,	as	the	running	command
	Command	Detail	,	as	the	detail	about	the	running	command
	Last	Command	On	,	is	the	last	time	a	request	has	been	executed
	Last	Command	Info	,	is	the	informaton	about	last	operation	executed
	Last	Command	Detail	,	is	the	informaton	about	the	details	of	last	operation	executed
	Last	Execution	Time	,	is	the	execution	time	o	last	request
	Total	Working	Time	,	is	the	total	execution	time	taken	by	current	connection	so	far

Server	Management

271

http://orientdb.com/enterprise/


	Connected	Since	,	is	the	date	when	the	connection	has	been	created
	Protocol	,	is	the	protocol	between	HTTP	and	Binary
	Client	ID	,	a	text	representing	the	client	connection
	Driver	,	the	driver	name

Each	session	can	be	interrupted	or	even	killed.

Configuration
This	panel	shows	the	Server	settings	divided	in	two	boxes:

	Properties	,	as	the	custom	settings	in		config/orientdb-server-config.xml		file
	Global	Configuration	,	as	all	the	global	configuration.	Only	few	of	them	can	be	changed	at	run-time	with	the	"Save"	button

Storages
This	panel	shows	the	storages	used	by	the	server.	Below	the	information	reported	per	storage:

Server	Management

272



	Name	,	is	the	storage	name
	Type	,	where		OLocalPaginatedStorage		(plocal)	means	persstent	and		ODirectMemoryStorage		(memory)	is	in	memory	only
	Path	,	as	the	path	on	server's	file	system	where	the	storage	is	located
	Active	Users	.	This	infomation	couldn't	be	updated	with	the	real	number	of	users	that	are	using	the	database

Server	Management

273



Auditing	(Enterprise	only)
Studio	2.1	includes	a	new	functionality	called	Auditing.	To	understand	how	Auditing	works,	please	read	the	Auditing	page.

The	Studio	Auditing	panel	helps	with	configuring	auditing	by	avoiding	editing	the		auditing-config.json		file	manually.

By	default	all	the	auditing	logs	are	saved	as	documents	of	class		AuditingLog	.	If	your	account	has	enough	privileges,	you	can	directly
query	the	auditing	log.	Example	on	retrieving	last	20	logs:		select	from	AuditingLog	order	by	@rid	desc	limit	20	.

However,	Studio	provides	a	panel	to	filter	the	Auditing	Log	messages	without	using	SQL.

Auditing

274



Troubleshooting
This	page	aims	to	link	all	the	guides	to	Problems	and	Troubleshooting.

Sub	sections

Troubleshooting	Java	API

Topics

Why	can't	I	see	all	the	edges?

OrientDB,	by	default,	manages	edges	as	"lightweight"	edges	if	they	have	no	properties.	This	means	that	if	an	edge	has	no	properties,	it's
not	stored	as	physical	record.	But	don't	worry,	your	edge	is	still	there	but	encoded	in	a	separate	data	structure.	For	this	reason	if	you
execute	a		select	from	E	no	edges	or	less	edges	than	expected	are	returned.	It's	extremely	rare	the	need	to	have	the	list	of	edges,	but	if
this	is	your	case	you	can	disable	this	feature	by	issuing	this	command	once	(with	a	slow	down	and	a	bigger	database	size):

ALTER	DATABASE	custom	useLightweightEdges=false

Use	ISO	8601	Dates

According	to	ISO	8601,	Combined	date	and	time	in	UTC:	2014-12-20T00:00:00.	To	use	this	standard	change	the	datetimeformat	in	the
database:

ALTER	DATABASE	DATETIMEFORMAT	yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

JVM	crash	on	Solaris	and	other	*NIX	platforms.

The	reason	of	this	issue	is	massive	usage	of	sun.misc.Unsafe	which	may	have	different	contract	than	it	is	implemented	for	Linux	and
Windows	JDKs.	To	avoid	this	error	please	use	following	settings	during	server	start:

java	...	-Dmemory.useUnsafe=false	and	-Dstorage.compressionMethod=gzip	...

Error	occurred	while	locking	memory:	Unable	to	lock	JVM	memory.	This	can	result	in
part	of	the	JVM	being	swapped	out,	especially	if	mmapping	of	files	enabled.	Increase
RLIMIT_MEMLOCK	or	run	OrientDB	server	as	root(ENOMEM)

Don't	be	scared	about	it:	your	OrientDB	installation	will	work	perfectly,	just	it	could	be	slower	with	database	larger	than	memory.

This	lock	is	needed	in	case	of	you	work	on	OS	which	uses	aggressive	swapping	like	Linux.	If	there	is	the	case	when	amount	of	available
RAM	is	not	enough	to	cache	all	MMAP	content	OS	can	swap	out	rarely	used	parts	of	Java	heap	to	the	disk	and	when	GC	is	started	to
collect	garbage	we	will	have	performance	degradation,	to	prevent	such	situation	Java	heap	is	locked	into	memory	and	prohibited	to	be
flushed	on	the	disk.

com.orientechnologies.orient.core.exception.OStorageException:	Error	on	reading
record	from	file	'default.0.oda',	position	2333,	size	122,14Mb:	the	record	size	is	bigger
then	the	file	itself	(233,99Kb)

This	usually	happens	because	the	database	has	been	corrupted	by	a	hw/sw	crash	or	a	hard	kill	of	the	process	during	the	writing	to	disk.
If	this	happens	on	index	clusters	just	rebuild	indexes,	otherwise	re-import	a	previously	exported	database.

Class	'OUSER'	or	'OROLE'	was	not	found	in	current	database

Troubleshooting

275



Look	at:	Restore	admin	user.

User	'admin'	was	not	found	in	current	database

Look	at:	Restore	admin	user.

WARNING:	Connection	re-acquired	transparently	after	XXXms	and	Y	retries:	no	errors
will	be	thrown	at	application	level

This	means	that	probably	default	timeouts	are	too	low	and	server	side	operation	need	more	time	to	complete.	Follow	these	Performance
Tuning.

Record	id	invalid	-1:-2

This	message	is	relative	to	a	temporary	record	id	generated	inside	a	transaction.	For	more	information	look	at	Transactions.	This	means
that	the	record	hasn't	been	correctly	serialized.

Brand	new	records	are	created	with	version	greater	than	0

This	happens	in	graphs.	Think	to	this	graph	of	records:

A	->	B	->	C	->	A

When	OrientDB	starts	to	serialize	records	goes	recursively	from	the	root	A.	When	A	is	encountered	again	to	avoid	loops	it	saves	the
record	as	empty	just	to	get	the	RecordID	to	store	into	the	record	C.	When	the	serialization	stack	ends	the	record	A	(that	was	the	first	of
the	stack)	is	updated	because	has	been	created	as	first	but	empty.

Error:	com.orientechnologies.orient.core.exception.OStorageException:	Cannot	open
local	storage	'/tmp/databases/demo'	with	mode=rw

com.orientechnologies.common.concur.lock.OLockException:	File
'/tmp/databases/demo/default.0.oda'	is	locked	by	another	process,	maybe	the	database	is
in	use	by	another	process.	Use	the	remote	mode	with	a	OrientDB	server	to	allow
multiple	access	to	the	same	database

Both	errors	have	the	same	meaning:	a	"plocal"	database	can't	be	opened	by	multiple	JVM	at	the	same	time.	To	fix:

check	if	there's	no	process	using	OrientDB	(most	of	the	times	a	OrientDB	Server	is	running	i	the	background).	Just	shutdown	that
server	and	retry
if	you	need	multiple	access	to	the	same	database,	don't	use	"plocal"	directly,	but	rather	start	a	server	and	access	to	the	database	by
using	"remote"	protocol.	In	this	way	the	server	is	able	to	share	the	same	database	with	multiple	clients.

Caused	by:	java.lang.NumberFormatException:	For	input	string:	"500Mb"

You're	using	different	version	of	libraries.	For	example	the	client	is	using	1.3	and	the	server	1.4.	Align	the	libraries	to	the	same	version
(last	is	suggested).	Or	probably	you've	different	versions	of	the	same	jars	in	the	classpath.

Troubleshooting

276



Troubleshooting	using	Java	API

OConcurrentModificationException:	Cannot	update	record	#X:Y	in
storage	'Z'	because	the	version	is	not	the	latest.	Probably	you	are
updating	an	old	record	or	it	has	been	modified	by	another	user
(db=vA	your=vB)

This	exception	happens	because	you're	running	in	a	Multi	Version	Control	Check	(MVCC)	system	and	another	thread/user	has	updated
the	record	you're	saving.	For	more	information	about	this	topic	look	at	Concurrency.	To	fix	this	problem	you	can:

Change	the	Graph	consistency	level	to	don't	use	transactions.
Or	write	code	concurrency	proof.

Example:

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{

		try	{

				//	APPLY	CHANGES

				document.field(name,	"Luca");

				document.save();

				break;

		}	catch(ONeedRetryException	e)	{

				//	RELOAD	IT	TO	GET	LAST	VERSION

				document.reload();

		}

}

The	same	in	transactions:

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{

		db.begin();

		try	{

				//	CREATE	A	NEW	ITEM

				ODocument	invoiceItem	=	new	ODocument("InvoiceItem");

				invoiceItem.field(price,	213231);

				invoiceItem.save();

				//	ADD	IT	TO	THE	INVOICE

				Collection<ODocument>	items	=	invoice.field(items);

				items.add(invoiceItem);

				invoice.save();

				db.commit();

				break;

		}	catch	(OTransactionException	e)	{

				//	RELOAD	IT	TO	GET	LAST	VERSION

				invoice.reload();

		}

}

Where		maxRetries		is	the	maximum	number	of	attempt	of	reloading.

Run	in	OSGi	context

(by	Raman	Gupta)	OrientDB	uses	ServiceRegistry	to	load	OIndexFactory	and	some	OSGi	containers	might	not	work	with	it.

One	solution	is	to	set	the	TCCL	so	that	the	ServiceRegistry	lookup	works	inside	of	OSGi:

Java

277

http://docs.oracle.com/javase/7/docs/api/javax/imageio/spi/ServiceRegistry.html
http://docs.oracle.com/javase/7/docs/api/javax/imageio/spi/ServiceRegistry.html


ODatabaseObjectTx	db	=	null;

ClassLoader	origClassLoader	=	Thread.currentThread().getContextClassLoader();

try	{

		ClassLoader	orientClassLoader	=	OIndexes.class.getClassLoader();

		Thread.currentThread().setContextClassLoader(orientClassLoader);

		db	=	objectConnectionPool.acquire(dbUrl,	username,	password);

}	finally	{

		Thread.currentThread().setContextClassLoader(origClassLoader);

}

Because	the	ServiceLoader	uses	the	thread	context	classloader,	you	can	configure	it	to	use	the	classloader	of	the	OrientDB	bundle	so	that
it	finds	the	entries	in	META-INF/services.

Another	way	is	to	embed	the	dependencies	in	configuration	in	the	Maven	pom.xml	file	under	plugin(maven-bundle-
plugin)/configuration/instructions:

<Embed-Dependency>

		orientdb-client,

		orient-commons,

		orientdb-core,

		orientdb-enterprise,

		orientdb-object,

		javassist

</Embed-Dependency>

Including	only	the	jars	you	need.	Look	at	Which	library	do	I	use?

Database	instance	has	been	released	to	the	pool.	Get	another
database	instance	from	the	pool	with	the	right	username	and
password

This	is	a	generic	error	telling	that	the	database	has	been	found	closed	while	using	it.

Check	the	stack	trace	to	find	the	reason	of	it:

OLazyObjectIterator
This	is	the	case	when	you're	working	with	Object	Database	API	and	a	field	contains	a	collection	or	a	map	loaded	in	lazy.	On	iteration	it
needs	an	open	database	to	fetch	linked	records.

Solutions:

assure	to	leave	the	database	open	while	browsing	the	field
or	early	load	all	the	instances	(just	iterate	the	items)
define	a	fetch-plan	to	load	the	entire	object	tree	in	one	shoot	and	then	work	offline.	If	you	need	to	save	the	object	back	to	the
database	then	reopen	the	database	and	call		db.save(	object	)	.

Stack	Overflow	on	saving	objects
This	could	be	due	to	the	high	deep	of	the	graph,	usually	when	you	create	many	records.	To	fix	it	save	the	records	more	often.

Java

278

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html


Query	Examples
This	pages	collects	example	of	query	from	users.	Feel	free	to	add	your	own	use	case	and	query	to	help	further	users.

How	to	ask	the	graph	what	relationships	exist	between	two	vertices?	In	my	case	I	have	two	known	'Person'	nodes	each	connected	via	a
'member_of'	edge	to	a	shared	'Organization'	node.	Each	'Person'	is	also	a	'member_of'	other	'Organization's.

select	intersect(out('member_of').org_name)	from

	Person	where	name	in	["nagu",	"rohit"]

This	example	shows	how	to	form	where	clause	in	order	to	query/	filter	based	on	properties	of	connected	vertices.

DocElem	and	Model	are	subclasses	of	V	and	hasModel	of	E.

				insert	into	DocElem	set	uri	=	'domain.tdl',	type	=	"paragraph"

				insert	into	Model	set	hash	=	'0e1f',	model	=	"hello	world"

				create	edge	hasModel	from	#12:2738	to	#13:2658

User	wishes	to	query	those	vertices	filtering	on	certain	properties	of	DocElem	and	Model.

To	fetch	the	Model	vertices	where	DocElem.type	=	"paragraph"	and	connected	vertex	Model	has	the	property	model	like	'%world%'

				select	from	(select	expand(out('hasModel'))	from	DocElem	where	

						type	=	"paragraph")	where	model	like	"%world%"

To	find	instead	the	DocElem	vertices,	use	this	(assuming	that	a	DocElem	is	only	connected	to	one	Model):

				select	*	from	DocElem	where	type	=	"paragraph"	and	

						out('hasModel')[0].model	like	'%world%'

How	to	apply	built-in	math	functions	on	projections?	For	example,	to	use	the	sum()	function	over	2	values	returned	from	sub-queries
using	projections,	the	following	syntax	may	be	used:

		select	sum($a[0].count,$b[0].count)	

				let	$a	=	(select	count(*)	from	e),	

								$b	=	(select	count(*)	from	v)

Given	the	following	schema:	Vertices	are	connected	with	Edges	of	type	RELATED	which	have	property	count.	2	vertices	can	have
connection	in	both	ways	at	the	same	time.

V1--RELATED(count=17)-->V2

V2--RELATED(count=3)-->V1

Need	to	build	a	query	that,	for	a	given	vertex	Vn,	will	find	all	vertices	connected	with	RELATED	edge	to	this	Vn	and	also,	for	each	pair
[Vn,	Vx]	will	calculate	SUM	of	in_RELATED.count	and	out_RELATED.count.

For	that	simple	example	above,	this	query	result	for	V1	would	be

Vertex Count

V2 20

Solution:

Query	Examples

279



select	v.name,	sum(count)	as	cnt	from	(

		select	if(eval("in=#17:0"),out,in)	as	v,count	from	E	where	(

				in=#17:0	or	out=#17:0)

		)	group	by	v	order	by	cnt	desc

This	was	discussed	in	the	google	groups	over	here:	"https://groups.google.com/forum/#!topic/orient-database/CRR-simpmLg".	Thanks
to	Andrey	for	posing	the	problem.

Query	Examples

280

https://groups.google.com/forum/#!topic/orient-database/CRR-simpmLg


Performance	Tuning
This	guide	contains	the	general	tips	to	optimize	your	application	that	use	the	OrientDB.	Below	you	can	find	links	for	the	specific	guides
different	per	database	type	used.	Look	at	the	specific	guides	based	on	the	database	type	you're	using:

Document	Database	performance	tuning
Object	Database	performance	tuning
Distributed	Configuration	tuning

I/O	benchmark

The	main	requirement	for	a	fast	DBMS	is	having	good	I/O.	In	order	to	understand	the	performance	of	your	hw/sw	configuration.	If	you
have	a	Unix	derived	OS	(like	Linux,	MacOSX,	etc.),	the	simplest	way	to	have	your	raw	I/O	performance	is	running	this	two	commands:

dd	if=/dev/zero	of=/tmp/output.img	bs=8k	count=256k

rm	/tmp/output.img

This	is	the	output	on	a	fast	SSD	(1.4	GB/sec):

262144+0	records	in

262144+0	records	out

2147483648	bytes	transferred	in	1.467536	secs	(1463326070	bytes/sec)

And	this	is	what	you	usually	get	with	a	HD	connected	with	a	USB	3.0	(90	MB/sec):

262144+0	records	in

262144+0	records	out

2147483648	bytes	transferred	in	23.699740	secs	(90612119	bytes/sec)

As	you	can	notice	the	first	configuration	(SSD)	is	16x	faster	than	the	second	configuration	(HD).	Sensible	differences	can	be	found
between	bare	metal	hw	and	Virtual	Machines.

Java

OrientDB	is	written	in	Java,	so	it	runs	on	top	of	Java	Virtual	Machine	(JVM).	OrientDB	is	compatible	with	Java	8	and	we	suggest	to
use	this	version	to	run	OrientDB.	Java	8	is	faster	than	Java	7	and	previous	ones.

JMX

Starting	from	v2.1,	OrientDB	exposes	internal	metrics	through	JMX	Beans.	Use	this	information	to	track	and	profile	OrientDB.

Memory	settings

Server	and	Embedded	settings

These	settings	are	valid	for	both	Server	component	and	the	JVM	where	is	running	the	Java	application	that	use	OrientDB	in	Embedded
Mode,	by	using	directly	plocal.

The	most	important	thing	on	tuning	is	assuring	the	memory	settings	are	correct.	What	can	make	the	real	difference	is	the	right	balancing
between	the	heap	and	the	virtual	memory	used	by	Memory	Mapping,	specially	on	large	datasets	(GBs,	TBs	and	more)	where	the	in
memory	cache	structures	count	less	than	raw	IO.

For	example	if	you	can	assign	maximum	8GB	to	the	Java	process,	it's	usually	better	assigning	small	heap	and	large	disk	cache	buffer	(off-
heap	memory).	So	rather	than:

Performance	Tuning

281



java	-Xmx8g	...

You	could	instead	try	this:

java	-Xmx800m	-Dstorage.diskCache.bufferSize=7200	...

The	storage.diskCache.bufferSize	setting	(with	old	"local"	storage	it	was	file.mmap.maxMemory)	is	in	MB	and	tells	how	much
memory	to	use	for	Disk	Cache	component.	By	default	is	4GB.

NOTE:	If	the	sum	of	maximum	heap	and	disk	cache	buffer	is	too	high,	could	cause	the	OS	to	swap	with	huge	slow	down.

JVM	settings

JVM	settings	are	encoded	in	server.sh	(and	server.bat)	batch	files.	You	can	change	them	to	tune	the	JVM	according	to	your	usage	and
hw/sw	settings.	We	found	these	setting	work	well	on	most	configurations:

-server	-XX:+PerfDisableSharedMem

This	setting	will	disable	writing	debug	information	about	the	JVM.	In	case	you	need	to	profile	the	JVM,	just	remove	this	setting.	For
more	information	look	at	this	post:	http://www.evanjones.ca/jvm-mmap-pause.html.

High	concurrent	updates

OrientDB	has	an	optimistic	concurrency	control	system,	but	on	very	high	concurrent	updates	on	the	few	records	it	could	be	more
efficient	locking	records	to	avoid	retries.	You	could	synchronize	the	access	by	yourself	or	by	using	the	storage	API.	Note	that	this
works	only	with	non-remote	databases.

((OStorageEmbedded)db.getStorage()).acquireWriteLock(final	ORID	iRid)

((OStorageEmbedded)db.getStorage()).acquireSharedLock(final	ORID	iRid)

((OStorageEmbedded)db.getStorage()).releaseWriteLock(final	ORID	iRid)

((OStorageEmbedded)db.getStorage()).releaseSharedLock(final	ORID	iRid)

Example	of	usage.	Writer	threads:

try{

		((OStorageEmbedded)db.getStorage()).acquireWriteLock(record.getIdentity());

		//	DO	SOMETHING

}	finally	{

		((OStorageEmbedded)db.getStorage()).releaseWriteLock(record.getIdentity());

}

Reader	threads:

try{

		((OStorageEmbedded)db.getStorage()).acquireSharedLock(record.getIdentity());

		//	DO	SOMETHING

}	finally	{

		((OStorageEmbedded)db.getStorage()).releaseSharedLock(record.getIdentity());

}

Remote	connections

There	are	many	ways	to	improve	performance	when	you	access	to	the	database	using	the	remote	connection.

Fetching	strategy

Performance	Tuning

282

http://www.evanjones.ca/jvm-mmap-pause.html


When	you	work	with	a	remote	database	you've	to	pay	attention	to	the	fetching	strategy	used.	By	default	OrientDB	Client	loads	only
the	record	contained	in	the	result	set.	For	example	if	a	query	returns	100	elements,	but	then	you	cross	these	elements	from	the	client,
then	OrientDB	client	lazily	loads	the	elements	with	one	more	network	call	to	the	server	foreach	missed	record.

By	specifying	a	fetch	plan	when	you	execute	a	command	you're	telling	to	OrientDB	to	prefetch	the	elements	you	know	the	client
application	will	access.	By	specifying	a	complete	fetch	plan	you	could	receive	the	entire	result	in	just	one	network	call.

For	more	information	look	at:	Fetching-Strategies.

Network	Connection	Pool

Each	client,	by	default,	uses	only	one	network	connection	to	talk	with	the	server.	Multiple	threads	on	the	same	client	share	the	same
network	connection	pool.

When	you've	multiple	threads	could	be	a	bottleneck	since	a	lot	of	time	is	spent	on	waiting	for	a	free	network	connection.	This	is	the
reason	why	is	much	important	to	configure	the	network	connection	pool.

The	configurations	is	very	simple,	just	2	parameters:

minPool,	is	the	initial	size	of	the	connection	pool.	The	default	value	is	configured	as	global	parameters	"client.channel.minPool"
(see	parameters)
maxPool,	is	the	maximum	size	the	connection	pool	can	reach.	The	default	value	is	configured	as	global	parameters
"client.channel.maxPool"	(see	parameters)

At	first	connection	the	minPool	is	used	to	pre-create	network	connections	against	the	server.	When	a	client	thread	is	asking	for	a
connection	and	all	the	pool	is	busy,	then	it	tries	to	create	a	new	connection	until	maxPool	is	reached.

If	all	the	pool	connections	are	busy,	then	the	client	thread	will	wait	for	the	first	free	connection.

Example	of	configuration	by	using	database	properties:

database	=	new	ODatabaseDocumentTx("remote:localhost/demo");

database.setProperty("minPool",	2);

database.setProperty("maxPool",	5);

database.open("admin",	"admin");

Enlarge	timeouts

If	you	see	a	lot	of	messages	like:

WARNING:	Connection	re-acquired	transparently	after	XXXms	and	Y	retries:	no	errors	will	be	thrown	at	application	level

means	that	probably	default	timeouts	are	too	low	and	server	side	operation	need	more	time	to	complete.	It's	strongly	suggested	you
enlarge	your	timeout	only	after	tried	to	enlarge	the	Network	Connection	Pool.	The	timeout	parameters	to	tune	are:

	network.lockTimeout	,	the	timeout	in	ms	to	acquire	a	lock	against	a	channel.	The	default	is	15	seconds.
	network.socketTimeout	,	the	TCP/IP	Socket	timeout	in	ms.	The	default	is	10	seconds.

Query

Use	of	indexes

The	first	improvement	to	speed	up	queries	is	to	create	Indexes	against	the	fields	used	in	WHERE	conditions.	For	example	this	query:

SELECT	FROM	Profile	WHERE	name	=	'Jay'

Browses	the	entire	"profile"	cluster	looking	for	records	that	satisfy	the	conditions.	The	solution	is	to	create	an	index	against	the	'name'
property	with:

Performance	Tuning

283



CREATE	INDEX	profile.name	UNIQUE

Use	NOTUNIQUE	instead	of	UNIQUE	if	the	value	is	not	unique.

For	more	complex	queries	like

SELECT	*	FROM	testClass	WHERE	prop1	=	?	AND	prop2	=	?

Composite	index	should	be	used

CREATE	INDEX	compositeIndex	ON	testClass	(prop1,	prop2)	UNIQUE

or	via	Java	API:

oClass.createIndex("compositeIndex",	OClass.INDEX_TYPE.UNIQUE,	"prop1",	"prop2");

Moreover,	because	of	partial	match	searching,	this	index	will	be	used	for	optimizing	query	like

SELECT	*	FROM	testClass	WHERE	prop1	=	?

For	deep	understanding	of	query	optimization	look	at	the	unit	test:
http://code.google.com/p/orient/source/browse/trunk/tests/src/test/java/com/orientechnologies/orient/test/database/auto/SQLSelectIndexR
euseTest.java

Avoid	use	of	@rid	in	WHERE	conditions	(not	actual	from	1.3	version)

Using	@rid	in	where	conditions	slow	down	queries.	Much	better	to	use	the	RecordID	as	target.	Example:

Change	this:

SELECT	FROM	Profile	WHERE	@rid	=	#10:44

With	this:

SELECT	FROM	#10:44

Also

SELECT	FROM	Profile	WHERE	@rid	IN	[#10:44,	#10:45]

With	this:

SELECT	FROM	[#10:44,	#10:45]

Massive	Insertion

Use	the	Massive	Insert	intent

Intents	suggest	to	OrientDB	what	you're	going	to	do.	In	this	case	you're	telling	to	OrientDB	that	you're	executing	a	massive	insertion.
OrientDB	auto-reconfigure	itself	to	obtain	the	best	performance.	When	done	you	can	remove	the	intent	just	setting	it	to	null.

Example:

Performance	Tuning

284

http://code.google.com/p/orient/source/browse/trunk/tests/src/test/java/com/orientechnologies/orient/test/database/auto/SQLSelectIndexReuseTest.java


db.declareIntent(	new	OIntentMassiveInsert()	);

//	YOUR	MASSIVE	INSERTION

db.declareIntent(	null	);

Disable	Journal

In	case	of	massive	insertion,	specially	when	this	operation	is	made	just	once,	you	could	disable	the	journal	(WAL)	to	improve	insertion
speed:

-storage.useWAL=false

By	default	WAL	(Write	Ahead	Log)	is	enabled.

Disable	sync	on	flush	of	pages

This	setting	avoids	to	execute	a	sync	at	OS	level	when	a	page	is	flushed.	Disabling	this	setting	will	improve	throughput	on	writes:

-Dstorage.wal.syncOnPageFlush=false

Massive	Updates

Updates	generates	"holes"	at	Storage	level	because	rarely	the	new	record	fits	perfectly	the	size	of	the	previous	one.	Holes	are	free	spaces
between	data.	Holes	are	recycled	but	an	excessive	number	of	small	holes	it's	the	same	as	having	a	highly	defragmented	File	System:	space
is	wasted	(because	small	holes	can't	be	easily	recycled)	and	performance	degrades	when	the	database	growth.

Oversize

If	you	know	you	will	update	certain	type	of	records,	create	a	class	for	them	and	set	the	Oversize	(default	is	0)	to	2	or	more.

By	default	the	OGraphVertex	class	has	an	oversize	value	setted	at	2.	If	you	define	your	own	classes	set	this	value	at	least	at	2.

OClass	myClass	=	getMetadata().getSchema().createClass("Car");	myClass.setOverSize(2);

Wise	use	of	transactions

To	obtain	real	linear	performance	with	OrientDB	you	should	avoid	to	use	Transactions	as	far	as	you	can.	In	facts	OrientDB	keeps	in
memory	all	the	changes	until	you	flush	it	with	a	commit.	So	the	bottleneck	is	your	Heap	space	and	the	management	of	local	transaction
cache	(implemented	as	a	Map).

Transactions	slow	down	massive	inserts	unless	you're	using	a	"remote"	connection.	In	that	case	it	speeds	up	all	the	insertion	because	the
client/server	communication	happens	only	at	commit	time.

Disable	Transaction	Log

If	you	need	to	group	operations	to	speed	up	remote	execution	in	a	logical	transaction	but	renouncing	to	the	Transaction	Log,	just	disable
it	by	setting	the	property	tx.useLog	to	false.

Via	JVM	configuration:

java	...	-Dtx.useLog=false	...

or	via	API:

OGlobalConfiguration.TX_USE_LOG.setValue(false);

Performance	Tuning

285



NOTE:	Please	note	that	in	case	of	crash	of	the	JVM	the	pending	transaction	OrientDB	could	not	be	able	to	rollback	it.

Use	the	schema

Starting	from	OrientDB	2.0,	if	fields	are	declared	in	the	schema,	field	names	are	not	stored	in	document/vertex/edge	themselves.	This
improves	performance	and	saves	a	lot	of	space	on	disk.

Configuration

To	tune	OrientDB	look	at	the	Configuration	settings.

Platforms

Performance	analysis	on	ZFS

Performance	Tuning

286

http://carloprad.blogspot.it/2014/03/orientdb-on-zfs-performance-analysis.html


Global	Configuration
OrientDB	can	be	configured	in	several	ways.	To	know	the	current	settings	use	the	console	with	the	config	command.

Change	settings

By	command	line

You	can	pass	settings	via	command	line	when	the	JVM	is	launched.	This	is	typically	stored	inside	server.sh	(or	server.bat	on	Windows):

java	-Dcache.size=10000	-Dstorage.keepOpen=true	...

By	server	configuration

Put	in	the		<properties>		section	of	the	file	orientdb-server-config.xml	(or	orientdb-dserver-config.xml)	the	entries	to	configure.
Example:

		...

		<properties>

				<entry	name="cache.size"	value="10000"	/>

				<entry	name="storage.keepOpen"	value="true"	/>

		</properties>

		...

At	run-time

OGlobalConfiguration.MVRBTREE_NODE_PAGE_SIZE.setValue(2048);

Dump	the	configuration

To	dump	the	OrientDB	configuration	you	can	set	a	parameter	at	JVM	launch:

java	-Denvironment.dumpCfgAtStartup=true	...

Or	via	API	at	any	time:

OGlobalConfiguration.dumpConfiguration(System.out);

Parameters

To	know	more	look	at	the	Java	enumeration:		OGlobalConfiguration.java	.

Environment

environment.dumpCfgAtStartup

Dumps	the	configuration	during	application	startup..

Setting	name...:	environment.dumpCfgAtStartup

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

Setting	Configuration

287



environment.concurrent

Specifies	if	running	in	multi-thread	environment.	Setting	this	to	false	turns	off	the	internal	lock	management..

Setting	name...:	environment.concurrent

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

environment.allowJVMShutdown

Allows	the	shutdown	of	the	JVM,	if	needed/requested..

Setting	name...:	environment.allowJVMShutdown

Default	value..:	true

Set	at	run-time:	true

Hidden.........:	false

Script

script.pool.maxSize

Maximum	number	of	instances	in	the	pool	of	script	engines..

Setting	name...:	script.pool.maxSize

Default	value..:	20

Set	at	run-time:	false

Hidden.........:	false

Memory

memory.useUnsafe

Indicates	whether	Unsafe	will	be	used,	if	it	is	present..

Setting	name...:	memory.useUnsafe

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

memory.directMemory.safeMode

Indicates	whether	to	perform	a	range	check	before	each	direct	memory	update.	It	is	true	by	default,	but	usually	it	can	be	safely	set	to
false.	It	should	only	be	to	true	after	dramatic	changes	have	been	made	in	the	storage	structures..

Setting	name...:	memory.directMemory.safeMode

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

memory.directMemory.trackMode

If	'track	mode'	is	switched	on,	then	the	following	steps	are	performed:	1.	direct	memory	JMX	bean	is	registered.	2.	You	may	check
amount	of	allocated	direct	memory	as	a	property	of	the	JMX	bean.	3.	If	a	memory	leak	is	detected,	then	a	JMX	event	will	be	fired.	This
mode	causes	a	large	overhead	and	should	be	used	for	testing	purposes	only..

Setting	name...:	memory.directMemory.trackMode

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

Setting	Configuration

288



memory.directMemory.onlyAlignedMemoryAccess

Some	architectures	do	not	allow	unaligned	memory	access	or	may	suffer	from	speed	degradation.	For	such	platforms,	this	flag	should	be
set	to	true..

Setting	name...:	memory.directMemory.onlyAlignedMemoryAccess

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

Jvm

jvm.gc.delayForOptimize

Minimal	amount	of	time	(in	seconds),	since	the	last	System.gc(),	when	called	after	tree	optimization..

Setting	name...:	jvm.gc.delayForOptimize

Default	value..:	600

Set	at	run-time:	false

Hidden.........:	false

Storage

storage.diskCache.bufferSize

Size	of	disk	buffer	in	megabytes..

Setting	name...:	storage.diskCache.bufferSize

Default	value..:	4096

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.writeCachePart

Percentage	of	disk	cache,	which	is	used	as	write	cache.

Setting	name...:	storage.diskCache.writeCachePart

Default	value..:	15

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.writeCachePageTTL

Max	time	until	a	page	will	be	flushed	from	write	cache	(in	seconds)..

Setting	name...:	storage.diskCache.writeCachePageTTL

Default	value..:	86400

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.writeCachePageFlushInterval

Interval	between	flushing	of	pages	from	write	cache	(in	ms)..

Setting	name...:	storage.diskCache.writeCachePageFlushInterval

Default	value..:	25

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.writeCacheFlushInactivityInterval

Setting	Configuration

289



Interval	between	2	writes	to	the	disk	cache,	if	writes	are	done	with	an	interval	more	than	provided,	all	files	will	be	fsynced	before	the
next	write,	which	allows	a	data	restore	after	a	server	crash	(in	ms)..

Setting	name...:	storage.diskCache.writeCacheFlushInactivityInterval

Default	value..:	60000

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.writeCacheFlushLockTimeout

Maximum	amount	of	time	the	write	cache	will	wait	before	a	page	flushes	(in	ms,	-1	to	disable).

Setting	name...:	storage.diskCache.writeCacheFlushLockTimeout

Default	value..:	-1

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.diskFreeSpaceLimit

Minimum	amount	of	space	on	disk,	which,	when	exceeded,	will	cause	the	database	to	switch	to	read-only	mode	(in	megabytes)..

Setting	name...:	storage.diskCache.diskFreeSpaceLimit

Default	value..:	100

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.diskFreeSpaceCheckInterval

The	interval	(in	seconds),	after	which	the	storage	periodically	checks	whether	the	amount	of	free	disk	space	is	enough	to	work	in	write
mode.

Setting	name...:	storage.diskCache.diskFreeSpaceCheckInterval

Default	value..:	5

Set	at	run-time:	false

Hidden.........:	false

storage.configuration.syncOnUpdate

Indicates	a	force	sync	should	be	performed	for	each	update	on	the	storage	configuration..

Setting	name...:	storage.configuration.syncOnUpdate

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

storage.compressionMethod

Record	compression	method	used	in	storage.	Possible	values	:	gzip,	nothing,	snappy,	snappy-native.	Default	is	'nothing'	that	means	no
compression..

Setting	name...:	storage.compressionMethod

Default	value..:	nothing

Set	at	run-time:	false

Hidden.........:	false

storage.encryptionMethod

Record	encryption	method	used	in	storage.	Possible	values	:	'aes'	and	'des'.	Default	is	'nothing'	for	no	encryption..

Setting	name...:	storage.encryptionMethod

Default	value..:	nothing

Set	at	run-time:	false

Hidden.........:	false

Setting	Configuration

290



storage.encryptionKey

Contains	the	storage	encryption	key.	This	setting	is	hidden..

Setting	name...:	storage.encryptionKey

Default	value..:	null

Set	at	run-time:	false

Hidden.........:	true

storage.makeFullCheckpointAfterCreate

Indicates	whether	a	full	checkpoint	should	be	performed,	if	storage	was	created..

Setting	name...:	storage.makeFullCheckpointAfterCreate

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

storage.makeFullCheckpointAfterOpen

Indicates	whether	a	full	checkpoint	should	be	performed,	if	storage	was	opened.	It	is	needed	so	fuzzy	checkpoints	can	work	properly..

Setting	name...:	storage.makeFullCheckpointAfterOpen

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

storage.makeFullCheckpointAfterClusterCreate

Indicates	whether	a	full	checkpoint	should	be	performed,	if	storage	was	opened.

Setting	name...:	storage.makeFullCheckpointAfterClusterCreate

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

storage.useWAL

Whether	WAL	should	be	used	in	paginated	storage..

Setting	name...:	storage.useWAL

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

storage.wal.syncOnPageFlush

Indicates	whether	a	force	sync	should	be	performed	during	WAL	page	flush..

Setting	name...:	storage.wal.syncOnPageFlush

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

storage.wal.cacheSize

Maximum	size	of	WAL	cache	(in	amount	of	WAL	pages,	each	page	is	64k)	If	set	to	0,	caching	will	be	disabled..

Setting	name...:	storage.wal.cacheSize

Default	value..:	3000

Set	at	run-time:	false

Hidden.........:	false

storage.wal.maxSegmentSize

Setting	Configuration

291



Maximum	size	of	single	WAL	segment	(in	megabytes)..

Setting	name...:	storage.wal.maxSegmentSize

Default	value..:	128

Set	at	run-time:	false

Hidden.........:	false

storage.wal.maxSize

Maximum	size	of	WAL	on	disk	(in	megabytes)..

Setting	name...:	storage.wal.maxSize

Default	value..:	4096

Set	at	run-time:	false

Hidden.........:	false

storage.wal.commitTimeout

Maximum	interval	between	WAL	commits	(in	ms.).

Setting	name...:	storage.wal.commitTimeout

Default	value..:	1000

Set	at	run-time:	false

Hidden.........:	false

storage.wal.shutdownTimeout

Maximum	wait	interval	between	events,	when	the	background	flush	threadreceives	a	shutdown	command	and	when	the	background	flush
will	be	stopped	(in	ms.).

Setting	name...:	storage.wal.shutdownTimeout

Default	value..:	10000

Set	at	run-time:	false

Hidden.........:	false

storage.wal.fuzzyCheckpointInterval

Interval	between	fuzzy	checkpoints	(in	seconds).

Setting	name...:	storage.wal.fuzzyCheckpointInterval

Default	value..:	300

Set	at	run-time:	false

Hidden.........:	false

storage.wal.reportAfterOperationsDuringRestore

Amount	of	processed	log	operations,	after	which	status	of	data	restore	procedure	will	be	printed	(0	or	a	negative	value,	disables	the
logging)..

Setting	name...:	storage.wal.reportAfterOperationsDuringRestore

Default	value..:	10000

Set	at	run-time:	false

Hidden.........:	false

storage.wal.restore.batchSize

Amount	of	WAL	records,	which	are	read	at	once	in	a	single	batch	during	a	restore	procedure..

Setting	name...:	storage.wal.restore.batchSize

Default	value..:	1000

Set	at	run-time:	false

Hidden.........:	false

storage.wal.readCacheSize

Setting	Configuration

292



Size	of	WAL	read	cache	in	amount	of	pages..

Setting	name...:	storage.wal.readCacheSize

Default	value..:	1000

Set	at	run-time:	false

Hidden.........:	false

storage.wal.fuzzyCheckpointShutdownWait

The	amount	of	time	the	DB	should	wait	until	it	shuts	down	(in	seconds)..

Setting	name...:	storage.wal.fuzzyCheckpointShutdownWait

Default	value..:	600

Set	at	run-time:	false

Hidden.........:	false

storage.wal.fullCheckpointShutdownTimeout

The	amount	of	time	the	DB	will	wait,	until	a	checkpoint	is	finished,	during	a	DB	shutdown	(in	seconds)..

Setting	name...:	storage.wal.fullCheckpointShutdownTimeout

Default	value..:	600

Set	at	run-time:	false

Hidden.........:	false

storage.wal.path

Path	to	the	WAL	file	on	the	disk.	By	default,	it	is	placed	in	the	DB	directory,	but	it	is	highly	recommended	to	use	a	separate	disk	to
store	log	operations..

Setting	name...:	storage.wal.path

Default	value..:	null

Set	at	run-time:	false

Hidden.........:	false

storage.diskCache.pageSize

Size	of	page	of	disk	buffer	(in	kilobytes).	!!!	NEVER	CHANGE	THIS	VALUE	!!!.

Setting	name...:	storage.diskCache.pageSize

Default	value..:	64

Set	at	run-time:	false

Hidden.........:	false

storage.lowestFreeListBound

The	least	amount	of	free	space	(in	kb)	in	a	page,	which	is	tracked	in	paginated	storage..

Setting	name...:	storage.lowestFreeListBound

Default	value..:	16

Set	at	run-time:	false

Hidden.........:	false

storage.lockTimeout

Maximum	amount	of	time	(in	ms)	to	lock	the	storage..

Setting	name...:	storage.lockTimeout

Default	value..:	0

Set	at	run-time:	false

Hidden.........:	false

storage.record.lockTimeout

Setting	Configuration

293



Maximum	of	time	(in	ms)	to	lock	a	shared	record..

Setting	name...:	storage.record.lockTimeout

Default	value..:	2000

Set	at	run-time:	false

Hidden.........:	false

storage.useTombstones

When	a	record	is	deleted,	the	space	in	the	cluster	will	not	be	freed,	but	rather	tombstoned..

Setting	name...:	storage.useTombstones

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

storage.cluster.usecrc32

Indicates	whether	crc32	should	be	used	for	each	record	to	check	record	integrity..

Setting	name...:	storage.cluster.usecrc32

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

storage.keepOpen

Deprecated.

Setting	name...:	storage.keepOpen

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

Record

record.downsizing.enabled

On	updates,	if	the	record	size	is	lower	than	before,	this	reduces	the	space	taken	accordingly.	If	enabled	this	could	increase
defragmentation,	but	it	reduces	the	used	disk	space..

Setting	name...:	record.downsizing.enabled

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

Object

object.saveOnlyDirty

Object	Database	only!	It	saves	objects	bound	to	dirty	records..

Setting	name...:	object.saveOnlyDirty

Default	value..:	false

Set	at	run-time:	true

Hidden.........:	false

Db

Setting	Configuration

294



db.pool.min

Default	database	pool	minimum	size..

Setting	name...:	db.pool.min

Default	value..:	1

Set	at	run-time:	false

Hidden.........:	false

db.pool.max

Default	database	pool	maximum	size..

Setting	name...:	db.pool.max

Default	value..:	100

Set	at	run-time:	false

Hidden.........:	false

db.pool.idleTimeout

Timeout	for	checking	for	free	databases	in	the	pool..

Setting	name...:	db.pool.idleTimeout

Default	value..:	0

Set	at	run-time:	false

Hidden.........:	false

db.pool.idleCheckDelay

Delay	time	on	checking	for	idle	databases..

Setting	name...:	db.pool.idleCheckDelay

Default	value..:	0

Set	at	run-time:	false

Hidden.........:	false

db.mvcc.throwfast

Use	fast-thrown	exceptions	for	MVCC	OConcurrentModificationExceptions.	No	context	information	will	be	available.	Set	to	true,
when	these	exceptions	are	thrown,	but	the	details	are	not	necessary..

Setting	name...:	db.mvcc.throwfast

Default	value..:	false

Set	at	run-time:	true

Hidden.........:	false

db.validation

Enables	or	disables	validation	of	records..

Setting	name...:	db.validation

Default	value..:	true

Set	at	run-time:	true

Hidden.........:	false

db.makeFullCheckpointOnIndexChange

When	index	metadata	is	changed,	a	full	checkpoint	is	performed..

Setting	name...:	db.makeFullCheckpointOnIndexChange

Default	value..:	true

Set	at	run-time:	true

Hidden.........:	false

Setting	Configuration

295



db.makeFullCheckpointOnSchemaChange

When	index	schema	is	changed,	a	full	checkpoint	is	performed..

Setting	name...:	db.makeFullCheckpointOnSchemaChange

Default	value..:	true

Set	at	run-time:	true

Hidden.........:	false

db.document.serializer

The	default	record	serializer	used	by	the	document	database..

Setting	name...:	db.document.serializer

Default	value..:	ORecordSerializerBinary

Set	at	run-time:	false

Hidden.........:	false

db.mvcc

Deprecated,	MVCC	cannot	be	disabled	anymore.

Setting	name...:	db.mvcc

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

db.use.distributedVersion

Deprecated,	distributed	version	is	not	used	anymore.

Setting	name...:	db.use.distributedVersion

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

NonTX

nonTX.recordUpdate.synch

Executes	a	sync	against	the	file-system	for	every	record	operation.	This	slows	down	record	updates,	but	guarantees	reliability	on
unreliable	drives..

Setting	name...:	nonTX.recordUpdate.synch

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

nonTX.clusters.sync.immediately

List	of	clusters	to	sync	immediately	after	update	(separated	by	commas).	Can	be	useful	for	a	manual	index..

Setting	name...:	nonTX.clusters.sync.immediately

Default	value..:	manindex

Set	at	run-time:	false

Hidden.........:	false

Tx

tx.trackAtomicOperations

Setting	Configuration

296



This	setting	is	used	only	for	debug	purposes.	It	creates	a	stack	trace	of	methods,	when	an	atomic	operation	is	started..

Setting	name...:	tx.trackAtomicOperations

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

tx.commit.synch

Synchronizes	the	storage	after	transaction	commit.

Setting	name...:	tx.commit.synch

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

tx.autoRetry

Maximum	number	of	automatic	retry	if	some	resource	has	been	locked	in	the	middle	of	the	transaction	(Timeout	exception).

Setting	name...:	tx.autoRetry

Default	value..:	1

Set	at	run-time:	false

Hidden.........:	false

tx.log.fileType

File	type	to	handle	transaction	logs:	mmap	or	classic.

Setting	name...:	tx.log.fileType

Default	value..:	classic

Set	at	run-time:	false

Hidden.........:	false

tx.log.synch

Executes	a	synch	against	the	file-system	at	every	log	entry.	This	slows	down	transactions	but	guarantee	transaction	reliability	on
unreliable	drives.

Setting	name...:	tx.log.synch

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

tx.useLog

Transactions	use	log	file	to	store	temporary	data	to	be	rolled	back	in	case	of	crash.

Setting	name...:	tx.useLog

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

Index

index.embeddedToSbtreeBonsaiThreshold

Amount	of	values,	after	which	the	index	implementation	will	use	an	sbtree	as	a	values	container.	Set	to	-1,	to	disable	and	force	using	an
sbtree..

Setting	Configuration

297



Setting	name...:	index.embeddedToSbtreeBonsaiThreshold

Default	value..:	40

Set	at	run-time:	true

Hidden.........:	false

index.sbtreeBonsaiToEmbeddedThreshold

Amount	of	values,	after	which	index	implementation	will	use	an	embedded	values	container	(disabled	by	default).

Setting	name...:	index.sbtreeBonsaiToEmbeddedThreshold

Default	value..:	-1

Set	at	run-time:	true

Hidden.........:	false

index.auto.synchronousAutoRebuild

Synchronous	execution	of	auto	rebuilding	of	indexes,	in	case	of	a	DB	crash.

Setting	name...:	index.auto.synchronousAutoRebuild

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

index.auto.lazyUpdates

Configure	the	TreeMaps	for	automatic	indexes,	as	buffered	or	not.	-1	means	buffered	until	tx.commit()	or	db.close()	are	called..

Setting	name...:	index.auto.lazyUpdates

Default	value..:	10000

Set	at	run-time:	false

Hidden.........:	false

index.flushAfterCreate

Flush	storage	buffer	after	index	creation..

Setting	name...:	index.flushAfterCreate

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

index.manual.lazyUpdates

Configure	the	TreeMaps	for	manual	indexes	as	buffered	or	not.	-1	means	buffered	until	tx.commit()	or	db.close()	are	called.

Setting	name...:	index.manual.lazyUpdates

Default	value..:	1

Set	at	run-time:	false

Hidden.........:	false

index.durableInNonTxMode

Indicates	whether	index	implementation	for	plocal	storage	will	be	durable	in	non-Tx	mode	(true	by	default)..

Setting	name...:	index.durableInNonTxMode

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

index.txMode

Indicates	the	index	durability	level	in	TX	mode.	Can	be	ROLLBACK_ONLY	or	FULL	(ROLLBACK_ONLY	by	default)..

Setting	Configuration

298



Setting	name...:	index.txMode

Default	value..:	FULL

Set	at	run-time:	false

Hidden.........:	false

index.cursor.prefetchSize

Default	prefetch	size	of	index	cursor..

Setting	name...:	index.cursor.prefetchSize

Default	value..:	500000

Set	at	run-time:	false

Hidden.........:	false

index.auto.rebuildAfterNotSoftClose

Auto	rebuild	all	automatic	indexes	after	upon	database	open	when	wasn't	closed	properly.

Setting	name...:	index.auto.rebuildAfterNotSoftClose

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

HashTable

hashTable.slitBucketsBuffer.length

Length	of	buffer	(in	pages),	where	buckets	that	were	split,	but	not	flushed	to	the	disk,	are	kept.	This	buffer	is	used	to	minimize	random
IO	overhead..

Setting	name...:	hashTable.slitBucketsBuffer.length

Default	value..:	1500

Set	at	run-time:	false

Hidden.........:	false

Sbtree

sbtree.maxDepth

Maximum	depth	of	sbtree,	which	will	be	traversed	during	key	look	up	until	it	will	be	treated	as	broken	(64	by	default).

Setting	name...:	sbtree.maxDepth

Default	value..:	64

Set	at	run-time:	false

Hidden.........:	false

sbtree.maxKeySize

Maximum	size	of	a	key,	which	can	be	put	in	the	SBTree	in	bytes	(10240	by	default).

Setting	name...:	sbtree.maxKeySize

Default	value..:	10240

Set	at	run-time:	false

Hidden.........:	false

sbtree.maxEmbeddedValueSize

Maximum	size	of	value	which	can	be	put	in	an	SBTree	without	creation	link	to	a	standalone	page	in	bytes	(40960	by	default).

Setting	Configuration

299



Setting	name...:	sbtree.maxEmbeddedValueSize

Default	value..:	40960

Set	at	run-time:	false

Hidden.........:	false

Sbtreebonsai

sbtreebonsai.bucketSize

Size	of	bucket	in	OSBTreeBonsai	(in	kB).	Contract:	bucketSize	<	storagePageSize,	storagePageSize	%	bucketSize	==	0..

Setting	name...:	sbtreebonsai.bucketSize

Default	value..:	2

Set	at	run-time:	false

Hidden.........:	false

sbtreebonsai.linkBagCache.size

Amount	of	LINKBAG	collections	to	be	cached,	to	avoid	constant	reloading	of	data..

Setting	name...:	sbtreebonsai.linkBagCache.size

Default	value..:	100000

Set	at	run-time:	false

Hidden.........:	false

sbtreebonsai.linkBagCache.evictionSize

The	number	of	cached	LINKBAG	collections,	which	will	be	removed,	when	the	cache	limit	is	reached..

Setting	name...:	sbtreebonsai.linkBagCache.evictionSize

Default	value..:	1000

Set	at	run-time:	false

Hidden.........:	false

sbtreebonsai.freeSpaceReuseTrigger

How	much	free	space	should	be	in	an	sbtreebonsai	file,	before	it	will	be	reused	during	the	next	allocation..

Setting	name...:	sbtreebonsai.freeSpaceReuseTrigger

Default	value..:	0.5

Set	at	run-time:	false

Hidden.........:	false

RidBag

ridBag.embeddedDefaultSize

Size	of	embedded	RidBag	array,	when	created	(empty).

Setting	name...:	ridBag.embeddedDefaultSize

Default	value..:	4

Set	at	run-time:	false

Hidden.........:	false

ridBag.embeddedToSbtreeBonsaiThreshold

Amount	of	values	after	which	a	LINKBAG	implementation	will	use	sbtree	as	values	container.	Set	to	-1	to	always	use	an	sbtree..

Setting	Configuration

300



Setting	name...:	ridBag.embeddedToSbtreeBonsaiThreshold

Default	value..:	40

Set	at	run-time:	true

Hidden.........:	false

ridBag.sbtreeBonsaiToEmbeddedToThreshold

Amount	of	values,	after	which	a	LINKBAG	implementation	will	use	an	embedded	values	container	(disabled	by	default)..

Setting	name...:	ridBag.sbtreeBonsaiToEmbeddedToThreshold

Default	value..:	-1

Set	at	run-time:	true

Hidden.........:	false

Collections

collections.preferSBTreeSet

This	configuration	setting	is	experimental..

Setting	name...:	collections.preferSBTreeSet

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

File

file.trackFileClose

Log	all	the	cases	when	files	are	closed.	This	is	needed	only	for	internal	debugging	purposes..

Setting	name...:	file.trackFileClose

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

file.lock

Locks	files	when	used.	Default	is	true.

Setting	name...:	file.lock

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

file.deleteDelay

Delay	time	(in	ms)	to	wait	for	another	attempt	to	delete	a	locked	file..

Setting	name...:	file.deleteDelay

Default	value..:	10

Set	at	run-time:	false

Hidden.........:	false

file.deleteRetry

Number	of	retries	to	delete	a	locked	file..

Setting	Configuration

301



Setting	name...:	file.deleteRetry

Default	value..:	50

Set	at	run-time:	false

Hidden.........:	false

Jna

jna.disable.system.library

This	property	disables	using	JNA,	should	it	be	installed	on	your	system.	(Default	true)	To	use	JNA	bundled	with	database..

Setting	name...:	jna.disable.system.library

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

Security

security.userPasswordSaltIterations

Number	of	iterations	to	generate	the	salt	or	user	password.	Changing	this	setting	does	not	affect	stored	passwords..

Setting	name...:	security.userPasswordSaltIterations

Default	value..:	65536

Set	at	run-time:	false

Hidden.........:	false

security.userPasswordSaltCacheSize

Cache	size	of	hashed	salt	passwords.	The	cache	works	as	LRU.	Use	0	to	disable	the	cache..

Setting	name...:	security.userPasswordSaltCacheSize

Default	value..:	500

Set	at	run-time:	false

Hidden.........:	false

Network

network.maxConcurrentSessions

Maximum	number	of	concurrent	sessions..

Setting	name...:	network.maxConcurrentSessions

Default	value..:	1000

Set	at	run-time:	true

Hidden.........:	false

network.socketBufferSize

TCP/IP	Socket	buffer	size..

Setting	name...:	network.socketBufferSize

Default	value..:	32768

Set	at	run-time:	true

Hidden.........:	false

network.lockTimeout

Timeout	(in	ms)	to	acquire	a	lock	against	a	channel..

Setting	Configuration

302



Setting	name...:	network.lockTimeout

Default	value..:	15000

Set	at	run-time:	true

Hidden.........:	false

network.socketTimeout

TCP/IP	Socket	timeout	(in	ms)..

Setting	name...:	network.socketTimeout

Default	value..:	15000

Set	at	run-time:	true

Hidden.........:	false

network.requestTimeout

Request	completion	timeout	(in	ms)..

Setting	name...:	network.requestTimeout

Default	value..:	3600000

Set	at	run-time:	true

Hidden.........:	false

network.retry

Number	of	attempts	to	connect	to	the	server	on	failure..

Setting	name...:	network.retry

Default	value..:	5

Set	at	run-time:	true

Hidden.........:	false

network.retryDelay

The	time	(in	ms)	the	client	must	wait,	before	reconnecting	to	the	server	on	failure..

Setting	name...:	network.retryDelay

Default	value..:	500

Set	at	run-time:	true

Hidden.........:	false

network.binary.loadBalancing.enabled

Asks	for	DNS	TXT	record,	to	determine	if	load	balancing	is	supported..

Setting	name...:	network.binary.loadBalancing.enabled

Default	value..:	false

Set	at	run-time:	true

Hidden.........:	false

network.binary.loadBalancing.timeout

Maximum	time	(in	ms)	to	wait	for	the	answer	from	DNS	about	the	TXT	record	for	load	balancing..

Setting	name...:	network.binary.loadBalancing.timeout

Default	value..:	2000

Set	at	run-time:	true

Hidden.........:	false

network.binary.maxLength

TCP/IP	max	content	length	(in	bytes)	of	BINARY	requests..

Setting	Configuration

303



Setting	name...:	network.binary.maxLength

Default	value..:	32736

Set	at	run-time:	true

Hidden.........:	false

network.binary.readResponse.maxTimes

Maximum	attempts,	until	a	response	can	be	read.	Otherwise,	the	response	will	be	dropped	from	the	channel..

Setting	name...:	network.binary.readResponse.maxTimes

Default	value..:	20

Set	at	run-time:	true

Hidden.........:	false

network.binary.debug

Debug	mode:	print	all	data	incoming	on	the	binary	channel..

Setting	name...:	network.binary.debug

Default	value..:	false

Set	at	run-time:	true

Hidden.........:	false

network.http.maxLength

TCP/IP	max	content	length	(in	bytes)	for	HTTP	requests..

Setting	name...:	network.http.maxLength

Default	value..:	1000000

Set	at	run-time:	true

Hidden.........:	false

network.http.charset

Http	response	charset.

Setting	name...:	network.http.charset

Default	value..:	utf-8

Set	at	run-time:	true

Hidden.........:	false

network.http.jsonResponseError

Http	response	error	in	json..

Setting	name...:	network.http.jsonResponseError

Default	value..:	true

Set	at	run-time:	true

Hidden.........:	false

network.http.jsonp

Enable	the	usage	of	JSONP,	if	requested	by	the	client.	The	parameter	name	to	use	is	'callback'..

Setting	name...:	network.http.jsonp

Default	value..:	false

Set	at	run-time:	true

Hidden.........:	false

network.http.sessionExpireTimeout

Timeout,	after	which	an	http	session	is	considered	to	have	expired	(in	seconds)..

Setting	Configuration

304



Setting	name...:	network.http.sessionExpireTimeout

Default	value..:	300

Set	at	run-time:	false

Hidden.........:	false

network.http.useToken

Enable	Token	based	sessions	for	http..

Setting	name...:	network.http.useToken

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

network.token.secretyKey

Network	token	sercret	key..

Setting	name...:	network.token.secretyKey

Default	value..:	

Set	at	run-time:	false

Hidden.........:	false

network.token.encriptionAlgorithm

Network	token	algorithm..

Setting	name...:	network.token.encriptionAlgorithm

Default	value..:	HmacSHA256

Set	at	run-time:	false

Hidden.........:	false

network.token.expireTimeout

Timeout,	after	which	a	binary	session	is	considered	to	have	expired	(in	minutes)..

Setting	name...:	network.token.expireTimeout

Default	value..:	60

Set	at	run-time:	false

Hidden.........:	false

Profiler

profiler.enabled

Enables	the	recording	of	statistics	and	counters..

Setting	name...:	profiler.enabled

Default	value..:	false

Set	at	run-time:	true

Hidden.........:	false

profiler.config

Configures	the	profiler	as	,,.

Setting	name...:	profiler.config

Default	value..:	null

Set	at	run-time:	true

Hidden.........:	false

profiler.autoDump.interval

Setting	Configuration

305



Dumps	the	profiler	values	at	regular	intervals	(in	seconds)..

Setting	name...:	profiler.autoDump.interval

Default	value..:	0

Set	at	run-time:	true

Hidden.........:	false

Log

log.console.level

Console	logging	level..

Setting	name...:	log.console.level

Default	value..:	info

Set	at	run-time:	true

Hidden.........:	false

log.file.level

File	logging	level..

Setting	name...:	log.file.level

Default	value..:	fine

Set	at	run-time:	true

Hidden.........:	false

Cache

cache.local.impl

Local	Record	cache	implementation..

Setting	name...:	cache.local.impl

Default	value..:	com.orientechnologies.orient.core.cache.ORecordCacheWeakRefs

Set	at	run-time:	false

Hidden.........:	false

cache.local.enabled

Deprecated,	Level1	cache	cannot	be	disabled	anymore.

Setting	name...:	cache.local.enabled

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

Command

command.timeout

Default	timeout	for	commands	(in	ms)..

Setting	name...:	command.timeout

Default	value..:	0

Set	at	run-time:	true

Hidden.........:	false

command.cache.enabled

Setting	Configuration

306



Enable	command	cache..

Setting	name...:	command.cache.enabled

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

command.cache.evictStrategy

Command	cache	strategy	between:	[INVALIDATE_ALL,PER_CLUSTER].

Setting	name...:	command.cache.evictStrategy

Default	value..:	PER_CLUSTER

Set	at	run-time:	false

Hidden.........:	false

command.cache.minExecutionTime

Minimum	execution	time	to	consider	caching	the	result	set..

Setting	name...:	command.cache.minExecutionTime

Default	value..:	10

Set	at	run-time:	false

Hidden.........:	false

command.cache.maxResultsetSize

Maximum	resultset	time	to	consider	caching	result	set..

Setting	name...:	command.cache.maxResultsetSize

Default	value..:	500

Set	at	run-time:	false

Hidden.........:	false

Query

query.parallelAuto

Auto	enable	parallel	query,	if	requirements	are	met..

Setting	name...:	query.parallelAuto

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

query.parallelMinimumRecords

Minimum	number	of	records	to	activate	parallel	query	automatically..

Setting	name...:	query.parallelMinimumRecords

Default	value..:	300000

Set	at	run-time:	false

Hidden.........:	false

query.parallelResultQueueSize

Size	of	the	queue	that	holds	results	on	parallel	execution.	The	queue	is	blocking,	so	in	case	the	queue	is	full,	the	query	threads	will	be	in	a
wait	state..

Setting	Configuration

307



Setting	name...:	query.parallelResultQueueSize

Default	value..:	20000

Set	at	run-time:	false

Hidden.........:	false

query.scanPrefetchPages

Pages	to	prefetch	during	scan.	Setting	this	value	higher	makes	scans	faster,	because	it	reduces	the	number	of	I/O	operations,	though	it
consumes	more	memory.	(Use	0	to	disable).

Setting	name...:	query.scanPrefetchPages

Default	value..:	20

Set	at	run-time:	false

Hidden.........:	false

query.scanBatchSize

Scan	clusters	in	blocks	of	records.	This	setting	reduces	the	lock	time	on	the	cluster	during	scans.	A	high	value	mean	a	faster	execution,
but	also	a	lower	concurrency	level.	Set	to	0	to	disable	batch	scanning.	Disabling	batch	scanning	is	suggested	for	read-only	databases	only.

Setting	name...:	query.scanBatchSize

Default	value..:	100000

Set	at	run-time:	false

Hidden.........:	false

query.scanThresholdTip

If	the	total	number	of	records	scanned	in	a	query	exceeds	this	setting,	then	a	warning	is	given.	(Use	0	to	disable).

Setting	name...:	query.scanThresholdTip

Default	value..:	50000

Set	at	run-time:	false

Hidden.........:	false

query.limitThresholdTip

If	the	total	number	of	returned	records	exceeds	this	value,	then	a	warning	is	given.	(Use	0	to	disable).

Setting	name...:	query.limitThresholdTip

Default	value..:	10000

Set	at	run-time:	false

Hidden.........:	false

Statement

statement.cacheSize

Number	of	parsed	SQL	statements	kept	in	cache..

Setting	name...:	statement.cacheSize

Default	value..:	100

Set	at	run-time:	false

Hidden.........:	false

Client

client.channel.maxPool

Maximum	size	of	pool	of	network	channels	between	client	and	server.	A	channel	is	a	TCP/IP	connection..

Setting	Configuration

308



Setting	name...:	client.channel.maxPool

Default	value..:	100

Set	at	run-time:	false

Hidden.........:	false

client.connectionPool.waitTimeout

Maximum	time,	where	the	client	should	wait	for	a	connection	from	the	pool,	when	all	connections	busy..

Setting	name...:	client.connectionPool.waitTimeout

Default	value..:	5000

Set	at	run-time:	true

Hidden.........:	false

client.channel.dbReleaseWaitTimeout

Delay	(in	ms),	after	which	a	data	modification	command	will	be	resent,	if	the	DB	was	frozen..

Setting	name...:	client.channel.dbReleaseWaitTimeout

Default	value..:	10000

Set	at	run-time:	true

Hidden.........:	false

client.ssl.enabled

Use	SSL	for	client	connections..

Setting	name...:	client.ssl.enabled

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

client.ssl.keyStore

Use	SSL	for	client	connections..

Setting	name...:	client.ssl.keyStore

Default	value..:	null

Set	at	run-time:	false

Hidden.........:	false

client.ssl.keyStorePass

Use	SSL	for	client	connections..

Setting	name...:	client.ssl.keyStorePass

Default	value..:	null

Set	at	run-time:	false

Hidden.........:	false

client.ssl.trustStore

Use	SSL	for	client	connections..

Setting	name...:	client.ssl.trustStore

Default	value..:	null

Set	at	run-time:	false

Hidden.........:	false

client.ssl.trustStorePass

Use	SSL	for	client	connections..

Setting	Configuration

309



Setting	name...:	client.ssl.trustStorePass

Default	value..:	null

Set	at	run-time:	false

Hidden.........:	false

client.session.tokenBased

Request	a	token	based	session	to	the	server..

Setting	name...:	client.session.tokenBased

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

client.channel.minPool

Minimum	pool	size.

Setting	name...:	client.channel.minPool

Default	value..:	1

Set	at	run-time:	false

Hidden.........:	false

Server

server.openAllDatabasesAtStartup

If	true,	the	server	opens	all	the	available	databases	at	startup.	Available	since	2.2.

Setting	name...:	server.openAllDatabasesAtStartup

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

server.channel.cleanDelay

Time	in	ms	of	delay	to	check	pending	closed	connections..

Setting	name...:	server.channel.cleanDelay

Default	value..:	5000

Set	at	run-time:	false

Hidden.........:	false

server.cache.staticFile

Cache	static	resources	upon	loading..

Setting	name...:	server.cache.staticFile

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

server.log.dumpClientExceptionLevel

Logs	client	exceptions.	Use	any	level	supported	by	Java	java.util.logging.Level	class:	OFF,	FINE,	CONFIG,	INFO,	WARNING,
SEVERE.

Setting	name...:	server.log.dumpClientExceptionLevel

Default	value..:	FINE

Set	at	run-time:	false

Hidden.........:	false

Setting	Configuration

310



server.log.dumpClientExceptionFullStackTrace

Dumps	the	full	stack	trace	of	the	exception	sent	to	the	client.

Setting	name...:	server.log.dumpClientExceptionFullStackTrace

Default	value..:	false

Set	at	run-time:	true

Hidden.........:	false

Distributed

distributed.crudTaskTimeout

Maximum	timeout	(in	ms)	to	wait	for	CRUD	remote	tasks..

Setting	name...:	distributed.crudTaskTimeout

Default	value..:	3000

Set	at	run-time:	true

Hidden.........:	false

distributed.commandTaskTimeout

Maximum	timeout	(in	ms)	to	wait	for	Command	remote	tasks..

Setting	name...:	distributed.commandTaskTimeout

Default	value..:	10000

Set	at	run-time:	true

Hidden.........:	false

distributed.commandLongTaskTimeout

Maximum	timeout	(in	ms)	to	wait	for	Long-running	remote	tasks..

Setting	name...:	distributed.commandLongTaskTimeout

Default	value..:	86400000

Set	at	run-time:	true

Hidden.........:	false

distributed.deployDbTaskTimeout

Maximum	timeout	(in	ms)	to	wait	for	database	deployment..

Setting	name...:	distributed.deployDbTaskTimeout

Default	value..:	1200000

Set	at	run-time:	true

Hidden.........:	false

distributed.deployChunkTaskTimeout

Maximum	timeout	(in	ms)	to	wait	for	database	chunk	deployment..

Setting	name...:	distributed.deployChunkTaskTimeout

Default	value..:	15000

Set	at	run-time:	true

Hidden.........:	false

distributed.deployDbTaskCompression

Compression	level	(between	0	and	9)	to	use	in	backup	for	database	deployment..

Setting	Configuration

311



Setting	name...:	distributed.deployDbTaskCompression

Default	value..:	7

Set	at	run-time:	true

Hidden.........:	false

distributed.queueTimeout

Maximum	timeout	(in	ms)	to	wait	for	the	response	in	replication..

Setting	name...:	distributed.queueTimeout

Default	value..:	5000

Set	at	run-time:	true

Hidden.........:	false

distributed.asynchQueueSize

Queue	size	to	handle	distributed	asynchronous	operations.	The	bigger	is	the	queue,	the	more	operation	are	buffered,	but	also	more
memory	it's	consumed.	0	=	dynamic	allocation,	which	means	up	to	2^31-1	entries..

Setting	name...:	distributed.asynchQueueSize

Default	value..:	0

Set	at	run-time:	false

Hidden.........:	false

distributed.asynchResponsesTimeout

Maximum	timeout	(in	ms)	to	collect	all	the	asynchronous	responses	from	replication.	After	this	time	the	operation	is	rolled	back
(through	an	UNDO)..

Setting	name...:	distributed.asynchResponsesTimeout

Default	value..:	15000

Set	at	run-time:	false

Hidden.........:	false

distributed.purgeResponsesTimerDelay

Maximum	timeout	(in	ms)	to	collect	all	the	asynchronous	responses	from	replication.	This	is	the	delay	the	purge	thread	uses	to	check
asynchronous	requests	in	timeout..

Setting	name...:	distributed.purgeResponsesTimerDelay

Default	value..:	15000

Set	at	run-time:	false

Hidden.........:	false

distributed.queueMaxSize

Maximum	queue	size	to	mark	a	node	as	stalled.	If	the	numer	of	messages	in	queue	are	more	than	this	values,	the	node	is	restarted	with	a
remote	command	(0	=	no	maximum,	which	means	up	to	2^31-1	entries)..

Setting	name...:	distributed.queueMaxSize

Default	value..:	100

Set	at	run-time:	false

Hidden.........:	false

distributed.backupDirectory

Directory	where	the	copy	of	an	existent	database	is	saved,	before	it	is	downloaded	from	the	cluster..

Setting	name...:	distributed.backupDirectory

Default	value..:	../backup/databases

Set	at	run-time:	false

Hidden.........:	false

Setting	Configuration

312



distributed.concurrentTxMaxAutoRetry

Maximum	attempts	the	transaction	coordinator	should	execute	a	transaction	automatically,	if	records	are	locked.	(Minimum	is	1	=	no
attempts).

Setting	name...:	distributed.concurrentTxMaxAutoRetry

Default	value..:	10

Set	at	run-time:	true

Hidden.........:	false

distributed.concurrentTxAutoRetryDelay

Delay	(in	ms)	between	attempts	on	executing	a	distributed	transaction,	which	had	failed	because	of	locked	records.	(0=no	delay).

Setting	name...:	distributed.concurrentTxAutoRetryDelay

Default	value..:	100

Set	at	run-time:	true

Hidden.........:	false

Oauth2

oauth2.secretkey

Http	OAuth2	secret	key..

Setting	name...:	oauth2.secretkey

Default	value..:	

Set	at	run-time:	false

Hidden.........:	false

Lazyset

lazyset.workOnStream

Deprecated,	now	BINARY	serialization	is	used	in	place	of	CSV.

Setting	name...:	lazyset.workOnStream

Default	value..:	true

Set	at	run-time:	false

Hidden.........:	false

Mvrbtree

mvrbtree.timeout

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.timeout

Default	value..:	0

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.nodePageSize

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	Configuration

313



Setting	name...:	mvrbtree.nodePageSize

Default	value..:	256

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.loadFactor

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.loadFactor

Default	value..:	0.7

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.optimizeThreshold

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.optimizeThreshold

Default	value..:	100000

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.entryPoints

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.entryPoints

Default	value..:	64

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.optimizeEntryPointsFactor

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.optimizeEntryPointsFactor

Default	value..:	1.0

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.entryKeysInMemory

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.entryKeysInMemory

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.entryValuesInMemory

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.entryValuesInMemory

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.ridBinaryThreshold

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	Configuration

314



Setting	name...:	mvrbtree.ridBinaryThreshold

Default	value..:	-1

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.ridNodePageSize

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.ridNodePageSize

Default	value..:	64

Set	at	run-time:	false

Hidden.........:	false

mvrbtree.ridNodeSaveMemory

Deprecated,	MVRBTREE	IS	NOT	USED	ANYMORE	IN	FAVOR	OF	SBTREE	AND	HASHINDEX.

Setting	name...:	mvrbtree.ridNodeSaveMemory

Default	value..:	false

Set	at	run-time:	false

Hidden.........:	false

NOTE:	On	64-bit	systems	you	have	not	the	limitation	of	32-bit	systems	with	memory.

Logging

Logging	is	configured	in	a	separate	file,	look	at	Logging	for	more	information.

Storage	configuration

OrientDB	allows	modifications	to	the	storage	configuration.	Even	though	this	will	be	supported	with	high	level	commands,	for	now	it's
pretty	"internal"	using	Java	API.

To	get	the	storage	configuration	for	the	current	database:

OStorageConfiguration	cfg	=	db.getStorage().getConfiguration();

Look	at		OStorageConfiguration		to	discover	all	the	properties	you	can	change.	To	change	the	configuration	of	a	cluster	get	it	by	ID;

OStoragePhysicalClusterConfigurationLocal	clusterCfg	=	(OStoragePhysicalClusterConfigurationLocal)	cfg.clusters.get(3);

To	change	the	default	settings	for	new	clusters	get	the	file	template	object.	In	this	example	we	change	the	initial	file	size	from	the	default
500Kb	down	to	10Kb:

OStorageSegmentConfiguration	defaultCfg	=	(OStorageSegmentConfiguration)	cfg.fileTemplate;

defaultCfg.fileStartSize	=	"10Kb";

After	changes	call		OStorageConfiguration.update()	:

cfg.update();

Setting	Configuration

315



Tuning	the	Graph	API
This	guide	is	specific	for	the	TinkerPop	Blueprints	Graph	Database.	Please	be	sure	to	read	the	generic	guide	to	the	Performance-Tuning.

Connect	to	the	database	locally

Local	connection	is	much	faster	than	remote.	So	use	"plocal"	based	on	the	storage	engine	used	on	database	creation.	If	you	need	to
connect	to	the	database	from	the	network	you	can	use	the	"Embed	the	server	technique".

Avoid	putting	properties	on	edges

Even	though	supports	properties	on	edges,	this	is	much	expensive	because	it	creates	a	new	record	per	edge.	So	if	you	need	them	you've
to	know	that	the	database	will	be	bigger	and	insertion	time	will	be	much	longer.

Set	properties	all	together

It's	much	lighter	to	set	properties	in	block	than	one	by	one.	Look	at	this	paragraph:	Graph-Database-Tinkerpop#setting-multiple-
properties.

Set	properties	on	vertex	and	edge	creation

It's	even	faster	if	you	set	properties	directly	on	creation	of	vertices	and	edges.	Look	at	this	paragraph:	Graph-Database-
Tinkerpop#create-element-and-properties.

Massive	Insertion

See	Generic	improvement	on	massive	insertion.	To	access	to	the	underlying	database	use:

database.getRawGraph().declareIntent(	new	OIntentMassiveInsert()	);

//	YOUR	MASSIVE	INSERTION

database.getRawGraph().declareIntent(	null	);

Avoid	transactions	if	you	can

Use	the	OrientGraphNoTx	implementation	that	doesn't	use	transaction	for	basic	operations	like	creation	and	deletion	of	vertices	and
edges.	If	you	plan	to	son't	use	transactions	change	the	consistency	level.	OrientGraphNoTx	is	not	compatible	with	OrientBatchGraph
so	use	it	plain:

OrientGraphNoTx	graph	=	new	OrientGraphNoTx("local:/tmp/mydb");

Use	the	schema

Even	if	you	can	model	your	graph	with	only	the	entities	(V)ertex	and	(E)dge	it's	much	better	to	use	schema	for	your	types	extending
Vertex	and	Edge	classes.	In	this	way	traversing	will	be	faster	and	vertices	and	edges	will	be	split	on	different	files.	For	more	information
look	at:	Graph	Schema.

Example:

Graph	API

316



OClass	account	=	graph.createVertexType("Account");

Vertex	v	=	graph.addVertex("class:Account");

Use	indexes	to	lookup	vertices	by	an	ID
If	you've	your	own	ID	on	vertices	and	you	need	to	lookup	them	to	create	edges	then	create	an	index	against	it:

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("class",	"Account"));

If	the	ID	is	unique	then	create	an	UNIQUE	index	that	is	much	faster	and	lighter:

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("type",	"UNIQUE"),	new	Parameter("class",	"Account"));

To	lookup	vertices	by	ID:

for(	Vertex	v	:	graph.getVertices("Account.id",	"23876JS2")	)	{

		System.out.println("Found	vertex:	"	+	v	);

}

Disable	validation

Every	time	a	graph	element	is	modified,	OrientDB	executes	a	validation	to	assure	the	graph	rules	are	all	respected,	that	means:

put	edge	in	out/in	collections
put	vertex	in	edges	in/out

Now	if	you	use	the	Graph	API	without	bypassing	graph	element	manipulation	this	could	be	turned	off	with	a	huge	gain	in	performance:

graph.setValidationEnabled(false);

Reduce	vertex	objects
You	can	avoid	the	creation	of	a	new	ODocument	for	each	new	vertex	by	reusing	it	with	ODocument.reset()	method	that	clears	the
instance	making	it	ready	for	a	new	insert	operation.	Bear	in	mind	that	you	will	need	to	assign	the	document	with	the	proper	class	after
resetting	as	it	is	done	in	the	code	below.

NOTE:	This	trick	works	ONLY	IN	NON-TRANSACTIONAL	contexts,	because	during	transactions	the	documents	could	be	kept	in
memory	until	commit.

Example:

db.declareIntent(	new	OIntentMassiveInsert()	);

ODocument	doc	=	db.createVertex("myVertex");

for(	int	i	=	0;	i	<	1000000;	++i	){

		doc.reset();

		doc.setClassName("myVertex");

		doc.field("id",	i);

		doc.field("name",	"Jason");

		doc.save();

}

db.declareIntent(	null	);

Cache	management

Graph	API

317



Graph	Database,	by	default,	caches	the	most	used	elements.	For	massive	insertion	is	strongly	suggested	to	disable	cache	to	avoid	to
keep	all	the	element	in	memory.	Massive	Insert	Intent	automatically	sets	it	to	false.

graph.setRetainObjects(false);

Graph	API

318



Tuning	the	Document	API
This	guide	is	specific	for	the	Document	Database.	Please	be	sure	to	read	the	generic	guide	to	the	Performance-Tuning.

Massive	Insertion

See	Generic	improvement	on	massive	insertion.

Avoid	document	creation

You	can	avoid	the	creation	of	a	new	ODocument	for	each	insertion	by	using	the	ODocument.reset()	method	that	clears	the	instance
making	it	ready	for	a	new	insert	operation.	Bear	in	mind	that	you	will	need	to	assign	the	document	with	the	proper	class	after	resetting
as	it	is	done	in	the	code	below.

NOTE:	This	trick	works	ONLY	IN	NON-TRANSACTIONAL	contexts,	because	during	transactions	the	documents	could	be	kept	in
memory	until	commit.

Example:

import	com.orientechnologies.orient.core.intent.OIntentMassiveInsert;

db.declareIntent(	new	OIntentMassiveInsert()	);

ODocument	doc	=	new	ODocument();

for(	int	i	=	0;	i	<	1000000;	++i	){

		doc.reset();

		doc.setClassName("Customer");

		doc.field("id",	i);

		doc.field("name",	"Jason");

		doc.save();

}

db.declareIntent(	null	);

Document	API

319



Tuning	the	Object	API
This	guide	is	specific	for	the	Object	Database.	Please	be	sure	to	read	the	generic	guide	to	the	Performance-Tuning.

Massive	Insertion

See	Generic	improvement	on	massive	insertion.

Object	API

320



Profiler
OrientDB	Enterprise	Edition	comes	with	a	profiler	that	collects	all	the	metrics	about	the	engine	and	the	system	where	is	running.

Automatic	dump

When	you	incur	in	problems,	the	best	way	to	produce	information	about	OrientDB	is	activating	a	regular	dump	of	the	profiler.	Set	this
configuration	variable	at	start:

java	...	-Dprofiler.autoDump.reset=true	-Dprofiler.autoDump.interval=60	-Dprofiler.enabled=true	...

This	will	dump	the	profiler	in	the	console	every	60	seconds	and	resets	the	metrics	after	the	dump.	For	more	information	about	settings
look	at	Parameters.

Retrieve	profiler	metrics	via	HTTP

http://<server>[<:port>]/profiler/<command>/[<config>]|[<from>/<to>]

Where:

server	is	the	server	where	OrientDB	is	running
port	is	the	http	port,	OrientDB	listens	at	2480	by	default
command,	is	the	command	between:

realtime	to	retrieve	realtime	information
last	to	retrieve	realtime	information
archive	to	retrieve	archived	profiling
summary	to	retrieve	summary	of	past	profiling
start	to	start	profiling
stop	to	stop	profiling
reset	to	reset	the	profiler	(equals	to	stop+start)
status	to	know	the	status	of	profiler
configure	to	configure	profiling
metadata	to	retrieve	metadata

Example:

http://localhost:2480/profiler/realtime

Metric	type

Chrono

Chrono	are	recording	of	operation.	Each	Chrono	has	the	following	values:

last,	as	the	last	time	recorded
min,	as	the	minimum	time	recorded
max,	as	the	maximum	time	recorded
average,	as	the	average	time	recorded
total,	as	the	total	time	recorded
entries,	as	the	number	of	times	the	metric	has	been	recorded

Counter

Profiler

321



It's	a	counter	as	long	value	that	records	resources.

HookValues

Are	generic	values	of	any	type	between	the	supported	ones:	string,	number,	boolean	or	null.

A	hook	value	is	not	collected	in	central	way,	but	it's	gathered	at	runtime	by	calling	the	hooks	as	callbacks.

Metric	main	categories

Follows	the	main	categories	of	metrics:

	db.<db-name>	:	database	related	metrics
	db.<db-name>.cache	:	metrics	about	db's	caching
	db.<db-name>.index	:	metrics	about	db's	indexes
	system	:	system	metrics	like	CPU,	memory,	OS,	etc.
	system.disk	:	File	system	metrics
	process	:	not	strictly	related	to	database	but	to	the	process	(JVM)	that	is	running	OrientDB	as	client,	server	or	embedded
	process.network	:	network	metrics
	process.runtime	:	process's	runtime	information	like	memory	used,	etc
	server	:	server	related	metrics

Example	of	profiler	values	extracted	from	the	server	after	test	suite	is	run	(http://localhost:2480/profiler/realtime):

{

				"realtime":	{

								"from":	1344531312356,

								"to":	9223372036854776000,

								"hookValues":	{

												"db.0$db.cache.level1.current":	0,

												"db.0$db.cache.level1.enabled":	false,

												"db.0$db.cache.level1.max":	-1,

												"db.0$db.cache.level2.current":	0,

												"db.0$db.cache.level2.enabled":	true,

												"db.0$db.cache.level2.max":	-1,

												"db.0$db.data.holeSize":	0,

												"db.0$db.data.holes":	0,

												"db.0$db.index.dictionary.entryPointSize":	64,

												"db.0$db.index.dictionary.items":	0,

												"db.0$db.index.dictionary.maxUpdateBeforeSave":	5000,

												"db.0$db.index.dictionary.optimizationThreshold":	100000,

												"db.1$db.cache.level1.current":	0,

												"db.1$db.cache.level1.enabled":	false,

												"db.1$db.cache.level1.max":	-1,

												"db.1$db.cache.level2.current":	0,

												"db.1$db.cache.level2.enabled":	true,

												"db.1$db.cache.level2.max":	-1,

												"db.1$db.data.holeSize":	0,

												"db.1$db.data.holes":	0,

												"db.1$db.index.dictionary.entryPointSize":	64,

												"db.1$db.index.dictionary.items":	0,

												"db.1$db.index.dictionary.maxUpdateBeforeSave":	5000,

												"db.1$db.index.dictionary.optimizationThreshold":	100000,

												"db.2$db.cache.level1.current":	0,

												"db.2$db.cache.level1.enabled":	false,

												"db.2$db.cache.level1.max":	-1,

												"db.2$db.cache.level2.current":	0,

												"db.2$db.cache.level2.enabled":	true,

												"db.2$db.cache.level2.max":	-1,

												"db.2$db.data.holeSize":	0,

												"db.2$db.data.holes":	0,

												"db.2$db.index.dictionary.entryPointSize":	64,

												"db.2$db.index.dictionary.items":	0,

												"db.2$db.index.dictionary.maxUpdateBeforeSave":	5000,

												"db.2$db.index.dictionary.optimizationThreshold":	100000,

												"db.demo.cache.level1.current":	0,

												"db.demo.cache.level1.enabled":	false,

												"db.demo.cache.level1.max":	-1,

												"db.demo.cache.level2.current":	20520,

Profiler

322

http://localhost:2480/profiler/realtime


												"db.demo.cache.level2.enabled":	true,

												"db.demo.cache.level2.max":	-1,

												"db.demo.data.holeSize":	47553,

												"db.demo.data.holes":	24,

												"db.demo.index.BaseTestClass.testParentProperty.entryPointSize":	64,

												"db.demo.index.BaseTestClass.testParentProperty.items":	2,

												"db.demo.index.BaseTestClass.testParentProperty.maxUpdateBeforeSave":	5000,

												"db.demo.index.BaseTestClass.testParentProperty.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedList.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeEmbeddedList.items":	0,

												"db.demo.index.ClassIndexTestCompositeEmbeddedList.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedList.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.items":	0,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.items":	0,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.items":	0,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.items":	0,

												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeLinkList.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeLinkList.items":	0,

												"db.demo.index.ClassIndexTestCompositeLinkList.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeLinkList.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.items":	0,

												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeOne.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeOne.items":	0,

												"db.demo.index.ClassIndexTestCompositeOne.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeOne.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestCompositeTwo.entryPointSize":	64,

												"db.demo.index.ClassIndexTestCompositeTwo.items":	0,

												"db.demo.index.ClassIndexTestCompositeTwo.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestCompositeTwo.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestDictionaryIndex.entryPointSize":	64,

												"db.demo.index.ClassIndexTestDictionaryIndex.items":	0,

												"db.demo.index.ClassIndexTestDictionaryIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestDictionaryIndex.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestFulltextIndex.entryPointSize":	64,

												"db.demo.index.ClassIndexTestFulltextIndex.items":	0,

												"db.demo.index.ClassIndexTestFulltextIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestFulltextIndex.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestNotUniqueIndex.entryPointSize":	64,

												"db.demo.index.ClassIndexTestNotUniqueIndex.items":	0,

												"db.demo.index.ClassIndexTestNotUniqueIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestNotUniqueIndex.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestParentPropertyNine.entryPointSize":	64,

												"db.demo.index.ClassIndexTestParentPropertyNine.items":	0,

												"db.demo.index.ClassIndexTestParentPropertyNine.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestParentPropertyNine.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.entryPointSize":	64,

												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.items":	0,

												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.entryPointSize":	64,

												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.items":	0,

												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.entryPointSize":	64,

												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.items":	0,

												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestPropertyLinkedMap.entryPointSize":	64,

												"db.demo.index.ClassIndexTestPropertyLinkedMap.items":	0,

												"db.demo.index.ClassIndexTestPropertyLinkedMap.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestPropertyLinkedMap.optimizationThreshold":	100000,

Profiler

323



												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.entryPointSize":	64,

												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.items":	0,

												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.entryPointSize":	64,

												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.items":	0,

												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.optimizationThreshold":	100000,

												"db.demo.index.ClassIndexTestPropertyOne.entryPointSize":	64,

												"db.demo.index.ClassIndexTestPropertyOne.items":	0,

												"db.demo.index.ClassIndexTestPropertyOne.maxUpdateBeforeSave":	5000,

												"db.demo.index.ClassIndexTestPropertyOne.optimizationThreshold":	100000,

												"db.demo.index.Collector.stringCollection.entryPointSize":	64,

												"db.demo.index.Collector.stringCollection.items":	0,

												"db.demo.index.Collector.stringCollection.maxUpdateBeforeSave":	5000,

												"db.demo.index.Collector.stringCollection.optimizationThreshold":	100000,

												"db.demo.index.DropPropertyIndexCompositeIndex.entryPointSize":	64,

												"db.demo.index.DropPropertyIndexCompositeIndex.items":	0,

												"db.demo.index.DropPropertyIndexCompositeIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.DropPropertyIndexCompositeIndex.optimizationThreshold":	100000,

												"db.demo.index.Fruit.color.entryPointSize":	64,

												"db.demo.index.Fruit.color.items":	0,

												"db.demo.index.Fruit.color.maxUpdateBeforeSave":	5000,

												"db.demo.index.Fruit.color.optimizationThreshold":	100000,

												"db.demo.index.IndexCountPlusCondition.entryPointSize":	64,

												"db.demo.index.IndexCountPlusCondition.items":	5,

												"db.demo.index.IndexCountPlusCondition.maxUpdateBeforeSave":	5000,

												"db.demo.index.IndexCountPlusCondition.optimizationThreshold":	100000,

												"db.demo.index.IndexNotUniqueIndexKeySize.entryPointSize":	64,

												"db.demo.index.IndexNotUniqueIndexKeySize.items":	5,

												"db.demo.index.IndexNotUniqueIndexKeySize.maxUpdateBeforeSave":	5000,

												"db.demo.index.IndexNotUniqueIndexKeySize.optimizationThreshold":	100000,

												"db.demo.index.IndexNotUniqueIndexSize.entryPointSize":	64,

												"db.demo.index.IndexNotUniqueIndexSize.items":	5,

												"db.demo.index.IndexNotUniqueIndexSize.maxUpdateBeforeSave":	5000,

												"db.demo.index.IndexNotUniqueIndexSize.optimizationThreshold":	100000,

												"db.demo.index.MapPoint.x.entryPointSize":	64,

												"db.demo.index.MapPoint.x.items":	9999,

												"db.demo.index.MapPoint.x.maxUpdateBeforeSave":	5000,

												"db.demo.index.MapPoint.x.optimizationThreshold":	100000,

												"db.demo.index.MapPoint.y.entryPointSize":	64,

												"db.demo.index.MapPoint.y.items":	10000,

												"db.demo.index.MapPoint.y.maxUpdateBeforeSave":	5000,

												"db.demo.index.MapPoint.y.optimizationThreshold":	100000,

												"db.demo.index.MyFruit.color.entryPointSize":	64,

												"db.demo.index.MyFruit.color.items":	10,

												"db.demo.index.MyFruit.color.maxUpdateBeforeSave":	5000,

												"db.demo.index.MyFruit.color.optimizationThreshold":	100000,

												"db.demo.index.MyFruit.flavor.entryPointSize":	64,

												"db.demo.index.MyFruit.flavor.items":	0,

												"db.demo.index.MyFruit.flavor.maxUpdateBeforeSave":	5000,

												"db.demo.index.MyFruit.flavor.optimizationThreshold":	100000,

												"db.demo.index.MyFruit.name.entryPointSize":	64,

												"db.demo.index.MyFruit.name.items":	5000,

												"db.demo.index.MyFruit.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.MyFruit.name.optimizationThreshold":	100000,

												"db.demo.index.MyProfile.name.entryPointSize":	64,

												"db.demo.index.MyProfile.name.items":	3,

												"db.demo.index.MyProfile.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.MyProfile.name.optimizationThreshold":	100000,

												"db.demo.index.Profile.hash.entryPointSize":	64,

												"db.demo.index.Profile.hash.items":	5,

												"db.demo.index.Profile.hash.maxUpdateBeforeSave":	5000,

												"db.demo.index.Profile.hash.optimizationThreshold":	100000,

												"db.demo.index.Profile.name.entryPointSize":	64,

												"db.demo.index.Profile.name.items":	20,

												"db.demo.index.Profile.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.Profile.name.optimizationThreshold":	100000,

												"db.demo.index.Profile.nick.entryPointSize":	64,

												"db.demo.index.Profile.nick.items":	38,

												"db.demo.index.Profile.nick.maxUpdateBeforeSave":	5000,

												"db.demo.index.Profile.nick.optimizationThreshold":	100000,

												"db.demo.index.PropertyIndexFirstIndex.entryPointSize":	64,

												"db.demo.index.PropertyIndexFirstIndex.items":	0,

												"db.demo.index.PropertyIndexFirstIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.PropertyIndexFirstIndex.optimizationThreshold":	100000,

Profiler

324



												"db.demo.index.PropertyIndexSecondIndex.entryPointSize":	64,

												"db.demo.index.PropertyIndexSecondIndex.items":	0,

												"db.demo.index.PropertyIndexSecondIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.PropertyIndexSecondIndex.optimizationThreshold":	100000,

												"db.demo.index.PropertyIndexTestClass.prop1.entryPointSize":	64,

												"db.demo.index.PropertyIndexTestClass.prop1.items":	0,

												"db.demo.index.PropertyIndexTestClass.prop1.maxUpdateBeforeSave":	5000,

												"db.demo.index.PropertyIndexTestClass.prop1.optimizationThreshold":	100000,

												"db.demo.index.SQLDropClassCompositeIndex.entryPointSize":	64,

												"db.demo.index.SQLDropClassCompositeIndex.items":	0,

												"db.demo.index.SQLDropClassCompositeIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.SQLDropClassCompositeIndex.optimizationThreshold":	100000,

												"db.demo.index.SQLDropIndexCompositeIndex.entryPointSize":	64,

												"db.demo.index.SQLDropIndexCompositeIndex.items":	0,

												"db.demo.index.SQLDropIndexCompositeIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.SQLDropIndexCompositeIndex.optimizationThreshold":	100000,

												"db.demo.index.SQLDropIndexTestClass.prop1.entryPointSize":	64,

												"db.demo.index.SQLDropIndexTestClass.prop1.items":	0,

												"db.demo.index.SQLDropIndexTestClass.prop1.maxUpdateBeforeSave":	5000,

												"db.demo.index.SQLDropIndexTestClass.prop1.optimizationThreshold":	100000,

												"db.demo.index.SQLDropIndexWithoutClass.entryPointSize":	64,

												"db.demo.index.SQLDropIndexWithoutClass.items":	0,

												"db.demo.index.SQLDropIndexWithoutClass.maxUpdateBeforeSave":	5000,

												"db.demo.index.SQLDropIndexWithoutClass.optimizationThreshold":	100000,

												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.entryPointSize":	64,

												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.items":	0,

												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.optimizationThreshold":	100000,

												"db.demo.index.SchemaSharedIndexCompositeIndex.entryPointSize":	64,

												"db.demo.index.SchemaSharedIndexCompositeIndex.items":	0,

												"db.demo.index.SchemaSharedIndexCompositeIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.SchemaSharedIndexCompositeIndex.optimizationThreshold":	100000,

												"db.demo.index.TRPerson.name.entryPointSize":	64,

												"db.demo.index.TRPerson.name.items":	4,

												"db.demo.index.TRPerson.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.TRPerson.name.optimizationThreshold":	100000,

												"db.demo.index.TRPerson.surname.entryPointSize":	64,

												"db.demo.index.TRPerson.surname.items":	3,

												"db.demo.index.TRPerson.surname.maxUpdateBeforeSave":	5000,

												"db.demo.index.TRPerson.surname.optimizationThreshold":	100000,

												"db.demo.index.TestClass.name.entryPointSize":	64,

												"db.demo.index.TestClass.name.items":	2,

												"db.demo.index.TestClass.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.TestClass.name.optimizationThreshold":	100000,

												"db.demo.index.TestClass.testLink.entryPointSize":	64,

												"db.demo.index.TestClass.testLink.items":	2,

												"db.demo.index.TestClass.testLink.maxUpdateBeforeSave":	5000,

												"db.demo.index.TestClass.testLink.optimizationThreshold":	100000,

												"db.demo.index.TransactionUniqueIndexWithDotTest.label.entryPointSize":	64,

												"db.demo.index.TransactionUniqueIndexWithDotTest.label.items":	1,

												"db.demo.index.TransactionUniqueIndexWithDotTest.label.maxUpdateBeforeSave":	5000,

												"db.demo.index.TransactionUniqueIndexWithDotTest.label.optimizationThreshold":	100000,

												"db.demo.index.Whiz.account.entryPointSize":	64,

												"db.demo.index.Whiz.account.items":	1,

												"db.demo.index.Whiz.account.maxUpdateBeforeSave":	5000,

												"db.demo.index.Whiz.account.optimizationThreshold":	100000,

												"db.demo.index.Whiz.text.entryPointSize":	64,

												"db.demo.index.Whiz.text.items":	275,

												"db.demo.index.Whiz.text.maxUpdateBeforeSave":	5000,

												"db.demo.index.Whiz.text.optimizationThreshold":	100000,

												"db.demo.index.a.entryPointSize":	64,

												"db.demo.index.a.items":	0,

												"db.demo.index.a.maxUpdateBeforeSave":	5000,

												"db.demo.index.a.optimizationThreshold":	100000,

												"db.demo.index.anotherproperty.entryPointSize":	64,

												"db.demo.index.anotherproperty.items":	0,

												"db.demo.index.anotherproperty.maxUpdateBeforeSave":	5000,

												"db.demo.index.anotherproperty.optimizationThreshold":	100000,

												"db.demo.index.byte-array-manualIndex-notunique.entryPointSize":	64,

												"db.demo.index.byte-array-manualIndex-notunique.items":	6,

												"db.demo.index.byte-array-manualIndex-notunique.maxUpdateBeforeSave":	5000,

												"db.demo.index.byte-array-manualIndex-notunique.optimizationThreshold":	100000,

												"db.demo.index.byte-array-manualIndex.entryPointSize":	64,

												"db.demo.index.byte-array-manualIndex.items":	11,

												"db.demo.index.byte-array-manualIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.byte-array-manualIndex.optimizationThreshold":	100000,

Profiler

325



												"db.demo.index.byteArrayKeyIndex.entryPointSize":	64,

												"db.demo.index.byteArrayKeyIndex.items":	2,

												"db.demo.index.byteArrayKeyIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.byteArrayKeyIndex.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerComposite.entryPointSize":	64,

												"db.demo.index.classIndexManagerComposite.items":	0,

												"db.demo.index.classIndexManagerComposite.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerComposite.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestClass.prop1.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestClass.prop1.items":	0,

												"db.demo.index.classIndexManagerTestClass.prop1.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestClass.prop1.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestClass.prop2.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestClass.prop2.items":	0,

												"db.demo.index.classIndexManagerTestClass.prop2.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestClass.prop2.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestClass.prop4.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestClass.prop4.items":	0,

												"db.demo.index.classIndexManagerTestClass.prop4.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestClass.prop4.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestClass.prop6.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestClass.prop6.items":	0,

												"db.demo.index.classIndexManagerTestClass.prop6.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestClass.prop6.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestIndexByKey.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestIndexByKey.items":	0,

												"db.demo.index.classIndexManagerTestIndexByKey.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestIndexByKey.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestIndexByValue.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestIndexByValue.items":	0,

												"db.demo.index.classIndexManagerTestIndexByValue.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestIndexByValue.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestIndexValueAndCollection.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestIndexValueAndCollection.items":	0,

												"db.demo.index.classIndexManagerTestIndexValueAndCollection.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestIndexValueAndCollection.optimizationThreshold":	100000,

												"db.demo.index.classIndexManagerTestSuperClass.prop0.entryPointSize":	64,

												"db.demo.index.classIndexManagerTestSuperClass.prop0.items":	0,

												"db.demo.index.classIndexManagerTestSuperClass.prop0.maxUpdateBeforeSave":	5000,

												"db.demo.index.classIndexManagerTestSuperClass.prop0.optimizationThreshold":	100000,

												"db.demo.index.compositeByteArrayKey.entryPointSize":	64,

												"db.demo.index.compositeByteArrayKey.items":	4,

												"db.demo.index.compositeByteArrayKey.maxUpdateBeforeSave":	5000,

												"db.demo.index.compositeByteArrayKey.optimizationThreshold":	100000,

												"db.demo.index.compositeIndexWithoutSchema.entryPointSize":	64,

												"db.demo.index.compositeIndexWithoutSchema.items":	0,

												"db.demo.index.compositeIndexWithoutSchema.maxUpdateBeforeSave":	5000,

												"db.demo.index.compositeIndexWithoutSchema.optimizationThreshold":	100000,

												"db.demo.index.compositeone.entryPointSize":	64,

												"db.demo.index.compositeone.items":	0,

												"db.demo.index.compositeone.maxUpdateBeforeSave":	5000,

												"db.demo.index.compositeone.optimizationThreshold":	100000,

												"db.demo.index.compositetwo.entryPointSize":	64,

												"db.demo.index.compositetwo.items":	0,

												"db.demo.index.compositetwo.maxUpdateBeforeSave":	5000,

												"db.demo.index.compositetwo.optimizationThreshold":	100000,

												"db.demo.index.curotorCompositeIndex.entryPointSize":	64,

												"db.demo.index.curotorCompositeIndex.items":	0,

												"db.demo.index.curotorCompositeIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.curotorCompositeIndex.optimizationThreshold":	100000,

												"db.demo.index.dictionary.entryPointSize":	64,

												"db.demo.index.dictionary.items":	2,

												"db.demo.index.dictionary.maxUpdateBeforeSave":	5000,

												"db.demo.index.dictionary.optimizationThreshold":	100000,

												"db.demo.index.diplomaThesisUnique.entryPointSize":	64,

												"db.demo.index.diplomaThesisUnique.items":	3,

												"db.demo.index.diplomaThesisUnique.maxUpdateBeforeSave":	5000,

												"db.demo.index.diplomaThesisUnique.optimizationThreshold":	100000,

												"db.demo.index.equalityIdx.entryPointSize":	64,

												"db.demo.index.equalityIdx.items":	0,

												"db.demo.index.equalityIdx.maxUpdateBeforeSave":	5000,

												"db.demo.index.equalityIdx.optimizationThreshold":	100000,

												"db.demo.index.idx.entryPointSize":	64,

												"db.demo.index.idx.items":	2,

												"db.demo.index.idx.maxUpdateBeforeSave":	5000,

												"db.demo.index.idx.optimizationThreshold":	100000,

Profiler

326



												"db.demo.index.idxTerm.entryPointSize":	64,

												"db.demo.index.idxTerm.items":	1,

												"db.demo.index.idxTerm.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTerm.optimizationThreshold":	100000,

												"db.demo.index.idxTransactionUniqueIndexTest.entryPointSize":	64,

												"db.demo.index.idxTransactionUniqueIndexTest.items":	1,

												"db.demo.index.idxTransactionUniqueIndexTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTransactionUniqueIndexTest.optimizationThreshold":	100000,

												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.entryPointSize":	64,

												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.items":	0,

												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.optimizationThreshold":	100000,

												"db.demo.index.idxTxAwareMultiValueGetTest.entryPointSize":	64,

												"db.demo.index.idxTxAwareMultiValueGetTest.items":	0,

												"db.demo.index.idxTxAwareMultiValueGetTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTxAwareMultiValueGetTest.optimizationThreshold":	100000,

												"db.demo.index.idxTxAwareMultiValueGetValuesTest.entryPointSize":	64,

												"db.demo.index.idxTxAwareMultiValueGetValuesTest.items":	0,

												"db.demo.index.idxTxAwareMultiValueGetValuesTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTxAwareMultiValueGetValuesTest.optimizationThreshold":	100000,

												"db.demo.index.idxTxAwareOneValueGetEntriesTest.entryPointSize":	64,

												"db.demo.index.idxTxAwareOneValueGetEntriesTest.items":	0,

												"db.demo.index.idxTxAwareOneValueGetEntriesTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTxAwareOneValueGetEntriesTest.optimizationThreshold":	100000,

												"db.demo.index.idxTxAwareOneValueGetTest.entryPointSize":	64,

												"db.demo.index.idxTxAwareOneValueGetTest.items":	0,

												"db.demo.index.idxTxAwareOneValueGetTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTxAwareOneValueGetTest.optimizationThreshold":	100000,

												"db.demo.index.idxTxAwareOneValueGetValuesTest.entryPointSize":	64,

												"db.demo.index.idxTxAwareOneValueGetValuesTest.items":	0,

												"db.demo.index.idxTxAwareOneValueGetValuesTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.idxTxAwareOneValueGetValuesTest.optimizationThreshold":	100000,

												"db.demo.index.inIdx.entryPointSize":	64,

												"db.demo.index.inIdx.items":	0,

												"db.demo.index.inIdx.maxUpdateBeforeSave":	5000,

												"db.demo.index.inIdx.optimizationThreshold":	100000,

												"db.demo.index.indexForMap.entryPointSize":	64,

												"db.demo.index.indexForMap.items":	0,

												"db.demo.index.indexForMap.maxUpdateBeforeSave":	5000,

												"db.demo.index.indexForMap.optimizationThreshold":	100000,

												"db.demo.index.indexWithoutSchema.entryPointSize":	64,

												"db.demo.index.indexWithoutSchema.items":	0,

												"db.demo.index.indexWithoutSchema.maxUpdateBeforeSave":	5000,

												"db.demo.index.indexWithoutSchema.optimizationThreshold":	100000,

												"db.demo.index.indexfive.entryPointSize":	64,

												"db.demo.index.indexfive.items":	0,

												"db.demo.index.indexfive.maxUpdateBeforeSave":	5000,

												"db.demo.index.indexfive.optimizationThreshold":	100000,

												"db.demo.index.indexfour.entryPointSize":	64,

												"db.demo.index.indexfour.items":	0,

												"db.demo.index.indexfour.maxUpdateBeforeSave":	5000,

												"db.demo.index.indexfour.optimizationThreshold":	100000,

												"db.demo.index.indexone.entryPointSize":	64,

												"db.demo.index.indexone.items":	0,

												"db.demo.index.indexone.maxUpdateBeforeSave":	5000,

												"db.demo.index.indexone.optimizationThreshold":	100000,

												"db.demo.index.indexsix.entryPointSize":	64,

												"db.demo.index.indexsix.items":	0,

												"db.demo.index.indexsix.maxUpdateBeforeSave":	5000,

												"db.demo.index.indexsix.optimizationThreshold":	100000,

												"db.demo.index.indexthree.entryPointSize":	64,

												"db.demo.index.indexthree.items":	0,

												"db.demo.index.indexthree.maxUpdateBeforeSave":	5000,

												"db.demo.index.indexthree.optimizationThreshold":	100000,

												"db.demo.index.indextwo.entryPointSize":	64,

												"db.demo.index.indextwo.items":	0,

												"db.demo.index.indextwo.maxUpdateBeforeSave":	5000,

												"db.demo.index.indextwo.optimizationThreshold":	100000,

												"db.demo.index.linkCollectionIndex.entryPointSize":	64,

												"db.demo.index.linkCollectionIndex.items":	0,

												"db.demo.index.linkCollectionIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.linkCollectionIndex.optimizationThreshold":	100000,

												"db.demo.index.lpirtCurator.name.entryPointSize":	64,

												"db.demo.index.lpirtCurator.name.items":	0,

												"db.demo.index.lpirtCurator.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtCurator.name.optimizationThreshold":	100000,

Profiler

327



												"db.demo.index.lpirtCurator.salary.entryPointSize":	64,

												"db.demo.index.lpirtCurator.salary.items":	0,

												"db.demo.index.lpirtCurator.salary.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtCurator.salary.optimizationThreshold":	100000,

												"db.demo.index.lpirtDiploma.GPA.entryPointSize":	64,

												"db.demo.index.lpirtDiploma.GPA.items":	3,

												"db.demo.index.lpirtDiploma.GPA.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtDiploma.GPA.optimizationThreshold":	100000,

												"db.demo.index.lpirtDiploma.thesis.entryPointSize":	64,

												"db.demo.index.lpirtDiploma.thesis.items":	54,

												"db.demo.index.lpirtDiploma.thesis.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtDiploma.thesis.optimizationThreshold":	100000,

												"db.demo.index.lpirtGroup.curator.entryPointSize":	64,

												"db.demo.index.lpirtGroup.curator.items":	0,

												"db.demo.index.lpirtGroup.curator.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtGroup.curator.optimizationThreshold":	100000,

												"db.demo.index.lpirtGroup.name.entryPointSize":	64,

												"db.demo.index.lpirtGroup.name.items":	0,

												"db.demo.index.lpirtGroup.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtGroup.name.optimizationThreshold":	100000,

												"db.demo.index.lpirtStudent.group.entryPointSize":	64,

												"db.demo.index.lpirtStudent.group.items":	0,

												"db.demo.index.lpirtStudent.group.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtStudent.group.optimizationThreshold":	100000,

												"db.demo.index.lpirtStudent.name.entryPointSize":	64,

												"db.demo.index.lpirtStudent.name.items":	0,

												"db.demo.index.lpirtStudent.name.maxUpdateBeforeSave":	5000,

												"db.demo.index.lpirtStudent.name.optimizationThreshold":	100000,

												"db.demo.index.manualTxIndexTest.entryPointSize":	64,

												"db.demo.index.manualTxIndexTest.items":	1,

												"db.demo.index.manualTxIndexTest.maxUpdateBeforeSave":	5000,

												"db.demo.index.manualTxIndexTest.optimizationThreshold":	100000,

												"db.demo.index.mapIndexTestKey.entryPointSize":	64,

												"db.demo.index.mapIndexTestKey.items":	0,

												"db.demo.index.mapIndexTestKey.maxUpdateBeforeSave":	5000,

												"db.demo.index.mapIndexTestKey.optimizationThreshold":	100000,

												"db.demo.index.mapIndexTestValue.entryPointSize":	64,

												"db.demo.index.mapIndexTestValue.items":	0,

												"db.demo.index.mapIndexTestValue.maxUpdateBeforeSave":	5000,

												"db.demo.index.mapIndexTestValue.optimizationThreshold":	100000,

												"db.demo.index.newV.f_int.entryPointSize":	64,

												"db.demo.index.newV.f_int.items":	3,

												"db.demo.index.newV.f_int.maxUpdateBeforeSave":	5000,

												"db.demo.index.newV.f_int.optimizationThreshold":	100000,

												"db.demo.index.nullkey.entryPointSize":	64,

												"db.demo.index.nullkey.items":	0,

												"db.demo.index.nullkey.maxUpdateBeforeSave":	5000,

												"db.demo.index.nullkey.optimizationThreshold":	100000,

												"db.demo.index.nullkeytwo.entryPointSize":	64,

												"db.demo.index.nullkeytwo.items":	0,

												"db.demo.index.nullkeytwo.maxUpdateBeforeSave":	5000,

												"db.demo.index.nullkeytwo.optimizationThreshold":	100000,

												"db.demo.index.propOne1.entryPointSize":	64,

												"db.demo.index.propOne1.items":	0,

												"db.demo.index.propOne1.maxUpdateBeforeSave":	5000,

												"db.demo.index.propOne1.optimizationThreshold":	100000,

												"db.demo.index.propOne2.entryPointSize":	64,

												"db.demo.index.propOne2.items":	0,

												"db.demo.index.propOne2.maxUpdateBeforeSave":	5000,

												"db.demo.index.propOne2.optimizationThreshold":	100000,

												"db.demo.index.propOne3.entryPointSize":	64,

												"db.demo.index.propOne3.items":	0,

												"db.demo.index.propOne3.maxUpdateBeforeSave":	5000,

												"db.demo.index.propOne3.optimizationThreshold":	100000,

												"db.demo.index.propOne4.entryPointSize":	64,

												"db.demo.index.propOne4.items":	0,

												"db.demo.index.propOne4.maxUpdateBeforeSave":	5000,

												"db.demo.index.propOne4.optimizationThreshold":	100000,

												"db.demo.index.propertyone.entryPointSize":	64,

												"db.demo.index.propertyone.items":	0,

												"db.demo.index.propertyone.maxUpdateBeforeSave":	5000,

												"db.demo.index.propertyone.optimizationThreshold":	100000,

												"db.demo.index.simplekey.entryPointSize":	64,

												"db.demo.index.simplekey.items":	0,

												"db.demo.index.simplekey.maxUpdateBeforeSave":	5000,

												"db.demo.index.simplekey.optimizationThreshold":	100000,

Profiler

328



												"db.demo.index.simplekeytwo.entryPointSize":	64,

												"db.demo.index.simplekeytwo.items":	0,

												"db.demo.index.simplekeytwo.maxUpdateBeforeSave":	5000,

												"db.demo.index.simplekeytwo.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexCompositeIndex.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexCompositeIndex.items":	0,

												"db.demo.index.sqlCreateIndexCompositeIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexCompositeIndex.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexCompositeIndex2.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexCompositeIndex2.items":	0,

												"db.demo.index.sqlCreateIndexCompositeIndex2.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexCompositeIndex2.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexEmbeddedListIndex.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexEmbeddedListIndex.items":	0,

												"db.demo.index.sqlCreateIndexEmbeddedListIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexEmbeddedListIndex.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.items":	0,

												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.items":	0,

												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.items":	0,

												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexTestClass.prop1.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexTestClass.prop1.items":	0,

												"db.demo.index.sqlCreateIndexTestClass.prop1.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexTestClass.prop1.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexTestClass.prop3.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexTestClass.prop3.items":	0,

												"db.demo.index.sqlCreateIndexTestClass.prop3.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexTestClass.prop3.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexTestClass.prop5.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexTestClass.prop5.items":	0,

												"db.demo.index.sqlCreateIndexTestClass.prop5.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexTestClass.prop5.optimizationThreshold":	100000,

												"db.demo.index.sqlCreateIndexWithoutClass.entryPointSize":	64,

												"db.demo.index.sqlCreateIndexWithoutClass.items":	0,

												"db.demo.index.sqlCreateIndexWithoutClass.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlCreateIndexWithoutClass.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.optimizationThreshold":	100000,

												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.entryPointSize":	64,

												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.items":	0,

												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.maxUpdateBeforeSave":	5000,

												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.optimizationThreshold":	100000,

Profiler

329



												"db.demo.index.studentDiplomaAndNameIndex.entryPointSize":	64,

												"db.demo.index.studentDiplomaAndNameIndex.items":	0,

												"db.demo.index.studentDiplomaAndNameIndex.maxUpdateBeforeSave":	5000,

												"db.demo.index.studentDiplomaAndNameIndex.optimizationThreshold":	100000,

												"db.demo.index.testIdx.entryPointSize":	64,

												"db.demo.index.testIdx.items":	1,

												"db.demo.index.testIdx.maxUpdateBeforeSave":	5000,

												"db.demo.index.testIdx.optimizationThreshold":	100000,

												"db.demo.index.test_class_by_data.entryPointSize":	64,

												"db.demo.index.test_class_by_data.items":	0,

												"db.demo.index.test_class_by_data.maxUpdateBeforeSave":	5000,

												"db.demo.index.test_class_by_data.optimizationThreshold":	100000,

												"db.demo.index.twoclassproperty.entryPointSize":	64,

												"db.demo.index.twoclassproperty.items":	0,

												"db.demo.index.twoclassproperty.maxUpdateBeforeSave":	5000,

												"db.demo.index.twoclassproperty.optimizationThreshold":	100000,

												"db.demo.index.vertexA_name_idx.entryPointSize":	64,

												"db.demo.index.vertexA_name_idx.items":	2,

												"db.demo.index.vertexA_name_idx.maxUpdateBeforeSave":	5000,

												"db.demo.index.vertexA_name_idx.optimizationThreshold":	100000,

												"db.demo.index.vertexB_name_idx.entryPointSize":	64,

												"db.demo.index.vertexB_name_idx.items":	2,

												"db.demo.index.vertexB_name_idx.maxUpdateBeforeSave":	5000,

												"db.demo.index.vertexB_name_idx.optimizationThreshold":	100000,

												"db.subTest.cache.level1.current":	0,

												"db.subTest.cache.level1.enabled":	false,

												"db.subTest.cache.level1.max":	-1,

												"db.subTest.cache.level2.current":	0,

												"db.subTest.cache.level2.enabled":	false,

												"db.subTest.cache.level2.max":	-1,

												"db.subTest.data.holeSize":	0,

												"db.subTest.data.holes":	0,

												"db.subTest.index.dictionary.entryPointSize":	64,

												"db.subTest.index.dictionary.items":	0,

												"db.subTest.index.dictionary.maxUpdateBeforeSave":	5000,

												"db.subTest.index.dictionary.optimizationThreshold":	100000,

												"db.temp.cache.level1.current":	0,

												"db.temp.cache.level1.enabled":	false,

												"db.temp.cache.level1.max":	-1,

												"db.temp.cache.level2.current":	3,

												"db.temp.cache.level2.enabled":	true,

												"db.temp.cache.level2.max":	-1,

												"db.temp.index.dictionary.entryPointSize":	64,

												"db.temp.index.dictionary.items":	0,

												"db.temp.index.dictionary.maxUpdateBeforeSave":	5000,

												"db.temp.index.dictionary.optimizationThreshold":	100000,

												"process.network.channel.binary./0:0:0:0:0:0:0:1:451822480.flushes":	0,

												"process.network.channel.binary./0:0:0:0:0:0:0:1:451822480.receivedBytes":	513,

												"process.network.channel.binary./0:0:0:0:0:0:0:1:451822480.transmittedBytes":	0,

												"process.network.channel.binary./127.0.0.1:451282424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451282424.receivedBytes":	98,

												"process.network.channel.binary./127.0.0.1:451282424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451292424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451292424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451292424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451352424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451352424.receivedBytes":	79,

												"process.network.channel.binary./127.0.0.1:451352424.transmittedBytes":	134,

												"process.network.channel.binary./127.0.0.1:451362424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451362424.receivedBytes":	105,

												"process.network.channel.binary./127.0.0.1:451362424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451382424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451382424.receivedBytes":	79,

												"process.network.channel.binary./127.0.0.1:451382424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451392424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451392424.receivedBytes":	79,

												"process.network.channel.binary./127.0.0.1:451392424.transmittedBytes":	134,

												"process.network.channel.binary./127.0.0.1:451402424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451402424.receivedBytes":	105,

												"process.network.channel.binary./127.0.0.1:451402424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451422424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451422424.receivedBytes":	79,

												"process.network.channel.binary./127.0.0.1:451422424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451432424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451432424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451432424.transmittedBytes":	127,

Profiler

330



												"process.network.channel.binary./127.0.0.1:451442424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451442424.receivedBytes":	98,

												"process.network.channel.binary./127.0.0.1:451442424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451452424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451452424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451452424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451462424.flushes":	7,

												"process.network.channel.binary./127.0.0.1:451462424.receivedBytes":	194,

												"process.network.channel.binary./127.0.0.1:451462424.transmittedBytes":	2606,

												"process.network.channel.binary./127.0.0.1:451472424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451472424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451472424.transmittedBytes":	127,

												"process.network.channel.binary./127.0.0.1:451482424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451482424.receivedBytes":	98,

												"process.network.channel.binary./127.0.0.1:451482424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451492424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451492424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451492424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451502424.flushes":	7,

												"process.network.channel.binary./127.0.0.1:451502424.receivedBytes":	194,

												"process.network.channel.binary./127.0.0.1:451502424.transmittedBytes":	2606,

												"process.network.channel.binary./127.0.0.1:451512424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451512424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451512424.transmittedBytes":	127,

												"process.network.channel.binary./127.0.0.1:451522424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451522424.receivedBytes":	98,

												"process.network.channel.binary./127.0.0.1:451522424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451532424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451532424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451532424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451542424.flushes":	7,

												"process.network.channel.binary./127.0.0.1:451542424.receivedBytes":	194,

												"process.network.channel.binary./127.0.0.1:451542424.transmittedBytes":	2606,

												"process.network.channel.binary./127.0.0.1:451552424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451552424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451552424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451562424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451562424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451562424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451572424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451572424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451572424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451582424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451582424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451582424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451592424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451592424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451592424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451602424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451602424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451602424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451612424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451612424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451612424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451622424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451622424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451622424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451632424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451632424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451632424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451642424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451642424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451642424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451652424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451652424.receivedBytes":	98,

												"process.network.channel.binary./127.0.0.1:451652424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451672424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451672424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451672424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451682424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451682424.receivedBytes":	98,

												"process.network.channel.binary./127.0.0.1:451682424.transmittedBytes":	16,

												"process.network.channel.binary./127.0.0.1:451692424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451692424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451692424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451702424.flushes":	76545,

Profiler

331



												"process.network.channel.binary./127.0.0.1:451702424.receivedBytes":	4937639,

												"process.network.channel.binary./127.0.0.1:451702424.transmittedBytes":	53391585,

												"process.network.channel.binary./127.0.0.1:451712424.flushes":	3,

												"process.network.channel.binary./127.0.0.1:451712424.receivedBytes":	72,

												"process.network.channel.binary./127.0.0.1:451712424.transmittedBytes":	17,

												"process.network.channel.binary./127.0.0.1:451762424.flushes":	16176,

												"process.network.channel.binary./127.0.0.1:451762424.receivedBytes":	435578,

												"process.network.channel.binary./127.0.0.1:451762424.transmittedBytes":	7744941,

												"process.network.channel.binary./127.0.0.1:451772424.flushes":	16181,

												"process.network.channel.binary./127.0.0.1:451772424.receivedBytes":	446949,

												"process.network.channel.binary./127.0.0.1:451772424.transmittedBytes":	7932617,

												"process.network.channel.binary./127.0.0.1:451782424.flushes":	16103,

												"process.network.channel.binary./127.0.0.1:451782424.receivedBytes":	437708,

												"process.network.channel.binary./127.0.0.1:451782424.transmittedBytes":	7192022,

												"process.network.channel.binary./127.0.0.1:451792424.flushes":	15663,

												"process.network.channel.binary./127.0.0.1:451792424.receivedBytes":	422013,

												"process.network.channel.binary./127.0.0.1:451792424.transmittedBytes":	1128841,

												"process.network.channel.binary.flushes":	140851,

												"process.network.channel.binary.receivedBytes":	6687263,

												"process.network.channel.binary.transmittedBytes":	77419866,

												"process.runtime.availableMemory":	311502288,

												"process.runtime.maxMemory":	939524096,

												"process.runtime.totalMemory":	442368000,

												"server.connections.actives":	101,

												"system.config.cpus":	8,

												"system.disk.C.freeSpace":	50445692928,

												"system.disk.C.totalSpace":	127928365056,

												"system.disk.C.usableSpace":	50445692928,

												"system.disk.D.freeSpace":	0,

												"system.disk.D.totalSpace":	0,

												"system.disk.D.usableSpace":	0,

												"system.disk.G.freeSpace":	12820815872,

												"system.disk.G.totalSpace":	500103213056,

												"system.disk.G.usableSpace":	12820815872,

												"system.file.mmap.mappedPages":	177,

												"system.file.mmap.nonPooledBufferUsed":	0,

												"system.file.mmap.pooledBufferCreated":	0,

												"system.file.mmap.pooledBufferUsed":	0,

												"system.file.mmap.reusedPages":	31698774,

												"system.memory.alerts":	0,

												"system.memory.stream.resize":	21154

								},

								"chronos":	{

												"db.0$db.close":	{

																"entries":	4,

																"last":	16,

																"min":	0,

																"max":	16,

																"average":	4,

																"total":	16

												},

												"db.0$db.create":	{

																"entries":	1,

																"last":	13,

																"min":	13,

																"max":	13,

																"average":	13,

																"total":	13

												},

												"db.0$db.createRecord":	{

																"entries":	10,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	6

												},

												"db.0$db.data.createHole":	{

																"entries":	14,

																"last":	2,

																"min":	0,

																"max":	2,

																"average":	0,

																"total":	8

												},

												"db.0$db.data.findClosestHole":	{

Profiler

332



																"entries":	11,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.0$db.data.move":	{

																"entries":	6,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	3

												},

												"db.0$db.data.recycled.notFound":	{

																"entries":	7,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.0$db.data.recycled.partial":	{

																"entries":	11,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.0$db.data.updateHole":	{

																"entries":	21,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	2

												},

												"db.0$db.delete":	{

																"entries":	1,

																"last":	101,

																"min":	101,

																"max":	101,

																"average":	101,

																"total":	101

												},

												"db.0$db.metadata.load":	{

																"entries":	3,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.0$db.open":	{

																"entries":	3,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.0$db.readRecord":	{

																"entries":	15,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	5

												},

												"db.0$db.updateRecord":	{

																"entries":	18,

																"last":	2,

																"min":	0,

																"max":	2,

Profiler

333



																"average":	0,

																"total":	9

												},

												"db.1$db.close":	{

																"entries":	4,

																"last":	13,

																"min":	0,

																"max":	13,

																"average":	3,

																"total":	13

												},

												"db.1$db.create":	{

																"entries":	1,

																"last":	15,

																"min":	15,

																"max":	15,

																"average":	15,

																"total":	15

												},

												"db.1$db.createRecord":	{

																"entries":	10,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	5

												},

												"db.1$db.data.createHole":	{

																"entries":	14,

																"last":	3,

																"min":	0,

																"max":	3,

																"average":	0,

																"total":	8

												},

												"db.1$db.data.findClosestHole":	{

																"entries":	11,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.1$db.data.move":	{

																"entries":	6,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	3

												},

												"db.1$db.data.recycled.notFound":	{

																"entries":	7,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.1$db.data.recycled.partial":	{

																"entries":	11,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.1$db.data.updateHole":	{

																"entries":	21,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"db.1$db.delete":	{

Profiler

334



																"entries":	1,

																"last":	115,

																"min":	115,

																"max":	115,

																"average":	115,

																"total":	115

												},

												"db.1$db.metadata.load":	{

																"entries":	3,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.1$db.open":	{

																"entries":	3,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.1$db.readRecord":	{

																"entries":	15,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	4

												},

												"db.1$db.updateRecord":	{

																"entries":	18,

																"last":	3,

																"min":	0,

																"max":	3,

																"average":	0,

																"total":	7

												},

												"db.2$db.close":	{

																"entries":	4,

																"last":	15,

																"min":	0,

																"max":	15,

																"average":	3,

																"total":	15

												},

												"db.2$db.create":	{

																"entries":	1,

																"last":	17,

																"min":	17,

																"max":	17,

																"average":	17,

																"total":	17

												},

												"db.2$db.createRecord":	{

																"entries":	10,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	5

												},

												"db.2$db.data.createHole":	{

																"entries":	14,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	5

												},

												"db.2$db.data.findClosestHole":	{

																"entries":	11,

																"last":	0,

																"min":	0,

																"max":	0,

Profiler

335



																"average":	0,

																"total":	0

												},

												"db.2$db.data.move":	{

																"entries":	6,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"db.2$db.data.recycled.notFound":	{

																"entries":	7,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.2$db.data.recycled.partial":	{

																"entries":	11,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.2$db.data.updateHole":	{

																"entries":	21,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"db.2$db.delete":	{

																"entries":	1,

																"last":	61,

																"min":	61,

																"max":	61,

																"average":	61,

																"total":	61

												},

												"db.2$db.metadata.load":	{

																"entries":	3,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.2$db.open":	{

																"entries":	3,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.2$db.readRecord":	{

																"entries":	15,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"db.2$db.updateRecord":	{

																"entries":	18,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	5

												},

												"db.demo.close":	{

Profiler

336



																"entries":	1396,

																"last":	0,

																"min":	0,

																"max":	31,

																"average":	0,

																"total":	51

												},

												"db.demo.create":	{

																"entries":	3,

																"last":	19,

																"min":	19,

																"max":	40,

																"average":	27,

																"total":	81

												},

												"db.demo.createRecord":	{

																"entries":	35716,

																"last":	0,

																"min":	0,

																"max":	12,

																"average":	0,

																"total":	1187

												},

												"db.demo.data.createHole":	{

																"entries":	58886,

																"last":	0,

																"min":	0,

																"max":	23,

																"average":	0,

																"total":	9822

												},

												"db.demo.data.findClosestHole":	{

																"entries":	51022,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	181

												},

												"db.demo.data.move":	{

																"entries":	1327946,

																"last":	0,

																"min":	0,

																"max":	16,

																"average":	0,

																"total":	4091

												},

												"db.demo.data.recycled.complete":	{

																"entries":	24,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.demo.data.recycled.notFound":	{

																"entries":	16070,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	59

												},

												"db.demo.data.recycled.partial":	{

																"entries":	57638,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	102

												},

												"db.demo.data.updateHole":	{

																"entries":	108613,

																"last":	0,

																"min":	0,

																"max":	12,

Profiler

337



																"average":	0,

																"total":	451

												},

												"db.demo.delete":	{

																"entries":	2,

																"last":	61,

																"min":	61,

																"max":	124,

																"average":	92,

																"total":	185

												},

												"db.demo.deleteRecord":	{

																"entries":	12362,

																"last":	0,

																"min":	0,

																"max":	24,

																"average":	0,

																"total":	4626

												},

												"db.demo.metadata.load":	{

																"entries":	1423,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	49

												},

												"db.demo.open":	{

																"entries":	1423,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	6

												},

												"db.demo.readRecord":	{

																"entries":	476697,

																"last":	0,

																"min":	0,

																"max":	16,

																"average":	0,

																"total":	3071

												},

												"db.demo.synch":	{

																"entries":	484,

																"last":	2,

																"min":	0,

																"max":	34,

																"average":	2,

																"total":	1251

												},

												"db.demo.updateRecord":	{

																"entries":	180667,

																"last":	0,

																"min":	0,

																"max":	12,

																"average":	0,

																"total":	2343

												},

												"db.subTest.close":	{

																"entries":	10,

																"last":	0,

																"min":	0,

																"max":	16,

																"average":	3,

																"total":	31

												},

												"db.subTest.create":	{

																"entries":	2,

																"last":	44,

																"min":	18,

																"max":	44,

																"average":	31,

																"total":	62

												},

												"db.subTest.createRecord":	{

Profiler

338



																"entries":	20,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	11

												},

												"db.subTest.data.createHole":	{

																"entries":	28,

																"last":	2,

																"min":	0,

																"max":	2,

																"average":	0,

																"total":	12

												},

												"db.subTest.data.findClosestHole":	{

																"entries":	22,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"db.subTest.data.move":	{

																"entries":	12,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	4

												},

												"db.subTest.data.recycled.notFound":	{

																"entries":	14,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.subTest.data.recycled.partial":	{

																"entries":	22,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"db.subTest.data.updateHole":	{

																"entries":	42,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	2

												},

												"db.subTest.delete":	{

																"entries":	2,

																"last":	118,

																"min":	76,

																"max":	118,

																"average":	97,

																"total":	194

												},

												"db.subTest.metadata.load":	{

																"entries":	6,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"db.subTest.open":	{

																"entries":	6,

																"last":	0,

																"min":	0,

																"max":	0,

Profiler

339



																"average":	0,

																"total":	0

												},

												"db.subTest.readRecord":	{

																"entries":	30,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	3

												},

												"db.subTest.updateRecord":	{

																"entries":	36,

																"last":	2,

																"min":	0,

																"max":	2,

																"average":	0,

																"total":	16

												},

												"db.temp.createRecord":	{

																"entries":	10,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	2

												},

												"db.temp.readRecord":	{

																"entries":	7,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"db.temp.updateRecord":	{

																"entries":	21,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	2

												},

												"process.file.mmap.commitPages":	{

																"entries":	2034,

																"last":	1,

																"min":	0,

																"max":	21,

																"average":	0,

																"total":	1048

												},

												"process.mvrbtree.clear":	{

																"entries":	16007,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	141

												},

												"process.mvrbtree.commitChanges":	{

																"entries":	165235,

																"last":	0,

																"min":	0,

																"max":	55,

																"average":	0,

																"total":	5730

												},

												"process.mvrbtree.entry.fromStream":	{

																"entries":	5408,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	45

												},

												"process.mvrbtree.entry.toStream":	{

Profiler

340



																"entries":	60839,

																"last":	0,

																"min":	0,

																"max":	26,

																"average":	0,

																"total":	3013

												},

												"process.mvrbtree.fromStream":	{

																"entries":	7424,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	54

												},

												"process.mvrbtree.get":	{

																"entries":	97863,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	233

												},

												"process.mvrbtree.put":	{

																"entries":	151070,

																"last":	0,

																"min":	0,

																"max":	55,

																"average":	0,

																"total":	5002

												},

												"process.mvrbtree.putAll":	{

																"entries":	1847,

																"last":	0,

																"min":	0,

																"max":	8,

																"average":	0,

																"total":	84

												},

												"process.mvrbtree.remove":	{

																"entries":	41000,

																"last":	0,

																"min":	0,

																"max":	10,

																"average":	0,

																"total":	2226

												},

												"process.mvrbtree.toStream":	{

																"entries":	124870,

																"last":	0,

																"min":	0,

																"max":	6,

																"average":	0,

																"total":	543

												},

												"process.mvrbtree.unload":	{

																"entries":	7424,

																"last":	0,

																"min":	0,

																"max":	10,

																"average":	0,

																"total":	519

												},

												"process.serializer.record.string.binary2string":	{

																"entries":	1867,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	18

												},

												"process.serializer.record.string.bool2string":	{

																"entries":	43,

																"last":	0,

																"min":	0,

																"max":	0,

Profiler

341



																"average":	0,

																"total":	0

												},

												"process.serializer.record.string.byte2string":	{

																"entries":	1143,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"process.serializer.record.string.date2string":	{

																"entries":	114176,

																"last":	0,

																"min":	0,

																"max":	6,

																"average":	0,

																"total":	464

												},

												"process.serializer.record.string.datetime2string":	{

																"entries":	2,

																"last":	0,

																"min":	0,

																"max":	0,

																"average":	0,

																"total":	0

												},

												"process.serializer.record.string.decimal2string":	{

																"entries":	2,

																"last":	1,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"process.serializer.record.string.double2string":	{

																"entries":	30237,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	104

												},

												"process.serializer.record.string.embed2string":	{

																"entries":	122581,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	117

												},

												"process.serializer.record.string.embedList2string":	{

																"entries":	29922,

																"last":	0,

																"min":	0,

																"max":	2,

																"average":	0,

																"total":	87

												},

												"process.serializer.record.string.embedMap2string":	{

																"entries":	3160,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	25

												},

												"process.serializer.record.string.embedSet2string":	{

																"entries":	32280,

																"last":	1,

																"min":	0,

																"max":	8,

																"average":	0,

																"total":	1430

												},

												"process.serializer.record.string.float2string":	{

Profiler

342



																"entries":	20640,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	63

												},

												"process.serializer.record.string.fromStream":	{

																"entries":	1735665,

																"last":	0,

																"min":	0,

																"max":	82,

																"average":	0,

																"total":	7174

												},

												"process.serializer.record.string.int2string":	{

																"entries":	246700,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	101

												},

												"process.serializer.record.string.link2string":	{

																"entries":	18664,

																"last":	0,

																"min":	0,

																"max":	6,

																"average":	0,

																"total":	62

												},

												"process.serializer.record.string.linkList2string":	{

																"entries":	2648,

																"last":	0,

																"min":	0,

																"max":	2,

																"average":	0,

																"total":	52

												},

												"process.serializer.record.string.linkMap2string":	{

																"entries":	28,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	1

												},

												"process.serializer.record.string.linkSet2string":	{

																"entries":	1269,

																"last":	0,

																"min":	0,

																"max":	33,

																"average":	0,

																"total":	80

												},

												"process.serializer.record.string.long2string":	{

																"entries":	1620,

																"last":	0,

																"min":	0,

																"max":	1,

																"average":	0,

																"total":	6

												},

												"process.serializer.record.string.string2string":	{

																"entries":	358585,

																"last":	0,

																"min":	0,

																"max":	3,

																"average":	0,

																"total":	183

												},

												"process.serializer.record.string.toStream":	{

																"entries":	183912,

																"last":	0,

																"min":	0,

																"max":	34,

Profiler

343



																"average":	0,

																"total":	3149

												},

												"server.http.0:0:0:0:0:0:0:1.request":	{

																"entries":	2,

																"last":	2,

																"min":	2,

																"max":	19,

																"average":	10,

																"total":	21

												}

								},

								"statistics":	{},

								"counters":	{

												"db.0$db.cache.level2.cache.found":	7,

												"db.0$db.cache.level2.cache.notFound":	8,

												"db.0$db.data.update.notReused":	11,

												"db.0$db.data.update.reusedAll":	7,

												"db.1$db.cache.level2.cache.found":	7,

												"db.1$db.cache.level2.cache.notFound":	8,

												"db.1$db.data.update.notReused":	11,

												"db.1$db.data.update.reusedAll":	7,

												"db.2$db.cache.level2.cache.found":	7,

												"db.2$db.cache.level2.cache.notFound":	8,

												"db.2$db.data.update.notReused":	11,

												"db.2$db.data.update.reusedAll":	7,

												"db.demo.cache.level2.cache.found":	364467,

												"db.demo.cache.level2.cache.notFound":	393509,

												"db.demo.data.update.notReused":	38426,

												"db.demo.data.update.reusedAll":	140921,

												"db.demo.data.update.reusedPartial":	100,

												"db.demo.query.compositeIndexUsed":	46,

												"db.demo.query.compositeIndexUsed.2":	42,

												"db.demo.query.compositeIndexUsed.2.1":	20,

												"db.demo.query.compositeIndexUsed.2.2":	18,

												"db.demo.query.compositeIndexUsed.3":	4,

												"db.demo.query.compositeIndexUsed.3.1":	1,

												"db.demo.query.compositeIndexUsed.3.2":	1,

												"db.demo.query.compositeIndexUsed.3.3":	2,

												"db.demo.query.indexUsed":	2784,

												"db.subTest.cache.level2.cache.found":	14,

												"db.subTest.cache.level2.cache.notFound":	16,

												"db.subTest.data.update.notReused":	22,

												"db.subTest.data.update.reusedAll":	14,

												"db.temp.cache.level2.cache.found":	5,

												"db.temp.cache.level2.cache.notFound":	4,

												"process.file.mmap.pagesCommitted":	2034,

												"process.mvrbtree.entry.serializeKey":	4617509,

												"process.mvrbtree.entry.serializeValue":	68620,

												"process.mvrbtree.entry.unserializeKey":	6127,

												"process.mvrbtree.entry.unserializeValue":	225,

												"process.serializer.record.string.linkList2string.cached":	19,

												"server.http.0:0:0:0:0:0:0:1.requests":	3,

												"server.http.0:0:0:0:0:0:0:1.timeout":	1

								}

				}

}

Profiler

344



Distributed	Configuration	Tuning
When	you	run	distributed	on	multiple	servers,	you	could	face	on	a	drop	of	performance	you	got	with	single	node.	While	it's	normal	that
replication	has	a	cost,	there	are	many	ways	to	improve	performance	on	distributed	configuration:

Use	transactions
Replication	vs	Sharding
Scale	up	on	writes
Scale	up	on	reads
Replication	vs	Sharding

Generic	advice

Load	Balancing

Active	load	balancing	to	distribute	the	load	across	multiple	nodes.

Use	transactions

Even	though	when	you	update	graphs	you	should	always	work	in	transactions,	OrientDB	allows	also	to	work	outside	of	them.
Common	cases	are	read-only	queries	or	massive	and	non	concurrent	operations	can	be	restored	in	case	of	failure.	When	you	run	on
distributed	configuration,	using	transactions	helps	to	reduce	latency.	This	is	because	the	distributed	operation	happens	only	at	commit
time.	Distributing	one	big	operation	is	much	efficient	than	transfering	small	multiple	operations,	because	the	latency.

Replication	vs	Sharding

OrientDB	distributed	configuration	is	set	to	full	replication.	Having	multiple	nodes	with	the	very	same	copy	of	database	is	important
for	HA	and	scale	reads.	In	facts,	each	server	is	independent	on	executing	reads	and	queries.	If	you	have	10	server	nodes,	the	read
throughput	is	10x.

With	writes	it's	the	opposite:	having	multiple	nodes	with	full	replication	slows	down	operations	if	the	replication	is	synchronous.	In
this	case	Sharding	the	database	across	multiple	nodes	allows	you	to	scale	up	writes,	because	only	a	subset	of	nodes	are	involved	on
write.	Furthermore	you	could	have	a	database	bigger	than	one	server	node	HD.

Scale	up	on	writes

If	you	have	a	slow	network	and	you	have	a	synchronous	(default)	replication,	you	could	pay	the	cost	of	latency.	In	facts	when
OrientDB	runs	synchronously,	it	waits	at	least	for	the		writeQuorum	.	This	means	that	if	the		writeQuorum		is	3,	and	you	have	5	nodes,
the	coordinator	server	node	(where	the	distributed	operation	is	started)	has	to	wait	for	the	answer	from	at	least	3	nodes	in	order	to
provide	the	answer	to	the	client.

In	order	to	maintain	the	consistency,	the		writeQuorum		should	be	set	to	the	majority.	If	you	have	5	nodes	the	majority	is	3.	With	4
nodes	is	still	3.	Setting	the		writeQuorum		to	3	instead	of	4	or	5	allows	to	reduce	the	latency	cost	and	still	maintain	the	consistency.

Asynchronous	replication

To	speed	up	things,	you	can	setup	Asynchronous	Replication	to	remove	the	latency	bottleneck.	In	this	case	the	coordinator	server	node
execute	the	operation	locally	and	gives	the	answer	to	the	client.	The	entire	replication	will	be	in	background.	In	case	the	quorum	is	not
reached,	the	changes	will	be	rollbacked	transparently.

Scale	up	on	reads

If	you	already	set	the		writeQuorum		to	the	majority	to	the	nodes,	you	can	leave	the		readQuorum		to	1	(the	default).	This	speeds	up	all
the	reads.

Distributed	tuning

345



Distributed	tuning

346



Security
OrientDB	is	the	NoSQL	implementation	with	the	greatest	focus	on	security.

To	connect	to	an	existing	database,	you	need	a	user	and	password.	Users	and	roles	are	defined	inside	the	database.	For	more
information	on	this	process,	see	Database	Security.

In	the	event	that	you're	connecting	to	the	OrientDB	Server	that	is	hosting	the	database,	you	can	access	the	database	using	the
server's	user.	For	more	information	on	this	process,	see	Sever	Security.

Additionally,	you	can	encrypt	the	database	contents	on	disk.	For	more	information	on	this	process,	see	Database	Encryption.

While	OrientDB	Server	can	function	as	a	regular	Web	Server,	it	is	not	recommended	that	you	expose	it	directly	to
either	the	Internet	or	public	networks.	Instead,	always	hide	OrientDB	server	in	private	networks.

See	also:

Database	security
Server	security
Database	Encryption
Secure	SSL	connections
OrientDB	Web	Server

Security

347



Database	Security
OrientDB	uses	a	security	model	based	on	well-known	concepts	of	users	and	roles.	That	is,	a	database	has	its	own	users.	Each	User	has
one	or	more	roles.	Roles	are	a	combination	of	the	working	mode	and	a	set	of	permissions.

For	more	information	on	security,	see:

Server	security
Database	Encryption
Secure	SSL	connections
Record	Level	Security

Users

A	user	is	an	actor	on	the	database.	When	you	open	a	database,	you	need	to	specify	the	user	name	and	the	password	to	use.	Each	user
has	its	own	credentials	and	permissions.

By	convention,	each	time	you	create	a	new	database	OrientDB	creates	three	default	users.	The	passwords	for	these	users	are	the	same
as	the	usernames.	That	is,	by	default	the		admin		user	has	a	password	of		admin	.

	admin		This	user	has	access	to	all	functions	on	the	database	without	limitation.
	reader		This	user	is	a	read-only	user.	The		reader		can	query	any	records	in	the	database,	but	can't	modify	or	delete	them.	It	has
no	access	to	internal	information,	such	as	the	users	and	roles	themselves.
	writer		This	user	is	the	same	as	the	user		reader	,	but	it	can	also	create,	update	and	delete	records.

The	users	themselves	are	records	stored	inside	the	cluster		ouser	.	OrientDB	stores	passwords	in	hash.	From	version	2.2	on,	OrientDB
uses	the	PBKDF2	algorithm.	Prior	releases	relied	on	SHA-256.	For	more	information	on	passwords,	see	Password	Management.

OrientDB	stores	the	user	status	in	the	field		status	.	It	can	either	be		SUSPENDED		or		ACTIVE	.	Only		ACTIVE		users	can	log	in.

Database	security

348

https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/SHA-2


Working	with	Users

When	you	are	connected	to	a	database,	you	can	query	the	current	users	on	the	database	by	using		SELECT		queries	on	the		OUser		class.

orientdb>	SELECT	RID,	name,	status	FROM	OUser

---+--------+--------+--------

#		|	@CLASS	|	name			|	status

---+--------+--------+--------

0		|	null			|	admin		|	ACTIVE

1		|	null			|	reader	|	ACTIVE

2		|	null			|	writer	|	ACTIVE

---+--------+--------+--------

3	item(s)	found.	Query	executed	in	0.005	sec(s).

Creating	a	New	User

To	create	a	new	user,	use	the		INSERT		command.	Remember	in	doing	so,	that	you	must	set	the	status	to		ACTIVE		and	give	it	a	valid	role.

orientdb>	INSERT	INTO	OUser	SET	name	=	'jay',	password	=	'JaY',	status	=	'ACTIVE',

										roles	=	(SELECT	FROM	ORole	WHERE	name	=	'reader')

Updating	Users

You	can	change	the	name	for	the	user	with	the		UPDATE		statement:

orientdb>	UPDATE	OUser	SET	name	=	'jay'	WHERE	name	=	'reader'

In	the	same	way,	you	can	also	change	the	password	for	the	user:

orientdb>	UPDATE	OUser	SET	password	=	'hello'	WHERE	name	=	'reader'

OrientDB	saves	the	password	in	a	hash	format.	The	trigger		OUserTrigger		encrypts	the	password	transparently	before	it	saves	the
record.

Disabling	Users

To	disable	a	user,	use		UPDATE		to	switch	its	status	from		ACTIVE		to		SUSPENDED	.	For	instance,	if	you	wanted	to	disable	all	users	except
for		admin	:

orientdb>	UPDATE	OUser	SET	status	=	'SUSPENDED'	WHERE	name	<>	'admin'

NOTE:	In	the	event	that,	due	to	accident	or	database	corruption,	you	lose	the	user		admin		and	need	to	restore	it	on	the	database,
see	Restoring	the	admin	User`.

Roles

A	role	determines	what	operations	a	user	can	perform	against	a	resource.	Mainly,	this	decision	depends	on	the	working	mode	and	the
rules.	The	rules	themselves	work	differently,	depending	on	the	working	mode.

Working	with	Roles

When	you	are	connected	to	a	database,	you	can	query	the	current	roles	on	the	database	using		SELECT		queries	on	the		ORole		class.

Database	security

349



orientdb>	SELECT	RID,	mode,	name,	rules	FROM	ORole

--+------+----+--------+----------------------------------------------------------

#	|@CLASS|mode|	name			|	rules

--+------+----+--------+----------------------------------------------------------

0	|	null	|	1		|	admin		|	{database.bypassRestricted=15}

1	|	null	|	0		|	reader	|	{database.cluster.internal=2,	database.cluster.orole=0...

2	|	null	|	0		|	writer	|	{database.cluster.internal=2,	database.cluster.orole=0...

--+------+----+--------+----------------------------------------------------------

3	item(s)	found.		Query	executed	in	0.002	sec(s).

Creating	New	Roles

To	create	a	new	role,	use	the		INSERT		statement.

orientdb>	INSERT	INTO	ORole	SET	name	=	'developer',	mode	=	0

Role	Inheritance

Roles	can	inherit	permissions	from	other	roles	in	an	object-oriented	fashion.	To	let	a	role	extend	another,	add	the	parent	role	in	the
	inheritedRole		attribute.	For	instance,	say	you	want	users	with	the	role		appuser		to	inherit	settings	from	the	role		writer	.

orientdb>	UPDATE	ORole	SET	inheritedRole	=	(SELECT	FROM	ORole	WHERE	name	=	'writer')

										WHERE	name	=	'appuser'

Working	with	Modes

Where	rules	determine	what	users	belonging	to	certain	roles	can	do	on	the	databases,	working	modes	determine	how	OrientDB	interprets
these	rules.	There	are	two	types	of	working	modes,	designating	by		1		and		0	.

Allow	All	But	(Rules)	By	default	is	the	super	user	mode.	Specify	exceptions	to	this	using	the	rules.	If	OrientDB	finds	no	rules	for
a	requested	resource,	then	it	allows	the	user	to	execute	the	operation.	Use	this	mode	mainly	for	power	users	and	administrators.
The	default	role		admin		uses	this	mode	by	default	and	has	no	exception	rules.	It	is	written	as		1		in	the	database.

Deny	All	But	(Rules)	By	default	this	mode	allows	nothing.	Specify	exceptions	to	this	using	the	rules.	If	OrientDB	finds	rules	for
a	requested	resource,	then	it	allows	the	user	to	execute	the	operation.	Use	this	mode	as	the	default	for	all	classic	users.	The	default
roles		reader		and		writer		use	this	mode.	It	is	written	as		0		in	the	database.

Operations

The	supported	operations	are	the	classic	CRUD	operations.	That	is,	Create,	Read,	Update,	Delete.	Roles	can	have	none	of	these
permissions	or	all	of	them.	OrientDB	represents	each	permission	internally	by	a	4-digit	bitmask	flask.

NONE:			#0000	-	0

CREATE:	#0001	-	1

READ:			#0010	-	2

UPDATE:	#0100	-	4

DELETE:	#1000	-	8

ALL:				#1111	-	15

In	addition	to	these	base	permissions,	you	can	also	combine	them	to	create	new	permissions.	For	instance,	say	you	want	to	allow	only
the	Read	and	Update	permissions:

READ:															#0010	-	1

UPDATE:													#0100	-	4

Permission	to	use:		#0110	-	5

Database	security

350



Resources

Resources	are	strings	bound	to	OrientDB	concepts.

NOTE:	Resource	entries	are	case-sensitive.

	database	,	checked	on	accessing	to	the	database
	database.class.<class-name>	,	checked	on	accessing	on	specific	class
	database.cluster.<cluster-name>	,	checked	on	accessing	on	specific	cluster
	database.query	,	checked	on	query	execution
	database.command	,	checked	on	command	execution
	database.schema	,	checked	to	access	to	the	schema
	database.function	,	checked	on	function	execution
	database.config	,	checked	on	accessing	at	database	configuration
	database.hook.record	

	server.admin	,	checked	on	accessing	to	remote	server	administration

For	instance,	say	you	have	a	role		motorcyclist		that	you	want	to	have	access	to	all	classes	except	for	the	class		Car	.

orientdb>	UPDATE	ORole	PUT	rules	=	"database.class.*",	15	WHERE	name	=	"motorcyclist"

orientdb>	UPDATE	ORole	PUT	rules	=	"database.class.Car",	0	WHERE	name	=	"motorcyclist"

Granting	and	Revoking	Permissions

To	grant	and	revoke	permissions	from	a	role,	use	the	GRANT	and	REVOKE	commands.

orientdb>	GRANT	UPDATE	ON	database.cluster.Car	TO	motorcyclist

Record-level	Security
The	sections	above	manage	security	in	a	vertical	fashion	at	the	schema-level,	but	in	OrientDB	you	can	also	manage	security	in	a
horizontal	fashion,	that	is:	per	record.	This	allows	you	to	completely	separate	database	records	as	sandboxes,	where	only	authorized
users	can	access	restricted	records.

To	active	record-level	security,	create	classes	that	extend	the		ORestricted		super	class.	In	the	event	that	you	are	working	with	a	Graph
Database,	set	the		V		and		E		classes	(that	is,	the	vertex	and	edge	classes)	themselves	to	extend		ORestricted	.

orientdb>	ALTER	CLASS	V	SUPERCLASS	ORestricted

orientdb>	ALTER	CLASS	E	SUPERCLASS	ORestricted

This	causes	all	vertices	and	edges	to	inherit	the	record-level	security.	Beginning	with	version	2.1,	OrientDB	allows	you	to	use	multiple
inheritances,	to	cause	only	certain	vertex	or	edge	calsses	to	be	restricted.

orientdb>	CREATE	CLASS	Order	EXTENDS	V,	ORestricted

Whenever	a	class	extends	the	class		ORestricted	,	OrientDB	uses	special	fields	to	type-set		_<OIdentifiable>		to	store	authorization	on
each	record.

	_allow		Contains	the	users	that	have	full	access	to	the	record,	(that	is,	all	CRUD	operations).
	_allowRead		Contains	the	users	that	can	read	the	record.
	_allowUpdate		Contains	the	users	that	can	update	the	record.
	_allowDelete		Contains	the	users	that	can	delete	the	record.

To	allow	full	control	over	a	record	to	a	user,	add	the	user's	RID	to	the		_allow		set.	To	provide	only	read	permissions,	use		_allowRead	.
In	the	example	below,	you	allow	the	user	with	the	RID		#5:10		to	read	record		#43:22	:

Database	security

351



orientdb>	UPDATE	#43:22	ADD	_allowRead	#5:10

If	you	want	to	remove	read	permissions,	use	the	following	command:

orientdb>	UPDATE	#43:22	REMOVE	_allowRead	#5:10

Run-time	Checks

OrientDB	checks	record-level	security	using	a	hook	that	injects	the	check	before	each	CRUD	operation:

Create	Documents:	Sets	the	current	database's	user	in	the		_allow		field.	To	change	this	behavior,	see	Customize	on	Creation.
Read	Documents:	Checks	if	the	current	user,	or	its	roles,	are	listed	in	the		_allow		or		_allowRead		fields.	If	not,	OrientDB	skips
the	record.	This	allows	each	query	to	work	per	user.
Update	Documents:	Checks	if	the	current	user,	or	its	roles,	are	listed	in	the		_allow		or		_allowUpdate		field.	If	not,	OrientDB
raises	an		OSecurityException		exception.
Delete	Documents:	Checks	if	the	current	user,	or	its	roles,	are	listed	in	the		_allow		or		_allowDelete		field.	If	not,	OrientDB
raises	an		OSecurityException		exception.

The	allow	fields,	(that	is,		_allow	,		_allowRead	,		_allowUpdate	,	and		_allowDelete	)	can	contain	instances	of		OUser		and		ORole	
records,	as	both	classes	extend		OIdentity	.	Use	the	class		OUser		to	allow	single	users	and	use	the	class		ORole		to	allow	all	users	that
are	a	part	of	that	role.

Using	the	API

In	addition	to	managing	record-level	security	features	through	the	OrientDB	console,	you	can	also	configure	it	through	the	Graph	and
Document	API's.

Graph	API

OrientVertex	v	=	graph.addVertex("class:Invoice");

v.setProperty("amount",	1234567);

graph.getRawGraph().getMetadata().getSecurity().allowUser(

						v.getRecord(),	ORestrictedOperation.ALLOW_READ,	"report");

v.save();

Document	API

ODocument	invoice	=	new	ODocument("Invoice").field("amount",	1234567);

database.getMetadata().getSecurity().allowUser(

						invoice,	ORestrictedOperation.ALLOW_READ,	"report");

invoice.save();

Customize	on	Creation

By	default,	whenever	you	create	a	restricted	record,	(that	is,	create	a	class	that	extends	the	class		ORestricted	),	OrientDB	inserts	the
current	user	into	the		_allow		field.	You	can	change	this	using	custom	properties	in	the	class	schema:

	onCreate.fields		Specifies	the	names	of	the	fields	it	sets.	By	default,	these	are		_allow	,	but	you	can	also	specify		_allowRead	,
	_allowUpdate	,		_allowDelete		or	a	combination	of	them	as	an	alternative.	Use	commas	to	separate	multiple	fields.
	onCreate.identityType		Specifies	whether	to	insert	the	user's	object	or	its	role	(the	first	one).	By	default,	it	is	set	to		user	,	but
you	can	also	set	it	to	use	its		role	.

For	instance,	say	you	wanted	to	prevent	a	user	from	deleting	new	posts:

orientdb>	ALTER	CLASS	Post	CUSTOM	onCreate.fields=_allowRead,_allowUpdate

Consider	another	example,	where	you	want	to	assign	a	role	instead	of	a	user	to	new	instances	of		Post	.

Database	security

352



orientdb>	ALTER	CLASS	Post	CUSTOM	onCreate.identityType=role

Bypassing	Security	Constraints

On	occasion,	you	may	need	a	role	that	can	bypass	restrictions,	such	as	for	backup	or	administrative	operations.	You	can	manage	this
through	the	special	permission		database.bypassRestricted	,	by	changing	its	value	to		READ	.	By	default,	the	role		admin		has	this
permission.

For	security	reasons,	this	permission	is	not	inheritable.	In	the	event	that	you	need	to	assign	it	to	other	roles	in	your	database,	you	need
to	set	it	on	each	role.

Using	Security

Now	that	you	have	some	familiarity	with	how	security	works	in	OrientDB,	consider	the	use	case	of	OrientDB	serving	as	the	database
for	a	blog-like	application.	The	blog	is	accessible	through	the	web	and	you	need	to	implement	various	security	features	to	ensure	that	it
works	properly	and	does	not	grant	its	users	access	to	restricted	content.

To	begin,	the	administrator	connects	to	the	database	and	creates	the	document	class		Post	,	which	extends		ORestricted	.	This	ensures
that	users	can	only	see	their	own	entries	in	the	blog	and	entries	that	are	shared	with	them.

orientdb>	CONNECT	REMOTE:localhost/blog	admin	admin

orientdb>	CREATE	CLASS	Post	EXTENDS	ORestricted

Class	'Post'	created	successfully.

The	user	Luke	is	registered	in		OUser		as		luke	,	with	an		RID		of		#5:5	.	He	logs	into	the	database	and	creates	a	new	blog,	which	is	an
instance	of	the	class		Post	.

orientdb>	CONNECT	REMOTE:localhost/blog	luke	lukepassword

orientdb>	INSERT	INTO	Post	SET	title	=	"Yesterday	in	Italy"

Created	document	#18:0

orientdb>	SELECT	FROM	Post

-------+--------+--------------------

	RID			|	_allow	|	title	

-------+--------+--------------------

	#18:0	|	[#5:5]	|	Yesterday	in	Italy

-------+--------+--------------------

Independent	of	the	users		admin		and		luke	,	there	is	the	user	Steve.	Steve	is	registers	with		OUser		as		steve	,	he	has	an	RID	of		#5:6	.
Steve	logs	into	OrientDB	and	also	creates	a	new	entry	on	the	class		Post	:

Database	security

353



orientdb>	CONNECT	REMOTE:localhost/blog	steve	steve

orientdb>	INSERT	INTO	Post	SET	title	=	"My	Nutella	Cake!"

Created	document	#18:1

orientdb>	SELECT	FROM	Post

-------+--------+------------------

	RID			|	_allow	|	title

-------+--------+------------------

	#18:1	|	[#5:6]	|	My	Nutella	Cake!

-------+--------+------------------

As	you	can	see,	the	users	Steve	and	Luke	can	only	see	the	records	that	they	have	access	to.	Now,	after	some	editorial	work,	Luke	is
satisfied	with	the	state	of	his	blog	entry		Yesterday	in	Italy	.	He	is	now	ready	to	share	it	with	others.	From	the	database	console,	he
can	do	so	by	adding	the	user	Steve's	RID	to	the		_allow		field.

orientdb>	UPDATE	#18:0	ADD	_allow	=	#5:6

Now,	when	Steve	logs	in,	the	same	query	from	before	gives	him	different	results,	since	he	can	now	see	the	content	Luke	shared	with	him.

orientdb>	SELECT	FROM	Post

-------+--------+---------------------

	RID			|	_allow	|	title		

-------+--------+---------------------

	#18:0	|	[#5:5]	|	Yesterday	in	Italy

	#18:1	|	[#5:6]	|	My	Nutella	Cake!

-------+--------+---------------------

While	this	is	an	effective	solution,	it	does	have	one	minor	flaw	for	Luke.	By	adding	Steve	to	the		_allow		list,	Steve	can	not	only	read
posts	Luke	makes,	but	he	can	also	modify	them.	While	Luke	may	find	Steve	a	reasonable	person,	he	begins	to	have	second	thoughts
about	this	blanket	permission	and	decides	to	remove	Steve	from	the		_allow		field	and	instead	add	him	to	the		_allowRead		field:

orientdb>	UPDATE	#18:0	REMOVE	_allow	=	5:6

orientdb>	UPDATE	#18:0	ADD	_allowRead	=	#5:6

For	the	sake	of	argument,	assume	that	Luke's	misgivings	about	Steve	have	some	foundation.	Steve	decides	that	he	does	not	like	Luke's
entry		Yesterday	in	Italy		and	would	like	to	remove	it	from	the	database.	He	logs	into	OrientDB,	runs		SELECT		to	find	its	RID,	and
attempts	to		DELETE		the	record:

orientdb>	SELECT	FROM	Post

-------+--------+---------------------

	RID			|	_allow	|	title

-------+--------+---------------------

	#18:0	|	[#5:5]	|	Yesterday	in	Italy

	#18:1	|	[#5:6]	|	My	Nutella	Cake!

-------+--------+---------------------

orientdb>	DELETE	FROM	#18:0

!Error:	Cannot	delete	record	#18:0	because	the	access	to	the	resource	is	restricted.

Database	security

354



As	you	can	see,	OrientDB	blocks	the		DELETE		operation,	given	that	the	current	user,	Steve,	does	not	have	permission	to	do	so	on	this
resource.

Password	Management

OrientDB	stores	user	passwords	in	the		OUser		records	using	the	PBKDF2	HASH	algorithm	with	a	24-bit	length	Salt	per	user	for	a
configurable	number	of	iterations.	By	default,	this	number	is	65,536	iterations.	You	can	change	this	account	through	the
	security.userPasswordSaltIterations		global	configuration.	Note	that	while	a	higher	iteration	count	can	slow	down	attacks,	it	also
slows	down	the	authentication	process	on	legitimate	OrientDB	use.

In	order	to	speed	up	password	hashing,	OrientDB	uses	a	password	cache,	which	it	implements	as	an	LRU	with	a	maximum	of	five
hundred	entries.	You	can	change	this	setting	through	the		security.userPasswordSaltCacheSize		global	configuration.	Giving	this	global
configuration	the	value	of		0		disables	the	cache.

NOTE:	In	the	event	that	attackers	gain	access	to	the	Java	virtual	machine	memory	dump,	he	could	access	this	map,	which	would
give	them	access	to	all	passwords.	You	can	protect	your	database	from	this	attack	by	disabling	the	in	memory	password	cache.

Database	security

355

https://en.wikipedia.org/wiki/PBKDF2


Server	Security
Individual	OrientDB	servers	can	manage	multiple	databases	at	a	time	and	each	database	can	have	its	own	set	of	users.	When	using
OrientDB	through	the	HTTP	protocol,	the	OrientDB	server	uses	one	realm	per	database.

While	OrientDB	can	function	as	a	regular	Web	Server,	it	is	not	recommended	that	you	expose	it	directly	to	the
internet	or	to	public	networks.	Instead,	always	hide	the	OrientDB	server	within	a	private	network.

Server	users	are	stored	in	the		config/orientdb-server-config.xml		configuration	file,	in	the		<users>		element.

				<users>

								<user	name="root"	password="{SHA-256}55F95B91628EF3E679628ACB23AE"	resources="*"	/>

								<user	name="guest"	password="guest"	resources="connect,server.listDatabases,server.dblist"	/>

				</users>

When	the	OrientDB	server	starts	for	the	first	time,	it	creates	the	user		root		automatically,	by	asking	you	to	give	the	password	in	the
terminal.	In	the	event	that	you	do	not	specify	a	password,	OrientDB	generates	a	random	password.	Beginning	with	version	2.2,
OrientDB	hashes	the	passwords	using	SHA-256	algorithm.

For	more	information	on	security	in	Orientdb,	see:

Database	security
Database	Encryption
Secure	SSL	connections

Configuration

While	the	default	users	and	passwords	are	fine	while	you	are	setting	your	system	up,	it	would	be	inadvisable	to	leave	them	in
production.	To	help	restrict	untrusted	users	from	accessing	the	OrientDB	server,	add	a	new	user	and	change	the	passwords	in	the
	config/orientdb-server-config.xml		server	configuration	file.

To	restrict	unauthorized	users	from	giving	themselves	privileges	on	the	OrientDB	server,	disable	write-access	to	the	configuration	file.
To	help	prevent	them	from	viewing	passwords,	disable	read-access	as	well.	Note	that	even	if	the	passwords	are	hashed,	there	are	many
techniques	available	to	crack	the	hash	or	otherwise	guess	the	real	password.

It	is	strongly	recommended	that	you	allow	read/write	access	to	the	entire		config		directory	only	to	the
user	that	starts	the	OrientDB	server.

Managing	Users

Beginning	with	version	2.2,	the	OrientDB	console	provides	a	series	of	commands	for	managing	users:

	LIST	SERVER	USERS	:	Displays	all	users.
	SET	SERVER	USER	:	Creates	or	modifies	a	user.
	DROP	SERVER	USER	:	Drops	a	user.

Server	Resources

Server	security

356

https://en.wikipedia.org/wiki/SHA-2


Each	user	can	declare	which	resources	have	access.	The	wildcard		*		grants	access	to	any	resource.	By	default,	the	user		root		has	all
privileges,	so	it	can	access	all	the	managed	databases.

Resources Description

	server.info	 Retrieves	server	information	and	statistics.

	server.listDatabases	 Lists	available	databases	on	the	server.

	database.create	 Creates	a	new	database	in	the	server

	database.drop	 Drops	a	database

	database.passthrough	 Allows	access	to	all	managed	databases.

For	example,

<user	name="replicator"	password="repl"	resources="database.passthrough"/>

Securing	Connections	with	SSL
Beginning	with	version	1.7,	you	can	further	improve	security	on	your	OrientDB	server	by	securing	connections	with	SSL.	For	more
information	on	implementing	this,	see	Using	SSL.

Restoring	the	User	admin
In	the	event	that	something	happens	and	you	drop	the	class		OUser		or	the	user		admin	,	you	can	use	the	following	procedure	to	restore
the	user	to	your	database.

1.	 Ensure	that	the	database	is	in	the	OrientDB	server	database	directory,		$ORIENTDB_HOME/database/	folder	.

2.	 Launch	the	console	or	studio	and	log	into	the	database	with	the	user		root	.

$		$ORIENTDB_HOME/bin/console.sh

OrientDB	console	v.X.X.X	(build	0)	www.orientdb.com

Type	'HELP'	to	display	all	the	commands	supported.

Installing	extensions	for	GREMLIN	language	v.X.X.X

orientdb>	CONNECT	remote:localhost/my_database	root	rootpassword

3.	 Check	that	the	class		OUser		exists:

orientdb>	SELECT	FROM	OUser	WHERE	name	=	'admin'

In	the	event	that	this	command	fails	because	the	class		OUser		doesn't	exist,	create	it:

orientdb>	CREATE	CLASS	OUser	EXTENDS	OIdentity

In	the	event	that	this	command	fails	because	the	class	`OIdentity	doesn't	exist,	create	it	first:

orinetdb>	CREATE	CLASS	OIdentity

Then	repeat	the	above	command,	creating	the	class		OUser	

4.	 Check	that	the	class		ORole		exists.

Server	security

357



orientdb>	SELECT	FROM	ORole	WHERE	name	=	'admin'

In	the	event	that	the	class		ORole		doesn't	exist,	create	it:

orientdb>	CREATE	CLASS	ORole	EXTENDS	OIdentity

5.	 In	the	event	that	the	user	or	role		admin		doesn't	exist,	run	the	following	commands:

In	the	event	that	the	role		admin		doesn't	exist,	create	it:

orientdb>	INSERT	INTO	ORole	SET	name	=	'admin',	mode	=	1,	

										rules	=	{	"database.bypassrestricted":	15	}

In	the	event	that	the	user		admin		doesn't	exist,	create	it:

orientdb>	INSERT	INTO	OUser	SET	name	=	'admin',	

										password	=	'my-admin_password',	status	=	'ACTIVE',	

										rules	=	(	SELECT	FROM	ORole	WHERE	name	=	'admin'	)

The	user		admin		is	now	active	again	on	your	database.

Server	security

358



Database	Encryption
Beginning	with	version	2.2,	OrientDB	can	encrypt	records	on	disk.	This	prevents	unauthorized	users	from	accessing	database	content	or
even	from	bypassing	OrientDB	security.	OrientDB	does	not	save	the	encryption	key	to	the	database.	You	must	provide	it	at	run-time.
In	the	event	that	you	lose	the	encryption	key,	the	database,	(or	at	least	the	parts	of	the	database	you	have	encrypted),	you	lose	access
to	its	content.

NOTE:	As	of	2.2	this	feature	is	in	beta.	It	will	be	final	with	2.2	GA.

Encryption	works	through	the	encryption	interface.	It	acts	at	the	cluster	(collection)	level.	OrientDB	supports	two	algorithms	for
encryption:

	aes		algorithm,	which	uses	AES
	des		algorithm,	which	uses	DES

The	AES	algorithm	is	preferable	to	DES,	given	that	it's	stronger.

Encryption	in	OrientDB	operates	at	the	database-level.	You	can	have	multiple	databases,	each	with	different	encryption	interfaces,
running	under	the	same	server,	(or,	JVM,	in	the	event	that	you	run	OrientDB	embedded).	That	said,	you	can	use	global	configurations	to
define	the	same	encryption	rules	for	all	databases	open	in	the	same	JVM.	For	instance,	you	can	define	rules	through	the	Java	API:

OGlobalConfiguration.STORAGE_ENCRYPTION_METHOD.setValue("aes");

OGlobalConfiguration.STORAGE_ENCRYPTION_KEY.setValue("T1JJRU5UREJfSVNfQ09PTA==");

You	can	enable	this	at	startup	by	passing	these	settings	as	JVM	arguments:

$	java	...	-Dstorage.encryptionMethod=aes	\

						-Dstorage.encryptionKey="T1JJRU5UREJfSVNfQ09PTA=="

For	more	information	on	security	in	OrientDB,	see	the	following	pages:

Database	security
Server	security
Secure	SSL	connections

Creating	Encrypted	Databases
You	can	create	an	encrypted	database	using	either	the	console	or	through	the	Java	API.	To	create	an	encrypted	database,	use	the		-
encryption		option	through	the		CREATE	DATABASE		command.	However,	before	you	do	so,	you	must	set	the	encryption	key	by	defining
the		storage.encryptionKey		value	through	the		CONFIG		command.

orientdb>	CONFIG	SET	storage.encryptionKey	T1JJRU5UREJfSVNfQ09PTA==

orientdb>	CREATE	DATABASE	plocal:/tmp/db/encrypted-db	admin	my_admin_password	

										plocal	document	-encryption=aes

To	create	an	encrypted	database	through	the	Java	API,	define	the	encryption	algorithm	and	then	set	the	encryption	key	as	database
properties:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/tmp/db/encrypted");

db.setProperty(OGlobalConfiguration.STORAGE_ENCRYPTION_METHOD.getKey(),	"aes");

db.setProperty(OGlobalConfiguration.STORAGE_ENCRYPTION_KEY.getKey(),	"T1JJRU5UREJfSVNfQ09PTA==");

db.create();

Whether	you	use	the	console	or	the	Java	API,	these	commands	encrypt	the	entire	database	on	disk.	OrientDB	does	not	store	the
encryption	key	within	the	database.	You	must	provide	it	at	run-time.

Database	encryption

359

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard


Encrypting	Clusters

In	addition	to	the	entire	database,	you	can	also	only	encrypt	certain	clusters	on	the	database.	To	do	so,	set	the	encryption	to	the	default
of		nothing		when	you	create	the	database,	then	configure	the	encryption	per	cluster	through	the		ALTER	CLUSTER		command.

To	encrypt	the	cluster	through	the	Java	API,	create	the	database,	then	alter	the	cluster	to	use	encryption:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/tmp/db/encrypted");

db.setProperty(OGlobalConfiguration.STORAGE_ENCRYPTION_KEY.getKey(),	"T1JJRU5UREJfSVNfQ09PTA==");

db.create();

db.command(new	OCommandSQL("ALTER	CLUSTER	Salary	encryption	aes")).execute();

Bear	in	mind	that	the	key	remains	the	same	for	the	entire	database.	You	cannot	use	different	keys	per	cluster.	If	you	attempt	to	apply
encryption	or	an	encryption	setting	on	a	cluster	that	is	not	empty,	it	raises	an	error.

To	accomplish	the	same	through	the	console,	set	the	encryption	key	through		storage.encryptionKey		then	define	the	encryption
algorithm	for	the	cluster:

orientdb>	CONFIG	SET	storage.encryptionKey	T1JJRU5UREJfSVNfQ09PTA==

orientdb>	ALTER	CLUSTER	Salary	encryption	aes

Opening	Encrypted	Databases
You	can	access	an	encrypted	database	through	either	the	console	or	the	Java	API.	To	do	so	through	the	console,	set	the	encryption	key
with		storage.encryptionKey		then	open	the	database.

orientdb>	CONFIG	SET	storage.encryptionKey	T1JJRU5UREJfSVNfQ09PTA==

orientdb>	CONNECT	plocal:/tmp/db/encrypted-db	admin	my_admin_password

When	opening	through	the	Java	API,	given	that	the	encryption	settings	are	stored	with	the	database,	you	do	not	need	to	define	the
encryption	algorithm	when	you	open	the	database,	just	the	encryption	key.

db.setProperty(OGlobalConfiguration.STORAGE_ENCRYPTION_KEY.getKey(),	"T1JJRU5UREJfSVNfQ09PTA==");

db.open("admin",	"my_admin_password");

In	the	event	that	you	pass	a	null	or	invalid	key	when	you	open	the	database,	OrientDB	raises	an		OSecurityException		exception.

Database	encryption

360



SSL
Beginning	with	version	1.7,	OrientDB	provides	support	for	securing	its	HTTP	and	BINARY	protocols	through	SSL.	For	distributed
SSL,	see	the	HazelCast	documentation.

For	more	information	on	securing	OrientDB,	see	the	following	pages:

Database	security
Server	security
Database	Encryption

Setting	up	the	Key	and	Trust	Stores
In	order	to	set	up	and	manage	certificates,	OrientDB	uses	the	Java	Keytool.	Using	certificates	signed	by	a	Certificate	Authority	(CA)	is
beyond	the	scope	of	this	tutorial.	For	more	information	on	using	the	Java	Keytool,	see	the	Documentation.

To	create	key	and	trust	stores	that	reference	a	self-signed	certificate,	use	the	following	guide:

1.	 Using	Keytool,	create	a	certificate	for	the	server:

#	keytool	-genkey	-alias	server	-keystore	orientdb.ks	\

					-keyalg	RSA	-keysize	2048	-validity	3650

2.	 Export	the	server	certificate	to	share	it	with	client:

#	keytool	-export	-alias	server	-keystore	orientdb.ks	\

							-file	orientdb.cert

3.	 Create	a	certificate/keystore	for	the	console/clients:

#	keytool	-genkey	-alias	console	-keystore	orientdb-console.ks	\

							-keyalg	RSA	-keysize	2048	-validity	3650

4.	 Create	a	trust-store	for	the	client,	then	import	the	server	certificate.

#	keytool	-import	-alias	server	-keystore	orientdb-console.ts	\

							-file	orientdb.cert

This	establishes	that	the	client	trusts	the	server.

You	now	have	a	self-signed	certificate	to	use	with	OrientDB.	Bear	in	mind	that	for	each	remote	client	JVM	you	want	to	connect	to	the
server,	you	need	to	repeat	steps	three	and	four.	Remember	to	change	the	alias,	keystore	and	trust-store	filenames	accordingly.

Configuring	OrientDB	for	SSL

Server	Configuration

The	server	configuration	file,		$ORIENTDB_HOME/config/orientdb-server-config.xml	,	does	not	use	SSL	by	default.	To	enable	SSL	on	a
protocol	listener,	you	must	change	the		socket		attribute	to	the		<listener>		value	from		default		to	one	of	your	configured		<socket>	
definitions.

There	are	two	default	definitions	available:		ssl		and		https	.	For	most	use	cases	this	is	sufficient,	however	you	can	define	more	if	you
want	to	secure	different	listeners	with	their	own	certificates	or	would	like	to	use	a	custom	factory	implementations.	When	using	the
	ssl		implementation,	bear	in	mind	that	the	default	port	for	OrientDB	SSL	is		2434	.	You	need	to	change	your	port	range	to		2434-

Secure	SSL	connections

361

http://docs.oracle.com/javase/7/docs/technotes/tools/index.html#security


2440	.

By	default,	the	OrientDB	server	looks	for	its	keys	and	trust-stores	in		$ORIENTDB_HOME/config/cert	.	You	can	configure	it	using	the
	<socket>		parameters.	Be	sure	that	all	the	key	and	trust-stores	created	in	the	previous	setup	are	in	the	correct	directory	and	that	the
passwords	used	are	correct.

NOTE:	Paths	are	relative	to		$ORIENTDB_HOME	.	OrientDB	also	supports	absolute	paths.

<sockets>

		<socket	implementation="com.orientechnologies.orient.server.network.OServerSSLSocketFactory"	name="ssl">

				<parameters>

						<parameter	value="false"	name="network.ssl.clientAuth"/>

						<parameter	value="config/cert/orientdb.ks"	name="network.ssl.keyStore"/>

						<parameter	value="password"	name="network.ssl.keyStorePassword"/>

							<!--	NOTE:	We	are	using	the	same	store	for	keys	and	trust.

												This	will	change	if	client	authentication	is	enabled.	See	Configuring	Client	section	-->

						<parameter	value="config/cert/orientdb.ks"	name="network.ssl.trustStore"/>

						<parameter	value="password"	name="network.ssl.trustStorePassword"/>

				</parameters>

		</socket>

		...

		<listener	protocol="binary"	ip-address="0.0.0.0"	port-range="2424-2430"	socket="default"/>

		<listener	protocol="binary"	ip-address="0.0.0.0"	port-range="2434-2440"	socket="ssl"/>

Console	Configuration

For	remote	connections	using	the	console,	you	need	to	make	a	few	changes	to	to		console.sh	,	enable	SSL:

1.	 Confirm	that	your		KEYSTORE	,		TRUSTSTORE		and	respective		PASSWORD		variables	are	correctly	set.

2.	 In	the		SSL_OPTS		definition,	set		client.ssl.enabled		system	property	to		true	.

Client	Configuration

To	configure	remote	clients,	use	the	standard	Java	system	property	patterns:

	client.ssl.enabled	:	Use	this	to	enable/disable	SSL.	The	property	accepts		true		or		false	.	You	only	need	to	define	this	when
using	remote	binary	client	connections.
	javax.net.ssl.keyStore	:	Define	the	path	to	the	keystore.
	javax.net.ssl.keyStorePassword	:	Defines	the	password	to	the	keystore.
	javax.net.ssl.trustStore	:	Defines	the	path	to	the	trust-store.
	javax.net.ssl.trustStorePassword	:	Defines	the	password	to	the	trust-store.

Use	the	third	and	fourth	steps	from	Setting	up	the	Key	and	Trust	Stores	section	above	to	create	the	client	certificates	and	server	trust.
The	paths	to	the	stores	are	client	specific,	but	do	not	need	to	be	the	same	as	the	server.

Note,	if	you	would	like	to	use	key	and/ore	trust-stores	other	than	that	of	the	default	JVN,	you	need	to	define	the	following	variables	as
well:

	client.ssl.keyStore	:	Defines	the	path	to	the	keystore.
	client.ssl.keyStorePass	:	Defines	the	keystore	password.
	client.ssl.trustStore	:	Defines	the	path	to	the	trust-store.
	client.ssl.trustStorePass	:	Defines	the	password	to	the	trust-store.

Consider	the	following	example,	configuring	SSL	from	the	command-line	through	Java:

$	java	-Dclient.ssl.enabled=false	\

						-Djavax.net.ssl.keyStore=	\

						-Djavax.net.ssl.keyStorePassword=	\		

						-Djavax.net.ssl.trustStore=	\

						-Djavax.net.ssl.trustStorePassword=

Secure	SSL	connections

362



As	an	alternative,	you	can	define	these	variables	through	the	Java	API:

System.setProperty("client.ssl.enabled",	<"true"|"false">);	#	This	will	only	be	needed	for	remote	binary	clients

System.setProperty("javax.net.ssl.keyStore",	</path/to/keystore>);

System.setProperty("javax.net.ssl.keyStorePassword",	<keystorepass>);

System.setProperty("javax.net.ssl.trustStore",	</path/to/truststore>);

System.setProperty("javax.net.ssl.trustStorePassword",	<truststorepass>);

To	verify	or	authenticate	client	certificates,	you	need	to	take	a	few	additional	steps	on	the	server:

1.	 Export	the	client	certificate,	so	that	you	can	share	it	with	the	server:

#	keytool	-export	-alias		\

						-keystore		-file	client_cert

Alternatively,	you	can	do	this	through	the	console:

#	keytool	-export	-alias	console	-keystore	orientdb-console.ks	\

						-file	orientdb-console.cert

2.	 If	you	do	not	have	a	trust-store	for	the	server,	create	one	and	import	the	client	certificate.	This	establishes	that	the	server	trusts	the
client:

#	keytool	-import	-alias		-keystore	orientdb.ts	\

						-file	client_cert

Alternatively,	you	can	manage	the	same	through	the	console:

#	keytool	-import	-alias	console	-keystore	orientdb.ts	\	

						-file	orientdb-console.cert

In	the	server	configuration	file,	ensure	that	you	have	client	authentication	enabled	for	the		<socket>		and	that	the	trust-store	path	and
password	are	correct:

		<sockets>

				<socket	implementation="com.orientechnologies.orient.server.network.OServerSSLSocketFactory"	name="ssl">

						<parameters>

								<parameter	value="true"	name="network.ssl.clientAuth"/>

								<parameter	value="config/cert/orientdb.ks"	name="network.ssl.keyStore"/>

								<parameter	value="password"	name="network.ssl.keyStorePassword"/>

								<!--	NOTE:	We	are	using	the	trust	store	with	the	imported	client	cert.	You	can	import	as	many	client	as	you	would	like

	-->

								<parameter	value="config/cert/orientdb.ts"	name="network.ssl.trustStore"/>

								<parameter	value="password"	name="network.ssl.trustStorePassword"/>

						</parameters>

				</socket>

				...

</sockets>

Secure	SSL	connections

363



Manage	a	remote	Server	instance

Introduction

A	remote	server	can	be	managed	via	API	using	the	OServerAdmin	class.	Create	it	using	the	URL	of	the	remote	server	as	first	parameter
of	the	constructor.

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost:2480");

You	can	also	use	the	URL	of	the	remote	database:

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost:2480/GratefulDeadConcerts");

Connect	to	a	remote	server

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost:2480").connect("admin",	"admin");

User	and	password	are	not	the	database	accounts	but	the	server	users	configured	in	orientdb-server-config.xml	file.

When	finished	call	the		OServerAdmin.close()		method	to	release	the	network	connection.

Create	a	database
To	create	a	new	database	in	a	remote	server	you	can	use	the	console's	create	database	command	or	via	API	using	the
	OServerAdmin.createDatabase()		method.

//	ANY	VERSION:	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost/GratefulDeadConcerts").connect("admin",	"admin");

serverAdmin.createDatabase("graph",	"local");

//	VERSION	>=	1.4:	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost").connect("admin",	"admin");

serverAdmin.createDatabase("GratefulDeadConcerts",	"graph",	"local");

The	iStorageMode	can	be	memory	or	plocal.

Drop	a	database

To	drop	a	database	from	a	server	you	can	use	the	console's	drop	database	command	or	via	API	using	the		OServerAdmin.dropDatabase()	
method.

//	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost/GratefulDeadConcerts").connect("admin",	"admin");

serverAdmin.dropDatabase("GratefulDeadConcerts");

Check	if	a	database	exists

To	check	if	a	database	exists	in	a	server	via	API	use	the		OServerAdmin.existsDatabase()		method.

Server	Management

364

https://github.com/orientechnologies/orientdb/wiki/plocal-storage-engine


//	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost/GratefulDeadConcerts").connect("admin",	"admin");

serverAdmin.existsDatabase("local");

Server	Management

365



API
OrientDB	supports	3	kinds	of	drivers:

Native	binary	remote,	that	talks	directly	against	the	TCP/IP	socket	using	the	binary	protocol
HTTP	REST/JSON,	that	talks	directly	against	the	TCP/IP	socket	using	the	HTTP	protocol
Java	wrapped,	as	a	layer	that	links	in	some	way	the	native	Java	driver.	This	is	pretty	easy	for	languages	that	run	into	the	JVM	like
Scala,	Groovy	and	JRuby

Look	also	at	the	available	integration	with	Plugins	and	Frameworks.

This	is	the	list	of	the	known	drivers	to	use	OrientDB	through	different	languages:

Language Name Type Description

Java	(native)	API Native Native	implementation.

JDBC	driver Native For	legacy	and	reporting/Business	Intelligence	applications
and	JCA	integration	for	J2EE	containers

OrientJS Native Binary	protocol,	new	branch	that	has	been	updated	with
the	latest	functionality.	Tested	on	1.7.0,	2.0.x	and	2.1-rc*.

node-orientdb-http HTTP RESTful	HTTP	protocol.	Tested	on	1.6.1

Gremlin-Node To	execute	Gremlin	queries	against	a	remote	OrientDB
server

PhpOrient Binary Official	Driver

OrientDB-PHP Binary
This	was	the	first	PHP	driver	for	OrientDB,	but	doesn't
support	all	OrientDB	features	and	it's	slow	to	support
new	versions	of	driver	protocol.

Doctrine	ODM
Uses
OrientDB-
PHP

High	level	framework	to	use	OrientDB	from	PHP

.NET	driver	for
OrientDB Binary Official	Driver

PyOrient Binary Community	driver	for	Python,	compatible	with	OrientDB
1.7	and	further.

Bulbflow	project HTTP
Uses	Rexter	Graph	HTTP	Server	to	access	to	OrientDB
database	
Configure	Rexster	for	OrientDB

Compass HTTP

OrientDB-C Binary Binary	protocol	compatibles	with	C++	and	other
languages	that	supports	C	calls

LibOrient Binary As	another	Binary	protocol	driver

Javascript	Driver HTTP This	driver	is	the	simpler	way	to	use	OrientDB	from	JS

Javascript	Graph
Driver HTTP

This	driver	mimics	the	[Blueprints]
(https://github.com/orientechnologies/orientdb/wiki/Graph-
Database-Tinkerpop)	interface.	Use	this	driver	if	you're
working	against	graphs.

Active-Orient HTTP

Use	OrientDB	to	persistently	store	dynamic	Ruby-
Objects	and	use	database	queries	to	manage	even	very	large

APIs	and	Drivers

366

https://github.com/nuvolabase/orientdb/wiki/Network-Binary-Protocol
https://github.com/nuvolabase/orientdb/wiki/OrientDB-REST
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://github.com/kirpi4ik/orientdb-jca
http://nodejs.org
https://github.com/orientechnologies/orientjs
https://github.com/Havelaer/node-orientdb-http
https://github.com/entrendipity/gremlin-node
http://www.php.net/
https://github.com/orientechnologies/PhpOrient
https://github.com/AntonTerekhov/OrientDB-PHP
https://github.com/doctrine/orientdb-odm
https://github.com/AntonTerekhov/OrientDB-PHP
http://www.microsoft.com
https://github.com/orientechnologies/OrientDB-NET.binary
http://www.python.org
https://github.com/orientechnologies/pyorient
http://bulbflow.com
https://github.com/tinkerpop/rexster/wiki
https://github.com/tinkerpop/rexster/wiki/Rexster-Configuration
https://github.com/emehrkay/Compass
https://en.wikipedia.org/wiki/C_%28programming_language%29
http://github.com/tglman/orientdb-c
https://github.com/dam2k/liborient
http://en.wikipedia.org/wiki/JavaScript
https://github.com/orientechnologies/orientdb/wiki/Javascript-Driver
https://github.com/orientechnologies/orientdb-js
https://github.com/topofocus/active-orient


datasets.

OrientDB-JRuby Native Through	Java	driver

OrientDB	Client Binary

OrientDB4R HTTP

OrientDB	Groovy Java
wrapper

This	project	contains	Groovy	AST	Transformations
trying	to	mimic	grails-entity	style.	All	useful	information
you	can	find	in	Spock	tests	dir.	Document	API	and	Graph
API	with	gremlin	are	supported.	Built	with	OrientDB
2.1.0	and	Apache	Groovy	2.4.4.

Any	Java	driver Native Scala	runs	on	top	of	JVM	and	it's	fully	compatible	with
Java	applications	like	OrientDB

Scala	Page Native Offers	suggestions	and	examples	to	use	it	without	pains

Scala	utilities	and	tests Native To	help	Scala	developers	using	OrientDB

R	driver HTTP R	Bridge	to	execute	queries	against	OrientDB	Server

MarcoPolo	Elixir
driver Binary

This	driver	allows	Elixir	application	to	interact	with
OrientDB.	Elixir	language	leverages	the	Erlang	VM,	known
for	running	low-latency,	distributed	and	fault-tolerant
systems,	while	also	being	successfully	used	in	web
development	and	the	embedded	software	domain.

Clojure	binding Native Through	Java	driver

Clojure	binding	of
Blueprints	API

OrientDB	Android Porting OrientDB-Android	is	a	port/fork	of	OrientDB	for	the
Android	platform	by	David	Wu

OrientDB	Perl	driver Binary PlOrient	is	a	Perl	binary	interface	for	OrientDB

Supported	standards
This	is	the	list	of	the	library	to	use	OrientDB	by	using	such	standard:

TinkerPop	Blueprints

TinkerPop	Blueprints,	the	standard	for	Graph	Databases.	OrientDB	is	100%	compliant	with	the	latest	version.

All	the	trademarks	are	property	of	their	legal	owners.

APIs	and	Drivers

367

http://www.ruby-lang.org
https://github.com/aemadrid/orientdb-jruby
https://github.com/ryanfields/orient_db_client
https://github.com/veny/orientdb4r
http://www.groovy-lang.org/
https://github.com/eugene-kamenev/orientdb-groovy
https://en.wikipedia.org/wiki/Scala_%28programming_language%29
http://www.orientechnologies.com/docs/last/orientdb.wiki/Scala-Language.html
https://github.com/eptx/OrientDBScala
https://www.r-project.org/
https://github.com/retrography/OrientR
http://elixir-lang.org/
https://github.com/MyMedsAndMe/marco_polo
http://clojure.org
https://github.com/eduardoejp/clj-orient
https://github.com/eduardoejp/clj-blueprints
http://wuman.github.com/orientdb-android
http://wuman.github.com/orientdb-android
http://blog.wu-man.com/
https://github.com/a8wright/plorient
https://github.com/a8wright/plorient
http://www.tinkerpop.com
https://github.com/tinkerpop/blueprints/wiki


Functions
A	Function	is	an	executable	unit	of	code	that	can	take	parameters	and	return	a	result.	Using	Functions	you	can	perform	Functional
programming	where	logic	and	data	are	all	together	in	a	central	place.	Functions	are	similar	to	the	Stored	Procedures	of	RDBMS.

NOTE:	This	guide	refers	to	the	last	available	release	of	OrientDB.	For	past	revisions	look	at	Compatibility.

OrientDB	Functions	features:

are	persistent
can	be	written	in	SQL	or	Javascript	(Ruby,	Scala,	Java	and	other	languages	are	coming)
can	be	executed	via	SQL,	Java,	REST	and	Studio
can	call	each	other
supports	recursion
have	automatic	mapping	of	parameters	by	position	and	name
plugins	can	inject	new	objects	to	being	used	by	functions

Create	your	first	function

To	start	using	Functions	the	simplest	way	is	using	the	Studio.	Open	the	database	and	go	to	the	"Functions"	panel.	Then	write	as	name
"sum",	add	2	parameters	named	"a"	and	"b"	and	now	write	the	following	code	in	the	text	area:

return	parseInt(a)	+	parseInt(b);

Click	on	the	"Save"	button.	Your	function	has	been	saved	and	will	appear	on	the	left	between	the	available	functions.

Now	let's	go	to	test	it.	On	the	bottom	you	will	find	2	empty	boxes.	This	is	where	you	can	insert	the	parameters	when	invoking	the
function.	Write	3	and	5	as	parameters	and	click	"Execute"	to	see	the	result.	"8.0"	will	appear	in	the	output	box	below.

Why	using	parseInt()	and	not	just		a	+	b	?	because	HTTP	protocol	passes	parameters	as	strings.

Functions

368

http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Stored_procedure
https://github.com/orientechnologies/orientdb-studio/wiki
https://github.com/orientechnologies/orientdb-studio/wiki


Where	are	my	functions	saved?

Functions	are	saved	in	the	database	using	the		OFunction		class	and	the	following	properties:

	name	,	as	the	name	of	the	function
	code	,	as	the	code	to	execute
	parameters	,	as	an	optional		EMBEDDEDLIST		of	String	containing	the	parameter	names	if	any
	idempotent	,	tells	if	the	function	is		idempotent	,	namely	if	it	changes	the	database.	Read-only	functions	are		idempotent	.	This	is
needed	to	avoid	calling	non-	idempotent		functions	using	the	HTTP	GET	method

Concurrent	editing

Since	OrientDB	uses	1	record	per	function,	the	MVCC	mechanism	is	used	to	protect	against	concurrent	record	updates.

Usage

Usage	via	Java	API

Using	OrientDB's	functions	from	Java	is	straightforward.	First	get	the	reference	to	the	Function	Manager,	get	the	right	function	and
execute	it	passing	the	parameters	(if	any).	In	this	example	parameters	are	passed	by	position:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("local:/tmp/db");

db.open("admin",	"admin");

OFunction	sum	=	db.getMetadata().getFunctionLibrary().getFunction("sum");

Number	result	=	sum.execute(3,	5);

If	you're	using	the	Blueprints	Graph	API	get	the	reference	to	the	Function	in	this	way:

OFunction	sum	=	graph.getRawGraph().getMetadata().getFunctionLibrary().getFunction("sum");

You	can	execute	functions	passing	parameters	by	name:

Map<String,Object>	params	=	new	HashMap<String,Object>();

params.put("a",	3);

params.put("b",	5);

Number	result	=	sum.execute(params);

Usage	via	HTTP	REST
Each	function	is	exposed	as	a	REST	service	allowing	the	receiving	of	parameters.	Parameters	can	be	passed	by	position	in	the	URL,	or
starting	from	2.1	can	be	passed	in	the	request	payload	as	JSON.	In	this	case	the	mapping	is	not	positional,	but	by	name.

Example	to	execute	the		sum		function	created	before	passing	3	and	5	as	parameters	in	the	URL,	so	positional:

http://localhost:2480/function/demo/sum/3/5

Since	2.1,	parameters	can	be	passed	also	in	the	request's	payload	in	a	JSON,	so	by	name:

{	"a":	3,	"b":	5	}

Both	calls	will	return	an	HTTP	202	OK	with	an	envelope	containing	the	result	of	the	calculation:

{"result":[{"@type":"d","@version":0,"value":2}]}

You	can	call	with	HTTP	GET	method	only	functions	declared	as	"idempotent".	Use	HTTP	POST	to	call	any	functions.

Functions

369

http://en.wikipedia.org/wiki/Multiversion_concurrency_control


If	you're	executing	the	function	using	HTTP	POST	method,	encode	the	content	and	set	the	HTTP	request	header	to:		"Content-Type:
application/json"	.

For	more	information,	see	HTTP	REST	protocol.	To	learn	how	to	write	server-side	function	for	web	applications,	see	Server-Side
functions.

Function	return	values	in	HTTP	calls

When	calling	a	function	as	a	REST	service,	OrientDB	encapsulates	the	result	in	a	JSON	and	sends	it	to	the	client	via	HTTP.	The	result
can	be	slightly	different	depending	on	the	return	value	of	the	function.	Here	are	some	details	about	different	cases:

a	function	that	returns	a	number:

return	31;

result:

{"result":[{"@type":"d","@version":0,"value":31}]}

a	function	that	returns	a	JS	object

return	{"a":1,	"b":"foo"}

result:

{"result":[{"@type":"d","@version":0,"value":{"a":1,"b":"foo"}}]}

a	function	that	returns	an	array

return	[1,	2,	3]

result:

{"result":[{"@type":"d","@version":0,"value":[1,2,3]}]}

a	function	that	returns	a	query	result

return	db.query("select	from	OUser")

result:

Functions

370



{

				"result":	[

								{

												"@type":	"d",

												"@rid":	"#6:0",

												"@version":	1,

												"@class":	"OUser",

												"name":	"admin",

												"password":	"...",

												"status":	"ACTIVE",

												"roles":	[

																"#4:0"

												],

												"@fieldTypes":	"roles=n"

								},

								{

												"@type":	"d",

												"@rid":	"#6:1",

												"@version":	1,

												"@class":	"OUser",

												"name":	"reader",

												"password":	"...",

												"status":	"ACTIVE",

												"roles":	[

																"#4:1"

												],

												"@fieldTypes":	"roles=n"

								}

				]

}

Access	to	the	databases	from	Functions
OrientDB	always	binds	a	special	variable		orient		to	use	OrientDB	services	from	inside	the	functions.	The	most	important	methods
are:

	orient.getGraph()	,	returns	the	current	transactional	graph	database	instance
	orient.getGraphNoTx()	,	returns	the	current	non-transactional	graph	database	instance
	orient.getDatabase()	,	returns	the	current	document	database	instance

Execute	a	query

Query	is	an	idempotent	command.	To	execute	a	query	use	the		query()		method.	Example:

return	orient.getDatabase().query("select	name	from	ouser");

Execute	a	query	with	external	parameters

Create	a	new	function	with	name		getyUserRoles		with	the	parameter		user	.	Then	write	this	code:

return	orient.getDatabase().query("select	roles	from	ouser	where	name	=	?",	name	);

The	name	parameter	is	bound	as	variable	in	Javascript.	You	can	use	this	variable	to	build	your	query.

Execute	a	command

Commands	can	be	written	in	any	language	supported	by	JVM.	By	default	OrientDB	supports	"SQL"	and	"Javascript".

SQL	Command

var	gdb	=	orient.getGraph();

var	results	=	gdb.command(	"sql",	"select	from	Employee	where	company	=	?",	[	"Orient	Technologies"	]	);

Functions

371

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraphNoTx.html
http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/db/document/ODatabaseDocumentTx.html


The	result	of	command	is	an	array	of	objects,	where	objects	can	be:

OrientVertex	instances	if	vertices	are	returned
OrientEdge	instances	if	edges	are	returned
OIdentifiable,	or	any	subclasses	of	it,	instances	if	records	are	returned

Write	your	own	repository	classes

Functions	are	the	perfect	place	to	write	the	logic	for	your	application	to	access	to	the	database.	You	could	adopt	a	DDD	approach
allowing	the	function	to	work	as	a	Repository	or	a	DAO.

This	mechanism	provides	a	thin	(or	thick	if	you	prefer)	layer	of	encapsulation	which	may	protect	you	from	database	changes.

Furthermore	each	function	is	published	and	reachable	via	HTTP	REST	protocol	allowing	the	automatic	creation	of	a	RESTful	service.

Example

Below	an	example	of	functions	to	build	a	repository	for		OUser		records.

function	user_getAll(){

return	orient.getDatabase().query("select	from	ouser");

}

function	user_getByName(	name	){

return	orient.getDatabase().query("select	from	ouser	where	name	=	?",	name	);

}

function	user_getAdmin(){

return	user_getByName("admin");

}

function	user_create(	name,	role	){

var	db	=	orient.getDatabase();

var	role	=	db.query("select	from	ORole	where	name	=	?",	roleName);

if(	role	==	null	){

		response.send(404,	"Role	name	not	found",	"text/plain",	"Error:	role	name	not	found"	);

}	else	{

		db.begin();

		try{

				var	result	=	db.save({	"@class"	:	"OUser",	name	:	"Luca",	password	:	"Luc4",	status:	"ACTIVE",	roles	:	role});

				db.commit();

				return	result;

		}catch	(	err	){

				db.rollback();

				response.send(500,	"Error	on	creating	new	user",	"text/plain",	err.toString()	);

		}

}

}

Functions

372

http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
http://en.wikipedia.org/wiki/Data_access_object


Recursive	calls

Create	the	new	function	with	name	"factorial"	with	the	parameter	"n".	Then	write	this	code:

if	(num	===	0)

		return	1;

else

		return	num	*	factorial(	num	-	1	);

This	function	calls	itself	to	find	the	factorial	number	for		<num>		as	parameter.	The	result	is		3628800.0	.

Functions

373



Server-Side	functions

Server-Side	functions	can	be	used	as	Servlet	replacement.	To	know	how	to	call	a	Server-Side	function,	see	Usage	via	HTTP	REST.	When
server-side	functions	are	called	via	HTTP	REST	protocol,	OrientDB	embeds	a	few	additional	variables:

request,	as	the	HTTP	request	and	implemented	by		OHttpRequestWrapper		class
response,	as	the	HTTP	request	response	implemented	by		OHttpResponseWrapper		class
util,	as	an	utility	class	with	helper	functions	to	use	inside	the	functions.	It's	implemented	by		OFunctionUtilWrapper		class

Request	object

Refer	to	this	object	as	"request".	Example:

var	params	=	request.getParameters();

Method	signature Description Return	type

	getContent()	 Returns	the	request's	content String

	getUser()	 Gets	the	request's	user	name String

	getContentType()	 Returns	the	request's	content	type String

	getHttpVersion()	 Return	the	request's	HTTP	version String

	getHttpMethod()	 Return	the	request's	HTTP	method	called String

	getIfMatch()	 Return	the	request's	IF-MATCH	header String

	isMultipart()	 Returns	if	the	requests	has	multipart boolean

	getArguments()	 Returns	the	request's	arguments	passed	in	REST	form.	Example:	/2012/10/26 String[]

	getArgument(<position>)	 Returns	the	request's	argument	by	position,	or	null	if	not	found String

	getParameters()	 Returns	the	request's	parameters String

	getParameter(<name>	) Returns	the	request's	parameter	by	name	or	null	if	not	found String

	hasParameters(<name>*	) Returns	the	number	of	parameters	found	between	those	passed Integer

	getSessionId()	 Returns	the	session-id String

	getURL()	 Returns	the	request's	URL String

Response	object

Refer	to	this	object	as	"response".	Example:

var	db	=	orient.getDatabase();

var	roles	=	db.query("select	from	ORole	where	name	=	?",	roleName);

if(	roles	==	null	||	roles.length	==	0	){

		response.send(404,	"Role	name	not	found",	"text/plain",	"Error:	role	name	not	found"	);

}	else	{

		db.begin();

		try{

				var	result	=	db.save({	"@class"	:	"OUser",	name	:	"Luca",	password	:	"Luc4",	"roles"	:	roles});

				db.commit();

				return	result;

		}catch	(	err	){

				db.rollback();

				response.send(500,	"Error	on	creating	new	user",	"text/plain",	err.toString()	);

		}

}

Functions

374



Method	signature Description Return
type

	getHeader()	 Returns	the	response's	additional	headers String

	setHeader(String	header)	
Sets	the	response's	additional	headers	to	send	back.	To
specify	multiple	headers	use	the	line	breaks

Request
object

	getContentType()	
Returns	the	response's	content	type.	If	null	will	be
automatically	detected String

	setContentType(String	contentType)	
Sets	the	response's	content	type.	If	null	will	be
automatically	detected

Request
object

	getCharacterSet()	 Returns	the	response's	character	set	used String

	setCharacterSet(String	characterSet)	 Sets	the	response's	character	set Request
object

	getHttpVersion()	 String

	writeStatus(int	httpCode,	String	reason)	 Sets	the	response's	status	as	HTTP	code	and	reason Request
object

	writeStatus(int	httpCode,	String	reason)	 Sets	the	response's	status	as	HTTP	code	and	reason Request
object

	writeHeaders(String	contentType)	 Sets	the	response's	headers	using	the	keep-alive Request
object

	writeHeaders(String	contentType,	boolean

keepAlive)	

Sets	the	response's	headers	specifying	when	using	the
keep-alive	or	not

Request
object

	writeLine(String	content)	
Writes	a	line	in	the	response.	A	line	feed	will	be	appended
at	the	end	of	the	content

Request
object

	writeContent(String	content)	 Writes	content	directly	to	the	response Request
object

	writeRecords(List<OIdentifiable>	records)	
Writes	records	as	response.	The	records	are	serialized	in
JSON	format

Request
object

	writeRecords(	List<OIdentifiable>	records,	String

fetchPlan)	

Writes	records	as	response	specifying	a	fetch-plan	to
serialize	nested	records.	The	records	are	serialized	in
JSON	format

Request
object

	writeRecord(ORecord	record)	
Writes	a	record	as	response.	The	record	is	serialized	in
JSON	format

Request
object

	writeRecord(ORecord	record,	String	fetchPlan)	
Writes	a	record	as	response.	The	record	is	serialized	in
JSON	format

Request
object

	send(int	code,	String	reason,	String	contentType,

Object	content)	
Sends	the	complete	HTTP	response	in	one	call Request

object

	send(int	code,	String	reason,	String	contentType,

Object	content,	String	headers)	

Sends	the	complete	HTTP	response	in	one	call	specifying
additional	headers.	Keep-alive	is	set

Request
object

	send(int	code,	String	reason,	String	contentType,

Object	content,	String	headers,	boolean

keepAlive)	

Sends	the	complete	HTTP	response	in	one	call	specifying
additional	headers

Request
object

	sendStream(int	code,	String	reason,	String

contentType,	InputStream	content,	long	size)	

Sends	the	complete	HTTP	response	in	one	call	specifying
a	stream	as	content

Request
object

	flush()	 Flushes	the	content	to	the	TCP/IP	socket Request
object

Util	object

Refer	to	this	object	as		util	.	Example:

if(	util.exists(year)	){

		print("\nYes,	the	year	was	passed!");

}

Functions

375



Method	signature Description Return
type

	exists(<variable>)	
Returns	trues	if	any	of	the	passed	variables	are	defined.	In	JS,	for	example,	a	variable	is
defined	if	it's	not	null	and	not	equals	to	"undefined" Boolean

Native	functions

OrientDB's	SQL	dialect	supports	many	functions	written	in	native	language.	To	obtain	better	performance	you	can	write	you	own
native	functions	in	Java	language	and	register	them	to	the	engine.

Compatibility

1.5.0	and	before

OrientDB	binds	the	following	variables:

	db	,	that	is	the	current	document	database	instance
	gdb	,	that	is	the	current	graph	database	instance

Functions

376



Plugins
If	you're	looking	for	drivers	or	JDBC	connector	go	to	Programming-Language-Bindings.

	

Play	Framework	2.1	PLAY-WITH-ORIENTDB	plugin
Play	Framework	2.1	ORIGAMI	plugin
Play	Framework	1.x	ORIENTDB	plugin
Frames-OrientDB	Plugin	Play	Framework	2.x	Frames-OrientDB	plugin	is	a	Java	O/G	mapper	for	the	OrientDB	with	the	Play!
framework	2.	It	is	used	with	the	TinkerPop	Frames	for	O/G	mapping.

With	proper	mark-up/logic	separation,	a	POJO	data	model,	and	a	refreshing	lack	of	XML,	Apache	Wicket	makes	developing	web-apps
simple	and	enjoyable	again.	Swap	the	boilerplate,	complex	debugging	and	brittle	code	for	powerful,	reusable	components	written	with
plain	Java	and	HTML.

Guice	(pronounced	'juice')	is	a	lightweight	dependency	injection	framework	for	Java	6	and	above,	brought	to	you	by	Google.	OrientDB
Guice	plugin	allows	to	integrate	OrientDB	inside	Guice.	Features:

Integration	through	guice-persist	(UnitOfWork,	PersistService,	@Transactional,	dynamic	finders	supported)
Support	for	document,	object	and	graph	databases
Database	types	support	according	to	classpath	(object	and	graph	db	support	activated	by	adding	jars	to	classpath)

Available	Plugins	and	Tools

377

http://www.playframework.org
https://github.com/ratcashdev/play-with-orientdb
https://github.com/sgougi/play21-origami-plugin
http://www.playframework.org/modules/orientdb
https://github.com/sgougi/play21-frames-orientdb-plugin
https://github.com/faizod/orientdb-liquibase-plugin
https://github.com/PhantomYdn/wicket-orientdb
https://github.com/xvik/guice-persist-orient


Auto	mapping	entities	in	package	to	db	scheme	or	using	classpath	scanning	to	map	annotated	entities
Auto	db	creation
Hooks	for	schema	migration	and	data	initialization	extensions
All	three	database	types	may	be	used	in	single	unit	of	work	(but	each	type	will	use	its	own	transaction)

	

Vert.x	is	a	lightweight,	high	performance	application	platform	for	the	JVM	that's	designed	for	modern	mobile,	web,	and	enterprise
applications.	Vert.x	Persistor	Module	for	Tinkerpop-compatible	Graph	Databases	like	OrientDB.

Gephi	Visual	tool	usage	with	OrientDB	and	the	Blueprints	importer

	
		
spring-orientdb	is	an	attempt	to	provide	a	PlatformTransactionManager	for	OrientDB	usable	with	the	Spring	Framework,	in	particular
with	@Transactional	annotation.	Apache	2	license

OrientDB	session	store	for	Connect

Puppet	module

Chef

Available	Plugins	and	Tools

378

http://vertx.io/
https://github.com/aschrijver/mod-tinkerpop-persistor
https://gephi.org
https://github.com/datablend/gephi-blueprints-plugin/wiki
http://www.springsource.org
https://github.com/megadix/orientdb-spring
https://github.com/ffissore/connect-orientdb
http://forge.puppetlabs.com
https://github.com/example42/puppet-orientdb
https://supermarket.chef.io/cookbooks/orientdb


	
Apache	Tomcat	realm	plugin	by	Jonathan	Tellier

Shibboleth	connector	by	Jonathan	Tellier.	The	Shibboleth	System	is	a	standards	based,	open	source	software	package	for	web	single
sign-on	across	or	within	organizational	boundaries.	It	allows	sites	to	make	informed	authorization	decisions	for	individual	access	of
protected	online	resources	in	a	privacy-preserving	manner

Griffon	plugin,	Apache	2	license

JCA	connectors

OPS4J	Orient	provides	a	JCA	resource	adapter	for	integrating	OrientDB	with	Java	EE	6	servers
OrientDB	JCA	connector	to	access	to	OrientDB	database	via	JCA	API	+	XA	Transactions

Pacer	plugin	by	Paul	Dlug.	Pacer	is	a	JRuby	graph	traversal	framework	built	on	the	Tinkerpop	stack.	This	plugin	enables	full	OrientDB
graph	support	in	Pacer.

EventStore	for	Axonframework,	which	uses	fully	transactional	(full	ACID	support)	NoSQL	database	OrientDB.	Axon	Framework
helps	build	scalable,	extensible	and	maintainable	applications	by	supporting	developers	apply	the	Command	Query	Responsibility
Segregation	(CQRS)	architectural	pattern

Accessing	OrientDB	using	Slick

Available	Plugins	and	Tools

379

http://tomcat.apache.org
http://wiki.apache.org/tomcat/OrientDBRealm
mailto:jonathan.tellier@gmail.com
http://shibboleth.net
https://wiki.shibboleth.net/confluence/display/SHIB2/OrientDB+Connector
http://shibboleth.net
http://media.xircles.codehaus.org
https://github.com/griffon/griffon-orientdb-plugin
http://team.ops4j.org/wiki/display/ORIENT/JCA+Resource+Adapter
https://github.com/kirpi4ik/orientdb-jca
https://github.com/pdlug/pacer-orient
https://github.com/pangloss/pacer
http://jruby.org/
http://www.axonframework.org
http://www.axonframework.org/
http://www.axonframework.org/
https://github.com/mproch/slick-orientdb#readme


Jackrabbit	module	to	use	OrientDB	as	backend.

		Plugin	for	FuelPHP	framework.

orientqb

orientqb	is	a	builder	for	OSQL	query	language	written	in	Java.	orientqb	has	been	thought	to	help	developers	in	writing	complex	queries
dynamically	and	aims	to	be	simple	but	powerful.

Available	Plugins	and	Tools

380

https://github.com/eiswind/jackrabbit-orient
https://github.com/sakuraiyuta/fuel-orientdb
http://fuelphp.com
https://github.com/raymanrt/orientqb


Java	API
OrientDB	is	written	100%	in	Java.	You	can	use	the	native	Java	APIs	without	any	driver	or	adapter.	Here	is	the	Javadocs.

Architecture	of	components

OrientDB	provides	3	different	Java	APIs	to	work	with	OrientDB.	Each	one	has	pros	and	cons.

Which	API	to	choose	between	Graph	and	Document?	Look	also	at	Graph-or-Document-API?.

Graph	API

Use	OrientDB	as	a	Graph	Database	working	with	Vertices	and	Edges.	Graph	API	is	100%	compliant	with	TinkerPop	standard.

API:	Graph	API

Document	API

Handles	records	as	documents.	Documents	are	comprised	of	fields.	Fields	can	be	any	of	the	types	supported.	Does	not	need	a	Java
domain	POJO,	as	required	for	the	Object	Database.	Can	be	used	as	schema-less	or	schema-base	modes.

API:	Document	API

Object	API

It's	the	JPA	like	interface	where	POJO	are	automatically	bound	to	the	database	as	documents.	Can	be	used	in	schema-less	or	schema-
based	modes.	This	API	hasn't	been	improved	since	OrientDB	v1.5.	Please	consider	using	Document	or	Graph	API	by	writing	an
additional	layer	of	mapping	with	your	POJO.	While	you	can	use	both	Graph	and	Document	APIs	at	the	same	time,	the	Object	API	is
compatible	with	Document	API,	but	it	doesn't	work	very	well	with	the	Graph	API.	The	main	reason	is	that	you	should	create	POJOs
that	mimic	the	Vertex	and	Edge	classes	with	sub	optimal	performance	in	comparison	with	direct	Graph	API.	For	this	reason	we	don't
suggest	to	work	with	Object	API	with	a	Graph	domain.	You	could	evaluate	using	Object	Mapping	on	top	of	OrientDB	Blueprints
Graph	API,	such	as	TinkerPop	Frames,	Ferma	and	Totorom.

API:	Object	Database

Java	API

381

http://www.orientechnologies.com/javadoc/latest/
http://www.tinkerpop.com
https://github.com/tinkerpop/frames/wiki
https://github.com/Syncleus/Ferma
https://github.com/BrynCooke/totorom


What	to	use?	Feature	Matrix

Graph Document Object

API Graph	API Document	API Object	Database

Use	this
if

You	work	with	graphs	and	want
your	code	to	be	portable	across
TinkerPop	Blueprints
implementations

Your	domain	fits	better	the
Document	Database	use
case	with	schema-less
structures

If	you	need	a	full	Object	Oriented
abstraction	that	binds	all	the	database
entities	to	POJO	(Plain	Old	Java
Object)

Easy	to
switch
from

Other	GraphDBs	like	Neo4J	or
Titan.	If	you	used	TinkerPop
standard	OrientDB	is	a	drop-in
replacement

Other	DocumentDB	like
MongoDB	and	CouchDB JPA	applications

Java
class OrientGraph ODatabaseDocumentTx OObjectDatabaseTx

Query Yes Yes Yes

Schema
Less Yes Yes Yes

Schema
full Yes Yes Yes

Speed	*	 90% 100% 50%

	*		Speed	comparison	for	generic	CRUD	operations	such	as	query,	insertion,	update	and	deletion.	Larger	is	better.	100%	is	fastest.	In
general	the	price	of	a	high	level	of	abstraction	is	a	speed	penalty,	but	remember	that	Orient	is	orders	of	magnitude	faster	than	the	classic
RDBMS.	So	using	the	Object	Database	gives	you	a	high	level	of	abstraction	with	much	less	code	to	develop	and	maintain.

Which	library	do	I	use?
OrientDB	comes	with	some	jar	files	contained	in	the	lib	directory

JAR	name Description When	required Depends	on	3rd	party	jars

	orientdb-

core-*.jar	
Core	library Always

	snappy-*.jar		as	optional,
performance	pack:		orientdb-
nativeos-*.jar	,		jna-*.jar		and
	jna-platform-*.jar	

	orientdb-

client-

*.jar	

Remote	client When	your	application	talks	with	a
remote	server

	orientdb-

enterprise-

*.jar	

Deprecated	since	v2.2.	Base
package	with	the	protocol	and
network	classes	shared	by
client	and	server

When	your	application	talks	with	a
remote	server

	orientdb-

server-

*.jar	
Server	component

It's	used	by	the	server	component.
Include	it	only	if	you're	embedding
a	server

	orientdb-

tools-*.jar	

Contain	the	console	and
console	commands

Never,	unless	you	want	to	execute
console	command	directly	by	your
application.	Used	by	the	console
application

	orientdb-

object-

*.jar	

Contain	the	Object	Database
interface

Include	it	if	you're	using	this
interface

	javassist.jar	,		persistence-
api-1.0.jar	

	orientdb-

graphdb-

*.jar	

Contain	the	GraphDB
interface

Include	it	if	you're	using	this
interface

	blueprints-core-*.jar	

	orientdb-

distributed-

*.jar	

Contain	the	distributed	plugin Include	it	if	you're	working	with	a
server	cluster

	hazelcast-*.jar	

Java	API

382

https://github.com/orientechnologies/orientdb/blob/master/graphdb/src/main/java/com/tinkerpop/blueprints/impls/orient/OrientGraph.java
http://www.orientechnologies.com/javadoc/latest/index.html?com/orientechnologies/orient/core/db/document/ODatabaseDocumentTx.html
http://www.orientechnologies.com/javadoc/latest/index.html?com/orientechnologies/orient/object/db/OObjectDatabaseTx.html


Java	Tutorial
In	the	event	that	you	are	used	only	to	Relation	database	systems,	you	may	find	OrientDB	a	very	unfamiliar	system	to	work	with.
Given	that	it	also	supports	Document,	Graph	and	Object-Oriented	modes,	it	requires	different	Java	API's.	But,	there	are	some
similarities	between	them	too.

Similar	to	JDBC,	a	Blueprints	API	exists,	made	by	Tinkerpop,	which	supports	the	basic	operations	on	a	graph	database.	There	is	an
OrientDB	driver,	(or,	to	be	more	accurate,	an	adapter),	which	makes	it	possible	to	operate	without	having	to	deal	with	OrientDB
classes.	This	means	that	the	resulting	code	is	more	portable,	given	that	Blueprints	offers	adapters	to	other	graphing	database	systems.

If	you	need	to	tweak	the	database	configuraiton,	you	need	to	use	OrientDB	API's	directly.	It	is	recommend	that	in	these	situations	you
use	a	mix:	Bluepringts	when	you	can,	the	OrientDB	API's	where	necessary.

OrientDB	Java	APIs
There	are	three	different	API's	that	OrientDB	ships	with.	Choose	one	based	on	your	mode.

Graph	API	(suggested)
Document	API
Object	API

OrientDB	comes	with	3	different	APIs.	Pick	your	based	on	your	model	(for	more	information	look	at	Java	API):

For	more	information	on	the	API's	in	general,	see	Java	API

Graph	API

Connecting	to	a	Graph	Database

The	first	object	you	need	is	a		OrientGraph	:

import	com.tinkerpop.blueprints.impls.orient.OrientGraph;

OrientGraph	graph	=	new	OrientGraph("local:test",	"username",	"password");

Inserting	Vertices	and	Edges

While	OrientDB	can	work	with	the	generic		V		class	for	verticies	and		E		class	for	edges,	you	gain	much	more	power	by	defining	custom
types	for	both	vertices	and	edges.

odb.createVertexType("Person");

odb.createVertexType("Address");

The	Blueprint	adapter	for	OrientDB	is	thread-safe	and	automatically	creates	a	transaction	where	necessary.	That	is,	it	creates	a
transaction	at	the	first	operation,	in	the	event	that	a	transaction	has	not	yet	explicitly	been	started.	You	have	to	specify	where
transactions	end,	for	commits	or	rollbacks.

To	add	vertices	into	the	database	with	the	Blueprints	API:

Vertex	vPerson	=	graph.addVertex("class:Person");

vPerson.setProperty("firstName",	"John");

vPerson.setProperty("lastName",	"Smith");

Vertex	vAddress	=	graph.addVertex("class:Address");

vAddress.setProperty("street",	"Van	Ness	Ave.");

vAddress.setProperty("city",	"San	Francisco");

vAddress.setProperty("state",	"California");

Java	API	Introduction

383

https://github.com/tinkerpop/blueprints


Bear	in	mind,	the	specific	syntax	with	Blueprint	is		class:<class	name>	.	You	must	use	this	syntax	in	creating	an	object	to	specify	its
class.	This	is	not	mandatory.	It	is	also	possible	to	specify	a		null		value,	(which	means	a	vertex	is	created	with	the	class		V	,	as	its	the
superclass	for	all	vertices	in	OrientDB).

Vertex	vPerson	=	graph.addVertex(null);

In	consequence	of	this	is	that	you	cannot	distinguish		null		vertices	from	other	vertices	in	a	query.

Use	a	similar	API	in	adding	an	edge:

OrientEdge	eLives	=	graph.addEdge(null,	vPerson,	vAddress,	"lives");

In	OrientDB,	the	Blueprints	label	concept	is	bound	to	an	edge's	class.	You	can	create	an	edge	of	the	class		lives		by	passing	it	as	a	label
or	as	a	class	name.

OrientEdge	eLives	=	graph.addEdge("class:lives",	vPerson,	vAddress,	null);

You	have	now	created:

[John	Smith:Person]	--[lives]-->	[Van	Ness	Ave:Address]

Bear	in	mind	that,	in	this	example,	you	have	used	a	partially	schema-full	mode,	as	you	defined	the	vertex	types,	but	not	their	properties.
By	default,	OrientDB	dynamically	accepts	everything	working	in	a	schema-less	mode.

SQL	queries

The	Tinkerpop	interfaces	allow	you	to	execute	fluent	queries	or	Germlin	queries,	but	you	can	still	use	the	power	of	OrientDB	SQL
through	the		.command()		method.

for	(Vertex	v	:	(Iterable<Vertex>)	graph.command(

												new	OCommandSQL("SELECT	EXPAND(	OUT('bough')	)	FROM	Customer	WHERE	name='Jay'")).execute())	{

																		System.out.println("-	Bought:	"	+	v);

												}

In	addition	to	queries,	you	can	also	execute	any	SQL	command,	such	as	CREATE	VERTEX,	Update,	or	DELETE	VERTEX.

Along	with	queries,	you	can	execute	any	SQL	command	like	CREATE	VERTEX,	UPDATE,	or	DELETE	VERTEX.	For	example,

int	modified	=	graph.command(

										new	OCommandSQL("UPDATE	Customer	SET	local	=	true	WHERE	'Rome'	IN	out('lives').name")).execute());

This	sets	a	new	property	called		local		to		true		on	all	instances	in	the		Customer		class	that	live	in	Rome.

Java	API	Introduction

384



Graph	API
OrientDB	adheres	to	the	TinkerPop	Blueprints	standard	and	uses	it	as	default	Graph	Java	API.

Requirements

To	use	the	Graph	API	include	the	following	jars	in	your	classpath:

orientdb-core-*.jar

blueprints-core-*.jar

orientdb-graphdb-*.jar

Also	include	the	following	3rd	party	jars:

jna-*.jar

jna-platform-*.jar

concurrentlinkedhashmap-lru-*.jar

If	you're	connected	to	a	remote	server	(not	local/plocal/memory	modes)	include	also:

orientdb-client-*.jar

orientdb-enterprise-*.jar

To	also	use	the	TinkerPop	Pipes	tool	include	also:

pipes-*.jar

To	also	use	the	TinkerPop	Gremlin	language	include	also:

gremlin-java-*.jar

gremlin-groovy-*.jar

groovy-*.jar

NOTE:	Starting	from	v2.0,	Lightweight	Edges	are	disabled	by	default	when	new	database	are	created.

Introduction

Tinkerpop	is	a	complete	stack	of	projects	to	handle	Graphs:

Blueprints	provides	a	collection	of	interfaces	and	implementations	to	common,	complex	data	structures.	In	short,	Blueprints
provides	a	one	stop	shop	for	implemented	interfaces	to	help	developers	create	software	without	being	tied	to	particular	underlying
data	management	systems.
Pipes	is	a	graph-based	data	flow	framework	for	Java	1.6+.	A	process	graph	is	composed	of	a	set	of	process	vertices	connected	to
one	another	by	a	set	of	communication	edges.	Pipes	supports	the	splitting,	merging,	and	transformation	of	data	from	input	to
output.
Gremlin	is	a	Turing-complete,	graph-based	programming	language	designed	for	key/value-pair	multi-relational	graphs.	Gremlin
makes	use	of	an	XPath-like	syntax	to	support	complex	graph	traversals.	This	language	has	application	in	the	areas	of	graph	query,
analysis,	and	manipulation.
Rexster	is	a	RESTful	graph	shell	that	exposes	any	Blueprints	graph	as	a	standalone	server.	Extensions	support	standard	traversal
goals	such	as	search,	score,	rank,	and,	in	concert,	recommendation.	Rexster	makes	extensive	use	of	Blueprints,	Pipes,	and	Gremlin.
In	this	way	its	possible	to	run	Rexster	over	various	graph	systems.	To	configure	Rexster	to	work	with	OrientDB	follow	this	guide:
configuration.
Sail	Ouplementation	to	use	OrientDB	as	a	RDF	Triple	Store.

Graph	API

385

https://github.com/tinkerpop/blueprints
http://wiki.github.com/tinkerpop/pipes
http://wiki.github.com/tinkerpop/gremlin
http://www.tinkerpop.com
http://wiki.github.com/tinkerpop/blueprints
http://pipes.tinkerpop.com
http://wiki.github.com/tinkerpop/gremlin
http://rexster.tinkerpop.com
https://github.com/tinkerpop/blueprints/wiki/Sail-Ouplementation


Get	started	with	Blueprints

OrientDB	supports	different	kind	of	storages	and	depends	by	the	Database	URL	used:

Persistent	embedded	GraphDB.	OrientDB	is	linked	to	the	application	as	JAR	(No	network	transfer).	Use	plocal	as	prefix.
Example	"plocal:/tmp/graph/test"
In-Memory	embedded	GraphDB.	Keeps	all	the	data	only	in	memory.	Use	memory	as	prefix.	Example	"memory:test"
Persistent	remote	GraphDB.	Uses	a	binary	protocol	to	send	and	receive	data	from	a	remote	OrientDB	server.	Use	remote	as
prefix.	Example	"remote:localhost/test".	It	requires	a	OrientDB	Server	instance	is	up	and	running	at	the	specified	address	(localhost
in	this	case).	Remote	database	can	be	persistent	or	in-memory	as	well.

Working	with	the	GraphDB
Before	working	with	a	graph	you	need	an	instance	of	OrientGraph	class.	The	constructor	gets	a	URL	that	is	the	location	of	the	database.
If	the	database	already	exists,	it	will	be	opened,	otherwise	it	will	be	created.	However	a	new	database	can	only	be	created	in	plocal	or
memory	mode,	not	in	remote	mode.	In	multi-threaded	applications	use	one	OrientGraph	instance	per	thread.	Also	all	the	graph
components	(Vertices	and	Edges)	are	not	thread-safe,	so	sharing	them	between	threads	could	cause	unpredictable	errors.

Remember	to	always	close	the	graph	once	done	using	the		.shutdown()		method.

Example:

OrientGraph	graph	=	new	OrientGraph("plocal:C:/temp/graph/db");

try	{

		...

}	finally	{

		graph.shutdown();

}

Use	the	factory

Starting	from	v1.7	the	best	way	to	get	a	Graph	instance	is	through	the	OrientGraphFactory.	To	know	more:	Use	the	Graph	Factory.
Example:

//	AT	THE	BEGINNING

OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:C:/temp/graph/db").setupPool(1,10);

//	EVERY	TIME	YOU	NEED	A	GRAPH	INSTANCE

OrientGraph	graph	=	factory.getTx();

try	{

		...

}	finally	{

			graph.shutdown();

}

Transactions
Before	v2.1.7,	every	time	the	graph	is	modified	an	implicit	transaction	is	started	automatically	if	no	previous	transaction	was	running.
Transactions	are	committed	automatically	when	the	graph	is	closed	by	calling	the		shutdown()		method	or	by	explicit		commit()	.	To
rollback	changes	call	the		rollback()		method.

After	v2.1.7,	you	can	setup	the	consistency	level.

Changes	inside	a	transaction	will	be	temporary	until	the	commit	or	the	close	of	the	graph	instance.	Concurrent	threads	or	external	clients
can	see	the	changes	only	when	the	transaction	has	been	fully	committed.

Full	example:

Graph	API

386

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraphFactory.html


try{

		Vertex	luca	=	graph.addVertex(null);	//	1st	OPERATION:	IMPLICITLY	BEGIN	A	TRANSACTION

		luca.setProperty(	"name",	"Luca"	);

		Vertex	marko	=	graph.addVertex(null);

		marko.setProperty(	"name",	"Marko"	);

		Edge	lucaKnowsMarko	=	graph.addEdge(null,	luca,	marko,	"knows");

		graph.commit();

}	catch(	Exception	e	)	{

		graph.rollback();

}

Surrounding	the	transaction	between	a	try/catch	assures	that	any	errors	will	rollback	the	transaction	to	the	previous	status	for	all	the
involved	elements.	For	more	information,	look	at	Concurrency.

NOTE:	Before	v2.1.7,	to	work	against	a	graph	always	use	transactional	OrientGraph	instances	and	never	non-transactional	ones	to	avoid
graph	corruption	from	multi-threaded	changes.	A	non-transactional	graph	instance	created	with		OrientGraphNoTx	graph	=
factory.getNoTx();		is	only	useful	if	you	don't	work	with	data	but	want	to	define	the	database	schema	or	for	bulk	inserts.

Optimistic	approach

OrientDB	supports	optimistic	transactions,	so	no	lock	is	kept	when	a	transaction	is	running,	but	at	commit	time	each	graph	element
version	is	checked	to	see	if	there	has	been	an	update	by	another	client.	This	is	the	reason	why	you	should	write	your	code	to	be
concurrency-proof	by	handling	the	concurrent	updating	case:

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{

				try	{

								//	LOOKUP	FOR	THE	INVOICE	VERTEX

								Iterable<Vertex>	invoices	=	graph.getVertices("invoiceId",	2323);

								Vertex	invoice	=	invoices.iterator().next();

								//	CREATE	A	NEW	ITEM

								Vertex	invoiceItem	=	graph.addVertex("class:InvoiceItem");

								invoiceItem.field("price",	1000);

								//	ADD	IT	TO	THE	INVOICE

								invoice.addEdge(invoiceItem);

								graph.commit();

								//	OK,	EXIT	FROM	RETRY	LOOP

								break;

				}	catch(	ONeedRetryException	e	)	{

								//	SOMEONE	HAVE	UPDATE	THE	INVOICE	VERTEX	AT	THE	SAME	TIME,	RETRY	IT

				}

}

Working	with	Vertices	and	Edges

Create	a	vertex

To	create	a	new	Vertex	in	the	current	Graph	call	the	Vertex	OrientGraph.addVertex(Object	id))	method.	Note	that	the	id	parameter	is
ignored	since	OrientDB	implementation	assigns	a	unique-id	once	the	vertex	is	created.	To	return	it	use	Vertex.getId()).	Example:

Vertex	v	=	graph.addVertex(null);

System.out.println("Created	vertex:	"	+	v.getId());

Create	an	edge

An	Edge	links	two	vertices	previously	created.	To	create	a	new	Edge	in	the	current	Graph	call	the	Edge	OrientGraph.addEdge(Object	id,
Vertex	outVertex,	Vertex	inVertex,	String	label	))	method.	Note	that	the	id	parameter	is	ignored	since	OrientDB	implementation	assigns	a
unique-id	once	the	Edge	is	created.	To	return	it	use	Edge.getId()).		outVertex		is	the	Vertex	instance	where	the	Edge	starts	and		inVertex	
is	the	Vertex	instance	where	the	Edge	ends.		label		is	the	Edge's	label.	Specify	null	to	not	assign	it.	Example:

Graph	API

387

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#addVertex(java.lang.Object
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getId(
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#addEdge(java.lang.Object,-Vertex,-Vertex,-java.lang.String
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getId(


Vertex	luca	=	graph.addVertex(null);

luca.setProperty("name",	"Luca");

Vertex	marko	=	graph.addVertex(null);

marko.setProperty("name",	"Marko");

Edge	lucaKnowsMarko	=	graph.addEdge(null,	luca,	marko,	"knows");

System.out.println("Created	edge:	"	+	lucaKnowsMarko.getId());

If	you're	interested	on	optimizing	creation	of	edges	by	concurrent	threads/clients,	look	at	Concurrency	on	adding	edges.

Retrieve	all	the	Vertices

To	retrieve	all	the	vertices	use	the		getVertices()		method:

for	(Vertex	v	:	graph.getVertices())	{

				System.out.println(v.getProperty("name"));

}

Retrieve	all	the	Edges

To	retrieve	all	the	vertices	use	the	getEdges())	method:

for	(Edge	e	:	graph.getEdges())	{

				System.out.println(e.getProperty("age"));

}

NOTE:	When	Lightweight	Edges	are	enabled	(starting	from	v2.0	are	disabled	by	default),	edges	are	stored	as	links	not	as	records.	This	is
to	improve	performance.	As	a	consequence,		getEdges()		will	only	retrieve	records	of	class	E.	With	useLightweightEdges=true,	records
of	class	E	are	only	created	under	certain	circumstances	(e.g.	if	the	Edge	has	properties)	otherwise	they	will	be	links	on	the	in	and	out
vertices.	If	you	really	want		getEdges()		to	return	all	edges,	disable	the	Lightweight	Edges	feature	by	executing	this	command	once:
	alter	database	custom	useLightweightEdges=false	.	This	will	only	take	effect	for	new	edges	so	you'll	have	to	convert	the	links	to	actual
edges	before	getEdges	will	return	all	edges.	For	more	information	look	at:	Troubleshooting:	Why	can't	I	see	all	the	edges.

Removing	a	Vertex

To	remove	a	vertex	from	the	current	Graph	call	the	OrientGraph.removeVertex(Vertex	vertex))	method.	The	vertex	will	be	disconnected
from	the	graph	and	then	removed.	Disconnection	means	that	all	the	vertex's	edges	will	be	deleted	as	well.	Example:

graph.removeVertex(luca);

Removing	an	Edge

To	remove	an	edge	from	the	current	Graph	call	the	OrientGraph.removeEdge(Edge	edge))	method.	The	edge	will	be	removed	and	the	two
vertices	will	not	be	connected	anymore.	Example:

graph.removeEdge(lucaKnowsMarko);

Set	and	get	properties

Vertices	and	Edges	can	have	multiple	properties	where	the	key	is	a	String	and	the	value	can	be	any	supported	OrientDB	types.

To	set	a	property	use	the	method	setProperty(String	key,	Object	value)).
To	get	a	property	use	the	method	Object	getProperty(String	key)).
To	get	all	the	properties	use	the	method	Set<String>	getPropertyKeys()).
To	remove	a	property	use	the	method	void	removeProperty(String	key)).

Example:

Graph	API

388

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#getEdges(
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#removeVertex(Vertex
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#removeEdge(Edge
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#setProperty(java.lang.String,-java.lang.Object
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getProperty(java.lang.String
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientVertex.html#getPropertyKeys(
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#removeProperty(java.lang.String


vertex2.setProperty("x",	30.0f);

vertex2.setProperty("y",	((float)	vertex1.getProperty(	"y"	))	/	2);

for	(String	property	:	vertex2.getPropertyKeys())	{

						System.out.println("Property:	"	+	property	+	"="	+	vertex2.getProperty(property));

}

vertex1.removeProperty("y");

Setting	Multiple	Properties

Blueprints	Extension	OrientDB	Blueprints	implementation	supports	setting	of	multiple	properties	in	one	shot	against	Vertices	and
Edges.	This	improves	performance	avoiding	to	save	the	graph	element	at	every	property	set:	setProperties(Object	...)).	Example:

vertex.setProperties(	"name",	"Jill",	"age",	33,	"city",	"Rome",	"born",	"Victoria,	TX"	);

You	can	also	pass	a	Map	of	values	as	first	argument.	In	this	case	all	the	map	entries	will	be	set	as	element	properties:

Map<String,Object>	props	=	new	HashMap<String,Object>();

props.put("name",	"Jill");

props.put("age",	33);

props.put("city",	"Rome");

props.put("born",	"Victoria,	TX");

vertex.setProperties(props);

Creating	Element	and	Properties	all	together

If	you	want	to	create	a	vertex	or	an	edge	while	setting	the	initial	properties,	the	OrientDB	Blueprints	implementation	offers	new
methods	to	do	it:

graph.addVertex("class:Customer",	"name",	"Jill",	"age",	33,	"city",	"Rome",	"born",	"Victoria,	TX");

This	creates	a	new	Vertex	of	class		Customer		with	the	properties:		name	,		age	,		city	,	and		born	.	The	same	is	for	Edges:

person1.addEdge("class:Friend",	person2,	null,	null,	"since",	"2013-07-30");

This	creates	a	new	Edge	of	class		Friend		between	vertices		person1		and		person2		with	the	property		since	.

Both	methods	accept	a		Map<String,	Object>		as	a	parameter	to	set	one	property	per	map	entry	(see	above	for	the	example).

These	methods	are	especially	useful	if	you've	declared	constraints	in	the	schema.	For	example,	a	property	cannot	be	null,	and	only	using
these	methods	will	the	validation	checks	succeed.

Using	Indices

OrientDB	allows	execution	of	queries	against	any	field	of	vertices	and	edges,	indexed	and	not-indexed.	The	first	rule	to	speed	up	queries
is	to	setup	indices	on	the	key	properties	you	use	in	the	query.	For	example,	if	you	have	a	query	that	is	looking	for	all	the	vertices	with
the	name	'OrientDB'	you	do	this:

graph.getVertices("name",	"OrientDB");

Without	an	index	against	the	property	"name"	this	execution	could	take	a	lot	of	time.	So	let's	create	a	new	index	against	the	"name"
property:

graph.createKeyIndex("name",	Vertex.class);

If	the	name	MUST	be	unique	you	can	enforce	this	constraint	by	setting	the	index	as	"UNIQUE"	(this	is	an	OrientDB	only	feature):

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("type",	"UNIQUE"));

Graph	API

389

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#setProperties(java.lang.Object...


This	constraint	will	be	applied	to	all	the	Vertex	and	sub-type	instances.	To	specify	an	index	against	a	custom	type	like	the	"Customer"
vertices	use	the	additional	parameter	"class":

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("class",	"Customer"));

You	can	also	have	both	UNIQUE	index	against	custom	types:

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("type",	"UNIQUE"),	new	Parameter("class",	"Customer"));

To	create	a	case	insensitive	index	use	the	additional	parameter	"collate":

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("type",	"UNIQUE"),	new	Parameter("class",	"Customer"),new	Parameter("

collate",	"ci"));

To	get	a	vertex	or	an	edge	by	key	prefix	use	the	class	name	before	the	property.	For	the	example	above	use		Customer.name		in	place	of
only		name		to	use	the	index	created	against	the	field		name		of	class		Customer	:

for	(Vertex	v	:	graph.getVertices("Customer.name",	"Jay"))	{

				System.out.println("Found	vertex:	"	+	v);

}

If	the	class	name	is	not	passed,	then	"V"	is	taken	for	vertices	and	"E"	for	edges:

graph.getVertices("name",	"Jay");

graph.getEdges("age",	20);

For	more	information	about	indices	look	at	Index	guide.

Using	Non-Transactional	Graphs

To	speed	up	operations	like	on	massive	insertions	you	can	avoid	transactions	by	using	a	different	class	than	OrientGraph:
OrientGraphNoTx.	In	this	case	each	operation	is	atomic	and	data	is	updated	at	each	operation.	When	the	method	returns,	the
underlying	storage	is	updated.	Use	this	for	bulk	inserts	and	massive	operations	or	for	schema	definition.

NOTE:	Using	non-transactional	graphs	could	create	corruption	in	the	graph	if	changes	are	made	in	multiple	threads	at	the	same	time.	So
use	non-transactional	graph	instances	only	for	non	multi-threaded	operations.

Configure	the	Graph
Starting	from	v1.6	OrientDB	supports	configuration	of	the	graph	by	setting	all	the	properties	during	construction:

Graph	API

390



Name Description Default
value

blueprints.orientdb.url Database	URL -

blueprints.orientdb.username User	name admin

blueprints.orientdb.password User	password admin

blueprints.orientdb.saveOriginalIds
Saves	the	original	element	IDs	by	using	the	property	id.
This	could	be	useful	on	import	of	a	graph	to	preserve
original	ids.

false

blueprints.orientdb.keepInMemoryReferences Avoids	keeping	records	in	memory	by	using	only	RIDs false

blueprints.orientdb.useCustomClassesForEdges Uses	the	Edge's	label	as	OrientDB	class.	If	it	doesn't	exist
create	it	under	the	hood. true

blueprints.orientdb.useCustomClassesForVertex Uses	Vertex's	label	as	OrientDB	class.	If	it	doesn't	exist
create	it	under	the	hood. true

blueprints.orientdb.useVertexFieldsForEdgeLabels
Stores	the	Edge's	relationships	in	the	Vertex	by	using	the
Edge's	class.	This	allows	using	multiple	fields	and	makes
faster	traversal	by	edge's	label	(class).

true

blueprints.orientdb.lightweightEdges
Uses	Lightweight	Edges.	This	avoids	creating	a	physical
document	per	edge.	Documents	are	created	only	when	the
Edges	have	properties.

false

blueprints.orientdb.autoStartTx Auto	starts	a	transaction	as	soon	as	the	graph	is	changed	by
adding/remote	vertices	and	edges	and	properties. true

Gremlin	usage

If	you	use	GREMLIN	language	with	OrientDB	remember	to	initialize	it	with:

OGremlinHelper.global().create()

Look	at	these	pages	about	GREMLIN	usage:

How	to	use	the	Gremlin	language	with	OrientDB
Getting	started	with	Gremlin
Usage	of	Gremlin	through	HTTP/RESTful	API	using	the	Rexter	project.

Multi-Threaded	Applications

Multi-threaded	applications	must	use	one	OrientGraph	instance	per	thread.	For	more	information	about	multi-threading	look	at	Java
Multi	Threading.	Also	all	the	graph	components	(Vertices	and	Edges)	are	not	thread-safe,	so	sharing	them	between	threads	could	cause
unpredictable	errors.

Blueprints	Extensions

OrientDB	is	a	Graph	Database	on	steroids	because	it	merges	the	graph,	document,	and	object-oriented	worlds	together.	Below	are	some
of	the	features	exclusive	to	OrientDB.

Custom	types

OrientDB	supports	custom	types	for	vertices	and	edges	in	an	Object	Oriented	manner.	Even	if	this	isn't	supported	directly	by
Blueprints	there	are	some	tricks	to	use	them.	Look	at	the	Graph	Schema	page	to	know	how	to	create	a	schema	and	work	against	types.

OrientDB	added	a	few	variants	to	the	Blueprints	methods	to	work	with	types.

Creating	vertices	and	edges	in	specific	clusters

Graph	API

391

http://github.com/tinkerpop/gremlin/wiki/Getting-Started
https://github.com/tinkerpop/rexster/wiki/Using-Gremlin


By	default	each	class	has	one	cluster	with	the	same	name.	You	can	add	multiple	clusters	to	the	class	to	allow	OrientDB	to	write	vertices
and	edges	on	multiple	files.	Furthermore	working	in	Distributed	Mode	each	cluster	can	be	configured	to	be	managed	by	a	different	server.

Example:

//	SAVE	THE	VERTEX	INTO	THE	CLUSTER	'PERSON_USA'	ASSIGNED	TO	THE	NODE	'USA'

graph.addVertex("class:Person,cluster:Person_usa");

Retrieve	vertices	and	edges	by	type

To	retrieve	all	the	vertices	of		Person		class	use	the	special		getVerticesOfClass(String	className)		method:

for	(Vertex	v	:	graph.getVerticesOfClass("Person"))	{

				System.out.println(v.getProperty("name"));

}

All	the	vertices	of	class	Person	and	all	subclasses	will	be	retrieved.	This	is	because	by	default	polymorphism	is	used.	If	you're	interested
ONLY	into		Person		vertices	(excluding	any	sub-types)	use	the		getVerticesOfClass(String	className,	boolean	polymorphic)		method
specifying		false		in	the	second	argument		polymorphic	:

for	(Vertex	v	:	graph.getVerticesOfClass("Person",	false))	{

				System.out.println(v.getProperty("name"));

}

The	same	variants	also	apply	to	the		getEdges()		method	as:

	getEdgesOfClass(String	className)		and
	getEdgesOfClass(String	className,	boolean	polymorphic)	

Ordered	Edges

OrientDB,	by	default,	uses	a	set	to	handle	the	edge	collection.	Sometimes	it's	better	having	an	ordered	list	to	access	the	edge	by	an
offset.	Example:

person.createEdgeProperty(Direction.OUT,	"Photos").setOrdered(true);

Every	time	you	access	the	edge	collection	the	edges	are	ordered.	Below	is	an	example	to	print	all	the	photos	in	an	ordered	way.

for	(Edge	e	:	loadedPerson.getEdges(Direction.OUT,	"Photos"))	{

		System.out.println(	"Photo	name:	"	+	e.getVertex(Direction.IN).getProperty("name")	);

}

To	access	the	underlying	edge	list	you	have	to	use	the	Document	Database	API.	Here's	an	example	to	swap	the	10th	photo	with	the	last.

//	REPLACE	EDGE	Photos

List<ODocument>	photos	=	loadedPerson.getRecord().field("out_Photos");

photos.add(photos.remove(9));

To	have	the	same	result	by	using	SQL,	execute	the	following	commands:

create	property	out_Photos	LINKLIST

alter	property	User.out_Photos	custom	ordered=true

Working	on	detached	elements

When	you	work	with	web	applications,	it’s	very	common	to	query	elements	and	render	them	to	the	user	to	let	him	apply	some	changes.
Once	the	user	updates	some	fields	and	presses	the	“save”	button,	what	happens?

Graph	API

392



Before	now	the	developer	had	to	track	the	changes	in	a	separate	structure,	load	the	vertex/edge	from	the	database,	and	apply	the	changes
to	the	element.

Starting	with	OrientDB	v1.7	we	added	two	new	methods	to	the	Graph	API	on	the	OrientElement	and	OrientBaseGraph	classes:

	OrientElement.detach()	

	OrientElement.attach()	

	OrientBaseGraph.detach(OrientElement)	

	OrientBaseGraph.attach(OrientElement)	

Detach

Detach	methods	fetch	all	the	record	content	in	RAM	and	reset	the	connection	to	the	Graph	instance.	This	allows	you	to	modify	the
element	off-line	and	to	re-attach	it	once	finished.

Attach

Once	the	detached	element	has	been	modified,	to	save	it	back	to	the	database	you	need	to	call	the		attach()		method.	It	restores	the
connection	between	the	Graph	Element	and	the	Graph	Instance.

Example

The	first	step	is	load	a	vertex	and	detach	it.

OrientGraph	g	=	OrientGraph("plocal:/temp/db");

try	{

				Iterable<OrientVertex>	results	=	g.query().has("name",	EQUALS,	"fast");

				for	(OrientVertex	v	:	results)

								v.detach();

}	finally	{

				g.shutdown();

}

After	a	while	the	element	is	updated	(from	GUI	or	by	application)

v.setProperty("name",	"super	fast!");

On	“save”	re-attach	the	element	and	save	it	to	the	database.

OrientGraph	g	=	OrientGraph("plocal:/temp/db");

try	{

				v.attach(g);

				v.save();

}	finally	{

				g.shutdown();

}

FAQ

Does	detach	go	recursively	to	detach	all	connected	elements?	No,	it	works	only	at	the	current	element	level.

Can	I	add	an	edge	against	detached	elements?	No,	you	can	only	get/set/remove	a	property	while	is	detached.	Any	other	operation
that	requires	the	database	will	throw	an	IllegalStateException.

Execute	commands

The	OrientDB	Blueprints	implementation	allows	you	to	execute	commands	using	SQL,	Javascript,	and	all	the	other	supported
languages.

SQL	queries

Graph	API

393



for	(Vertex	v	:	(Iterable<Vertex>)	graph.command(

												new	OCommandSQL("SELECT	EXPAND(	out('bought')	)	FROM	Customer	WHERE	name	=	'Jay'")).execute())	{

				System.out.println("-	Bought:	"	+	v);

}

It	is	possible	to	have	parameters	in	a	query	using	prepared	queries.

To	execute	an	asynchronous	query:

graph.command(

										new	OSQLAsynchQuery<Vertex>("SELECT	FROM	Member",

												new	OCommandResultListener()	{

														int	resultCount	=0;

														@Override

														public	boolean	result(Object	iRecord)	{

																resultCount++;

																Vertex	doc	=	graph.getVertex(	iRecord	);

															return	resultCount	<	100;

														}

												}	).execute();

SQL	commands

Along	with	queries,	you	can	execute	any	SQL	command	like		CREATE	VERTEX	,		UPDATE	,	or		DELETE	VERTEX	.	In	the	example	below	it	sets
a	new	property	called	"local"	to	true	on	all	the	Customers	that	live	in	Rome:

int	modified	=	graph.command(

										new	OCommandSQL("UPDATE	Customer	SET	local	=	true	WHERE	'Rome'	IN	out('lives').name")).execute());

If	the	command	modifies	the	schema	(like		create/alter/drop	class		and		create/alter/drop	property		commands),	remember	to	force
updating	of	the	schema	of	the	database	instance	you're	using	by	calling		reload()	:

graph.getRawGraph().getMetadata().getSchema().reload();

For	more	information	look	at	the	available	SQL	commands.

SQL	batch

To	execute	multiple	SQL	commands	in	a	batch,	use	the	OCommandScript	and	SQL	as	the	language.	This	is	recommended	when	creating
edges	on	the	server	side,	to	minimize	the	network	roundtrip:

String	cmd	=	"BEGIN\n";

cmd	+=	"LET	a	=	CREATE	VERTEX	SET	script	=	true\n";

cmd	+=	"LET	b	=	SELECT	FROM	V	LIMIT	1\n";

cmd	+=	"LET	e	=	CREATE	EDGE	FROM	$a	TO	$b	RETRY	100\n";

cmd	+=	"COMMIT\n";

cmd	+=	"return	$e";

OIdentifiable	edge	=	graph.command(new	OCommandScript("sql",	cmd)).execute();

For	more	information	look	at	SQL	Batch.

Database	functions

To	execute	a	database	function	it	must	be	written	in	Javascript	or	any	other	supported	languages.	In	the	example	below	we	imagine
having	written	the	function		updateAllTheCustomersInCity(cityName)		that	executes	the	same	update	like	above.	Note	the	'Rome'	attribute
passed	in	the		execute()		method:

graph.command(

										new	OCommandFunction("updateAllTheCustomersInCity")).execute("Rome"));

Graph	API

394



Code

To	execute	code	on	the	server	side	you	can	select	between	the	supported	language	(by	default	Javascript):

graph.command(

										new	OCommandScript("javascript",	"for(var	i=0;i<10;++i){	print('\nHello	World!');	}")).execute());

This	prints	the	line	"Hello	World!"	ten	times	in	the	server	console	or	in	the	local	console	if	the	database	has	been	opened	in	"plocal"
mode.

Access	to	the	underlying	Graph

Since	the	TinkerPop	Blueprints	API	is	quite	raw	and	doesn't	provide	ad-hoc	methods	for	very	common	use	cases,	you	might	need	to
access	the	underlying	ODatabaseGraphTx	object	to	better	use	the	graph-engine	under	the	hood.	Commons	operations	are:

Count	incoming	and	outgoing	edges	without	browsing	them	all
Get	incoming	and	outgoing	vertices	without	browsing	the	edges
Execute	a	query	using	SQL-like	language	integrated	in	the	engine

The	OrientGraph	class	provides	the	method		.getRawGraph()		to	return	the	underlying	database:	[Document	Database].

Example:

final	OrientGraph	graph	=	new	OrientGraph("plocal:C:/temp/graph/db");

try	{

		List<ODocument>	result	=	graph.getRawGraph().query(

																																			new	OSQLSynchQuery("SELECT	FROM	V	WHERE	color	=	'red'"));

}	finally	{

		graph.shutdown();

}

Security

If	you	want	to	use	OrientDB	security,	use	the	constructor	that	retrieves	the	URL,	user	and	password.	To	know	more	about	OrientDB
security	visit	Security.	By	default	the	"admin"	user	is	used.

Tuning

Look	at	the	Performance	Tuning	Blueprints	page.

Graph	API

395

https://github.com/orientechnologies/orientdb/blob/master/graphdb/src/main/java/com/tinkerpop/blueprints/impls/orient/OrientGraph.java


Graph	Factory
TinkerPop	Blueprints	standard	doesn’t	define	a	proper	"Factory"	to	get	graph	instances.	For	this	reason	OrientDB	users	that	wanted	to
use	a	pool	of	instances	had	to	mix	2	different	API:	Graph	and	Document	one.	Example:

ODatabaseDocumentPool	pool	=	new	ODatabaseDocumentPool("plocal:/temp/mydb");

OrientGraph	g	=	new	OrientGraph(pool.acquire());

Now	everything	is	simpler,	thanks	to	the	new	OrientGraphFactory	class	to	manage	graphs	in	easy	way.	These	are	the	main	features:

by	default	acts	as	a	factory	by	creating	new	database	instances	every	time
can	be	configured	to	work	as	a	pool,	by	recycling	database	instances
if	the	database	doesn’t	exist,	it’s	created	automatically	(but	in	"remote"	mode)
returns	transactional	and	non-transactional	instances
on		graph.shutdown()		the	pooled	instance	is	returned	to	the	pool	to	be	reused

This	is	the	basic	way	to	create	the	factory,	by	using	the	default	"admin"	user	(with	"admin"	password	by	default):

OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:/temp/mydb");

But	you	can	also	pass	user	and	password:

OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:/temp/mydb",	"jayminer",	"amigarocks");

To	work	with	a	recyclable	pool	of	instances	with	minimum	1,	maximum	10	instances:

OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:/temp/mydb").setupPool(1,	10);

Once	the	factory	is	configured	you	can	get	a	Graph	instance	to	start	working.	OrientGraphFactory	has	2	methods	to	retrieve	a
Transactional	and	Non-Transactional	instance:

OrientGraph	txGraph	=	factory.getTx();

OrientGraphNoTx	noTxGraph	=	factory.getNoTx();

Or	again	you	can	configure	in	the	factory	the	instances	you	want	and	use	the	get()	method	every	time:

factory.setTransactional(false);

OrientGraphNoTx	noTxGraph	=	(OrientGraphNoTx)	factory.get();

To	return	the	Graph	instance	to	the	pool,	call	the	shutdown	method	on	graph	instance.		shutdown()		will	not	close	the	graph	instance,
but	will	keep	open	and	available	for	the	next	requester:

graph.shutdown();

To	release	all	the	instances	and	free	all	the	resources	(in	case	of	pool	usage),	call	the	close():

factory.close();

Graph	API

396

https://github.com/tinkerpop/blueprints/wiki


Graph	Schema
Although	OrientDB	can	work	in	schema-less	mode,	sometimes	you	need	to	enforce	your	data	model	using	a	schema.	OrientDB	supports
schema-full	or	schema-hybrid	solutions	where	the	second	one	means	to	set	such	constraints	only	for	certain	fields	and	leave	the	user	to
add	custom	fields	to	the	records.	This	mode	is	at	class	level,	so	you	can	have	the	"Employee"	class	as	schema-full	and
"EmployeeInformation"	class	as	schema-less.

Schema-Full:	enable	the	strict-mode	at	class	level	and	set	all	the	fields	as	mandatory
Schema-Less:	create	classes	with	no	properties.	Default	mode	is	non	strict-mode	so	records	can	have	arbitrary	fields
Schema-Hybrid,	called	also	Schema-Mixed	is	the	most	used:	create	classes	and	define	some	fields	but	leave	the	record	to	define
own	custom	fields

NOTE:	Changes	to	the	schema	are	not	transactional,	so	execute	them	outside	a	transaction.

To	access	to	the	schema,	you	can	use	SQL	or	API.	Will	follow	examples	using	Java	API.

For	a	tutorial	look	at	the	following	links:

Orient	Technologies's	Blog	post	about	Using	Schema	with	Graphs

Class

A	Class,	or	type,	is	a	concept	taken	from	the	Object	Oriented	paradigm.	In	OrientDB	defines	a	type	of	record.	It's	the	closest	concept	to
a	Relational	DBMS	Table.	Class	can	be	schema-less,	schema-full	or	mixed.	A	class	can	inherit	from	another	shaping	a	tree	of	classes.
Inheritance	means	that	the	sub-class	extends	the	parent	one	inheriting	all	the	attributes	as	they	was	own.

A	class	must	have	at	least	one	cluster	defined	(as	its	default	cluster),	but	can	support	multiple	ones.	In	this	case	By	default	OrientDB
will	write	new	records	in	the	default	cluster,	but	reads	will	always	involve	all	the	defined	clusters.	When	you	create	a	new	class	by
default	a	new	physical	cluster	is	created	with	the	same	name	of	the	class	in	lower-case.

The	Graph	structure	is	based	on	two	classes:	"V"	for	Vertices	and	"E"	for	Edges.	These	class	are	automatically	built	once	a	database	is
built	using	the	mode	"graph".	If	you	don't	have	these	classes	just	create	them	(see	below).

You	can	build	a	graph	using	V	and	E	instances	but	it's	strongly	suggested	to	use	custom	types	for	vertices	and	edges.

Working	with	custom	vertex	and	edge	types

To	create	a	custom	Vertex	class	(or	type)	use	the		createVertexType(<name>)	:

OrientGraph	graph	=	new	OrientGraph("local:/temp/db");

OrientVertexType	account	=	graph.createVertexType("Account");

To	create	a	vertex	of	type	"Account"	pass	a	string	with	the	format		"class:<name>"		as	vertex	id:

Vertex	v	=	graph.addVertex("class:Account");

Since	classes	are	polymorphic	if	you	look	for	generic	Vertices	also	"Account"	instances	are	returned:

Iterable<Vertex>	allVertices	=	graph.getVertices();

To	retrieve	only	the	vertices	of	"Account"	class:

Iterable<Vertex>	accountVertices	=	graph.getVerticesOfClass("Account");

In	Blueprints	Edges	has	the	concept	of	"label"	to	distinguish	between	edge	types.	In	OrientDB	we	binds	the	concept	of	Edge	label	to
Edge	class.	To	create	an	Edge	custom	type	use	the	similar	method		createEdgeType(<name>)	:

Graph	API

397

http://orientechnologies.blogspot.it/2013/08/orientdb-using-schema-with-graphs.html


OrientGraph	graph	=	new	OrientGraph("local:/temp/db");

OrientVertexType	accountVertex	=	graph.createVertexType("Account");

OrientVertexType	addressVertex	=	graph.createVertexType("Address");

//	CREATE	THE	EDGE	TYPE

OrientEdgeType	livesEdge	=	graph.createEdgeType("Lives");

Vertex	account	=	graph.addVertex("class:Account");

Vertex	address	=	graph.addVertex("class:Address");

//	CREATE	THE	EDGE

Edge	e	=	account.addEdge("Lives",	address);

Inheritance	tree

Classes	can	extends	other	classes.	Starting	from	2.1	OrientDB	supports	also	multiple	inheritance.	To	create	a	class	that	extends	a	class
different	by	"V"	(Vertex)	and	E	(Edge)	types,	pass	the	class	name	on	construction:

graph.createVertexType(<class-name>,	<super-class>);	//	VERTEX	TYPE

graph.createEdgeType(<class-name>,	<super-class>);		//	EDGE	TYPE

Example	to	create	a	base	class	"Account"	and	two	sub-classes	"Provider"	and	"Customer":

graph.createVertexType("Account");

graph.createVertexType("Customer",	"Account");

graph.createVertexType("Provider",	"Account");

Get	custom	types

To	retrieve	such	custom	classes	use	the	methods		graph.getVertexType(<name>)		and		graph.getEdgeType(<name>)	.	Example:

OrientVertexType	accountVertex	=	graph.getVertexType("Account");

OrientEdgeType	livesEdge	=	graph.getEdgeType("Lives");

Drop	persistent	types

To	drop	a	persistent	class	use	the		dropVertexType(<name>)		and		dropVertexType(<name>)		methods.

graph.dropVertexType("Address");

graph.dropEdgeType("Lives");

Property

Properties	are	the	fields	of	the	class.	In	this	guide	Property	is	synonym	of	Field.

Create	a	property

Once	the	class	has	been	created,	you	can	define	fields	(properties).	Below	an	example:

OrientVertexType	accountVertex	=	graph.getVertexType("Account");

accountVertex.createProperty("id",	OType.INTEGER);

accountVertex.createProperty("birthDate",	OType.DATE);

Please	note	that	each	field	must	belong	to	one	of	[Types	supported	types].

Drop	the	Class	property

To	drop	a	persistent	class	property	use	the		OClass.dropProperty(String)		method.

Graph	API

398



accountVertex.dropProperty("name");

The	dropped	property	will	not	be	removed	from	records	unless	you	explicitly	delete	them	using	the	[SQLUpdate	SQL	UPDATE	+
REMOVE	statement].	Example:

accountVertex.dropProperty("name");

database.command(new	OCommandSQL("UPDATE	Account	REMOVE	name")).execute();

Constraints

Constraints	with	distributed	databases	could	cause	problems	because	some	operations	are	executed	at	2	steps:	create	+
update.	For	example	in	some	circumstance	edges	could	be	first	created,	then	updated,	but	constraints	like
MANDATORY	and	NOTNULL	against	fields	would	fail	at	the	first	step	making	the	creation	of	edges	not	possible	on
distributed	mode.

OrientDB	supports	a	number	of	constrains	for	each	field:

Minimum	value,	accepts	a	string	because	works	also	for	date	ranges		setMin()	
Maximum	value,	accepts	a	string	because	works	also	for	date	ranges		setMax()	
Mandatory,	it	must	be	specified		setMandatory()	
Readonly,	it	may	not	be	updated	after	record	is	created		setReadonly()	
Not	Null,	can't	be	NULL		setNotNull()	
Unique,	doesn't	allow	duplicates	and	speedup	searches.
Regexp,	it	must	satisfy	the	Regular	expression.
Ordered,	specify	if	edge	list	must	be	ordered,	so	a	List	will	be	used	in	place	of	Set.	The	method	is		setOrdered()	

Example:

profile.createProperty("nick",	OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);

profile.createIndex("nickIdx",	OClass.INDEX_TYPE.UNIQUE,	"nick");	//	Creates	unique	constraint

profile.createProperty("name",	OType.STRING).setMin("3").setMax("30");

profile.createProperty("surname",	OType.STRING).setMin("3").setMax("30");

profile.createProperty("registeredOn",	OType.DATE).setMin("2010-01-01	00:00:00");

profile.createProperty("lastAccessOn",	OType.DATE).setMin("2010-01-01	00:00:00");

Indexes	as	constrains

To	let	to	a	property	value	to	be	UNIQUE	use	the	UNIQUE	index	as	constraint	by	passing	a	Parameter	object	with	key	"type":

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("type",	"UNIQUE"));

This	constraint	will	be	applied	to	all	the	Vertex	and	sub-types	instances.	To	specify	an	index	against	a	custom	type	use	the	additional
parameter	"class":

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("class",	"Member"));

You	can	also	have	both	UNIQUE	index	against	custom	types:

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("type",	"UNIQUE"),	new	Parameter("class",	"Member"));

To	get	a	vertex	or	an	edge	by	key	prefix	the	class	name	to	the	field.	For	the	example	above	use	"Member.name"	in	place	of	only	"name"
to	use	the	index	created	against	the	field	"name"	of	class	"Member":

for(	Vertex	v	:	graph.getVertices("Member.name",	"Jay")	)	{

		System.out.println("Found	vertex:	"	+	v	);

}

Graph	API

399

http://en.wikipedia.org/wiki/Regular_expression


If	the	class	name	is	not	passed,	then	"V"	is	taken	for	vertices	and	"E"	for	edges:

graph.getVertices("name",	"Jay");

graph.getEdges("age",	20);

For	more	information	about	indexes	look	at	Index	guide.

(Go	back	to	Graph-Database-Tinkerpop)

Graph	API

400



Partitioned	graphs
This	tutorial	explains	step-by-step	how	to	create	partitioned	graphs	using	the	Record	Level	Security	feature	introduced	in	OrientDB
1.2.0.	This	feature	is	so	powerful	we	can	totally	separate	database's	records	as	sand-boxes	where	each	"Restricted"	records	can't	be
accessed	by	non	authorized	users.	This	tutorial	demonstrates	this	sand-boxes	works	well	also	with	the	GraphDB	API	and	the
TinkerPop	stack.	Partitioning	graphs	allows	to	build	real	Multi-tenant	applications	in	a	breeze.

Requirements:

OrientDB	1.2.0-SNAPSHOT	or	higher
TinkerPop	Blueprints	2.2.0	or	higher.

Create	a	new	empty	graph	database
First	open	the	console	of	the	GraphDB	Edition	and	create	the	new	database	"blog"	of	type	"graph"	against	the	local	file-system:

$	cd	$ORIENTDB_HOME/bin

$	console.sh

OrientDB	console	v.1.2.0-SNAPSHOT	www.orientechnologies.com

Type	'help'	to	display	all	the	commands	supported.

Installing	extensions	for	GREMLIN	language	v.2.2.0-SNAPSHOT

orientdb>	CREATE	DATABASE	local::../databases/blog	admin	admin	local	graph

Creating	database	[local:../databases/blog]	using	the	storage	type	[local]...

Database	created	successfully.

Current	database	is:	local:../databases/blog

Enable	graph	partitioning
Now	turn	on	partitioning	against	graph	by	letting	classes	V	(Vertex)	and	E	(Edge)	to	extend	the	éORestricted*	class.	In	this	way	any
access	to	Vertex	and	Edge	instances	can	be	restricted:

ALTER	CLASS	V	superclass	orestricted

Class	updated	successfully

ALTER	CLASS	E	superclass	orestricted

Class	updated	successfully

Create	2	users

Now	let's	go	creating	2	users:	"luca"	and	"steve".	First	ask	the	current	roles	in	database	to	know	the	"writer"	role's	rid:

Graph	API

401

http://en.wikipedia.org/wiki/Multitenancy


SELECT	FROM	orole

	---+------+--------+------+---------------------------------------------------------------+----------------

		#	|	RID		|	name			|	mode	|	rules																																																									|	inheritedRole

	---+------+--------+------+---------------------------------------------------------------+-----------------

		0	|	#4:0	|	admin		|	1				|	{}																																																												|	null

		1	|	#4:1	|	reader	|	0				|	{database=2,	database.schema=2,	database.cluster.internal=2,		|	null

				|						|								|						|	{database.cluster.orole=2,	database.cluster.ouser=2,										|

				|									|								|						|	database.class.*=2,	database.cluster.*=2,	database.command=2,	|

				|							|								|						|	database.hook.record=2																																								|

		2	|	#4:2	|writer		|	0				|	{database=2,	database.schema=7,	database.cluster.internal=2,		|	null

				|						|								|						|		database.cluster.orole=2,	database.cluster.ouser=2,										|

				|						|								|						|		database.class.*=15,	database.cluster.*=15,																		|

				|						|								|						|		database.command=15,	database.hook.record=15}																|

	---+------+--------+------+---------------------------------------------------------------+------------------

3	item(s)	found.	Query	executed	in	0.045	sec(s).

Found	it,	it's	the	#4:2.	Not	create	2	users	with	as	first	role	#4:2	(writer):

INSERT	INTO	ouser	SET	name	=	'luca',	status	=	'ACTIVE',	password	=	'luca',	roles	=	[#4:2]

Inserted	record	'OUser#5:4{name:luca,password:{SHA-256}D70F47790F689414789EEFF231703429C7F88A10210775906460EDBF38589D90,roles:

[1]}	v1'	in	0,001000	sec(s).

INSERT	INTO	ouser	SET	name	=	'steve',	status	=	'ACTIVE',	password	=	'steve',	roles	=	[#4:2]

Inserted	record	'OUser#5:3{name:steve,password:{SHA-256}F148389D080CFE85952998A8A367E2F7EAF35F2D72D2599A5B0412FE4094D65C,roles

:[1]}	v1'	in	0,001000	sec(s).

Create	a	simple	graph	as	user	'Luca'

Now	it's	time	to	disconnect	and	reconnect	to	the	blog	database	using	the	new	"luca"	user:

DISCONNECT

Disconnecting	from	the	database	[blog]...OK

CONNECT	local:../databases/blog	luca	luca

Connecting	to	database	[local:../databases/blog]	with	user	'luca'...OK

Now	create	2	vertices:	a	Restaurant	and	a	Pizza:

CREATE	VERTEX	SET	label	=	'food',	name	=	'Pizza'

Created	vertex	'V#9:0{label:food,name:Pizza,_allow:[1]}	v0'	in	0,001000	sec(s).

CREATE	VERTEX	SET	label	=	'restaurant',	name	=	"Dante's	Pizza"

Created	vertex	'V#9:1{label:restaurant,name:Dante's	Pizza,_allow:[1]}	v0'	in	0,000000	sec(s).

Now	connect	these	2	vertices	with	an	edge	labelled	"menu":

CREATE	EDGE	FROM	#9:0	TO	#9:1	SET	label	=	'menu'

Created	edge	'[E#10:0{out:#9:0,in:#9:1,label:menu,_allow:[1]}	v1]'	in	0,003000	sec(s).

To	check	if	everything	is	ok	execute	a	select	against	vertices:

Graph	API

402



SELECT	FROM	V

	---+------+------------+---------------+-----------------

		#	|	RID		|	label						|	name										|	_allow	|	out

	---+------+------------+---------------+--------+--------

		0	|	#9:0	|	food							|	Pizza									|	[1]				|	[1]

		1	|	#9:1	|	restaurant	|	Dante's	Pizza	|	[1]				|	null

	---+------+------------+---------------+--------+--------

	2	item(s)	found.	Query	executed	in	0.034	sec(s).

Create	a	simple	graph	as	user	'Steve'
Now	let's	connect	to	the	database	using	the	'Steve'	user	and	check	if	there	are	vertices:

DISCONNECT

Disconnecting	from	the	database	[blog]...OK

CONNECT	local:../databases/blog	steve	steve

Connecting	to	database	[local:../databases/blog]	with	user	'steve'...OK

SELECT	FROM	V

0	item(s)	found.	Query	executed	in	0.0	sec(s).

Ok,	no	vertices	found.	Try	to	create	something:

CREATE	VERTEX	SET	label	=	'car',	name	=	'Ferrari	Modena'

	Created	vertex	'V#9:2{label:car,name:Ferrari	Modena,_allow:[1]}	v0'	in	0,000000	sec(s).

CREATE	VERTEX	SET	label	=	'driver',	name	=	'steve'

Created	vertex	'V#9:3{label:driver,name:steve,_allow:[1]}	v0'	in	0,000000	sec(s).

CREATE	EDGE	FROM	#9:2	TO	#9:3	SET	label	=	'drive'

Created	edge	'[E#10:1{out:#9:2,in:#9:3,label:drive,_allow:[1]}	v1]'	in	0,002000	sec(s).

Now	check	the	graph	just	created:

SELECT	FROM	V

	---+------+--------+----------------+--------+------

		#	|	RID		|	label		|	name											|	_allow	|	out

	---+------+--------+----------------+--------+------

		0	|	#9:2	|	car				|	Ferrari	Modena	|	[1]				|	[1]

		1	|	#9:3	|	driver	|	steve										|	[1]				|	null	

	---+------+--------+----------------+--------+------

2	item(s)	found.	Query	executed	in	0.034	sec(s).

The	"Steve"	user	doesn't	see	the	vertices	and	edges	creates	by	other	users!

What	happen	if	we	try	to	connect	2	vertices	of	different	users?

CREATE	EDGE	FROM	#9:2	TO	#9:0	SET	label	=	'security-test'

Error:	com.orientechnologies.orient.core.exception.OCommandExecutionException:	Error	on	execution	of	command:	OCommandSQL	[text

=create	edge	from	#9:2	to	#9:0	set	label	=	'security-test']

Error:	java.lang.IllegalArgumentException:	Source	vertex	'#9:0'	does	not	exist

The	partition	is	totally	isolated	and	OrientDB	thinks	the	vertex	doesn't	exist	while	it's	present,	but	invisible	to	the	current	user.

Graph	API

403



TinkerPop	Stack

Record	Level	Security	feature	is	very	powerful	because	acts	at	low	level	inside	the	OrientDB	engine.	This	is	why	everything	works	like
a	charm,	even	the	TinkerPop	stack.

Now	try	to	display	all	the	vertices	and	edges	using	Gremlin:

gremlin	g.V

[v[#9:2],	v[#9:3]]

Script	executed	in	0,448000	sec(s).

gremlin	g.E

e[#10:1][#9:2-drive->#9:3]

Script	executed	in	0,123000	sec(s).

The	same	is	using	other	technologies	that	use	the	!TinkerPop	Blueprints:	TinkerPop	Rexter,	TinkerPop	Pipes,	TinkerPop	Furnace,
TinkerPop	Frames	and	ThinkAurelius	Faunus.

Graph	API

404

https://github.com/tinkerpop/rexster/wiki
https://github.com/tinkerpop/pipes/wiki
https://github.com/tinkerpop/furnace/wiki
https://github.com/tinkerpop/frames/wiki
http://thinkaurelius.github.com/faunus/


Graph	Database	Comparison
This	is	a	comparison	page	between	GraphDB	projects.	To	know	more	about	the	comparison	of	DocumentDBs	look	at	this	comparison.

We	want	to	keep	it	always	updated	with	the	new	products	and	more	features	in	the	matrix.	If	any	information	about	any	product	is	not
updated	or	wrong,	please	change	it	if	you've	the	permissions	or	send	an	email	to	any	contributors	with	the	link	of	the	source	of	the	right
information.

Feature	matrix

Feature OrientDB Neo4j DEX InfiniteGraph

Release 1.0-SNAPSHOT 1.7M03 4.5.1 2.1

Product
Web	Site http://www.orientdb.org http://www.neo4j.org http://www.sparsity-

technologies.com http://objectivity.com/INFINITEGRAPH

License Open	Source	Apache	2
Open	Source	GPL,
Open	Source	AGPL
and	Commercial

Commercial Commercial

Query
languages Extended	SQL,	Gremlin Cypher	Gremlin Not	available,	only

via	API Gremlin,	Java	API

Transaction
support 	ACID 	ACID 	ACID

Protocols
Embedded	via	Java	API,
remote	as	Binary	and
REST

Embedded	via	Java
API	and	remote	via
REST

? Embedded	via	Java	API,	Remote	database
access	via	TCP

Replication Multi-Master Master-Slave No

Custom
types

	Supports
custom	types	and
polymorphism

	Supports	custom	types	and
polymorphism

Self	loops

Blueprints	support
The	products	below	all	support	the	TinkerPop	Blueprints	API	at	different	level	of	compliance.	Below	the	supported	ones.	As	you	can
see	OrientDB	is	the	most	compliant	implementation	of	TinkerPop	Blueprints!

Graph	API

405

http://www.orientdb.org
http://www.neo4j.org
http://www.sparsity-technologies.com
http://objectivity.com/INFINITEGRAPH
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/agpl-3.0.html
http://objectivity.com/support
https://github.com/tinkerpop/gremlin/wiki
http://docs.neo4j.org/chunked/1.4/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
https://github.com/tinkerpop/blueprints/wiki/
http://www.tinkerpop.com


Feature OrientDB Neo4j DEX

Release 1.0-SNAPSHOT 1.7M03 4.5.1 2.1

Product	Web	Site http://www.orientdb.org http://www.neo4j.org http://www.sparsity-
technologies.com http://objectivity.com/INFINITEGRAPH

Implementation	details OrientDB	impl Neo4j	impl DEX	impl InfiniteGraph	impl

allowsDuplicateEdges ?

allowsSelfLoops ?

isPersistent ?

supportsVertexIteration ?

supportsEdgeIteration ?

supportsVertexIndex ?

supportsEdgeIndex ?

ignoresSuppliedIds ?

supportsTransactions ?

allowSerializableObjectProperty ?

allowBooleanProperty ?

allowDoubleProperty ?

allowFloatProperty ?

allowIntegerProperty ?

allowPrimitiveArrayProperty ?

allowUniformListProperty ?

allowMixedListProperty ?

allowLongProperty ?

allowMapProperty ?

allowStringProperty ?

Graph	API

406

http://www.orientdb.org
http://www.neo4j.org
http://www.sparsity-technologies.com
http://objectivity.com/INFINITEGRAPH
https://github.com/tinkerpop/blueprints/wiki/OrientDB-Implementation
https://github.com/tinkerpop/blueprints/wiki/Neo4j-Implementation
https://github.com/tinkerpop/blueprints/wiki/Dex-Implementation
https://github.com/tinkerpop/blueprints/wiki/InfiniteGraph-Implementation


Micro	benchmark
The	table	below	reports	the	time	to	complete	the	Blueprints	Test	Suite.	This	is	not	a	benchmark	between	GraphDBs	and
unfortunately	doesn't	exist	a	public	benchmark	shared	by	all	the	vendors	:-(

So	this	table	is	just	to	give	an	idea	about	the	performance	of	each	implementation	in	every	single	module	it	supports.	The	support	is
based	on	the	compliance	level	reported	in	the	table	above.	For	the	test	default	settings	were	used.	To	run	these	tests	on	your	own
machine	follow	these	simple	instructions.

Lower	means	faster.	In	bold	the	fastest	implementation	for	each	module.

Module OrientDB Neo4j DEX InfiniteGraph

Release 1.4 1.9.M05 4.8.0 2.1

Product	Web	Site http://www.orientdb.org http://www.neo4j.org http://www.sparsity-
technologies.com http://objectivity.com/INFINITEGRAPH

VertexTestSuite 1,524.06 1,595.27 4,488.28 ?

EdgeTestSuite 1,252.21 1,253.73 3,865.85 ?

GraphTestSuite 1,664.75 2,400.34 4,680.80 ?

QueryTestSuite 306.58 188.52 612.73 ?

IndexableGraphTestSuite 4,620.61 11,299.02 1070.75 ?

IndexTestSuite 2,072.23 5,239.92 not	supported ?

TransactionalGraphTestSuite 1,573.93 3,579.50 not	supported ?

KeyIndexableGraphTestSuite 571.42 845.84 not	supported ?

GMLReaderTestSuite 778.08 682.83 not	supported ?

GraphMLReaderTestSuite 814.38 864.70 2,316.79 ?

GraphSONReaderTestSuite 424.77 480.81 1223.24 ?

All	the	tests	are	executed	against	the	same	HW/SW	configuration:	MacBook	Pro	(Retina)	2013	-	16	GB	Ram	-	MacOSX	12.3.0	-	SDD
7200rpm.	Similar	results	executed	on	Linux	CentOS.

Run	the	tests

To	run	the	Blueprints	Test	Suite	you	need	java6+,	Apache	Maven	and	Git.	Follow	these	simple	steps:

1.	 	>	git	clone	git://github.com/tinkerpop/blueprints.git	
2.	 	>	mvn	clean	install	

Graph	API

407

http://wiki.infinitegraph.com/2.1/w/index.php?title=Understanding_InfiniteGraph_Blueprints_Capabilities_and_Limitations
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model-Test-Suite
http://www.orientdb.org
http://www.neo4j.org
http://www.sparsity-technologies.com
http://objectivity.com/INFINITEGRAPH
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model-Test-Suite


Lightweight	Edges
OrientDB	supports	Lightweight	Edges	as	regular	edges,	but	without	an	identity	on	database.	Lightweight	edges	can	be	used	only	when
no	properties	are	defined	on	edge.

By	avoiding	the	creation	of	the	underlying	Document,	Lightweight	Edges	have	the	same	impact	on	speed	and	space	as	with	Document
LINKs,	but	with	the	additional	bonus	to	have	bidirectional	connections.	This	means	you	can	use	the	MOVE	VERTEX	command	to
refactor	your	graph	with	no	broken	LINKs.

Regular	Edge	representation

Look	at	the	figure	below.	With	Regular	Edges	both	vertices	(#10:33	and	#10:12)	are	connected	through	an	Edge	Document	(#17:11).	The
outgoing		out_Friend		property	in	#10:33	document	is	a	set	of	LINKs	with	#17:11	as	item.	Instead,	in	document	#10:12	the	relationship
is	as	incoming,	so	the	property		in_Friend		is	used	with	the	LINK	to	the	same	Edge	#17:11.

When	you	cross	this	relationship,	OrientDB	loads	the	Edge	document	#17:11	to	resolve	the	other	part	of	the	relationship.

+---------------------+				+---------------------+				+---------------------+		

|			Account	Vertex				|				|					Friend	Edge					|				|				Account	Vertex			|

|							#10:33								|				|							#17:11								|				|							#10:12								|

+---------------------+				+---------------------+				+---------------------+

|out_Friend:	[#17:11]	|<-->|out:	[#10:33]								|				|																					|

+---------------------+				|									in:	[#10:12]|<-->|in_Friend:	[#17:11]		|

																											+---------------------+				+---------------------+

Lightweight	Edge	representation
With	Lightweight	Edge,	instead,	there	is	no	Edge	document,	but	both	vertices	(#10:33	and	#10:12)	are	connected	directly	to	each	other.
The	outgoing		out_Friend		property	in	#10:33	document	contains	the	direct	LINK	to	the	vertex	#10:12.	The	same	happens	on	Vertex
document	#10:12,	where	the	relationship	is	as	incoming	and	the	property		in_Friend		contains	the	direct	LINK	to	vertex	#10:33.

When	you	cross	this	relationship,	OrientDB	doesn't	need	to	load	any	edge	to	resolve	the	other	part	of	the	relationship.	Furthermore	no
edge	document	is	created.

+---------------------+				+---------------------+

|			Account	Vertex				|				|				Account	Vertex			|

|							#10:33								|				|							#10:12								|

+---------------------+				+---------------------+

|out_Friend:	[#10:12]	|<-->|in_Friend:	[#10:33]		|

+---------------------+				+---------------------+

Starting	from	OrientDB	v2.0,	Lightweight	Edges	are	disabled	by	default	with	new	databases.	This	is	because	having	regular	edges
makes	easier	to	act	on	edges	from	SQL.	Many	issues	from	beginner	users	were	on	Lightweight	Edges.	If	you	want	to	use	Lightweight
Edges,	enable	it	via	API:

OrientGraph	g	=	new	OrientGraph("mygraph");

g.setUseLightweightEdges(true);

Or	via	SQL:

ALTER	DATABASE	custom	useLightweightEdges=true

Changing		useLightweightEdges		setting	to		true	,	will	not	transform	previous	edges,	but	all	new	edges	could	be	Lightweight	Edges	if
they	meet	the	requirements.

When	use	Lightweight	Edges?

Graph	API

408



These	are	the	PROS	and	CONS	of	Lightweight	Edges	vs	Regular	Edges:

PROS:

faster	in	creation	and	traversing,	because	don't	need	an	additional	document	to	keep	the	relationships	between	2	vertices

CONS:

cannot	store	properties
harder	working	with	Lightweight	edges	from	SQL,	because	there	is	no	a	regular	document	under	the	edge

Graph	API

409



Document	API
To	use	the	Document	API	include	the	following	jars	in	your	classpath:

orientdb-core-*.jar

If	you're	using	the	Document	Database	interface	connected	to	a	remote	server	(not	local/embedded	mode)	include	also:

orientdb-client-*.jar

orientdb-enterprise-*.jar

Introduction
The	Orient	Document	DB	is	the	base	of	higher-level	implementation	like	Object-Database	and	Graph-Database.	The	Document
Database	API	has	the	following	features:

supports	Multi	threads	access
supports	Transactions
supports	Queries
supports	Traverse
very	flexible:	can	be	used	in	schema-full,	schema-less	or	schema-hybrid	mode.

This	is	an	example	to	store	2	linked	documents	in	the	database:

//	OPEN	THE	DATABASE

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("remote:localhost/petshop").open("admin",	"admin");

//	CREATE	A	NEW	DOCUMENT	AND	FILL	IT

ODocument	doc	=	new	ODocument("Person");

doc.field(	"name",	"Luke"	);

doc.field(	"surname",	"Skywalker"	);

doc.field(	"city",	new	ODocument("City").field("name","Rome").field("country",	"Italy")	);

//	SAVE	THE	DOCUMENT

doc.save();

db.close();

This	is	the	very	first	example.	While	the	code	is	pretty	clear	and	easy	to	understand	please	note	that	we	haven't	declared	the	type
"Person"	before	now.	When	an	ODocument	instance	is	saved,	the	declared	type	"Person"	will	be	created	without	constraints.	To	declare
persistent	classes	look	at	the	Schema	management.

Use	the	database
Before	to	execute	any	operation	you	need	an	opened	database	instance.	You	can	open	an	existent	database	or	create	a	new	one.
Databases	instances	aren't	thread	safe,	so	use	one	database	per	thread.

Before	to	open	or	create	a	database	instance	you	need	a	valid	URL.	URL	is	where	the	database	is	available.	URL	says	what	kind	of
database	will	be	used.	For	example	memory:	means	in-memory	only	database,	plocal:	is	for	embedded	ones	and	remote:	to	use	a	remote
database	hosted	on	an	up	&	running	DBServer	OrientDB	Server	instance.	For	more	information	look	at	Database	URL.

Database	instances	must	be	closed	once	finished	to	release	precious	resources.	To	assure	it	the	most	common	usage	is	to	enclose	all	the
database	operations	inside	a	try/finally	block:

Document	API

410



ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/test");

db.open("admin",	"admin");

try	{

		//	YOUR	CODE

}	finally	{

		db.close();

}

If	you	are	using	a	remote	storage	(url	starts	with	"remote:")	assure	the	server	is	up	&	running	and	include	the	orientdb-client.jar	file
in	your	classpath.

Multi-threading

The	ODatabaseDocumentTx	class	is	non	thread-safe.	For	this	reason	use	different	ODatabaseDocumentTx	instances	by	multiple
threads.	They	will	share	the	same	Storage	instance	(with	the	same	URL)	and	the	same	level-2	cache.	For	more	information	look	at	Multi-
Threading	with	Java.

Create	a	new	database

In	local	filesystem

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx	("plocal:/tmp/databases/petshop").create();

On	a	remote	server

To	create	a	database	in	a	remote	server	you	need	the	user/password	of	the	remote	OrientDB	Server	instance.	By	default	the	"root"	user
is	created	on	first	startup	of	the	server.	Check	this	in	the	file	config/orientdb-server-config.xml,	where	you	will	also	find	the	password.

To	create	a	new	document	database	called	dbname	on	dbhost	using	filesystem	storage	(as	opposed	to	in-memory	storage):

new	OServerAdmin("remote:dbhost")

				.connect("root",	"kjhsdjfsdh128438ejhj")

				.createDatabase("dbname","document","local").close();

To	create	a	graph	database	replace	"document"	with	"graph".

To	store	the	database	in	memory	replace	"local"	with	"memory".

Open	a	database

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx	("remote:localhost/petshop").open("admin",	"admin");

The	database	instance	will	share	the	connection	versus	the	storage.	if	it's	a	"local"	storage,	then	all	the	database	instances	will	be
synchronized	on	it.	If	it's	a	"remote"	storage	then	the	network	connection	will	be	shared	among	all	the	database	instances.

Use	the	connection	Pool

One	of	most	common	use	cases	is	to	reuse	the	database,	avoiding	to	create	it	every	time.	It's	also	the	typical	scenario	of	the	Web
applications.	Instead	of	creating	a	new	ODatabaseDocumentTx	instance	all	the	times,	get	an	available	instance	from	the	pool:

Document	API

411



//	OPEN	THE	DATABASE

ODatabaseDocumentTx	db	=	ODatabaseDocumentPool.global().acquire("remote:localhost/petshop",	"admin",	"admin");

try	{

		//	YOUR	CODE

		...

}	finally	{

		db.close();

}

Remember	to	always	close	the	database	instance	using	the		close()		database	method	like	a	classic	non-pooled	database.	In	this	case	the
database	will	be	not	closed	for	real,	but	the	instance	will	be	released	to	the	pool,	ready	to	be	reused	by	future	requests.	The	best	is	to	use
a	try/finally	block	to	avoid	cases	where	the	database	instance	remains	open,	just	like	the	example	above.

Global	pool

By	default	OrientDB	provide	a	global	pool	declared	with	maximum	20	instances.	Use	it	with:		ODatabaseDocumentPool.global()	.

Use	your	pool

To	create	your	own	pool	build	it	and	call	the		setup(min,	max)		method	to	define	minimum	and	maximum	managed	instances.	Remember
to	close	it	when	the	pool	is	not	more	used.	Example:

//	CREATE	A	NEW	POOL	WITH	1-10	INSTANCES

ODatabaseDocumentPool	pool	=	new	ODatabaseDocumentPool();

pool.setup(1,10);

...

pool.close();

Schema
OrientDB	can	work	in	schema-full	(like	RDBMS),	schema-less	(like	many	NoSQL	Document	databases)	and	in	schema-hybrid	mode.
For	more	information	about	the	Schema	look	at	the	Schema	page.

To	use	the	schema	with	documents	create	the	ODocument	instance	using	the		ODocument(String	className)		constructor	passing	the
class	name.	If	the	class	hasn't	been	declared,	it's	created	automatically	with	no	fields.	This	can't	work	during	transaction	because	schema
changes	can't	be	applied	in	transactional	context.

Security
Few	NoSQL	solutions	supports	security.	OrientDB	does	it.	To	know	more	about	it	look	at	Security.

To	manage	the	security	get	the	Security	Manager	and	use	it	to	work	with	users	and	roles.	Example:

OSecurity	sm	=	db.getMetadata().getSecurity();

OUser	user	=	sm.createUser("god",	"god",	new	String[]	{	"admin"	}	);

To	get	the	reference	to	the	current	user	use:

OUser	user	=	db.getUser();

Create	a	new	document
ODocument	instances	can	be	saved	by	calling	the	save()	method	against	the	object	itself.	Note	that	the	behaviour	depends	on	the	running
transaction,	if	any.	See	Transactions.

Document	API

412



ODocument	animal	=	new	ODocument("Animal");

animal.field(	"name",	"Gaudi"	);

animal.field(	"location",	"Madrid"	);

animal.save();

Retrieve	documents

Browse	all	the	documents	in	a	cluster

for	(ODocument	doc	:	database.browseCluster("CityCars"))	{

		System.out.println(	doc.field("model")	);

Browse	all	the	records	of	a	class

for	(ODocument	animal	:	database.browseClass("Animal"))	{

		System.out.println(	animal.field(	"name"	)	);

Count	records	of	a	class

long	cars	=	database.countClass("Car");

v=	Count	records	of	a	cluster	==

long	cityCars	=	database.countCluster("CityCar");

Execute	a	query

Although	OrientDB	is	part	of	the	NoSQL	database	community,	it	supports	a	subset	of	SQL	that	allows	it	to	process	links	to	documents
and	graphs.

To	know	more	about	the	SQL	syntax	supported	go	to:	SQL-Query.

Example	of	a	SQL	query:

List<ODocument>	result	=	db.query(

		new	OSQLSynchQuery<ODocument>("select	*	from	Animal	where	ID	=	10	and	name	like	'G%'"));

Asynchronous	query

OrientDB	supports	asynchronous	queries.	The	result	is	not	collected	and	returned	like	synchronous	ones	(see	above)	but	a	callback	is
called	every	time	a	record	satisfy	the	predicates:

Document	API

413



database.command(

		new	OSQLAsynchQuery<ODocument>("select	*	from	animal	where	name	=	'Gipsy'",

				new	OCommandResultListener()	{

						resultCount	=	0;

						@Override

						public	boolean	result(Object	iRecord)	{

								resultCount++;

								ODocument	doc	=	(ODocument)	iRecord;

								//	DO	SOMETHING	WITH	THE	DOCUMENT

								return	resultCount	>	20	?	false	:	true;

						}

						@Override

						public	void	end()	{

						}

				})).execute();

Asynchronous	queries	are	useful	to	manage	big	result	sets	because	don't	allocate	memory	to	collect	results.

Non-Blocking	query	(since	v2.1)

Both	Synchronous	and	Asynchronous	queries	are	blocking,	that	means	that	the	first	instruction	you	have	after	db.query()	or
db.command().execute()	will	be	executed	only	after	you	received	all	the	result-set	or	last	callback	was	invoked.	OrientDB	also	supports
non-blocking	queries.	The	API	is	very	similar	to	asynchronous	queries	(you	have	a	callback	that	is	invoked	for	every	record	in	the
result-set),	but	the	behavior	is	completely	different:	the	execution	of	your	current	thread	continues	without	blocking	on	the	db.query()
or	db.command().execute(),	and	the	callback	is	invoked	by	a	different	thread.	That	means	that	in	the	meantime	you	can	close	your	db
instance	and	keep	on	receiving	callbacks	from	the	query	result.

Future	future	=	database.command(new	OSQLNonBlockingQuery<Object>("select	*	from	animal	where	name	=	'Gipsy'",

				new	OCommandResultListener()	{

						resultCount	=	0;

						@Override

						public	boolean	result(Object	iRecord)	{

								resultCount++;

								ODocument	doc	=	(ODocument)	iRecord;

								//	DO	SOMETHING	WITH	THE	DOCUMENT

								System.out.println("callback	"+resultCount+"	invoked");

								return	resultCount	>	20	?	false	:	true;

						}

						@Override

						public	void	end()	{

						}

				})).execute();

System.out.println("query	executed");

future.get();

the	result	of	this	snippet	of	code	will	be	something	like

query	executed

callback	0	invoked

callback	1	invoked

callback	2	invoked

callback	3	invoked

callback	4	invoked

but	it	could	also	be

Document	API

414



callback	0	invoked

callback	1	invoked

query	executed

callback	2	invoked

callback	3	invoked

callback	4	invoked

depending	on	race	conditions	on	the	two	parallel	threads	(the	one	that	fires	query	execution	and	then	continues	with	"query	executed",
and	the	other	one	that	invokes	callbacks).

	future.get();		is	a	blocking	call	that	returns	only	after	last	callback	invocation	(you	can	avoid	this	if	you	don't	need	to	know	when	the
query	terminates).

Prepared	query

Prepared	query	are	quite	similar	to	the	Prepared	Statement	of	JDBC.	Prepared	queries	are	pre-parsed	so	on	multiple	execution	of	the
same	query	are	faster	than	classic	SQL	queries.	Furthermore	the	pre-parsing	doesn't	allow	SQL	Injection.	Note:	prepared	queries
(parameter	substition)	only	works	with	select	statements	(but	not	select	statements	within	other	types	of	queries	such	as	"create
vertex").

Prepared	query	uses	two	kinds	of	markers	to	substitute	parameters	on	execution:

?	is	positional	parameter

:<par>	is	named	parameter

Example	of	positional	parameters:

OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Profile	where	name	=	?	and	surname	=	?");

List<ODocument>	result	=	database.command(query).execute("Barack",	"Obama");

Example	of	named	parameters:

OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Profile	where	name	=	:name	and

		surname	=	:surname");

Map<String,Object>	params	=	new	HashMap<String,Object>();

params.put("name",	"Barack");

params.put("surname",	"Obama");

List<ODocument>	result	=	database.command(query).execute(params);

Right	usage	of	the	graph

OrientDB	is	a	graph	database.	This	means	that	traversing	is	very	efficient.	You	can	use	this	feature	to	optimize	queries.	A	common
technique	is	the	Pivoting.

SQL	Commands

To	execute	SQL	commands	use	the		command()		method	passing	a	OCommandSQL	object:

int	recordsUpdated	=	db.command(

		new	OCommandSQL("update	Animal	set	sold	=	false")).execute();

If	the	command	modifies	the	schema	(like		create/alter/drop	class		and		create/alter/drop	property		commands),	remember	to	force
updating	of	the	schema	of	the	database	instance	you're	using:

db.getMetadata().getSchema().reload();

For	more	information	look	at	the	available	SQL	commands.

Document	API

415



Traverse	records

Traversing	is	the	operation	to	cross	documents	by	links	(relationships).	OrientDB	is	a	graph	database	so	this	operation	is	much	much
more	efficient	than	executing	a	JOIN	in	the	relational	databases.	To	know	more	about	traversing	look	at	the	Java	traverse	API.

The	example	below	traverses,	for	each	movie,	all	the	connected	records	up	to	the	5th	depth	level.

for	(OIdentifiable	id	:	new	OTraverse()

														.field("in").field("out")

														.target(	database.browseClass("Movie").iterator()	)

														.predicate(new	OCommandPredicate()	{

				public	boolean	evaluate(ORecord<?>	iRecord,	OCommandContext	iContext)	{

						return	((Integer)	iContext.getVariable("depth"))	<=	5;

				}

		}))	{

		System.out.println(id);

}

Update	a	document
Any	persistent	document	can	be	updated	by	using	the	Java	API	and	then	by	calling	the	db.save()	method.	Alternatively,	you	can	call	the
document's	save()	method	to	synchronize	the	changes	to	the	database.	The	behaviour	depends	on	the	transaction	begun,	if	any.	See
Transactions.

animal.field(	"location",	"Nairobi"	);

animal.save();

OrientDB	will	update	only	the	fields	really	changed.

Example	of	how	to	increase	the	price	of	all	the	animals	by	5%:

for	(ODocument	animal	:	database.browseClass("Animal"))	{

		animal.field(	"price",	animal.field(	"price"	)	*	105	/	100	);

		animal.save();

}

Delete	a	document
To	delete	a	document	call	the	delete()	method	on	the	document	instance	that's	loaded.	The	behaviour	depends	on	the	transaction	begun,
if	any.	See	Transactions.

animal.delete();

Example	of	deletion	of	all	the	documents	of	class	"Animal".

for	(ODocument	animal	:	database.browseClass("Animal"))

		animal.delete();

Transactions
Transactions	are	a	practical	way	to	group	a	set	of	operations	together.	OrientDB	supports	ACID	transactions	so	that	all	or	none	of	the
operations	succeed.	The	database	always	remains	consistent.	For	more	information	look	at	Transactions.

Transactions	are	managed	at	the	database	level.	Nested	transactions	are	currently	not	supported.	A	database	instance	can	only	have	one
transaction	running.	The	database's	methods	to	handle	transactions	are:

Document	API

416

http://en.wikipedia.org/wiki/ACID


	begin()		to	start	a	new	transaction.	If	a	transaction	was	already	running,	it's	rolled	back	and	a	new	one	is	begun.
	commit()		makes	changes	persistent.	If	an	error	occurs	during	commit	the	transaction	is	rolled	back	and	an	OTransactionException
exception	is	raised.
	rollback()		aborts	a	transaction.	All	the	changes	will	be	lost.

Optimistic	approach

The	current	release	of	OrientDB	only	supports	OPTIMISTIC	transactions	where	no	lock	is	kept	and	all	operations	are	checked	at
commit	time.	This	improves	concurrency	but	can	throw	an		OConcurrentModificationException		exception	in	the	case	where	records	are
modified	by	concurrent	clients	or	threads.	In	this	scenario,	the	client	code	can	reload	the	updated	records	and	repeat	the	transaction.

Optimistic	transactions	keep	all	the	changes	in	memory	in	the	client.	If	you're	using	remote	storage	no	changes	are	sent	to	the	server
until		commit()		is	called.	All	the	changes	will	be	transferred	in	a	block.	This	reduces	network	latency,	speeds-up	the	execution,	and
increases	concurrency.	This	is	a	big	difference	compared	to	most	Relational	DBMS	where,	during	a	transaction,	changes	are	sent
immediately	to	the	server.

Usage

Transactions	are	committed	only	when	the		commit()		method	is	called	and	no	errors	occur.	The	most	common	usage	of	transactions	is
to	enclose	all	the	database	operations	inside	a		try/finally		block.	On	closing	of	the	database	("finally"	block)	if	a	pending	transaction	is
running	it	will	be	rolled	back	automatically.	Look	at	this	example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx(url);

db.open("admin",	"admin");

try	{

		db.begin();

		//	YOUR	CODE

		db.commit();

}	finally	{

		db.close();

}

Index	API
Even	though	you	can	use	Indices	via	SQL,	the	best	and	most	efficient	way	is	to	use	the	Java	API.

The	main	class	to	use	to	work	with	indices	is	the	IndexManager.	To	get	the	implementation	of	the	IndexManager	use:

OIndexManager	idxManager	=	database.getMetadata().getIndexManager();

The	Index	Manager	allows	you	to	manage	the	index	life-cycle	for	creating,	deleting,	and	retrieving	an	index	instance.	The	most	common
usage	is	with	a	single	index.	You	can	get	the	reference	to	an	index	by	using:

OIndex<?>	idx	=	database.getMetadata().getIndexManager().getIndex("Profile.name");

Where	"Profile.name"	is	the	index	name.	Note	that	by	default	OrientDB	assigns	the	name	as		<class>.<property>		for	automatic	indices
created	against	a	class's	property.

The	OIndex	interface	is	similar	to	a	Java	Map	and	provides	methods	to	get,	put,	remove,	and	count	items.	The	following	are	examples	of
retrieving	records	using	a	UNIQUE	index	against	a	name	field	and	a	NOTUNIQUE	index	against	a	gender	field:

Document	API

417

http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/index/OIndexManager.html
http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/index/OIndexManager.html
http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/index/OIndex.html


OIndex<?>	nameIdx	=	database.getMetadata().getIndexManager().getIndex("Profile.name");

//	THIS	IS	A	UNIQUE	INDEX,	SO	IT	RETRIEVES	A	OIdentifiable

OIdentifiable	luke	=	nameIdx.get(	"Luke"	);

if(	luke	!=	null	)

		printRecord(	(ODocument)	luke.getRecord()	);

OIndex<?>	genderIdx	=	database.getMetadata().getIndexManager().getIndex("Profile.gender");

//	THIS	IS	A	NOTUNIQUE	INDEX,	SO	IT	RETRIEVES	A	Set<OIdentifiable>

Set<OIdentifiable>	males	=	genderIdx.get(	"male"	);

for(	OIdentifiable	male	:	males	)

		printRecord(	(ODocument)	male.getRecord()	);

While	automatic	indices	are	managed	automatically	by	OrientDB	hooks,	the	manual	indices	can	be	used	to	store	any	value.	To	create	a
new	entry	use	the		put()	:

OIndex<?>	addressbook	=	database.getMetadata().getIndexManager().getIndex("addressbook");

addressbook.put(	"Luke",	new	ODocument("Contact").field(	"name",	"Luke"	);

Resources
Javadoc:	JavaDoc
OrientDB	Studio	Web	tool.

Document	API

418

http://www.orientechnologies.com/javadoc/latest/


Schema
Although	OrientDB	can	work	in	schema-less	mode,	sometimes	you	need	to	enforce	your	data	model	using	a	schema.	OrientDB	supports
schema-full	or	schema-hybrid	solutions	where	the	latter	means	to	set	such	constraints	only	for	certain	fields	and	to	leave	the	user	to	add
custom	fields	on	the	records.	This	mode	is	at	a	class	level,	so	you	can	have	an	"Employee"	class	as	schema-full	and	an
"EmployeeInformation"	class	as	schema-less.

Schema-Full:	enables	the	strict-mode	at	class	level	and	sets	all	the	fields	as	mandatory.
Schema-Less:	creates	classes	with	no	properties.	Default	mode	is	non	strict-mode	so	records	can	have	arbitrary	fields.
Schema-Hybrid,	also	called	Schema-Mixed	is	the	most	used:	creates	classes	and	define	some	fields	but	allows	the	user	to	define
custom	fields.

NOTE:	Changes	to	the	schema	are	not	transactional,	so	execute	them	outside	a	transaction.

To	access	to	the	schema,	you	can	use	SQL	or	API.	Will	follow	examples	using	Java	API.

To	gain	access	to	the	schema	APIs	you	get	the	OMetadata	object	from	database	instance	you're	using	and	then	call	its		getSchema()	
method.

OSchema	schema	=	database.getMetadata().getSchema();

Class
A	Class	is	a	concept	taken	from	the	Object	Oriented	paradigm.	In	OrientDB	a	class	defines	a	type	of	record.	It's	the	closest	concept	to	a
relational	database	table.	A	Class	can	be	schema-less,	schema-full,	or	mixed.

A	Class	can	inherit	from	another	class.	This	[#Inheritance]	means	that	the	sub-class	extends	the	parent	class,	inheriting	all	its	attributes
as	if	they	were	its	own.

Each	class	has	its	own	clusters	that	can	be	logical	(by	default)	or	physical.	A	class	must	have	at	least	one	cluster	defined	(as	its	default
cluster),	but	can	support	multiple	ones.	In	this	case	By	default	OrientDB	will	write	new	records	in	the	default	cluster,	but	reads	will
always	involve	all	the	defined	clusters.

When	you	create	a	new	class,	by	default,	a	new	physical	cluster	is	created	with	the	same	name	as	the	class	(in	lowercase).

Create	a	persistent	class

Each	class	contains	one	or	more	properties	(also	called	fields).	This	mode	is	similar	to	the	classic	relational	DBMS	approach	where	you
define	tables	before	storing	records.

Here's	an	example	of	creating	an	Account	class.	By	default	a	new	[Concepts#Physical_Cluster	Physical	Cluster]	will	be	created	to	keep
the	class	instances:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

To	create	a	new	Vertex	or	Edge	type	you	have	to	extend	the	"V"	and	"E"	classes,	respectively.	Example:

OClass	person	=	database.getMetadata().getSchema().createClass("Account",

							database.getMetadata().getSchema().getClass("V"));

Look	at	Graph	Schema	for	more	information.

Get	a	persistent	class
To	retrieve	a	persistent	class	use	the		getClass(String)		method.	If	the	class	does	not	exist	then	null	is	returned.

Document	API

419



OClass	account	=	database.getMetadata().getSchema().getClass("Account");

Drop	a	persistent	class
To	drop	a	persistent	class	use	the		OSchema.dropClass(String)		method.

database.getMetadata().getSchema().dropClass("Account");

The	records	of	the	removed	class	will	not	be	deleted	unless	you	explicitly	delete	them	before	dropping	the	class.	Example:

database.command(	new	OCommandSQL("DELETE	FROM	Account")	).execute();

database.getMetadata().getSchema().dropClass("Account");

Constraints

To	work	in	schema-full	mode	set	the	strict	mode	at	the	class	level	by	calling	the		setStrictMode(true)		method.	In	this	case,	all	the
properties	of	the	record	must	be	predefined.

Property
Properties	are	the	fields	of	the	class.	In	this	guide	a	property	is	synonymous	with	a	field.

Create	the	Class	property

Once	the	class	has	been	created,	you	can	define	fields	(properties).	Below	is	an	example:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

account.createProperty("id",	OType.INTEGER);

account.createProperty("birthDate",	OType.DATE);

Please	note	that	each	field	must	belong	to	one	of	these	Types.

Drop	the	Class	property

To	drop	a	persistent	class	property	use	the		OClass.dropProperty(String)		method.

database.getMetadata().getSchema().getClass("Account").dropProperty("name");

The	dropped	property	will	not	be	removed	from	records	unless	you	explicitly	delete	them	using	the	[SQLUpdate	SQL	UPDATE	+
REMOVE	statement].	Example:

database.getMetadata().getSchema().getClass("Account").dropProperty("name");

database.command(new	OCommandSQL("UPDATE	Account	REMOVE	name")).execute();

Define	relationships
OrientDB	supports	two	types	of	relationships:	referenced	and	embedded.

Referenced	relationships

OrientDB	uses	a	direct	link	to	the	referenced	record(s)	without	the	need	of	a	costly	JOIN	as	does	the	relational	world.	Example:

Document	API

420

https://github.com/orientechnologies/orientdb/wiki/Types


																		customer

		Record	A					------------->				Record	B

CLASS=Invoice																	CLASS=Customer

		RID=5:23																							RID=10:2

Record	A	will	contain	the	reference	to	the	Record	B	in	the	property	called	"customer".	Note	that	both	records	are	reachable	by	any	other
records	since	they	have	a	[Concepts#RecordID	RecordID].

1-1	and	N-1	referenced	relationships

1-1	and	N-1	referenced	relationships	are	expressed	using	the	LINK	type.

OClass	customer=	database.getMetadata().getSchema().createClass("Customer");

customer.createProperty("name",	OType.STRING);

OClass	invoice	=	database.getMetadata().getSchema().createClass("Invoice");

invoice.createProperty("id",	OType.INTEGER);

invoice.createProperty("date",	OType.DATE);

invoice.createProperty("customer",	OType.LINK,	customer);

In	this	case	records	of	class	"Invoice"	will	link	to	a	record	of	class	"Customer"	using	the	field	"customer".

1-N	and	N-M	referenced	relationships

1-N	and	N-M	referenced	relationships	are	expressed	using	the	collection	of	links	such	as:

LINKLIST	as	an	ordered	list	of	links
LINKSET	as	an	unordered	set	of	links.	It	doesn't	accept	duplicates
LINKMAP	as	an	ordered	map	of	links	with	String	key.	It	doesn't	accept	duplicated	keys

Example	of	a	1-N	relationship	between	the	classes	Order	and	OrderItem:

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");

orderItem.createProperty("id",	OType.INTEGER);

orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");

order.createProperty("id",	OType.INTEGER);

order.createProperty("date",	OType.DATE);

order.createProperty("items",	OType.LINKLIST,	orderItem);

db.getMetadata().getSchema().save();

Embedded	relationships

Embedded	records,	instead,	are	contained	inside	the	record	that	embeds	them.	It's	a	kind	of	relationship	stronger	than	the
[#Referenced_relationships	reference].	The	embedded	record	will	not	have	its	own	[Concepts#RecordID	RecordID]	since	it	can't	be
directly	referenced	by	other	records.	It's	only	accessible	via	the	container	record.	If	the	container	record	is	deleted,	then	the	embedded
record	will	be	deleted	too.	Example:

																		address

		Record	A					<>---------->			Record	B

CLASS=Account															CLASS=Address

		RID=5:23																					NO	RID!

Record	A	will	contain	the	entire	Record	B	in	the	property	called	"address".	Record	B	can	be	reached	only	by	traversing	the	container
record.

Example:

SELECT	FROM	account	WHERE	address.city	=	'Rome'

Document	API

421



1-1	and	N-1	embedded	relationships

1-1	and	N-1	embedded	relationships	are	expressed	using	the	EMBEDDED	type.

OClass	address	=	database.getMetadata().getSchema().createClass("Address");

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

account.createProperty("id",	OType.INTEGER);

account.createProperty("birthDate",	OType.DATE);

account.createProperty("address",	OType.EMBEDDED,	address);

In	this	case,	records	of	class	"Account"	will	embed	a	record	of	class	"Address".

1-N	and	N-M	embedded	relationships

1-N	and	N-M	embedded	relationships	are	expressed	using	the	collection	of	links	such	as:

EMBEDDEDLIST,	as	an	ordered	list	of	records.
EMBEDDEDSET,	as	an	unordered	set	of	records.	It	doesn't	accepts	duplicates.
EMBEDDEDMAP,	as	an	ordered	map	with	records	as	the	value	and	String	as	the	key.	It	doesn't	accept	duplicate	keys.

Example	of	a	1-N	relationship	between	the	class	Order	and	OrderItem:

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");

orderItem.createProperty("id",	OType.INTEGER);

orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");

order.createProperty("id",	OType.INTEGER);

order.createProperty("date",	OType.DATE);

order.createProperty("items",	OType.EMBEDDEDLIST,	orderItem);

Constraints
OrientDB	supports	a	number	of	constraints	for	each	field:

Minimum	value,	accepts	a	string	because	it	also	works	for	date	ranges		setMin()	
Maximum	value,	accepts	a	string	because	it	also	works	for	date	ranges		setMax()	
Mandatory,	must	be	specified		setMandatory()	
Readonly,	may	not	be	updated	after	record	is	created		setReadonly()	
Not	Null,	cannot	be	NULL		setNotNull()	
Unique,	doesn't	allow	duplicates	and	speeds	up	searches.
Regexp,	must	satisfy	the	Regular	expression.

Example:

profile.createProperty("nick",	OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);

profile.createIndex("nickIdx",	OClass.INDEX_TYPE.UNIQUE,	"nick");	//	Creates	unique	constraint

profile.createProperty("name",	OType.STRING).setMin("3").setMax("30");

profile.createProperty("surname",	OType.STRING).setMin("3").setMax("30");

profile.createProperty("registeredOn",	OType.DATE).setMin("2010-01-01	00:00:00");

profile.createProperty("lastAccessOn",	OType.DATE).setMin("2010-01-01	00:00:00");

Indexes	as	constraints

To	ensure	that	a	property	value	is	UNIQUE	use	the	UNIQUE	index	as	a	constraint:

profile.createIndex("EmployeeId",	OClass.INDEX_TYPE.UNIQUE,	"id");

Document	API

422

http://en.wikipedia.org/wiki/Regular_expression


To	ensure	that	a	group	of	properties	is	UNIQUE	create	a	composite	index	made	of	multiple	fields:	Example	of	creating	a	composite
index:

profile.createIndex("compositeIdx",	OClass.INDEX_TYPE.NOTUNIQUE,	"name",	"surname");

For	more	information	about	indexes	look	at	Indexes.

Document	API

423



Working	with	Fields
OrientDB	has	a	powerful	way	to	extract	parts	of	a	Document	field.	This	applies	to	the	Java	API,	SQL	Where	conditions,	and	SQL
projections.

To	extract	parts	you	have	to	use	the	square	brackets.

Extract	punctual	items

Single	item

Example:	tags	is	an	EMBEDDEDSET	of	Strings	containing	the	values	['Smart',	'Geek',	'Cool'].

The	expression	tags[0]	will	return	'Smart'.

Single	items

Inside	square	brackets	put	the	items	separated	by	comma	",".

Following	the	tags	example	above,	the	expression	tags[0,2]	will	return	a	list	with	[Smart,	'Cool'].

Range	items

Inside	square	brackets	put	the	lower	and	upper	bounds	of	an	item,	separated	by	"-".

Following	the	tags	example	above,	the	expression	tags[1-2]	returns	['Geek',	'Cool'].

Usage	in	SQL	query

Example:

SELECT	*	FROM	profile	WHERE	phones['home']	LIKE	'+39%'

Works	the	same	with	double	quotes.

You	can	go	in	a	chain	(contacts	is	a	map	of	map):

SELECT	*	FROM	profile	WHERE	contacts[phones][home]	LIKE	'+39%'

With	lists	and	arrays	you	can	pick	an	item	element	from	a	range:

SELECT	*	FROM	profile	WHERE	tags[0]	=	'smart'

and	single	items:

SELECT	*	FROM	profile	WHERE	tags[0,3,5]	CONTAINSALL	['smart',	'new',	'crazy']

and	a	range	of	items:

SELECT	*	FROM	profile	WHERE	tags[0-5]	CONTAINSALL	['smart',	'new',	'crazy']

Condition

Inside	the	square	brackets	you	can	specify	a	condition.	Today	only	the	equals	condition	is	supported.

Example:

Document	API

424



employees[label	=	'Ferrari']

Use	in	graphs

You	can	cross	a	graph	using	a	projection.	This	an	example	of	traversing	all	the	retrieved	nodes	with	name	"Tom".	"out"	is	outEdges	and
it's	a	collection.	Previously,	a	collection	couldn't	be	traversed	with	the	.	notation.	Example:

SELECT	out.in	FROM	v	WHERE	name	=	'Tom'

This	retrieves	all	the	vertices	connected	to	the	outgoing	edges	from	the	Vertex	with	name	=	'Tom'.

A	collection	can	be	filtered	with	the	equals	operator.	This	an	example	of	traversing	all	the	retrieved	nodes	with	name	"Tom".	The
traversal	crosses	the	out	edges	but	only	where	the	linked	(in)	Vertex	has	the	label	"Ferrari"	and	then	forward	to	the:

SELECT	out[in.label	=	'Ferrari']	FROM	v	WHERE	name	=	'Tom'

Or	selecting	vertex	nodes	based	on	class:

SELECT	out[in.@class	=	'Car']	FROM	v	WHERE	name	=	'Tom'

Or	both:

SELECT	out[label='drives'][in.@class	=	'Car']	FROM	v	WHERE	name	=	'Tom'

As	you	can	see	where	brackets	([])	follow	brackets,	the	result	set	is	filtered	in	each	step	like	a	Pipeline.

NOTE:	This	doesn't	replace	the	support	of	GREMLIN.	GREMLIN	is	much	more	powerful	because	it	does	thousands	of	things	more,
but	it's	a	simple	and,	at	the	same	time,	powerful	tool	to	traverse	relationships.

Future	directions

In	the	future	you	will	be	able	to	use	the	full	expression	of	the	OrientDB	SQL	language	inside	the	square	brackets	[],	like:

SELECT	out[in.label.trim()	=	'Ferrari'	AND	in.@class='Vehicle']	FROM	v	WHERE	name	=	'Tom'

But	for	this	you	have	to	wait	yet	:-)	Monitor	the	issue:	https://github.com/nuvolabase/orientdb/issues/513

Document	API

425

https://github.com/nuvolabase/orientdb/issues/513


Document	Database	Comparison
This	is	a	comparison	page	between	OrientDB	and	other	DocumentDB	projects	.	To	know	more	about	the	comparison	of	OrientDB
against	GraphDBs	look	at	this	comparison.

NOTE:	If	any	information	about	any	product	is	outdated	or	wrong,	please	send	an	email	to	the	committers	with	the	link	of	the
source	of	the	right	information.	Thanks!

Features	matrix

Feature OrientDB MongoDB CouchDB

Web	Site http://www.orientdb.org http://www.mongodb.org http://www.couchdb.org

Supported	models Document	and	Graph Document Document

Transactions Yes,	ACID No Yes,	ACID

Query	languages Extended	SQL,	Gremlin Mongo	Query	Language Non	supported,	JS	API

Document	API

426

http://www.orientdb.org
http://www.mongodb.org
http://www.couchdb.org
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Graph_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
https://github.com/tinkerpop/gremlin/wiki
http://www.mongodb.org/display/DOCS/Querying
http://sitr.us/2009/06/30/database-queries-the-couchdb-way.html


Object	API

Object	API	allows	to	work	with	POJOs	that	bind	OrientDB	documents.	This	API	is	not	able	work	on	top	of
Graph-API.	If	you	are	interested	on	using	a	Object-Graph	mapping	framework,	look	at	the	available	ones

that	work	on	top	of	Graph-API	layer:	Object-Graph	Mapping.

Requirements
To	use	the	Object	APi	include	the	following	jars	in	your	classpath:

orientdb-core-*.jar

orientdb-object-*.jar

If	you're	using	the	Object	Database	interface	connected	to	a	remote	server	(not	local/embedded	mode)	include	also:

orientdb-client-*.jar

orientdb-enterprise-*.jar

Introduction
The	OrientDB	Object	Interface	works	on	top	of	the	Document-Database	and	works	like	an	Object	Database:	manages	Java	objects
directly.	It	uses	the	Java	Reflection	to	register	the	classes	and	Javassist	tool	to	manage	the	Object-to-Document	conversion.	Please
consider	that	the	Java	Reflection	in	modern	Java	Virtual	Machines	is	really	fast	and	the	discovering	of	Java	meta	data	is	made	only	at
first	time.

Future	implementation	could	use	also	the	byte-code	enhancement	techniques	in	addition.

The	proxied	objects	have	a	ODocument	bounded	to	them	and	transparently	replicate	object	modifications.	It	also	allows	lazy	loading	of
the	fields:	they	won't	be	loaded	from	the	document	until	the	first	access.	To	do	so	the	object	MUST	implement	getters	and	setters	since
the	Javassist	Proxy	is	bounded	to	them.	In	case	of	object	load,	edit	an	update	all	non	loaded	fields	won't	be	lost.

The	database	instance	has	an	API	to	generate	new	objects	already	proxied,	in	case	a	non-proxied	instance	is	passed	it	will	be	serialized,
wrapped	around	a	proxied	instance	and	returned.

Read	more	about	the	Binding	between	Java	Objects	and	Records.

Quick	example	of	usage:

Object	API

427

http://wiki.syncleus.com/index.php/Ferma:Comparing_the_Alternatives
http://www.jboss.org/javassist
http://en.wikipedia.org/wiki/Mutator_method
http://www.jboss.org/javassist


//	OPEN	THE	DATABASE

OObjectDatabaseTx	db	=	new	OObjectDatabaseTx	("remote:localhost/petshop").open("admin",	"admin");

//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED

db.getEntityManager().registerEntityClasses("foo.domain");

//	CREATE	A	NEW	PROXIED	OBJECT	AND	FILL	IT

Account	account	=	db.newInstance(Account.class);

account.setName(	"Luke"	);

account.setSurname(	"Skywalker"	);

City	rome	=		db.newInstance(City.class,"Rome",		db.newInstance(Country.class,"Italy"));

account.getAddresses().add(new	Address("Residence",	rome,	"Piazza	Navona,	1"));

db.save(	account	);

//	CREATE	A	NEW	OBJECT	AND	FILL	IT

Account	account	=	new	Account();

account.setName(	"Luke"	);

account.setSurname(	"Skywalker"	);

City	rome	=	new	City("Rome",	new	Country("Italy"));

account.getAddresses().add(new	Address("Residence",	rome,	"Piazza	Navona,	1"));

//	SAVE	THE	ACCOUNT:	THE	DATABASE	WILL	SERIALIZE	THE	OBJECT	AND	GIVE	THE	PROXIED	INSTANCE

account	=	db.save(	account	);

Connection	Pool
One	of	most	common	use	case	is	to	reuse	the	database	avoiding	to	create	it	every	time.	It's	also	the	typical	scenario	of	the	Web
applications.

//	OPEN	THE	DATABASE

OObjectDatabaseTx	db=	OObjectDatabasePool.global().acquire("remote:localhost/petshop",	"admin",	"admin");

//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED

db.getEntityManager().registerEntityClass("org.petshop.domain");

try	{

		...

}	finally	{

		db.close();

}

The	close()	method	doesn't	close	the	database	but	release	it	to	the	owner	pool.	It	could	be	reused	in	the	future.

Database	URL

In	the	example	above	a	database	of	type	Database	Object	Transactional	has	been	created	using	the	storage:	remote:localhost/petshop.
This	address	is	a	URL.	To	know	more	about	database	and	storage	types	go	to	Database	URL.

In	this	case	the	storage	resides	in	the	same	computer	of	the	client,	but	we're	using	the	remote	storage	type.	For	this	reason	we	need	a
OrientDB	Server	instance	up	and	running.	If	we	would	open	the	database	directly	bypassing	the	server	we	had	to	use	the	local	storage
type	such	as	"plocal:/usr/local/database/petshop/petshop"	where,	in	this	case,	the	storage	was	located	in	the	/usr/local/database/petshop
folder	on	the	local	file	system.

Multi-threading
The	OObjectDatabaseTx	class	is	non	thread-safe.	For	this	reason	use	different	OObjectDatabaseTx	instances	by	multiple	threads.	They
will	share	local	cache	once	transactions	are	committed.

Inheritance

Object	API

428

http://it.wikipedia.org/wiki/Uniform_Resource_Locator


Starting	from	the	release	0.9.19	OrientDB	supports	the	Inheritance.	Using	the	ObjectDatabase	the	inheritance	of	Documents	fully
matches	the	Java	inheritance.

When	registering	a	new	class	Orient	will	also	generate	the	correct	inheritance	schema	if	not	already	generated.

Example:

public	class	Account	{

		private	String	name;

//	getters	and	setters

}

public	class	Company	extends	Account	{

		private	int	employees;

//	getters	and	setters

}

When	you	save	a	Company	object,	OrientDB	will	save	the	object	as	unique	Document	in	the	cluster	specified	for	Company	class.	When
you	search	between	all	the	Account	instances	with:

SELECT	FROM	account

The	search	will	find	all	the	Account	and	Company	documents	that	satisfy	the	query.

Use	the	database
Before	to	use	a	database	you	need	to	open	or	create	it:

//	CREATE	AN	IN	MEMORY	DATABASE

OObjectDatabaseTx	db1	=	new	OObjectDatabaseTx("memory:petshop").create();

//	OPEN	A	REMOTE	DATABASE

OObjectDatabaseTx	db2	=	new	OObjectDatabaseTx("remote:localhost/petshop").open("admin",	"admin");

The	database	instance	will	share	the	connection	versus	the	storage.	if	it's	a	local	storage,	then	all	the	database	instances	will	be
synchronized	on	it.	If	it's	a	remote	storage	then	the	network	connection	will	be	shared	among	all	the	database	instances.

To	get	the	reference	to	the	current	user	use:

OUser	user	=	db.getUser();

Once	finished	remember	to	close	the	database	to	free	precious	resources.

db.close();

Working	with	POJO
Please	read	the	POJO	binding	guide	containing	all	the	information	about	the	management	of	POJO.

Work	in	schema-less	mode
The	Object	Database	can	be	used	totally	in	schema-less	mode	as	long	as	the	POJO	binding	guide	requirements	are	followed.	Schema	less
means	that	the	class	must	be	created	but	even	without	properties.	Take	a	look	to	this	example:

Object	API

429



OObjectDatabaseTx	db	=	new	OObjectDatabaseTx("remote:localhost/petshop").open("admin",	"admin");

db.getEntityManager().registerEntityClass(Person.class);

Person	p	=	db.newInstance(Person.class);

p.setName(	"Luca"	);

p.setSurname(	"Garulli"	);

p.setCity(	new	City(	"Rome",	"Italy"	)	);

db.save(	p	);

db.close();

This	is	the	very	first	example.	While	the	code	it's	pretty	clear	and	easy	to	understand	please	note	that	we	didn't	declared	"Person"
structure	before	now.	However	Orient	has	been	able	to	recognize	the	new	object	and	save	it	in	persistent	way.

Work	in	schema-full	mode

In	the	schema-full	mode	you	need	to	declare	the	classes	you're	using.	Each	class	contains	one	or	multiple	properties.	This	mode	is
similar	to	the	classic	Relational	DBMS	approach	where	you	need	to	create	tables	before	storing	records.	To	work	in	schema-full	mode
take	a	look	at	the	Schema	APIs	page.

Create	a	new	object

The	best	practice	to	create	a	Java	object	is	to	use	the	OObjectDatabaseTx.newInstance()	API:

public	class	Person	{

		private	String	name;

		private	String	surname;

		public	Person(){

		}

		public	Person(String	name){

			this.name	=	name;

		}

		public	Person(String	name,	String	surname){

			this.name	=	name;

			this.surname	=	surname;

		}

//	getters	and	setters

}

OObjectDatabaseTx	db	=	new	OObjectDatabaseTx("remote:localhost/petshop").open("admin",	"admin");

db.getEntityManager().registerEntityClass(Person.class);

//	CREATES	A	NEW	PERSON	FROM	THE	EMPTY	CONSTRUCTOR

Person	person	=	db.newInstance(Person.class);

person.setName(	"Antoni"	);

person.setSurname(	"Gaudi"	);

db.save(	person	);

//	CREATES	A	NEW	PERSON	FROM	A	PARAMETRIZED	CONSTRUCTOR

Person	person	=	db.newInstance(Person.class,		"Antoni");

person.setSurname(	"Gaudi"	);

db.save(	person	);

//	CREATES	A	NEW	PERSON	FROM	A	PARAMETRIZED	CONSTRUCTOR

Person	person	=	db.newInstance(Person.class,"Antoni","Gaudi");

db.save(	person	);

However	any	Java	object	can	be	saved	by	calling	the	db.save()	method,	if	not	created	with	the	database	API	will	be	serialized	and	saved.
In	this	case	the	user	have	to	assign	the	result	of	the	db.save()	method	in	order	to	get	the	proxied	instance,	if	not	the	database	will	always
treat	the	object	as	a	new	one.	Example:

Object	API

430



//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED

db.getEntityManager().registerEntityClass(Animal.class);

Animal	animal	=	new	Animal();

animal.setName(	"Gaudi"	);

animal.setLocation(	"Madrid"	);

animal	=	db.save(	animal	);

Note	that	the	behaviour	depends	by	the	transaction	begun	if	any.	See	Transactions.

Browse	all	the	records	in	a	cluster

for	(Object	o	:	database.browseCluster("CityCars"))	{

		System.out.println(	((Car)	o).getModel()	);

Browse	all	the	records	of	a	class

for	(Animal	animal	:	database.browseClass(Animal.class))	{

		System.out.println(	animal.getName()	);

Count	records	of	a	class

long	cars	=	database.countClass("Car");

Count	records	of	a	cluster

long	cityCars	=	database.countCluster("CityCar");

Update	an	object
Any	proxied	object	can	be	updated	using	the	Java	language	and	then	calling	the	db.save()	method	to	synchronize	the	changes	to	the
repository.	Behaviour	depends	by	the	transaction	begun	if	any.	See	Transactions.

animal.setLocation(	"Nairobi"	);

db.save(	animal	);

Orient	will	update	only	the	fields	really	changed.

Example	of	how	to	update	the	price	of	all	the	animals	by	5%	more:

for	(Animal	animal	:	database.browseClass(Animal.class))	{

		animal.setPrice(animal.getPrice()	*	105	/	100);

		database.save(animal);

}

If	the	db.save()	method	is	called	with	a	non-proxied	object	the	database	will	create	a	new	document,	even	if	said	object	were	already
saved

Delete	an	object

Object	API

431



To	delete	an	object	call	the	db.delete()	method	on	a	proxied	object.	If	called	on	a	non-proxied	object	the	database	won't	do	anything.
Behaviour	also	depends	by	the	transaction	begun	if	any.	See	Transactions.

db.delete(	animal	);

Example	of	deletion	of	all	the	objects	of	class	"Animal".

for	(Animal	animal	:	database.browseClass(Animal.class))

		database.delete(animal);

Cascade	deleting

Object	Database	uses	JPA	annotations	to	manage	cascade	deleting.	It	can	be	done	expliciting	(orphanRemoval	=	true)	or	using	the
CascadeType.	The	first	mode	works	only	with	@OneToOne	and	@OneToMany	annotations,	the	CascadeType	works	also	with
@ManyToMany	annotation.

Example:

public	class	JavaCascadeDeleteTestClass	{

		...

		@OneToOne(orphanRemoval	=	true)

		private	JavaSimpleTestClass		simpleClass;

		@ManyToMany(cascade	=	{	CascadeType.REMOVE	})

		private	Map<String,	Child>			children				=	new	HashMap<String,	Child>();

		@OneToMany(orphanRemoval	=	true)

		private	List<Child>										list	=	new	ArrayList<Child>();

		@OneToMany(orphanRemoval	=	true)

		private	Set<Child>	set	=	new	HashSet<Child>();

		...

		//	GETTERS	AND	SETTERS

}

so	calling

database.delete(testClass);

or

for	(JavaCascadeDeleteTestClass	testClass	:	database.browseClass(JavaCascadeDeleteTestClass.class))

		database.delete(testClass);

will	also	delete	JavaSimpleTestClass	instances	contained	in	"simpleClass"	field	and	all	the	other	documents	contained	in	"children","list"
and	"test"

Attaching	and	Detaching

Since	version	1.1.0	the	Object	Database	provides	attach(Object)	and	detach(Object)	methods	to	manually	manage	object	to	document
data	transfer.

Attach

With	the	attach	method	all	data	contained	in	the	object	will	be	copied	in	the	associated	document,	overwriting	all	existing	informations.

Object	API

432



Animal	animal	=	database.newInstance(Animal.class);

animal.name	=	"Gaudi"	;

animal.location	=	"Madrid";

database.attach(animal);

database.save(animal);

in	this	way	all	changes	done	within	the	object	without	using	setters	will	be	copied	to	the	document.

There's	also	an	attachAndSave(Object)	methods	that	after	attaching	data	saves	the	object.

Animal	animal	=	database.newInstance(Animal.class);

animal.name	=	"Gaudi"	;

animal.location	=	"Madrid";

database.attachAndSave(animal);

This	will	do	the	same	as	the	example	before

Detach

With	the	detach	method	all	data	contained	in	the	document	will	be	copied	in	the	associated	object,	overwriting	all	existing	informations.
The	detach(Object)	method	returns	a	proxied	object,	if	there's	a	need	to	get	a	non	proxied	detached	instance	the	detach(Object,boolean)
can	be	used.

Animal	animal	=	database.load(rid);

database.detach(animal);

this	will	copy	all	the	loaded	document	information	in	the	object,	without	needing	to	call	all	getters.	This	methods	returns	a	proxied
instance

Animal	animal	=	database.load(rid);

animal	=	database.detach(animal,true);

this	example	does	the	same	as	before	but	in	this	case	the	detach	will	return	a	non	proxied	instance.

Since	version	1.2	there's	also	the	detachAll(Object,	boolean)	method	that	detaches	recursively	the	entire	object	tree.	This	may	throw	a
StackOverflowError	with	big	trees.	To	avoid	it	increase	the	stack	size	with	-Xss	java	option.	The	boolean	parameter	works	the	same	as
with	the	detach()	method.

Animal	animal	=	database.load(rid);

animal	=	database.detachAll(animal,true);

Lazy	detachAll

(Since	2.2)

When	calling	detachAll(object,true)	on	a	large	object	tree,	the	call	may	become	slow,	especially	when	working	with	remote	connections.
It	will	recurse	through	every	link	in	the	tree	and	load	all	dependencies.

To	only	load	parts	of	the	object	tree,	you	can	add	the	@OneToOne(fetch=FetchType.LAZY)	annotation	like	so:

Object	API

433



public	class	LazyParent	{

				@Id

				private	String	id;

				@OneToOne(fetch	=	FetchType.LAZY)

				private	LazyChild	child;

...

public	class	LazyChild	{

				@Id

				private	ORID	id;

				private	String	name;

				public	ORID	getId()	{

								return	id;

				}

				public	void	setId(ORID	id)	{

								this.id	=	id;

				}

				public	String	getName()	{

								return	name;

				}

				public	void	setName(String	name)	{

								this.name	=	name;

				}

}

In	the	above	example,	when	calling	detachAll(lazyParent,true),	the	child	variable	(if	a	link	is	available)	will	contain	a	normal	LazyChild
object,	but	only	with	the	id	loaded.	So	the	name	property	will	be	null,	as	will	any	other	property	that	is	added	to	the	class.	The	id	object
can	be	used	to	load	the	LazyChild	object	in	a	later	stage.

Execute	a	query

Although	OrientDB	is	part	of	NoSQL	databases,	supports	the	SQL	engine,	or	at	least	a	subset	of	it	with	such	extensions	to	work	with
objects	and	graphs.

To	know	more	about	the	SQL	syntax	supported	go	to:	SQL-Query.

Example:

List<Animal>	result	=	db.query(

		new	OSQLSynchQuery<Animal>("select	*	from	Animal	where	ID	=	10	and	name	like	'G%'"));

Right	usage	of	the	graph

OrientDB	is	a	graph	database.	This	means	that	traversing	is	very	efficient.	You	can	use	this	feature	to	optimize	queries.	A	common
technique	is	the	Pivoting.

SQL	Commands

To	execute	SQL	commands	use	the		command()		method	passing	a	OCommandSQL	object:

int	recordsUpdated	=	db.command(

		new	OCommandSQL("UPDATE	Animal	SET	sold	=	false")).execute();

See	all	the	SQL	Commands.

Get	the	ODocument	from	a	POJO

Object	API

434



The	OObjectDatabaseTx	implementation	has	APIs	to	get	a	document	from	its	referencing	object:

ODocument	doc	=	db.getRecordByUserObject(	animal	);

In	case	of	non-proxied	objects	the	document	will	be	a	new	generated	one	with	all	object	field	serialized	in	it.

Get	the	POJO	from	a	Record
The	Object	Database	can	also	create	an	Object	from	a	record.

Object	pojo	=	db.getUserObjectByRecord(record);

Schema	Generation
Since	version	1.5	the	Object	Database	manages	automatic	Schema	generation	based	on	registered	entities.	This	operation	can	be

manual
automatic

The	ObjectDatabase	will	generate	class	properties	based	on	fields	declaration	if	not	created	yet.

Changes	in	class	fields	(as	for	type	changing	or	renaming)	types	won't	be	updated,	this	operation	has	to	be	done	manually

Manual	Schema	Generation

Schema	can	be	generated	manually	for	single	classes	or	entire	packages:

Version	1.6

db.getMetadata().getSchema().generateSchema(Foo.class);	//	Generates	the	schema	for	Foo	class

db.getMetadata().getSchema().generateSchema("com.mycompany.myapp.mydomainpackage");		//	Generates	the	schema	for	all	classes	c

ontained	in	the	given	package

Version	1.5

db.generateSchema(Foo.class);	//	Generates	the	schema	for	Foo	class

db.generateSchema("com.mycompany.myapp.mydomainpackage");	//	Generates	the	schema	for	all	classes	contained	in	the	given	packa

ge

Automatic	Schema	Generation

By	setting	the	"automaticSchemaGeneration"	property	to	true	the	schema	will	be	generated	automatically	on	every	class	declaration.

db.setAutomaticSchemaGeneration(true);

db.getEntityManager().registerClass(Foo.class);	//	Generates	the	schema	for	Foo	class	after	registering.

db.getEntityManager().registerEntityClasses("com.mycompany.myapp.mydomainpackage");	//	Generates	the	schema	for	all	classes	co

ntained	in	the	given	package	after	registering.

class	Foo	could	look	like,	generating	one	field	with	an	Integer	and	ignoring	the	String	field.

public	class	Foo	{

		private	transient	String	field1;	//	ignore	this	field

		private	Integer	field2;	//	create	a	Integer

}

Standard	schema	management	equivalent

Having	the	Foo	class	defined	as	following

Object	API

435



public	class	Foo{

private	String	text;

private	Child	reference;

private	int	number;

//getters	and	setters

}

schema	generation	will	create	"text",	"reference"	and	"number"	properties	as	respectively	STRING,	LINK	and	INTEGER	types.

The	default	schema	management	API	equivalent	would	be

OClass	foo	=	db.getMetadata().getSchema().getClass(Foo.class);

OClass	child	=	db.getMetadata().getSchema().getClass(Child.class)

foo.createProperty("text",OType.STRING);

foo.createProperty("number",OType.INTEGER);

foo.createProperty("text",OType.LINK,	child);

db.getMetadata().getSchema().save();

Schema	synchronizing

Since	version	1.6	there's	an	API	to	synchronize	schema	of	all	registered	entities.

db.getMetadata().getSchema().synchronizeSchema();

By	calling	this	API	the	ObjectDatabase	will	check	all	registered	entities	and	generate	the	schema	if	not	generated	yet.	This	management
is	useful	on	multi-database	enviroments

Old	Implementation	ODatabaseObjectTx
Until	the	release	1.0rc9	the	Object	Database	was	implemented	as	the	class		com.orientechnologies.orient.db.object.ODatabaseObjectTx	.
This	class	is	deprecated,	but	if	you	want	to	continue	to	use	it	change	the	package	to:		com.orientechnologies.orient.object.db	.

Introduction

This	implementation	and	documentation	refers	to	all	ODatabaseObjectXXX	deprecated	classes.

The	Orient	Object	DB	works	on	top	of	the	Document-Database	and	it's	able	to	treat	Java	objects	without	the	use	of	pre-processor,	byte
enhancer	or	Proxy	classes.	It	uses	the	simpler	way:	the	Java	Reflection.	Please	consider	that	the	Java	reflection	in	modern	Java	Virtual
Machines	is	really	fast	and	the	discovering	of	Java	meta	data	is	made	at	first	time.	Future	implementation	could	use	the	byte-code
enhancement	techniques	in	addition.

Read	more	about	the	Binding	between	Java	Objects	and	Records.

Quick	example	of	usage:

//	OPEN	THE	DATABASE

ODatabaseObjectTx	db	=	new	ODatabaseObjectTx	("remote:localhost/petshop").open("admin",	"admin");

db.getEntityManager().registerEntityClasses("foo.domain");

//	CREATE	A	NEW	ACCOUNT	OBJECT	AND	FILL	IT

Account	account	=	new	Account()

account.setName(	"Luke"	);

account.setSurname(	"Skywalker"	);

City	rome	=	new	City("Rome",	new	Country("Italy"));

account.getAddresses().add(new	Address("Residence",	rome,	"Piazza	Navona,	1"));

db.save(	account	);

Object	API

436



Connection	Pool

One	of	most	common	use	case	is	to	reuse	the	database	avoiding	to	create	it	every	time.	It's	also	the	typical	scenario	of	the	Web
applications.

//	OPEN	THE	DATABASE

ODatabaseObjectTx	db=	ODatabaseObjectPool.global().acquire("remote:localhost/petshop",	"admin",	"admin");

...

db.close();

The	close()	method	doesn't	close	the	database	but	release	it	to	the	owner	pool.	It	could	be	reused	in	the	future.

Inheritance

Starting	from	the	release	0.9.19	OrientDB	supports	the	Inheritance.	Using	the	ObjectDatabase	the	inheritance	of	Documents	fully
matches	the	Java	inheritance.

Example:

public	class	Account	{

		private	String	name;

}

public	class	Company	extends	Account	{

		private	int	employees;

}

When	you	save	a	Company	object,	OrientDB	will	save	the	object	as	unique	Document	in	the	cluster	specified	for	Company	class.	When
you	search	between	all	the	Account	instances	with:

SELECT	FROM	account

The	search	will	find	all	the	Account	and	Company	documents	that	satisfy	the	query.

Object	API

437



Object	Binding
The	ObjectDatabase	implementation	makes	things	easier	for	the	Java	developer	since	the	binding	between	Objects	to	Records	is
transparent.

How	it	works?

OrientDB	uses	Java	reflection	and	Javassist	Proxy	to	bound	POJOs	to	Records	directly.	Those	proxied	instances	take	care	about	the
synchronization	between	the	POJO	and	the	underlying	record.	Every	time	you	invoke	a	setter	method	against	the	POJO,	the	value	is
early	bound	into	the	record.	Every	time	you	call	a	getter	method	the	value	is	retrieved	from	the	record	if	the	POJO's	field	value	is	null.
Lazy	loading	works	in	this	way	too.

So	the	Object	Database	class	works	as	wrapper	of	the	underlying	Document-Database.

NOTE:	In	case	a	non-proxied	object	is	found	it	will	be	serialized,	proxied	and	bounded	to	a	corresponding	Record.

Requirements

Declare	persistent	classes

Before	to	use	persistent	POJOs	OrientDB	needs	to	know	which	classes	are	persistent	(between	thousands	in	your	classpath)	by
registering	the	persistent	packages	and/or	classes.	Example:

database.getEntityManager().registerEntityClasses("com.orientechnologies.orient.test.domain");

This	must	be	done	only	right	after	the	database	is	created	or	opened.

Naming	conventions
OrientDB	follows	some	naming	conventions	to	avoid	writing	tons	of	configuration	files	but	just	applying	the	rule	"Convention	over
Configuration".	Below	those	used:

1.	 Java	classes	will	be	bound	to	persistent	classes	defined	in	the	OrientDB	schema	with	the	same	name.	In	OrientDB	class	names	are
case	insensitive.	The	Java	class	name	is	taken	without	the	full	package.	For	example	registering	the	class		Account		in	the	package
	com.orientechnologies.demo	,	the	expected	persistent	class	will	be	"Account"	and	not	the	entire
	com.orientechnologies.demo.Account	.	This	means	that	class	names,	in	the	database,	are	always	unique	and	can't	exist	two	class
with	the	same	name	even	if	declared	in	different	packages.

2.	 Java	class's	attributes	will	be	bound	to	the	fields	with	the	same	name	in	the	persistent	classes.	Field	names	are	case	sensitive.

Empty	constructor

All	the	Java	classes	must	have	an	empty	constructor	to	let	to	OrientDB	to	create	instances.

Getters	and	Setters

All	your	classes	must	have	getters	and	setters	of	every	field	that	needs	to	be	persistent	in	order	to	let	to	OrientDB	to	manage	proxy
operations.	Getters	and	Setters	also	need	to	be	named	same	as	the	declaring	field:	Example:

Object	API

438

http://www.javassist.org/
http://en.wikipedia.org/wiki/Mutator_method#Java_example
http://en.wikipedia.org/wiki/Mutator_method#Java_example


public	class	Test	{

		private	String	textField;

		private	int	intField;

		public	String	getTextField()	{

				return	textField;

		}

		public	void	setTextField(	String	iTextField	)	{

				textField	=	iTextField;

		}

		//	THIS	DECLARATION	WON'T	WORK,	ORIENTDB	WON'T	BE	ABLE	TO	RECOGNIZE	THE	REAL	FIELD	NAME

		public	int	getInt(){

				return	intField;

		}

		//	THIS	DECLARATION	WON'T	WORK,	ORIENTDB	WON'T	BE	ABLE	TO	RECOGNIZE	THE	REAL	FIELD	NAME

		public	void	setInt(int	iInt){

				intField	=	iInt;

		}

}

Collections	and	Maps
To	avoid	ClassCastExecption	when	the	Java	classes	have	Collections	and	Maps,	the	interface	must	be	used	rather	than	the	Java
implementation.	The	classic	mistake	is	to	define	in	a	persistent	class	the	types	ArrayList,	HashSet,	HashMap	instead	of	List,	Set	and
Map.

Example:

public	class	MyClass{

			//	CORRECT

			protected	List<MyElement>	correctList;

			//	WRONG:	WILL	THROW	A	ClassCastException

			protected	ArrayList<MyElement>	wrongList;

			//	CORRECT

			protected	Set<MyElement>	correctSet;

			//	WRONG:	WILL	THROW	A	ClassCastException

			protected	TreeSet<MyElement>	wrongSet;

			//	CORRECT

			protected	Map<String,MyElement>	correctMap;

			//	WRONG:	WILL	THROW	A	ClassCastException

			protected	HashMap<String,MyElement>	wrongMap;

}

POJO	binding
OrientDB	manages	all	the	POJO	attributes	in	persistent	way	during	read/write	from/to	the	record,	except	for	the	fields	those:

have	the	transient	modifier
have	the	static	modifier,
haven't	getters	and	setters
are	set	with	anonymous	class	types.

OrientDB	uses	the	Java	reflection	to	discovery	the	POJO	classes.	This	is	made	only	once	during	the	registration	of	the	domain	classes.

Default	binding

Object	API

439



This	is	the	default.	It	tries	to	use	the	getter	and	setter	methods	for	the	field	if	they	exist,	otherwise	goes	in	RAW	mode	(see	below).	The
convention	for	the	getter	is	the	same	as	Java:		get<field-name>		where	field-name	is	capitalized.	The	same	is	for	setter	but	with	'set'	as
prefix	instead	of	'get':		set<field-name>	.	If	the	getter	or	setter	is	missing,	then	the	raw	binding	will	be	used.

Example:	Field	'	String	name	'	->		getName()		and		setName(String)	

Custom	binding

Since	v1.2	Orient	provides	the	possibility	of	custom	binding	extending	the	OObjectMethodFilter	class	and	registering	it	to	the	wanted
class.

The	custom	implementation	must	provide	the		public	boolean	isHandled(Method	m)		to	let	Orient	know	what	methods	will	be
managed	by	the	ProxyHandler	and	what	methods	won't.
The	custom	implementation	must	provide	the		public	String	getFieldName(Method	m)		to	let	orient	know	how	to	parse	a	field	name
starting	from	the	accessing	method	name.	In	the	case	those	two	methods	are	not	provided	the	default	binding	will	be	used

The	custom	MethodFilter	can	be	registered	by	calling		OObjectEntityEnhancer.getInstance().registerClassMethodFilter(Class<?>,
customMethodFilter);	

Domain	class	example:

public	class	CustomMethodFilterTestClass	{

		protected	String	standardField;

		protected	String	UPPERCASEFIELD;

		protected	String	transientNotDefinedField;

		//	GETTERS	AND	SETTERS

		...

}

Method	filter	example:

	public	class	CustomMethodFilter	extends	OObjectMethodFilter	{

				@Override

				public	boolean	isHandled(Method	m)	{

						if	(m.getName().contains("UPPERCASE"))	{

								return	true;

						}	else	if	(m.getName().contains("Transient"))	{

								return	false;

						}

						return	super.isHandled(m);

				}

				@Override

				public	String	getFieldName(Method	m)	{

						if	(m.getName().startsWith("get"))	{

								if	(m.getName().contains("UPPERCASE"))	{

										return	"UPPERCASEFIELD";

								}

								return	getFieldName(m.getName(),	"get");

						}	else	if	(m.getName().startsWith("set"))	{

								if	(m.getName().contains("UPPERCASE"))	{

										return	"UPPERCASEFIELD";

								}

								return	getFieldName(m.getName(),	"set");

						}	else

								return	getFieldName(m.getName(),	"is");

				}

		}

Method	filter	registration	example:

OObjectEntityEnhancer.getInstance().registerClassMethodFilter(CustomMethodFilterTestClass.class,	new	CustomMethodFilter());

Object	API

440



Read	a	POJO
You	can	read	a	POJO	from	the	database	in	two	ways:

by	calling	the	method		load(ORID)	
by	executing	a	query		query(q)	

When	OrientDB	loads	the	record,	it	creates	a	new	POJO	by	calling	the	empty	constructor	and	filling	all	the	fields	available	in	the	source
record.	If	a	field	is	present	only	in	the	record	and	not	in	the	POJO	class,	then	it	will	be	ignored.	Even	when	the	POJO	is	updated,	any
fields	in	the	record	that	are	not	available	in	the	POJO	class	will	be	untouched.

Save	a	POJO
You	can	save	a	POJO	to	the	database	by	calling	the	method		save(pojo)	.	If	the	POJO	is	already	a	proxied	instance,	then	the	database
will	just	save	the	record	bounded	to	it.	In	case	the	object	is	not	proxied	the	database	will	serialize	it	and	save	the	corresponded	record:	In
this	case	the	object	MUST	be	reassinged	with	the	one	returned	by	the	database

Fetching	strategies
Starting	from	release	0.9.20,	OrientDB	supports	Fetching-Strategies	by	using	the	Fetch	Plans.	Fetch	Plans	are	used	to	customize	how
OrientDB	must	load	linked	records.	The	ODatabaseObjectTx	uses	the	Fetch	Plan	also	to	determine	how	to	bind	the	linked	records	to	the
POJO	by	building	an	object	tree.

Custom	types
To	let	OrientDB	use	not	supported	types	use	the	custom	types.	They	MUST	BE	registered	before	domain	classes	registration,	if	not	all
custom	type	fields	will	be	treated	as	domain	classes.	In	case	of	registering	a	custom	type	that	is	already	register	as	a	domain	class	said
class	will	be	removed.

Important:	java.lang	classes	cannot	be	managed	this	way

Example	to	manage	an	enumeration	as	custom	type:

Enum	declaration

Object	API

441



public	enum	SecurityRole	{

				ADMIN("administrador"),	LOGIN("login");

				private	String				id;

				private	SecurityRole(String	id)	{

								this.id	=	id;

				}

				public	String	getId()	{

								return	id;

				}

				@Override

				public	String	toString()	{

								return	id;

				}

				public	static	SecurityRole	getByName(String	name)	{

								if	(ADMIN.name().equals(name))	{

												return	ADMIN;

								}	else	if	(LOGIN.name().equals(name))	{

												return	LOGIN;

								}

								return	null;

				}

				public	static	SecurityRole[]	toArray()	{

								return	new	SecurityRole[]	{	ADMIN,	LOGIN	};

				}

}

Custom	type	management

		OObjectSerializerContext	serializerContext	=	new	OObjectSerializerContext();

		serializerContext.bind(new	OObjectSerializer<SecurityRole,	String>()	{

				public	Object	serializeFieldValue(Class<?>	type,	SecurityRole	role)	{

						return	role.name();

				}

				public	Object	unserializeFieldValue(Class<?>	type,	String	str)	{

						return	SecurityRole.getByName(str);

				}

		});

		OObjectSerializerHelper.bindSerializerContext(null,	serializerContext);

//	NOW	YOU	CAN	REGISTER	YOUR	DOMAIN	CLASSES

database.getEntityManager().registerEntityClass(User.class);

OrientDB	will	use	that	custom	serializer	to	marshall	and	unmarshall	special	types.

ODatabaseObjectTx	(old	deprecated	implementation)
Available	since	v1.0rc9

The	ObjectDatabase	implementation	makes	things	easier	for	the	Java	developer	since	the	binding	between	Objects	to	Records	is
transparent.

How	it	works?

OrientDB	uses	Java	reflection	and	doesn't	require	that	the	POJO	is	enhanced	in	order	to	use	it	according	to	the	JDO	standard	and
doesn't	use	Proxies	as	do	many	JPA	implementations	such	as	Hibernate.	So	how	can	you	work	with	plain	POJOs?

OrientDB	works	in	two	ways:

Connected	mode

Object	API

442

http://java.sun.com/jdo
http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://www.hibernate.org


Detached	mode

Connected	mode

The	ODatabaseObjectTx	implementation	is	the	gateway	between	the	developer	and	OrientDB.	ODatabaseObjectTx	keeps	track	of	the
relationship	between	the	POJO	and	the	Record.

Each	POJO	that's	read	from	the	database	is	created	and	tracked	by	ODatabaseObjectTx.	If	you	change	the	POJO	and	call	the
	ODatabaseObjectTx.save(pojo)		method,	OrientDB	recognizes	the	POJO	bound	with	the	underlying	record	and,	before	saving	it,	will
copy	the	POJO	attributes	to	the	loaded	record.

This	works	with	POJOs	that	belong	to	the	same	instance.	For	example:

ODatabaseObjectTx	db	=	new	ODatabaseObjectTx("remote:localhost/demo");

db.open("admin",	"admin");

try{

		List<Customer>	result	=	db.query(	new	OSQLSynchQuery<Customer>(db,	"select	from	customer")	);

		for(	Customer	c	:	result	){

				c.setAge(	100	);

				db.save(	c	);	//	<-	AT	THIS	POINT	THE	POJO	WILL	BE	RECOGNIZED	AS	KNOWN	BECAUSE	IS

																	//	ALWAYS	LOADED	WITH	THIS	DB	INSTANCE

		}

}	finally	{

		db.close;

}

When	the		db.save(	c	)		is	called,	the	ODatabaseObjectTx	instance	already	knows	obout	it	because	has	been	retrieved	by	using	a	query
through	the	same	instance.

Detached	mode

In	a	typical	Front-End	application	you	need	to	load	objects,	display	them	to	the	user,	capture	the	changes	and	save	them	back	to	the
database.	Usually	this	is	implemented	by	using	a	database	pool	in	order	to	avoid	leaving	a	database	instance	open	for	the	entire	life	cycle
of	the	user	session.

The	database	pool	manages	a	configurable	number	of	database	instances.	These	instances	are	recycled	for	all	database	operations,	so	the
list	of	connected	POJOs	is	cleared	at	every	release	of	the	database	pool	instance.	This	is	why	the	database	instance	doesn't	know	the
POJO	used	by	the	application	and	in	this	mode	if	you	save	a	previously	loaded	POJO	it	will	appear	as	a	NEW	one	and	is	therefore
created	as	new	instance	in	the	database	with	a	new	RecordID.

This	is	why	OrientDB	needs	to	store	the	record	information	inside	the	POJO	itself.	This	is	retrieved	when	the	POJO	is	saved	so	it	is
known	if	the	POJO	already	has	own	identity	(has	been	previously	loaded)	or	not	(it's	new).

To	save	the	Record	Identity	you	can	use	the	JPA	@Id	annotation	above	the	property	interested.	You	can	declare	it	as:

Object,	the	suggested,	in	this	case	OrientDB	will	store	the	ORecordId	instance
String,	in	this	case	OrientDB	will	store	the	string	representation	of	the	ORecordId
Long,	in	this	case	OrientDB	will	store	the	right	part	of	the	RecordID.	This	works	only	if	you've	a	schema	for	the	class.	The	left
side	will	be	rebuilt	at	save	time	by	getting	the	class	id.

Example:

Object	API

443

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/5/api/javax/persistence/Id.html


public	class	Customer{

		@Id

		private	Object	id;	//	DON'T	CREATE	GETTER/SETTER	FOR	IT	TO	PREVENT	THE	CHANGING	BY	THE	USER	APPLICATION,

																		//	UNLESS	IT'S	NEEDED

		private	String	name;

		private	String	surname;

		public	String	getName(){

				return	name;

		}

		public	void	setName(String	name){

				this.name	=	name;

		}

		public	String	getSurname(){

				return	name;

		}

		public	void	setSurname(String	surname){

				this.surname	=	surname;

		}

}

OrientDB	will	save	the	Record	Identity	in	the	id	property	even	if	getter/setter	methods	are	not	created.

If	you	work	with	transactions	you	also	need	to	store	the	Record	Version	in	the	POJO	to	allow	MVCC.	Use	the	JPA	@Version
annotation	above	the	property	interested.	You	can	declare	it	as:

java.lang.Object	(suggested)	-	a	com.orientechnologies.orient.core.version.OSimpleVersion	is	used
java.lang.Long
java.lang.String

Example:

public	class	Customer{

		@Id

		private	Object	id;	//	DON'T	CREATE	GETTER/SETTER	FOR	IT	TO	PREVENT	THE	CHANGING	BY	THE	USER	APPLICATION,

																		//	UNLESS	IT'S	NEEDED

		@Version

		private	Object	version;	//	DON'T	CREATE	GETTER/SETTER	FOR	IT	TO	PREVENT	THE	CHANGING	BY	THE	USER	APPLICATION,

																							//	UNLESS	IT'S	NEEDED

		private	String	name;

		private	String	surname;

		public	String	getName(){

				return	name;

		}

		public	void	setName(String	name){

				this.name	=	name;

		}

		public	String	getSurname(){

				return	name;

		}

		public	void	setSurname(String	surname){

				this.surname	=	surname;

		}

}

Save	Mode

Since	OrientDB	doesn't	know	what	object	is	changed	in	a	tree	of	connected	objects,	by	default	it	saves	all	the	objects.	This	could	be	very
expensive	for	big	trees.	This	is	the	reason	why	you	can	control	manually	what	is	changed	or	not	via	a	setting	in	the	ODatabaseObjectTx
instance:

db.setSaveOnlyDirty(true);

Object	API

444

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/5/api/javax/persistence/Version.html


or	by	setting	a	global	parameter	(see	Parameters):

OGlobalConfiguration.OBJECT_SAVE_ONLY_DIRTY.setValue(true);

To	track	what	object	is	dirty	use:

db.setDirty(pojo);

To	unset	the	dirty	status	of	an	object	use:

db.unsetDirty(pojo);

Dirty	mode	doesn't	affect	in	memory	state	of	POJOs,	so	if	you	change	an	object	without	marking	it	as	dirty,	OrientDB	doesn't	know
that	the	object	is	changed.	Furthermore	if	you	load	the	same	changed	object	using	the	same	database	instance,	the	modified	object	is
returned.

Requirements

Declare	persistent	classes
In	order	to	know	which	classes	are	persistent	(between	thousands	in	your	classpath),	you	need	to	tell	OrientDB.	Using	the	Java	API	is:

database.getEntityManager().registerEntityClasses("com.orientechnologies.orient.test.domain");

OrientDB	saves	only	the	final	part	of	the	class	name	without	the	package.	For	example	if	you're	using	the	class		Account		in	the	package
	com.orientechnologies.demo	,	the	persistent	class	will	be	only	"Account"	and	not	the	entire		com.orientechnologies.demo.Account	.	This
means	that	class	names,	in	the	database,	are	always	unique	and	can't	exist	two	class	with	the	same	name	even	if	declared	in	different
packages.

Empty	constructor

All	your	classes	must	have	an	empty	constructor	to	let	to	OrientDB	to	create	instances.

POJO	binding

All	the	POJO	attributes	will	be	read/stored	from/into	the	record	except	for	fields	with	the	transient	modifier.	OrientDB	uses	Java
reflection	but	the	discovery	of	POJO	classes	is	made	only	the	first	time	at	startup.	Java	Reflection	information	is	inspected	only	the
first	time	to	speed	up	the	access	to	the	fields/methods.

There	are	2	kinds	of	binding:

Default	binding	and
Raw	binding

Default	binding

This	is	the	default.	It	tries	to	use	the	getter	and	setter	methods	for	the	field	if	they	exist,	otherwise	goes	in	RAW	mode	(see	below).	The
convention	for	the	getter	is	the	same	as	Java:		get<field-name>		where	field-name	is	capitalized.	The	same	is	for	setter	but	with	'set'	as
prefix	instead	of	'get':		set<field-name>	.	If	the	getter	or	setter	is	missing,	then	the	raw	binding	will	be	used.

Example:	Field	'	String	name	'	->		getName()		and		setName(String)	

Raw	binding

Object	API

445

http://code.google.com/p/orient/wiki/PerformanceTuning#Parameters


This	mode	acts	at	raw	level	by	accessing	the	field	directly.	If	the	field	signature	is	private	or	protected,	then	the	accessibility	will	be
forced.	This	works	generally	in	all	the	scenarios	except	where	a	custom	SecurityManager	is	defined	that	denies	the	change	to	the
accessibility	of	the	field.

To	force	this	behaviour,	use	the	JPA	2	@AccessType	annotation	above	the	relevant	property.	For	example:

public	class	Customer{

		@AccessType(FIELD)

		private	String	name;

		private	String	surname;

		public	String	getSurname(){

				return	name;

		}

		public	void	setSurname(String	surname){

				this.surname	=	surname;

		}

}

Read	a	POJO

You	can	read	a	POJO	from	the	database	in	two	ways:

by	calling	the	method		load(ORID)	
by	executing	a	query		query(q)	

When	OrientDB	loads	the	record,	it	creates	a	new	POJO	by	calling	the	empty	constructor	and	filling	all	the	fields	available	in	the	source
record.	If	a	field	is	present	only	in	the	record	and	not	in	the	POJO	class,	then	it	will	be	ignored.	Even	when	the	POJO	is	updated,	any
fields	in	the	record	that	are	not	available	in	the	POJO	class	will	be	untouched.

Callbacks

You	can	define	some	methods	in	the	POJO	class	that	are	called	as	callbacks	before	the	record	is	read:

@OBeforeDeserialization	called	just	BEFORE	unmarshalling	the	object	from	the	source	record
@OAfterDeserialization	called	just	AFTER	unmarshalling	the	object	from	the	source	record

Example:

public	class	Account{

		private	String	name;

		transient	private	String	status;

		@OAfterDeserialization

		public	void	init(){

				status	=	"Loaded";

		}

}

Callbacks	are	useful	to	initialize	transient	fields.

Save	a	POJO
You	can	save	a	POJO	to	the	database	by	calling	the	method		save(pojo)	.	If	the	POJO	is	already	known	to	the	ODatabaseObjectTx
instance,	then	it	updates	the	underlying	record	by	copying	all	the	POJO	attributes	to	the	records	(omitting	those	with	transient
modifier).

Callbacks

You	can	define	in	the	POJO	class	some	methods	called	as	callback	before	the	record	is	written:

@OBeforeSerialization	called	just	BEFORE	marshalling	the	object	to	the	record

Object	API

446

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/6/api/javax/persistence/AccessType.html
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OBeforeDeserialization.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OAfterDeserialization.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OBeforeSerialization.java


@OAfterSerialization	called	just	AFTER	marshalling	the	object	to	the	record

Example:

public	class	Account{

		private	String	name;

		transient	private	Socket	s;

		@OAfterSerialization

		public	void	free(){

				s.close();

		}

}

Callbacks	are	useful	to	free	transient	resources.

==	Fetching	strategies	=v

Starting	from	release	0.9.20,	OrientDB	supports	Fetching-Strategies	by	using	the	Fetch	Plans.	Fetch	Plans	are	used	to	customize	how
OrientDB	must	load	linked	records.	The	ODatabaseObjectTx	uses	the	Fetch	Plan	also	to	determine	how	to	bind	the	linked	records	to	the
POJO	by	building	an	object	tree.

Custom	types
To	let	OrientDB	use	not	supported	types	use	the	custom	types.	Register	them	before	to	register	domain	classes.	Example	to	manage	a
BigInteger	(that	it's	not	natively	supported):

OObjectSerializerContext	serializerContext	=	new	OObjectSerializerContext();

serializerContext.bind(new	OObjectSerializer<BigInteger,	Integer>()	{

		public	Integer	serializeFieldValue(Class<?>	itype,		BigInteger	iFieldValue)	{

				return	iFieldValue.intValue();

		}

		public		BigInteger	unserializeFieldValue(Class<?>	itype,		Integer	iFieldValue)	{

				return	new		BigInteger(iFieldValue);

		}

});

OObjectSerializerHelper.bindSerializerContext(null,	serializerContext);

//	NOW	YOU	CAN	REGISTER	YOUR	DOMAIN	CLASSES

database.getEntityManager().registerEntityClass(Customer.class);

OrientDB	will	use	that	custom	serializer	to	marshall	and	unmarshall	special	types.

Object	API

447

http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OAfterSerialization.java


Traverse
OrientDB	is	a	graph	database.	This	means	that	the	focal	point	is	on	relationships	(links)	and	how	they	are	managed.	The	standard	SQL
language	is	not	enough	to	work	with	trees	or	graphs	because	it	lacks	the	recursion	concept.	This	is	the	reason	why	OrientDB	provides	a
new	command	to	traverse	trees	and	graphs:	TRAVERSE.	Traversing	is	the	operation	that	crosses	relationships	between	records
(documents,	vertexes,	nodes,	etc).	This	operation	is	much	much	faster	than	executing	a	JOIN	in	a	Relational	database.

The	main	concepts	of	Traversal	are:

target,	as	the	starting	point	where	to	traverse	records.	Can	be:
class
cluster
set	of	records,	specifying	its	RecordID
sub-command	that	returns	an		Iterable<OIdentifiable>	.	You	can	nest	multiple	select	and	traverse	all	together

fields,	the	fields	to	traverse.	Use		*	,		any()		or		all()		to	traverse	all	fields	in	a	document
limit,	the	maximum	number	of	records	to	retrieve
predicate,	as	the	predicate	to	execute	against	each	traversed	document.	If	the	predicate	returns	true,	the	document	is	returned,
otherwise	it	is	skipped
strategy,	indicates	how	the	graph	traversed:

DEPTH_FIRST,	the	default,
BREADTH_FIRST,

Traversing	strategies

DEPTH_FIRST	strategy

This	is	the	default	strategy	used	by	OrientDB	for	traversal.	It	explores	as	far	as	possible	along	each	branch	before	backtracking.	It's
implemented	using	recursion.	To	know	more	look	at	Depth-First	algorithm.	Below	the	ordered	steps	executed	while	traversing	the	graph
using	DEPTH_FIRST	strategy:

BREADTH_FIRST	strategy

Traverse

448

https://github.com/orientechnologies/orientdb/wiki/Java-Traverse#depth_first-strategy
https://github.com/orientechnologies/orientdb/wiki/Java-Traverse#breadth_first-strategy
http://en.wikipedia.org/wiki/Depth-first_search


It	inspects	all	the	neighboring	nodes,	then	for	each	of	those	neighbor	nodes	in	turn,	it	inspects	their	neighbor	nodes	which	were
unvisited,	and	so	on.	Compare	BREADTH_FIRST	with	the	equivalent,	but	more	memory-efficient	iterative	deepening	DEPTH_FIRST
search	and	contrast	with	DEPTH_FIRST	search.	To	know	more	look	at	Breadth-First	algorithm.	Below	the	ordered	steps	executed
while	traversing	the	graph	using	BREADTH_FIRST	strategy:

Context	variables

During	traversal	some	context	variables	are	managed	and	can	be	used	by	the	traverse	condition:

$depth,	as	an	integer	that	contain	the	depth	level	of	nesting	in	traversal.	First	level	is	0
$path,	as	a	string	representation	of	the	current	position	as	the	sum	of	traversed	nodes
$stack,	as	the	stack	current	node	traversed
$history,	as	the	entire	collection	of	visited	nodes

The	following	sections	describe	various	traversal	methods.

SQL	Traverse

The	simplest	available	way	to	execute	a	traversal	is	by	using	the	SQL	Traverse	command.	For	instance,	to	retrieve	all	records	connected
from	and	to	Movie	records	up	to	the	5th	level	of	depth:

for	(OIdentifiable	id	:	new	OSQLSynchQuery<ODocument>("traverse	in,	out	from	Movie	while	$depth	<=	5"))	{

		System.out.println(id);

}

Look	at	the	command	syntax	for	more	information.

Native	Fluent	API
Native	API	supports	fluent	execution	guaranteeing	compact	and	readable	syntax.	The	main	class	is		OTraverse	:

	target(<iter:Iterable<OIdentifiable>>)	,	to	specify	the	target	as	any	iterable	object	like	collections	or	arrays	of	OIdentifiable
objects.
	target(<iter:Iterator<OIdentifiable>>)	,	to	specify	the	target	as	any	iterator	object.	To	specify	a	class	use
	database.browseClass(<class-name>).iterator()	

	target(<record:OIdentifiable>,	<record:OIdentifiable>,	...	)	,	to	specify	the	target	as	a	var	ars	of	OIterable	objects

Traverse

449

http://en.wikipedia.org/wiki/Breadth-first_search


	field(<field-name:string>)	,	to	specify	the	document's	field	to	traverse.	To	add	multiple	field	call	this	method	in	chain.	Example:
	.field("in").field("out")	

	fields(<field-name:string>,	<field-name:string>,	...)	,	to	specify	multiple	fields	in	one	call	passing	a	var	args	of	Strings
	fields(Collection<field-name:string>)	,	to	specify	multiple	fields	in	one	call	passing	a	collection	of	String
	limit(<max:int>)	,	as	the	maximum	number	of	record	returned
	predicate(<predicate:OCommandPredicate>)	,	to	specify	a	predicate	to	execute	against	each	traversed	record.	If	the	predicate	returns
true,	then	the	record	is	returned	as	result,	otherwise	false.	it's	common	to	create	an	anonymous	class	specifying	the	predicate	at	the
fly
	predicate(<predicate:OSQLPredicate>)	,	to	specify	the	predicate	using	the	SQL	syntax.

In	the	traverse	command	context	iContext	you	can	read/put	any	variable.	Traverse	command	updates	these	variables:

depth,	as	the	current	depth	of	nesting
path,	as	the	string	representation	of	the	current	path.	You	can	also	display	it.	Example:		select	$path	from	(traverse	*	from	V)	
stack,	as	the	List	of	operation	in	the	stack.	Use	it	to	access	to	the	history	of	the	traversal.	It's	a		List<OTraverseAbstractProcess<?
>>		where	process	implementations	are:

	OTraverseRecordSetProcess	,	usually	the	first	one	it's	the	base	target	of	traverse
	OTraverseRecordProcess	,	represent	a	traversed	record
	OTraverseFieldProcess	,	represent	a	traversal	through	a	record's	field
	OTraverseMultiValueProcess	,	use	on	fields	that	are	multivalue:	arrays,	collections	and	maps

history,	as	the	set	of	records	traversed	as	a		Set<ORID>	.

Example	using	an	anonymous	OCommandPredicate	as	predicate

for	(OIdentifiable	id	:	new	OTraverse()

														.field("in").field("out")

														.target(	database.browseClass("Movie").iterator()	)

														.predicate(new	OCommandPredicate()	{

				public	Object	evaluate(ORecord	iRecord,	ODocument	iCurrentResult,	OCommandContext	iContext)	{

						return	((Integer)	iContext.getVariable("depth"))	<=	5;

				}

		}))	{

		System.out.println(id);

}

Example	using	the	OSQLPredicate	as	predicate

for	(OIdentifiable	id	:	new	OTraverse()

														.field("in").field("out")

														.target(database.browseClass("Movie").iterator())

														.predicate(	new	OSQLPredicate("$depth	<=	5")))	{

		System.out.println(id);

}

Other	examples

OTraverse	gets	any	Iterable,	Iterator	and	Single/Multi	OIdentifiable.	There's	also	the	limit()	clause.	To	specify	multiple	fields	use
fields().	Full	example:

for	(OIdentifiable	id	:	new	OTraverse()

														.target(new	ORecordId("#6:0"),	new	ORecordId("#6:1"))

														.fields("out",	"int")

														.limit(100)

														.predicate(	new	OSQLPredicate("$depth	<=	10")))	{

		System.out.println(	id);

}

Traverse

450



Live	Query
(Since	2.1)

Writing	realtime,	reactive	applications	is	hard	task	with	traditional	query	paradigm.	Think	about	a	simple	use	case	like	updating	a
web	page	with	fresh	data	coming	from	the	database	and	keeping	it	updated	over	time;	also	consider	that	updates	can	be	made	by
different	data	sources	(multiple	applications,	manual	DBA	operations...).

With	a	traditional	approach,	the	client	has	to	poll	the	database	to	obtain	fresh	data.	This	approach	has	three	fundamental	problems:

the	client	never	knows	whether	something	has	changed	in	the	DB,	so	it	will	execute	polling	queries	even	when	nothing	has	changed.
This	can	be	a	big	waste	of	resources,	especially	when	the	query	is	expensive
if	you	need	(near)	realtime	data,	the	client	will	have	to	poll	the	database	very	often
results	arrive	to	the	client	at	fixed	time	intervals,	so	if	a	change	happens	in	the	database	at	the	middle	of	that	time	interval,	the	result
will	arrive	to	the	client	only	at	the	next	query

The	image	below	summarizes	this	situation

traditional	query	polling	approach

You	have	to	make	a	choice	here

you	can	decide	to	have	long	polling	intervals,	reducing	execution	overhead,	but	having	updated	results	later
you	can	decine	to	have	short	polling	intervals,	having	updated	results	sooner,	but	with	a	high	execution	overhead

With	LiveQuery	you	can	subscribe	for	changes	on	a	particular	class	(or	on	a	subset	of	records	based	on	a	WHERE	condition);
OrientDB	will	push	changes	to	the	client	as	soon	as	they	happen	in	the	database.

LiveQuery	approach

Live	Query

451



Advantages	are	obvious:

you	do	not	have	to	poll	the	database,	so	there	is	no	waste	of	resources	when	data	do	not	change
you	get	notifications	as	soon	as	changes	happen	in	the	db	(no	matter	what	the	data	source	is)

Traditional	queries	vs.	Live	Query
When	executing	a	SELECT	statement	(synchronous	or	asynchronous),	you	expect	the	system	to	return	results	that	are	currently	present
in	the	database	and	that	match	your	selection	criteria.	You	expect	your	result	set	to	be	finite	and	your	query	to	execute	in	a	given	time.

A	live	query	acts	in	a	slightly	different	way:

it	does	not	return	data	as	they	are	at	the	moment	of	the	query	execution
it	returns	changes	that	happen	to	the	database	from	that	moment	on	and	that	match	your	criteria
it	never	ends	(unless	you	terminate	it	or	an	error	occurs)
it	is	asynchronous	and	push	based:	the	server	will	send	you	data	as	soon	as	they	are	available,	you	just	have	to	provide	a	callback.

To	make	the	difference	explicit,	here	is	a	simple	example	(just	the	flow	of	results	in	a	meta-language,	not	a	working	example)

Standard	query

A	client	executes	a	query	on	the	DB

SELECT	FROM	PERSON

The	client	will	receive	a	result	that	represents	the	current	situation	in	the	database:

RID,			NAME,				SURNAME

#12:0,	"John",		"Smith"

#12:1,	"Foo",			"Bar"

Number	of	results:	2

Another	client	inserts	new	data	in	the	DB

INSERT	INTO	PERSON	SET	NAME	=	'Jenny'

The	first	client	will	not	receive	this	record,	because	the	SELECT	result	set	is	closed.	In	short,	this	INSERT	operation	will	not	affect	the
previous	query.

Live	Query

452



LIVE	query

The	client	executes	this	query:

LIVE	SELECT	FROM	PERSON

the	immediate	result	of	this	query	is	just	the	unique	identifier	of	the	query	itself	(no	data	are	returned,	even	if	data	are	present	in	the	DB)

token:	1234567	//	Unique	identifier	of	this	live	query,	needed	for	unsubscribe

Another	client	inserts	new	data	in	the	DB

INSERT	INTO	PERSON	SET	name	=	'Jenny'

The	first	client	will	receive	a	message	with	the	following	content	(schematic):

content:	{@rid:	#12:0,	name:	'Jenny'}

operation:	insert

Another	client	updates	existing	data

UPDATE	PERSON	SET	NAME	=	'Kerry'	WHERE	NAME	=	'Jenny'

The	first	client	will	receive	a	message	with	the	following	content	(schematic):

content:	{@rid:	#12:0,	name:	'Kerry'}

operation:	update

Now	the	first	client	can	decide	to	unsubscribe	from	this	LiveQuery

LIVE	UNSUBSCRIBE	1234567

From	now	on,	the	live	query	will	not	return	any	other	results	to	the	client.

When	should	you	use	LiveQuery
LiveQuery	is	particularly	useful	in	the	following	scenarios:

when	you	need	continuous	(realtime)	updates	and	you	have	multiple	clients	accessing	different	data	subsets:	polling	is	a	an
expensive	operation,	having	thousands	of	clients	that	execute	continuous	polling	could	crash	any	server;	in	the	best	case	it	will	be	a
waste	of	resources,	especially	if	updates	happen	rarely
when	you	have	multiple	data	sources	that	insert/update	data:	if	you	have	a	single	data	source	that	populate	the	database,	then	you
can	intercept	it	and	let	it	directly	notify	the	clients	for	changes;	unfortunately	it	almost	never	happens,	in	the	majority	of	the	use
cases	you	will	have	multiple	data	sources,	sometimes	automatic	(eg.	applications)	sometimes	manual	(your	DBA	that	does	data
cleaning)	and	you	want	all	these	changes	to	be	immediately	notified	to	the	client.
when	you	develop	on	a	push-based/reactive	infrastructure:	if	you	work	on	a	message-driven	infrastructoure	or	with	a	reactive
framework,	working	with	traditional	(synchronous,	blocking)	queries	can	be	a	real	pain;	having	a	database	that	follows	the	same
paradigm	and	that	provides	push	notifications	for	data	change	will	let	you	write	applications	in	a	more	consistent	way.

Supported	interfaces

Live	Query	is	currently	supported	from	the	following	interfaces

Java
Node.js	(OrientJS)

Live	Query

453

https://github.com/orientechnologies/orientdb-docs/blob/master/Live-Query.md#livequery-in-java
https://github.com/orientechnologies/orientdb-docs/blob/master/Live-Query.md#livequery-in-nodejs
https://github.com/orientechnologies/orientjs


Enabling	LiveQuery

Since	version	2.2	the	live	query	are	enabled	by	default,	from	disable	it	set	the	property		query.live.support		to	false.

LiveQuery	in	Java

To	implement	LiveQuery	in	Java	you	need	two	elements:

a	statement,	to	be	executed	by	OLiveQuery
a	listener	that	asynchronous	receives	result

The	listener	has	to	implement	OLiveResultListener.	It	just	has	a	callback	method	that	takes	the	live	query	token	and	the	record	that	was
modified	(with	the	operation	that	occurred,	eg.	insert,	update	or	delete)

class	MyLiveQueryListener	implements	OLiveResultListener	{

				public	List<ORecordOperation>	ops	=	new	ArrayList<ORecordOperation>();

				@Override

				public	void	onLiveResult(int	iLiveToken,	ORecordOperation	iOp)	throws	OException	{

								System.out.println("New	result	from	server	for	live	query	"+iLiveToken);

								System.out.println("operation:	"+iOp.type);

								System.out.println("content:	"+iOp.record);

				}

				public	void	onError(int	iLiveToken)	{

								System.out.println("Live	query	terminate	due	to	error");

				}

				public	void	onUnsubscribe(int	iLiveToken)	{

								System.out.println("Live	query	terminate	with	unsubscribe");

				}

}

To	actually	execute	the	live	query,	you	can	use	the		db.query()		method	passing	a		OLiveQuery		object	as	an	argument,	etc.

ODatabaseDocumentTx	db	=	...	//	I	suppose	you	have	an	active	DB	instance

//	Instantiate	the	query	listener

MyLiveQueryListener	listener	=	new	MyLiveQueryListener();

//	Execute	the	query

List<ODocument>	result	=	db.query(new	OLiveQuery<ODocument>("live	select	from	Test",	listener));

//	Get	the	query	token,	it	is	needed	for	unsubscribe

String	token	=	result.get(0).field("token");	//	1234567

//	From	now	you	will	receive	results	from	the	server	for	every	change	that	matches	your	query	criteria.

//	If	you	or	someone	else	executes	an	INSERT	on	the	server

db.command(new	OCommandSQL("insert	into	test	set	name	=	'foo',	surname	=	'bar'")).execute();

//	Your	MyLiveQueryListener.onLiveResult()	will	be	invoked.	In	this	case	the	result	will	be

//	New	result	from	server	for	live	query	1234567	<-	a	token	generated	by	the	server

//	operation:	3	<-	ORecordOperation.CREATED

//	content:	{@Rid:	"#12:0",	name:	"foo",	surname:	"bar"}

db.command(new	OCommandSQL("update	test	set	name	=	'baz'	where	surname	=	'bar'")).execute();

//	New	result	from	server	for	live	query	1234567	

//	operation:	1	<-	ORecordOperation.UPDATED

//	content:	{@Rid:	"#12:0",	name:	"baz",	surname:	"bar"}						

db.command(new	OCommandSQL("live	unsubscribe	1234567")).execute();

//	From	now	you	will	not	receive	any	other	results

Live	Query

454



LiveQuery	in	Node.js

To	use	LiveQuery	in	Node.js	you	just	have	to	import	"orientjs"	module	with

	npm	install	orientjs	

Here	is	a	simple	example	that	shows	how	to	use	LiveQuery	with	OrientJS

var	OrientDB	=	require('orientjs');

var	server	=	OrientDB({host:	'localhost',	port:	2424});

var	db	=	server.use({name:	'test',	username:	'admin',	password:	'admin'});

db.liveQuery("live	select	from	V")

		.on('live-insert',	function(data){

					//new	record	inserted	in	the	database,

					var	myRecord	=	data.content;

					//	your	code	here...

		})

		.on('live-delete',	function(data){

						//record	just	deleted,	receiving	the	old	content

						var	myRecord	=	data.content;

						//	your	code	here...

		})

		.on('live-update',	function(data){

						//record	updated,	receiving	the	new	content

						var	myRecord	=	data.content;

						//	your	code	here...

		})

What's	next

OrientDB	team	is	working	hard	to	make	it	stable	and	to	support	it	on	all	the	clients.	To	make	live	query	stable	in	OrientDB	2.2,	the
following	steps	are	needed:

add	tests	for	connection	failure
check	for	memory	leaks
add	tests	it	in	distributed	mode
give	an	additional	check	to	the	OrientJs	implementation

We	are	also	considering	integrations	with	existing	frameworks	like	(Meteor)

Starting	from	2.2	Live	Query	will	be	released	as	Stable	and	will	be	covered	by	commercial	support	too.

Live	Query

455

https://www.meteor.com/


Multi-Threading
OrientDB	supports	multi-threads	access	to	the	database.		ODatabase*		and		OrientGraph*		instances	are	not	thread-safe,	so	you've	to	get
an	instance	per	thread	and	each	database	instance	can	be	used	only	in	one	thread	per	time.	For	more	information	about	how	concurrency
is	managed	by	OrientDB	look	at	Concurrency.

Since	v2.1	OrientDB	doesn't	allow	implicit	usage	of	multiple	database	instances	from	the	same	thread.	Any
attempt	to	manage	multiple	instances	in	the	same	thread	must	explicitly	call	the	method

	db.activateOnCurrentThread()		against	the	database	instance	BEFORE	you	use	it.

Multiple	database	instances	point	to	the	same	storage	by	using	the	same	URL.	In	this	case	Storage	is	thread-safe	and	orchestrates
requests	from	different		ODatabase*		instances.

ODatabaseDocumentTx-1------+

																											+---->	OStorage	(url=plocal:/temp/db)

ODatabaseDocumentTx-2------+

The	same	as	for	Graph	API:

OrientGraph-1------+

																			+---->	OStorage	(url=plocal:/temp/db)

OrientGraph-2------+

Database	instances	share	the	following	objects:

schema
index	manager
security

These	objects	are	synchronized	for	concurrent	contexts	by	storing	the	current	database	in	the	ThreadLocal	variable.	Every	time	you
create,	open	or	acquire	a	database	connection,	the	database	instance	is	automatically	set	into	the	current	ThreadLocal	space,	so	in
normal	use	this	is	hidden	from	the	developer.

The	current	database	is	always	reset	for	all	common	operations	like	load,	save,	etc.

Example	of	using	two	database	in	the	same	thread:

ODocument	rec1	=	database1.newInstance();

ODocument	rec2	=	database2.newInstance();

rec1.field("name",	"Luca");

database1.activateOnCurrentThread();	//	MANDATORY	SINCE	2.1

database1.save(rec1);	//	force	saving	in	database1	no	matter	where	the	record	came	from

rec2.field("name",	"Luke");

database2.activateOnCurrentThread();	//	MANDATORY	SINCE	2.1

database2.save(rec2);	//	force	saving	in	database2	no	matter	where	the	record	came	from

In	version	2.0.x,	method		activateOnCurrentThread()		does	not	exist,	you	can	use		setCurrentDatabaseInThreadLocal()		instead.

Get	current	database

To	get	the	current	database	from	the	ThreadLocal	use:

ODatabaseDocument	database	=	(ODatabaseDocument)	ODatabaseRecordThreadLocal.INSTANCE.get();

Manual	control

Multi-Threading

456

http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html


Beware	when	you	reuse	database	instances	from	different	threads	or	then	a	thread	handle	multiple	databases.	In	this	case	you	can
override	the	current	database	by	calling	this	manually:

database.activateOnCurrentThread();	//v	2.1

//	for	OrientDB	v.	2.0.x:	database.setCurrentDatabaseInThreadLocal();

Where	database	is	the	current	database	instance.	Example:

database1.activateOnCurrentThread();

ODocument	rec1	=	database1.newInstance();

rec1.field("name",	"Luca");

rec1.save();

database2.activateOnCurrentThread();

ODocument	rec2	=	database2.newInstance();

rec2.field("name",	"Luke");

rec2.save();

Custom	database	factory
Since	v1.2	Orient	provides	an	interface	to	manage	custom	database	management	in	MultiThreading	cases:

public	interface	ODatabaseThreadLocalFactory	{

		public	ODatabaseRecord	getThreadDatabase();

}

Examples:

public	class	MyCustomRecordFactory	implements	ODatabaseThreadLocalFactory	{

		public	ODatabaseRecord	getDb(){

			return	ODatabaseDocumentPool.global().acquire(url,	"admin",	"admin");

		}

}

public	class	MyCustomObjectFactory	implements	ODatabaseThreadLocalFactory	{

		public	ODatabaseRecord	getThreadDatabase(){

			return	OObjectDatabasePool.global().acquire(url,	"admin",	"admin").getUnderlying().getUnderlying();

		}

}

Registering	the	factory:

ODatabaseThreadLocalFactory	customFactory	=	new	MyCustomRecordFactory();

	Orient.instance().registerThreadDatabaseFactory(customFactory);

When	a	database	is	not	found	in	current	thread	it	will	be	called	the	factory	getDb()	to	retrieve	the	database	instance.

Close	a	database
What	happens	if	you	are	working	with	two	databases	and	close	just	one?	The	Thread	Local	isn't	a	stack,	so	you	loose	the	previous
database	in	use.	Example:

Multi-Threading

457



ODatabaseDocumentTx	db1	=	new	ODatabaseDocumentTx("local:/temo/db1").create();

ODatabaseDocumentTx	db2	=	new	ODatabaseDocumentTx("local:/temo/db2").create();

...

db2.close();

//	NOW	NO	DATABASE	IS	SET	IN	THREAD	LOCAL.	TO	WORK	WITH	DB1	SET	IT	IN	THE	THREAD	LOCAL

db1.activateOnCurrentThread();

...

Multi	Version	Concurrency	Control
If	two	threads	update	the	same	record,	then	the	last	one	receive	the	following	exception:	"OConcurrentModificationException:	Cannot
update	record	#X:Y	in	storage	'Z'	because	the	version	is	not	the	latest.	Probably	you	are	updating	an	old	record	or	it	has	been	modified
by	another	user	(db=vA	your=vB)"

This	is	because	every	time	you	update	a	record,	the	version	is	incremented	by	1.	So	the	second	update	fails	checking	the	current	record
version	in	database	is	higher	than	the	version	contained	in	the	record	to	update.

This	is	an	example	of	code	to	manage	the	concurrency	properly:

Graph	API

for(	int	retry	=	0;	retry	<	maxRetries;	++retry	)	{

		try{

				//	APPLY	CHANGES

				vertex.setProperty(	"name",	"Luca"	);

				vertex.addEdge(	"Buy",	product	);

				break;

		}	catch(	ONeedRetryException	e	)	{

				//	RELOAD	IT	TO	GET	LAST	VERSION

				vertex.reload();

				product.reload();

		}

}

Document	API

for(	int	retry	=	0;	retry	<	maxRetries;	++retry	)	{

		try{

				//	APPLY	CHANGES

				document.field(	"name",	"Luca"	);

				document.save();

				break;

		}	catch(	ONeedRetryException	e	)	{

				//	RELOAD	IT	TO	GET	LAST	VERSION

				document.reload();

		}

}

The	same	in	transactions:

Multi-Threading

458



for(	int	retry	=	0;	retry	<	maxRetries;	++retry	)	{

		db.begin();

		try{

				//	CREATE	A	NEW	ITEM

				ODocument	invoiceItem	=	new	ODocument("InvoiceItem");

				invoiceItem.field(	"price",	213231	);

				invoiceItem.save();

				//	ADD	IT	TO	THE	INVOICE

				Collection<ODocument>	items	=	invoice.field(	items	);

				items.add(	invoiceItem	);

				invoice.save();

				db.commit();

				break;

		}	catch(	OTransactionException	e	)	{

				//	RELOAD	IT	TO	GET	LAST	VERSION

				invoice.reload();

		}

}

Where		maxRetries		is	the	maximum	number	of	attempt	of	reloading.

What	about	running	transaction?
Transactions	are	bound	to	a	database,	so	if	you	change	the	current	database	while	a	tx	is	running,	the	deleted	and	saved	objects	remain
attached	to	the	original	database	transaction.	When	it	commits,	the	objects	are	committed.

Example:

ODatabaseDocumentTx	db1	=	new	ODatabaseDocumentTx("local:/temo/db1").create();

db1.begin();

ODocument	doc1	=	new	ODocument("Customer");

doc1.field("name",	"Luca");

doc1.save();	//	NOW	IT'S	BOUND	TO	DB1'S	TX

ODatabaseDocumentTx	db2	=	new	ODatabaseDocumentTx("local:/temo/db2").create();	//	THE	CURRENT	DB	NOW	IS	DB2

ODocument	doc2	=	new	ODocument("Provider");

doc2.field("name",	"Chuck");

doc2.save();	//	THIS	IS	BOUND	TO	DB2	BECAUSE	IT'S	THE	CURRENT	ONE

db1.activateOnCurrentThread();

db1.commit();	//	WILL	COMMIT	DOC1	ONLY

Multi-Threading

459



Transaction	Propagation
During	application	development	there	are	situations	when	a	transaction	started	in	one	method	should	be	propagated	to	other	method.

Lets	suppose	we	have	2	methods.

public	void	method1()	{

	database.begin();

	try	{

		method2();

		database.commit();

	}	catch(Exception	e)	{

			database.rollback();

	}

}

public	void	method2()	{

		database.begin();

		try	{

				database.commit();

		}	catch(Exception	e)	{

				database.rollback();

		}

}

As	you	can	see	transaction	is	started	in	first	method	and	then	new	one	is	started	in	second	method.	So	how	these	transactions	should
interact	with	each	other.	Prior	1.7-rc2	first	transaction	was	rolled	back	and	second	was	started	so	were	risk	that	all	changes	will	be	lost.

Since	1.7-rc2	we	start	nested	transaction	as	part	of	outer	transaction.	What	does	it	mean	on	practice?

Lets	consider	example	above	we	may	have	two	possible	cases	here:

First	case:

1.	 begin	outer	transaction.
2.	 begin	nested	transaction.
3.	 commit	nested	transaction.
4.	 commit	outer	transaction.

When	nested	transaction	is	started	all	changes	of	outer	transaction	are	visible	in	nested	transaction	and	then	when	nested	transaction	is
committed	changes	are	done	in	nested	transaction	are	not	committed	they	will	be	committed	at	the	moment	when	outer	transaction	will
be	committed.

Second	case:

1.	 begin	outer	transaction.
2.	 begin	nested	transaction.
3.	 rollback	nested	transaction.
4.	 commit	outer	transaction.

When	nested	transaction	is	rolled	back,	changes	are	done	in	nested	transaction	are	not	rolled	back.	But	when	we	commit	outer
transaction	all	changes	will	be	rolled	back	and	ORollbackException	will	be	thrown.

So	what	instances	of	database	should	we	use	to	get	advantage	of	transaction	propagation	feature:

1.	 The	same	instance	of	database	should	be	used	between	methods.
2.	 Database	pool	can	be	used,	in	such	case	all	methods	which	asks	for	db	connection	in	same	thread	will	have	the	same	the	same

database	instance.

Transactions

460



Binary	Data
OrientDB	natively	handles	binary	data,	namely	BLOB.	However,	there	are	some	considerations	to	take	into	account	based	on	the	type
of	binary	data,	the	size,	the	kind	of	usage,	etc.

Sometimes	it's	better	to	store	binary	records	in	a	different	path	then	default	database	directory	to	benefit	of	faster	HD	(like	a	SSD)	or
just	to	go	in	parallel	if	the	OS	and	HW	configuration	allow	this.

In	this	case	create	a	new	cluster	in	a	different	path:

db.addCluster("physical",	"binary",	"/mnt/ssd",	"binary"	);

All	the	records	in	cluster		binary		will	reside	in	files	created	under	the	directory		/mnt/ssd	.

Techniques

Store	on	file	system	and	save	the	path	in	the	document
This	is	the	simpler	way	to	handle	binary	data:	store	them	to	the	file	system	and	just	keep	the	path	to	retrieve	them.

Example:

ODocument	doc	=	new	ODocument();

doc.field("binary",	"/usr/local/orientdb/binary/test.pdf");

doc.save();

Pros:

Easy	to	write
100%	delegated	to	the	File	System

Cons:

Binary	data	can't	be	automatically	distributed	using	the	OrientDB	cluster

Store	it	as	a	Document	field

ODocument	class	is	able	to	manage	binary	data	in	form	of		byte[]		(byte	array).	Example:

ODocument	doc	=	new	ODocument();

doc.field("binary",	"Binary	data".getBytes());

doc.save();

This	is	the	easiest	way	to	keep	the	binary	data	inside	the	database,	but	it's	not	really	efficient	on	large	BLOB	because	the	binary	content
is	serialized	in	Base64.	This	means	a	waste	of	space	(33%	more)	and	a	run-time	cost	in	marshalling/unmarshalling.

Also	be	aware	that	once	the	binary	data	reaches	a	certain	size	(10	MB	in	some	recent	testing),	the	database's	performance	can	decrease
significantly.	If	this	occurs,	the	solution	is	to	use	the		ORecordBytes		solution	described	below.

Pros:

Easy	to	write

Cons:

Waste	of	space	+33%
Run-time	cost	of	marshalling/unmarshalling
Significant	performance	decrease	once	the	binary	reaches	a	certain	large	size

Binary	Data

461



Store	it	with	ORecordBytes

The		ORecordBytes		class	is	a	record	implementation	able	to	store	binary	content	without	conversions	(see	above).	This	is	the	faster	way
to	handle	binary	data	with	OrientDB	but	needs	a	separate	record	to	handle	it.	This	technique	also	offers	the	highest	performance	when
storing	and	retrieving	large	binary	data	records.

Example:

ORecordBytes	record	=	new	ORecordBytes("Binary	data".getBytes());

record.save();

Since	this	is	a	separate	record,	the	best	way	to	reference	it	is	to	link	it	to	a	Document	record.	Example:

ORecordBytes	record	=	new	ORecordBytes("Binary	data".getBytes());

ODocument	doc	=	new	ODocument();

doc.field("id",	12345);

doc.field("binary",	record);

doc.save();

In	this	way	you	can	access	to	the	binary	data	by	traversing	the		binary		field	of	the	parent's	document	record.

ORecordBytes	record	=	doc.field("binary");

byte[]	content	=	record.toStream();

You	can	manipulate	directly	the	buffer	and	save	it	back	again	by	calling	the		setDirty()		against	the	object:

byte[]	content	=	record.toStream();

content[0]	=	0;

record.setDirty();

record.save();

Or	you	can	work	against	another		byte[]	:

byte[]	content	=	record.toStream();

byte[]	newContent	=	new	byte[content*2];

System.arrayCopy(content,	0,	newContent,	0,	content.length);

record.fromStream(newContent);

record.setDirty();

record.save();

	ORecordBytes		class	can	work	with	Java	Streams:

ORecordBytes	record	=	new	ORecordBytes().fromInputStream(in);

record.toOutputStream(out);

Pros:

Fast	and	compact	solution

Cons:

Slightly	complex	management

Large	content:	split	in	multiple	ORecordBytes
OrientDB	can	store	up	to	2Gb	as	record	content.	But	there	are	other	limitations	on	network	buffers	and	file	sizes	you	should	tune	to
reach	the	2GB	barrier.

However	managing	big	chunks	of	binary	data	means	having	big		byte[]		structures	in	RAM	and	this	could	cause	a	Out	Of	Memory	of
the	JVM.	Many	users	reported	that	splitting	the	binary	data	in	chunks	it's	the	best	solution.

Binary	Data

462



Continuing	from	the	last	example	we	could	handle	not	a	single	reference	against	one		ORecordBytes		record	but	multiple	references.	A
One-To-Many	relationship.	For	this	purpose	the		LINKLIST		type	fits	perfect	because	maintains	the	order.

To	avoid	OrientDB	caches	in	memory	large	records	use	the	massive	insert	intent	and	keep	in	the	collection	the	RID,	not	the	entire
records.

Example	to	store	in	OrientDB	the	file	content:

database.declareIntent(	new	OIntentMassiveInsert()	);

List<ORID>	chunks	=	new	ArrayList<ORID>();

InputStream	in	=	new	BufferedInputStream(	new	FileInputStream(	file	)	);

while	(	in.available()	>	0	)	{

		final	ORecordBytes	chunk	=	new	ORecordBytes();

		//	READ	REMAINING	DATA,	BUT	NOT	MORE	THAN	8K

		chunk.fromInputStream(	in,	8192	);

		//	SAVE	THE	CHUNK	TO	GET	THE	REFERENCE	(IDENTITY)	AND	FREE	FROM	THE	MEMORY

		database.save(	chunk	);

		//	SAVE	ITS	REFERENCE	INTO	THE	COLLECTION

		chunks.add(	chunk.getIdentity()	);

}

//	SAVE	THE	COLLECTION	OF	REFERENCES	IN	A	NEW	DOCUMENT

ODocument	record	=	new	ODocument();

record.field(	"data",	chunks	);

database.save(	record	);

database.declareIntent(	null	);

Example	to	read	back	the	file	content:

record.setLazyLoad(false);

for	(OIdentifiable	id	:	(List<OIdentifiable>)	record.field("data"))	{

				ORecordBytes	chunk	=	(ORecordBytes)	id.getRecord();

				chunk.toOutputStream(out);

				chunk.unload();

}

Pros:

Fastest	and	compact	solution

Cons:

More	complex	management

Conclusion
What	to	use?

Have	you	short	binary	data?	Store	them	as	document's	field
Do	you	want	the	maximum	of	performance	and	better	use	of	the	space?	Store	it	with		ORecordBytes	
Have	you	large	binary	objects?	Store	it	with		ORecordBytes		but	split	the	content	in	multiple	records

Binary	Data

463



Web	Applications
The	database	instances	are	not	thread-safe,	so	each	thread	needs	a	own	instance.	All	the	database	instances	will	share	the	same
connection	to	the	storage	for	the	same	URL.	For	more	information	look	at	Java	Multi	threads	and	databases.

Java	WebApp	runs	inside	a	Servlet	container	with	a	pool	of	threads	that	work	the	requests.

There	are	mainly	2	solutions:

Manual	control	of	the	database	instances	from	Servlets	(or	any	other	server-side	technology	like	Apache	Struts	Actions,	Spring
MVC,	etc.)
Automatic	control	using	Servlet	Filters

Manual	control

Graph	API

package	com.orientechnologies.test;

import	javax.servlet.*;

public	class	Example	extends	HttpServlet	{

		public	void	doGet(HttpServletRequest	request,

																				HttpServletResponse	response)

								throws	IOException,	ServletException

		{

				OrientBaseGraph	graph	=	new	OrientGraph("plocal:/temp/db",	"admin",	"admin");

				try	{

					//	USER	CODE

				}	finally	{

						graph.shutdown();

				}

		}

}

Document	API

package	com.orientechnologies.test;

import	javax.servlet.*;

public	class	Example	extends	HttpServlet	{

		public	void	doGet(HttpServletRequest	request,

																				HttpServletResponse	response)

								throws	IOException,	ServletException

		{

				ODatabaseDocumentTx	database	=	new	ODatabaseDocumentTx("plocal:/temp/db").open("admin",	"admin");

				try	{

					//	USER	CODE

				}	finally	{

						database.close();

				}

		}

}

Automatic	control	using	Servlet	Filters

Servlets	are	the	best	way	to	automatise	database	control	inside	WebApps.	The	trick	is	to	create	a	Filter	that	get	a	reference	of	the	graph
and	binds	it	in	the	current	ThreadLocal	before	to	execute	the	Servlet	code.	Once	returned	the	ThreadLocal	is	cleared	and	graph	instance
released.

Web	Apps

464



JaveEE	Servlets

Create	a	Filter	class

Filter	with	Graph	API

In	this	example	a	new	graph	instance	is	created	per	request,	opened	and	at	the	end	closed.

package	com.orientechnologies.test;

import	javax.servlet.*;

public	class	OrientDBFilter	implements	Filter	{

		public	void	doFilter(ServletRequest	request,	ServletResponse	response,

										FilterChain	chain)	{

						OrientBaseGraph	graph	=	new	OrientGraph("plocal:/temp/db",	"admin",	"admin");

						try{

								chain.doFilter(request,	response);

						}	finally	{

								graph.shutdown();

						}

		}

}

Filter	with	Document	API

In	this	example	a	new	graph	instance	is	created	per	request,	opened	and	at	the	end	closed.

package	com.orientechnologies.test;

import	javax.servlet.*;

public	class	OrientDBFilter	implements	Filter	{

		public	void	doFilter(ServletRequest	request,	ServletResponse	response,

										FilterChain	chain)	{

						ODatabaseDocumentTx	database	=	new	ODatabaseDocumentTx("plocal:/temp/db").open("admin",	"admin");

						try{

								chain.doFilter(request,	response);

						}	finally	{

								database.close();

						}

		}

}

Register	the	filter

Now	we've	create	the	filter	class	it	needs	to	be	registered	in	the	web.xml	file:

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	xmlns="http://java.sun.com/xml/ns/j2ee"

									xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

									xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

									http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

									version="2.4">

		<filter>

				<filter-name>OrientDB</filter-name>

				<filter-class>com.orientechnologies.test.OrientDBFilter</filter-class>

		</filter>

				<filter-mapping>

						<filter-name>OrientDB</filter-name>

						<url-pattern>/*</url-pattern>

				</filter-mapping>

				<session-config>

						<session-timeout>30</session-timeout>

				</session-config>

</web-app>

Web	Apps

465

http://www.oracle.com/technetwork/java/javaee/servlet/index.html


JDBC	Driver
The	JDBC	driver	for	OrientDB	allows	to	connect	to	a	remote	server	using	the	standard	and	consolidated	way	of	interacting	with
database	in	the	Java	world.

Include	in	your	projects

To	be	used	inside	your	project,	simply	add	the	dependency	to	your	pom:

<dependency>

		<groupId>com.orientechnologies</groupId>

		<artifactId>orientdb-jdbc</artifactId>

		<version>ORIENTDB_VERSION</version>

</dependency>

NOTE:	to	use	SNAPSHOT	version	remember	to	add	the	Snapshot	repository	to	your		pom.xml	.

How	can	be	used	in	my	code?
The	driver	is	registered	to	the	Java	SQL	DriverManager	and	can	be	used	to	work	with	all	the	OrientDB	database	types:

memory,
plocal	and
remote

The	driver's	class	is		com.orientechnologies.orient.jdbc.OrientJdbcDriver	.	Use	your	knowledge	of	JDBC	API	to	work	against
OrientDB.

First	get	a	connection

Properties	info	=	new	Properties();

info.put("user",	"admin");

info.put("password",	"admin");

Connection	conn	=	(OrientJdbcConnection)	DriverManager.getConnection("jdbc:orient:remote:localhost/test",	info);

Then	execute	a	Statement	and	get	the	ResultSet:

Statement	stmt	=	conn.createStatement();

ResultSet	rs	=	stmt.executeQuery("SELECT	stringKey,	intKey,	text,	length,	date	FROM	Item");

rs.next();

rs.getInt("@version");

rs.getString("@class");

rs.getString("@rid");

rs.getString("stringKey");

rs.getInt("intKey");

rs.close();

stmt.close();

The	driver	retrieves	OrientDB	metadata	(@rid,@class	and	@version)	only	on	direct	queries.	Take	a	look	at	tests	code	to	see	more
detailed	examples.

JDBC	Driver

466



Advanced	features

Connection	pool

By	default	a	new	database	instance	is	created	every	time	you	ask	for	a	JDBC	connection.	OrientDB	JDBC	driver	provides	a	Connection
Pool	out	of	the	box.	Set	the	connection	pool	parameters	before	to	ask	for	a	connection:

Properties	info	=	new	Properties();

info.put("user",	"admin");

info.put("password",	"admin");

info.put("db.usePool",	"true");	//	USE	THE	POOL

info.put("db.pool.min",	"3");			//	MINIMUM	POOL	SIZE

info.put("db.pool.max",	"30");		//	MAXIMUM	POOL	SIZE

Connection	conn	=	(OrientJdbcConnection)	DriverManager.getConnection("jdbc:orient:remote:localhost/test",	info);

Spark	compatibility	(from	2.1.21)

Apache	Spark	allows	reading	and	writing	of	DataFrames	from	JDBC	data	sources.	The	driver	offers	a	compatibility	mode	to	enable	load
of	data	frame	from	an	OrientDb's	class	or	query.

Map<String,	String>	options	=	new	HashMap<String,	String>()	{{

				put("url",	"jdbc:orient:remote:localhost/sparkTest");

				put("user",	"admin");

				put("password",	"admin");

				put("spark",	"true");	//	ENABLE	Spark	compatibility

				put("dbtable",	"Item");

}};

SQLContext	sqlCtx	=	new	SQLContext(ctx);

DataFrame	jdbcDF	=	sqlCtx.read().format("jdbc").options(options).load();

JDBC	Driver

467

http://spark.apache.org/


JPA
There	are	two	ways	to	configure	OrientDB	JPA

Configuration

The	first	-	do	it	through	/META-INF/persistence.xml	Folowing	OrientDB	properties	are	supported	as	for	now:

javax.persistence.jdbc.url,	javax.persistence.jdbc.user,	javax.persistence.jdbc.password,	com.orientdb.entityClasses

You	can	also	use	<class>	tag

Example:

<?xml	version="1.0"	encoding="UTF-8"?>

<persistence	version="2.0"

				xmlns="http://java.sun.com/xml/ns/persistence"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://java.sun.com/xml/ns/persistence	http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

				<persistence-unit	name="appJpaUnit">

								<provider>com.orientechnologies.orient.object.jpa.OJPAPersistenceProvider</provider>

								<!--	JPA	entities	must	be	registered	here	-->

								<class>com.example.domain.MyPOJO</class>

								<properties>

												<property	name="javax.persistence.jdbc.url"	value="remote:localhost/test.odb"	/>

												<property	name="javax.persistence.jdbc.user"	value="admin"	/>

												<property	name="javax.persistence.jdbc.password"	value="admin"	/>

												<!--	Register	whole	package.

																													See	com.orientechnologies.orient.core.entity.OEntityManager.registerEntityClasses(String)	for	mor

e	details	-->

												<property	name="com.orientdb.entityClasses"	value="com.example.domains"	/>

								</properties>

				</persistence-unit>

</persistence>

Programmatic

The	second	one	is	programmatic:

Guice	example

com.google.inject.persist.jpa.JpaPersistModule.properties(Properties)

JPA

468



/**

	*	triggered	as	soon	as	a	web	application	is	deployed,	and	before	any	requests

	*	begin	to	arrive

	*/

@WebListener

public	class	GuiceServletConfig	extends	GuiceServletContextListener	{

				@Override

				protected	Injector	getInjector()	{

								return	Guice.createInjector(

																								new	JpaPersistModule("appJpaUnit").properties(orientDBProp),

																								new	ConfigFactoryModule(),

																								servletModule);

				}

				protected	static	final	Properties	orientDBProp	=	new	Properties(){{

								setProperty("javax.persistence.jdbc.url",	"remote:localhost/test.odb");

								setProperty("javax.persistence.jdbc.user",	"admin");

								setProperty("javax.persistence.jdbc.password",	"admin");

								setProperty("com.orientdb.entityClasses",	"com.example.domains");

				}};

				protected	static	final	ServletModule	servletModule	=	new	ServletModule()	{

								@Override

								protected	void	configureServlets()	{

												filter("/*").through(PersistFilter.class);

												//	...

				};

}

Native	example

//	OPEN	THE	DATABASE

OObjectDatabaseTx	db	=	new	OObjectDatabaseTx	("remote:localhost/petshop").open("admin",	"admin");

//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED

db.getEntityManager().registerEntityClasses("foo.domain");

DB	properties,	that	were	passed	programmatically,	will	overwrite	parsed	from	XML	ones

Note
Config	parser	checks	persistence.xml	with	validation	schemes	(XSD),	so	configuration	file	must	be	valid.

1.0,	2.0	and	2.1	XSD	schemes	are	supported.

JPA

469

https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_1_0.xsd
https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_2_0.xsd
https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_2_1.xsd


JMX

Read	Cache

JMX	bean	name:		com.orientechnologies.orient.core.storage.cache.local:type=O2QCacheMXBean	

It	has	following	members:

	usedMemory	,		usedMemoryInMB	,		usedMemoryInGB		which	is	amount	of	direct	memory	consumed	by	read	cache	in	different	units	of
measurements
	cacheHits		is	percent	of	cases	when	records	will	be	downloaded	not	from	disk	but	from	read	cache
	clearCacheStatistics()		method	may	be	called	to	clear	cache	hits	statics	so	we	always	may	start	to	gather	cache	hits	statistic	from
any	moment	of	time
	amSize		,		a1OutSize	,		a1InSize		is	the	size	of	LRU	queues	are	used	in	2Q	algorithm

Write	Cache

JMX	bean	name:		com.orientechnologies.orient.core.storage.cache.local:type=OWOWCacheMXBean,name=<storage	name>,id=<storage	id>	

Write	cache	alike	read	cache	is	not	JVM	wide,	it	is	storage	wide,	but	one	JVM	may	run	several	servers	and	each	server	may	contain
storage	with	the	same	name,	that	is	why	we	need	such	complex	name.

JMX	bean	of	write	cache	has	following	members:

	writeCacheSize	,		writeCacheSizeInMB	,		writeCacheSizeInGB		provides	size	of	data	in	different	units	which	should	be	flushed	to
disk	in	background	thread
	exclusiveWriteCacheSize		,		exclusiveWriteCacheSizeInMB	,		exclusiveWriteCacheSizeInGB		provides	size	of	data	which	should	be
flushed	to	disk	but	contained	only	in	write	cache

More	about	memory	model	and	data	flow
At	first	when	we	read	page	we	load	it	from	disk	and	put	it	in	read	cache.	Then	we	change	page	and	put	it	back	to	read	cache	and	write
cache,	but	we	do	not	copy	page	from	read	to	write	cache	we	merely	send	pointer	to	the	same	memory	to	write	cache.	Write	cache
flushes	"dirty	write	page"	in	background	thread.	That	is	what	property	"writeCachSize"	shows	us	amount	of	data	in	dirty	pages	which
should	be	flushed.	But	there	are	very	rare	situations	when	page	which	is	rarely	used	still	is	not	flushed	on	disk	and	read	cache	has	not
enough	memory	to	keep	it.	In	such	case	this	page	is	removed	from	read	cache	,	but	pointer	to	this	page	still	exists	in	write	cache,	that	is
what	property	"exclusiveWriteCacheSize"	shows	us.	Please	not	that	this	value	is	more	than	0	only	during	extremely	high	load.

The	rest	properties	of	write	cache	JMX	bean	are	following:

	lastFuzzyCheckpointDate	

	lastAmountOfFlushedPages	

	durationOfLastFlush	

JMX

470



Gremlin	API
Gremlin	is	a	language	specialized	to	work	with	Property	Graphs.	Gremlin	is	part	of	TinkerPop	Open	Source	products.	For	more
information:

Gremlin	Documentation
Gremlin	WiKi
OrientDB	adapter	to	use	it	inside	Gremlin
OrientDB	implementation	of	TinkerPop	Blueprints

To	know	more	about	Gremlin	and	TinkerPop's	products	subscribe	to	the	Gremlin	Group.

Get	Started
Launch	the	gremlin.sh	(or	gremlin.bat	on	Windows	OS)	console	script	located	in	the	bin	directory:

>	gremlin.bat

									\,,,/

									(o	o)

-----oOOo-(_)-oOOo-----

Open	the	graph	database
Before	playing	with	Gremlin	you	need	a	valid	OrientGraph	instance	that	points	to	an	OrientDB	database.	To	know	all	the	database
types	look	at	Storage	types.

When	you're	working	with	a	local	or	an	in-memory	database,	if	the	database	does	not	exist	it's	created	for	you	automatically.	Using	the
remote	connection	you	need	to	create	the	database	on	the	target	server	before	using	it.	This	is	due	to	security	restrictions.

Once	created	the	OrientGraph	instance	with	a	proper	URL	is	necessary	to	assign	it	to	a	variable.	Gremlin	is	written	in	Groovy,	so	it
supports	all	the	Groovy	syntax,	and	both	can	be	mixed	to	create	very	powerful	scripts!

Example	with	a	local	database	(see	below	for	more	information	about	it):

gremlin>	g	=	new	OrientGraph("plocal:/home/gremlin/db/demo");

==>orientgraph[plocal:/home/gremlin/db/demo]

Some	useful	links:

All	Gremlin	methods
All	available	steps

Working	with	local	database

This	is	the	most	often	used	mode.	The	console	opens	and	locks	the	database	for	exclusive	use.	This	doesn't	require	starting	an	OrientDB
server.

gremlin>	g	=	new	OrientGraph("plocal:/home/gremlin/db/demo");

==>orientgraph[plocal:/home/gremlin/db/demo]

Working	with	a	remote	database

Gremlin	API

471

http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph
http://gremlindocs.com
http://www.tinkerpop.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/blueprints/wiki/OrientDB-Implementation
http://gremlindocs.com
http://www.tinkerpop.com
http://groups.google.com/forum/#!forum/gremlin-users
http://gremlindocs.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Methods
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps


To	open	a	database	on	a	remote	server	be	sure	the	server	is	up	and	running	first.	To	start	the	server	just	launch	server.sh	(or	server.bat
on	Windows	OS)	script.	For	more	information	look	at	OrientDB	Server

gremlin>	g	=	new	OrientGraph("remote:localhost/demo");

==>orientgraph[remote:localhost/demo]

Working	with	in-memory	database

In	this	mode	the	database	is	volatile	and	all	the	changes	will	be	not	persistent.	Use	this	in	a	clustered	configuration	(the	database	life	is
assured	by	the	cluster	itself)	or	just	for	test.

gremlin>	g	=	new	OrientGraph("memory:demo");

==>orientgraph[memory:demo]

Use	security

OrientDB	supports	security	by	creating	multiple	users	and	roles	associated	with	certain	privileges.	To	know	more	look	at	Security.	To
open	the	graph	database	with	a	different	user	than	the	default,	pass	the	user	and	password	as	additional	parameters:

gremlin>	g	=	new	OrientGraph("memory:demo",	"reader",	"reader");

==>orientgraph[memory:demo]

Create	a	new	Vertex
To	create	a	new	vertex,	use	the	addVertex()	method.	The	vertex	will	be	created	and	a	unique	id	will	be	displayed	as	the	return	value.

g.addVertex();

==>v[#5:0]

Create	an	edge
To	create	a	new	edge	between	two	vertices,	use	the	addEdge(v1,	v2,	label)	method.	The	edge	will	be	created	with	the	label	specified.

In	the	example	below	two	vertices	are	created	and	assigned	to	a	variable	(Gremlin	is	based	on	Groovy),	then	an	edge	is	created	between
them.

gremlin>	v1	=	g.addVertex();

==>v[#5:0]

gremlin>	v2	=	g.addVertex();

==>v[#5:1]

gremlin>	e	=	g.addEdge(v1,	v2,	'friend');

==>e[#6:0][#5:0-friend->#5:1]

Save	changes
OrientDB	assigns	a	temporary	identifier	to	each	vertex	and	edge	that	is	created.	To	save	them	to	the	database
stopTransaction(SUCCESS)	should	be	called

gremlin>	g.stopTransaction(SUCCESS)

Gremlin	API

472



Retrieve	a	vertex
To	retrieve	a	vertex	by	its	ID,	use	the	v(id)	method	passing	the	RecordId	as	an	argument	(with	or	without	the	prefix	'#').	This	example
retrieves	the	first	vertex	created	in	the	above	example.

gremlin>	g.v('5:0')

==>v[#5:0]

Get	all	the	vertices
To	retrieve	all	the	vertices	in	the	opened	graph	use	.V	(V	in	upper-case):

gremlin>	g.V

==>v[#5:0]

==>v[#5:1]

Retrieve	an	edge
Retrieving	an	edge	is	very	similar	to	retrieving	a	vertex.	Use	the	e(id)	method	passing	the	RecordId	as	an	argument	(with	or	without	the
prefix	'#').	This	example	retrieves	the	first	edge	created	in	the	previous	example.

gremlin>	g.e('6:0')

==>e[#6:0][#5:0-friend->#5:1]

Get	all	the	edges

To	retrieve	all	the	edges	in	the	opened	graph	use	.E	(E	in	upper-case):

gremlin>	g.E

==>e[#6:0][#5:0-friend->#5:1]

Traversal
The	power	of	Gremlin	is	in	traversal.	Once	you	have	a	graph	loaded	in	your	database	you	can	traverse	it	in	many	different	ways.

Basic	Traversal

To	display	all	the	outgoing	edges	of	the	first	vertex	just	created	append	the	.outE	at	the	vertex.	Example:

gremlin>	v1.outE

==>e[#6:0][#5:0-friend->#5:1]

To	display	all	the	incoming	edges	of	the	second	vertex	created	in	the	previous	examples	append	the	.inE	at	the	vertex.	Example:

gremlin>	v2.inE

==>e[#6:0][#5:0-friend->#5:1]

In	this	case	the	edge	is	the	same	because	it's	the	outgoing	edge	of	5:0	and	the	incoming	edge	of	5:1.

For	more	information	look	at	the	Basic	Traversal	with	Gremlin.

Filter	results

Gremlin	API

473

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals


This	example	returns	all	the	outgoing	edges	of	all	the	vertices	with	label	equal	to	'friend'.

gremlin>	g.V.outE('friend')

==>e[#6:0][#5:0-friend->#5:1]

Close	the	database
To	close	a	graph	use	the	shutdown()	method:

gremlin>	g.shutdown()

==>null

This	is	not	strictly	necessary	because	OrientDB	always	closes	the	database	when	the	Gremlin	console	quits.

Create	complex	paths
Gremlin	allows	you	to	concatenate	expressions	to	create	more	complex	traversals	in	a	single	line:

v1.outE.inV

Of	course	this	could	be	much	more	complex.	Below	is	an	example	with	the	graph	taken	from	the	official	documentation:

g	=	new	OrientGraph('memory:test')

//	calculate	basic	collaborative	filtering	for	vertex	1

m	=	[:]

g.v(1).out('likes').in('likes').out('likes').groupCount(m)

m.sort{a,b	->	a.value	<=>	b.value}

//	calculate	the	primary	eigenvector	(eigenvector	centrality)	of	a	graph

m	=	[:];	c	=	0;

g.V.out.groupCount(m).loop(2){c++	<	1000}

m.sort{a,b	->	a.value	<=>	b.value}

Passing	input	parameters
Some	Gremlin	expressions	require	declaration	of	input	parameters	to	be	run.	This	is	the	case,	for	example,	of	bound	variables,	as
described	in	JSR223	Gremlin	Script	Engine.	OrientDB	has	enabled	a	mechanism	to	pass	variables	to	a	Gremlin	pipeline	declared	in	a
command	as	described	below:

Map<String,	Object>	params	=	new	HashMap<String,	Object>();

params.put("map1",	new	HashMap());

params.put("map2",	new	HashMap());

db.command(new	OCommandSQL("select	gremlin('

current.as('id').outE.label.groupCount(map1).optional('id').sideEffect{map2=it.map();map2+=map1;}

')")).execute(params);

GremlinPipeline

You	can	also	use	native	Java	GremlinPipeline	like:

new	GremlinPipeline(g.getVertex(1)).out("knows").property("name").filter(new	PipeFunction<String,Boolean>()	{

		public	Boolean	compute(String	argument)	{

				return	argument.startsWith("j");

		}

}).back(2).out("created");

Gremlin	API

474

http://gremlindocs.com
http://gremlindocs.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Using-Gremlin-through-Java
http://gremlindocs.com


For	more	information:	Using	Gremlin	through	Java

Declaring	output
In	the	simplest	case,	the	output	of	the	last	step	(https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps)	in	the	Gremlin	pipeline
corresponds	to	the	output	of	the	overall	Gremlin	expression.	However,	it	is	possible	to	instruct	the	Gremlin	engine	to	consider	any	of
the	input	variables	as	output.	This	can	be	declared	as:

Map<String,	Object>	params	=	new	HashMap<String,	Object>();

params.put("map1",	new	HashMap());

params.put("map2",	new	HashMap());

params.put("output",	"map2");

db.command(new	OCommandSQL("select	gremlin('

current.as('id').outE.label.groupCount(map1).optional('id').sideEffect{map2=it.map();map2+=map1;}

')")).execute(params);

There	are	more	possibilities	to	define	the	output	in	the	Gremlin	pipelines.	So	this	mechanism	is	expected	to	be	extended	in	the	future.
Please,	contact	OrientDB	mailing	list	to	discuss	customized	outputs.

Conclusions
Now	you've	learned	how	to	use	Gremlin	on	top	of	OrientDB.	The	best	place	to	go	in	depth	with	this	powerful	language	is	the	Gremlin
WiKi.

Gremlin	API

475

https://github.com/tinkerpop/gremlin/wiki/Using-Gremlin-through-Java
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps
http://gremlindocs.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki


Javascript
OrientDB	supports	server-side	scripting.	All	the	JVM	languages	are	supported.	By	default	JavaScript	is	installed.

Scripts	can	be	executed	on	the	client	and	on	the	server-side.	On	the	client-side,	the	user	must	have	READ	privilege	against	the
	database.command		resource.	On	the	server-side,	the	scripting	interpreter	must	be	enabled.	It	is	disabled	by	default	for	security	reasons.

In	order	to	return	the	result	of	a	variable,	put	the	variable	name	as	last	statement.	Example:

var	r	=	db.query('select	from	ouser');

print(r);

r

Will	return	the	resultset.

See	also

SQL-batch

Usage

Via	Java	API

Executes	a	command	like	SQL	but	uses	the	class		OCommandScript		passing	in	the	language	to	use.	JavaScript	is	installed	by	default.
Example:

db.command(	new	OCommandScript("Javascript",	"print('hello	world')")	).execute();

Via	console

JavaScript	code	can	be	executed	on	the	client-side,	the	console,	or	server-side:

Use		js		to	execute	the	script	on	the	client-side	running	it	in	the	console
use		jss		to	execute	the	script	on	the	server-side.	This	feature	is	disabled	by	default.	To	enable	it	look	at	Enable	Server	side
scripting.

Since	the	semi-colon		;		character	is	used	in	both	console	and	JavaScript	languages	to	separate	statements,	how	can	we	execute	multiple
commands	on	the	console	and	with	JavaScript?

The	OrientDB	console	uses	a	reserved	keyword		end		to	switch	from	JavaScript	mode	to	console	mode.

Example:

orientdb>	connect	remote:localhost/demo	admin	admin;	js	for(	i	=	0;	i	<	10;	i++	){	db.query('select	from	MapPoint')	};end;	exi

t

This	line	connects	to	the	remote	server	and	executes	10	queries	on	the	console.	The		end		command	switches	the	mode	back	to	the
OrientDB	console	and	then	executes	the	console		exit		command.

Below	is	an	example	to	display	the	results	of	a	query	on	the	server	and	on	the	client.

1.	 connects	to	the	remote	server	as		admin	
2.	 executes	a	query	and	assigns	the	result	to	the	variable		r	,	then	displays	it	server-side	and	returns	it	to	be	displayed	on	the	client

side	too
3.	 exits	the	console

Javascript

476

http://en.wikipedia.org/wiki/List_of_JVM_languages
http://en.wikipedia.org/wiki/JavaScript


Interactive	mode

$	./console.sh

OrientDB	console	v.1.5	www.orientechnologies.com

Type	'help'	to	display	all	the	commands	supported.

orientdb>	connect	remote:localhost/demo	admin	admin

Connecting	to	database	[remote:localhost/demo]	with	user	'admin'...OK

orientdb>	jss	var	r	=	db.query('select	from	ouser');print(r);r

---+---------+--------------------+--------------------+--------------------+--------------------

		#|	RID					|name																|password												|status														|roles

---+---------+--------------------+--------------------+--------------------+--------------------

		0|					#4:0|admin															|{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918|ACTIVE											

			|[1]

		1|					#4:1|reader														|{SHA-256}3D0941964AA3EBDCB00CCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30|ACTIVE											

			|[1]

		2|					#4:2|writer														|{SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBA5|ACTIVE											

			|[1]

---+---------+--------------------+--------------------+--------------------+--------------------

Script	executed	in	0,073000	sec(s).	Returned	3	records

orientdb>	exit

Batch	mode

The	same	example	above	is	executed	in	batch	mode:

$	./console.sh	"connect	remote:localhost/demo	admin	admin;jss	var	r	=	db.query('select	from	ouser');print(r);r;exit"

OrientDB	console	v.1.0-SNAPSHOT	(build	11761)	www.orientechnologies.com

Type	'help'	to	display	all	the	commands	supported.

Connecting	to	database	[remote:localhost/demo]	with	user	'admin'...OK

---+---------+--------------------+--------------------+--------------------+--------------------

		#|	RID					|name																|password												|status														|roles

---+---------+--------------------+--------------------+--------------------+--------------------

		0|					#4:0|admin															|{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918|ACTIVE											

			|[1]

		1|					#4:1|reader														|{SHA-256}3D0941964AA3EBDCB00CCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30|ACTIVE											

			|[1]

		2|					#4:2|writer														|{SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBA5|ACTIVE											

			|[1]

---+---------+--------------------+--------------------+--------------------+--------------------

Script	executed	in	0,099000	sec(s).	Returned	3	records

Examples	of	usage

Insert	1000	records

orientdb>	js	for(	i	=	0;	i	<	1000;	i++	){	db.query(	'insert	into	jstest	(label)	values	("test'+i+'")'	);	}

Create	documents	using	wrapped	Java	API

orientdb>	js	new	com.orientechnologies.orient.core.record.impl.ODocument('Profile').field('name',	'Luca').save()

Client	side	script	executed	in	0,426000	sec(s).	Value	returned	is:	Profile#11:52{name:Luca}	v3

Enable	Server-side	scripting

For	security	reasons	server-side	scripting	is	disabled	by	default	on	the	server.	To	enable	it	change	the	enable	field	to		true		in	the
orientdb-server-config.xml	file:

Javascript

477



<!--	SERVER	SIDE	SCRIPT	INTERPRETER.	WARNING!	THIS	CAN	BE	A	SECURITY	HOLE:	ENABLE	IT	ONLY	IF	CLIENTS	ARE	TRUSTED,	TO	TURN	ON	S

ET	THE	'ENABLED'	PARAMETER	TO	'true'	-->

		<handler	class="com.orientechnologies.orient.server.handler.OServerSideScriptInterpreter">

				<parameters>

						<parameter	name="enabled"	value="true"	/>

				</parameters>

		</handler>

NOTE:	this	will	allow	clients	to	execute	any	code	inside	the	server.	Enable	it	only	if	clients	are	trusted.

Javascript

478



Javascript	API
This	driver	wraps	the	most	common	use	cases	in	database	usage.	All	parameters	required	by	methods	or	constructor	are	Strings.	This
library	works	on	top	of	HTTP	RESTful	protocol.

Note:	Due	to	cross-domain	XMLHttpRequest	restriction	this	API	works,	for	now,	only	placed	in	the	server	deployment.	To	use	it	with
cross-site	look	at	Cross-site	scripting.

The	full	source	code	is	available	here:	oriendb-api.js.

See	also
Javascript-Command

Example

var	database	=	new	ODatabase('http://localhost:2480/demo');

databaseInfo	=	database.open();

queryResult	=	database.query('select	from	Address	where	city.country.name	=	\'Italy\'');

if	(queryResult["result"].length	==	0){

		commandResult	=	database.executeCommand('insert	into	Address	(street,type)	values	(\'Via	test	1\',\'Tipo	test\')');

}	else	{

		commandResult	=	database.executeCommand('update	Address	set	street	=	\'Via	test	1\'	where	city.country.name	=	\'Italy\'');

}

database.close();

API

ODatabase	object

ODatabase	object	requires	server	URL	and	database	name:

Syntax:		new	ODatabase(http://:/)	

Example:

var	orientServer	=	new	ODatabase('http://localhost:2480/demo');

Once	created	database	instance	is	ready	to	be	used.	Every	method	return	the	operation	result	when	it	succeeded,	null	elsewhere.	
In	case	of	null	result	the	database	instance	will	have	the	error	message	obtainable	by	the	getErrorMessage()	method.

Open

Method	that	connects	to	the	server,	it	returns	database	information	in	JSON	format.

Browser	Authentication

Syntax:		<databaseInstance>.open()	
Note:	This	implementation	asks	to	the	browser	to	provide	user	and	password.

Example:

orientServer	=	new	ODatabase('http://localhost:2480/demo');

databaseInfo	=	orientServer.open();

Javascript	Authentication

Javascript	API

479

https://github.com/nuvolabase/orientdb/blob/master/server/src/site/js/orientdb-api.js


Syntax:		<databaseInstance>.open(username,userpassword)	

Example:

orientServer	=	new	ODatabase('http://localhost:2480/demo');

databaseInfo	=	orientServer.open('admin','admin');

Return	Example:

{"classes":	[

				{

						"id":	0,

						"name":	"ORole",

						"clusters":	[3],

						"defaultCluster":	3,	"records":	3,

						"properties":	[

								{

								"id":	0,

								"name":	"mode",

								"type":	"BYTE",

								"mandatory":	false,

								"notNull":	false,

								"min":	null,

								"max":	null,

								"indexed":	false

						},

								{

								"id":	1,

								"name":	"rules",

								"linkedType":	"BYTE",

								"type":	"EMBEDDEDMAP",

								"mandatory":	false,

								"notNull":	false,

								"min":	null,

								"max":	null,

								"indexed":	false

						}

		]},

],

"dataSegments":	[

				{"id":	-1,	"name":	"default",	"size":	10485760,	"filled":	1380391,	"maxSize":	"0",	"files":	"[${STORAGE_PATH}/default.0.od

a]"}

		],

"clusters":	[

				{"id":	0,	"name":	"internal",	"type":	"PHYSICAL",	"records":	4,	"size":	1048576,	"filled":	60,	"maxSize":	"0",	"files":	"[

${STORAGE_PATH}/internal.0.ocl]"},

],

"txSegment":	[

				{"totalLogs":	0,	"size":	1000000,	"filled":	0,	"maxSize":	"50mb",	"file":	"${STORAGE_PATH}/txlog.otx"}

		],	"users":	[

				{"name":	"admin",	"roles":	"[admin]"},

				{"name":	"reader",	"roles":	"[reader]"},

				{"name":	"writer",	"roles":	"[writer]"}

		],

		"roles":	[

				{"name":	"admin",	"mode":	"ALLOW_ALL_BUT",

						"rules":	[]

				},

				{"name":	"reader",	"mode":	"DENY_ALL_BUT",

						"rules":	[{

								"name":	"database",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.internal",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.orole",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.ouser",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.class.*",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.*",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

Javascript	API

480



								},	{

								"name":	"database.query",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.command",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.hook.record",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								}]

				},

],

		"config":{

				"values":	[

						{"name":	"dateFormat",	"value":	"yyyy-MM-dd"},

						{"name":	"dateTimeFormat",	"value":	"yyyy-MM-dd	hh:mm:ss"},

						{"name":	"localeCountry",	"value":	""},

						{"name":	"localeLanguage",	"value":	"en"},

						{"name":	"definitionVersion",	"value":	0}

				],

				"properties":	[

				]

		}

}

Query

Method	that	executes	the	query,	it	returns	query	results	in	JSON	format.

Syntax:		<databaseInstance>.query(<queryText>,	[limit],	[fetchPlan])	

Limit	and	fetchPlan	are	optional.

Simple	Example:

queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'');

Return	Example:

{	"result":	[{

						"@rid":	"12:0",	"@class":	"Address",

						"street":	"Piazza	Navona,	1",

						"type":	"Residence",

						"city":	"#13:0"

				},	{

						"@rid":	"12:1",	"@class":	"Address",

						"street":	"Piazza	di	Spagna,	111",

						"type":	"Residence",

						"city":	"#13:0"

				}

		]

}

Fetched	Example:	fetching	of	all	fields	except	"type"

queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'',null,'*:-1	type:0');

Return	Example	1:

Javascript	API

481



{	"result":	[{

						"@rid":	"12:0",	"@class":	"Address",

						"street":	"Piazza	Navona,	1",

						"city":{

								"@rid":	"13:0",	"@class":	"City",

								"name":	"Rome",

								"country":{

										"@rid":	"14:0",	"@class":	"Country",

										"name":	"Italy"

								}

						}

				},	{

						"@rid":	"12:1",	"@version":	1,	"@class":	"Address",

						"street":	"Piazza	di	Spagna,	111",

						"city":{

								"@rid":	"13:0",	"@class":	"City",

								"name":	"Rome",

								"country":{

										"@rid":	"14:0",	"@class":	"Country",

										"name":	"Italy"

								}

						}

				}

		]

}

Fetched	Example:	fetching	of	all	fields	except	"city"	(Class)

queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'',null,'*:-1	city:0');

Return	Example	2:

{	"result":	[{

							"@rid":	"12:0",	"@class":	"Address",

							"street":	"Piazza	Navona,	1",

							"type":	"Residence"

					},	{

							"@rid":	"12:1",	"@version":	1,	"@class":	"Address",

							"street":	"Piazza	di	Spagna,	111",

							"type":	"Residence"

				}

		]

}

Fetched	Example:	fetching	of	all	fields	except	"country"	of	City	class

queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'',null,'*:-1	City.country:0');

Return	Example	3:

{	"result":	[{

						"@rid":	"12:0",	"@class":	"Address",

						"street":	"Piazza	Navona,	1",

						"type":	"Residence",

						"city":{

										"@rid":	"13:0",	"@class":	"City",

										"name":	"Rome"

						}

				}

		]

}

Execute	Command

Method	that	executes	arbitrary	commands,	it	returns	command	result	in	text	format.

Syntax:		<databaseInstance>.executeCommand(<commandText>)	

Javascript	API

482



Example	1	(insert):

commandResult	=	orientServer.executeCommand('insert	into	Address	(street,type)	values	(\'Via	test	1\',\'Tipo	test\')');

Return	Example	1	(created	record):

Address@14:177{street:Via	test	1,type:Tipo	test}

Example	2	(delete):

commandResult	=	orientServer.executeCommand('delete	from	Address	where	street	=	\'Via	test	1\'	and	type	=	\'Tipo	test\'');

Return	Example	2	(records	deleted):

{	"value"	:	5	}

Note:	Delete	example	works	also	with	update	command

Load

Method	that	loads	a	record	from	the	record	ID,	it	returns	the	record	informations	in	JSON	format.

Syntax:	`.load(,	[fetchPlan]);

Simple	Example:

queryResult	=	orientServer.load('12:0');

Return	Example:

{

"@rid":	"12:0",	"@class":	"Address",

						"street":	"Piazza	Navona,	1",

						"type":	"Residence",

						"city":	"#13:0"

				}

Fetched	Example:	all	fields	fetched	except	"type"

queryResult	=	orientServer.load('12:0',	'*:-1	type:0');

Return	Example	1:

{

"@rid":	"12:0",	"@class":	"Address",

						"street":	"Piazza	Navona,	1",

						"city":{

									"@rid":	"13:0",

									"name":	"Rome",

									"country":{

									"@rid":	"14:0",

													"name":	"Italy"

										}

						}

				}

Class	Info

Method	that	retrieves	information	of	a	class,	it	returns	the	class	informations	in	JSON	format.

Javascript	API

483



Syntax:		<databaseInstance>.classInfo(<className>)	

Example:

addressInfo	=	orientServer.classInfo('Address');

Return	Example:

{	"result":	[{

						"@rid":	"14:0",	"@class":	"Address",

						"street":	"WA	98073-9717",

						"type":	"Headquarter",

						"city":	"#12:1"

				},	{

						"@rid":	"14:1",	"@class":	"Address",

						"street":	"WA	98073-9717",

						"type":	"Headquarter",

						"city":	"#12:1"

				}

		]

}

Browse	Cluster

Method	that	retrieves	information	of	a	cluster,	it	returns	the	class	informations	in	JSON	format.

Syntax:		<databaseInstance>.browseCluster(<className>)	

Example:

addressInfo	=	orientServer.browseCluster('Address');

Return	Example:

{	"result":	[{

						"@rid":	"14:0",	"@class":	"Address",

						"street":	"WA	98073-9717",

						"type":	"Headquarter",

						"city":	"#12:1"

				},	{

						"@rid":	"14:1",	"@class":	"Address",

						"street":	"WA	98073-9717",

						"type":	"Headquarter",

						"city":	"#12:1"

				}

		]

}

Server	Information

Method	that	retrieves	server	informations,	it	returns	the	server	informations	in	JSON	format.
Note:	Server	information	needs	root	username	and	password.

Syntax:		<databaseInstance>.serverInfo()	

Example:

serverInfo	=	orientServer.serverInfo();

Return	Example:

Javascript	API

484



{

		"connections":	[{

				"id":	"64",

				"id":	"64",

				"remoteAddress":	"127.0.0.1:51459",

				"db":	"-",

				"user":	"-",

				"protocol":	"HTTP-DB",

				"totalRequests":	"1",

				"commandInfo":	"Server	status",

				"commandDetail":	"-",

				"lastCommandOn":	"2010-12-23	12:53:38",

				"lastCommandInfo":	"-",

				"lastCommandDetail":	"-",

				"lastExecutionTime":	"0",

				"totalWorkingTime":	"0",

				"connectedOn":	"2010-12-23	12:53:38"

				}],

		"dbs":	[{

				"db":	"demo",

				"user":	"admin",

				"open":	"open",

				"storage":	"OStorageLocal"

				}],

		"storages":	[{

				"name":	"temp",

				"type":	"OStorageMemory",

				"path":	"",

				"activeUsers":	"0"

				},	{

				"name":	"demo",

				"type":	"OStorageLocal",

				"path":	"/home/molino/Projects/Orient/releases/0.9.25-SNAPSHOT/db/databases/demo",

				"activeUsers":	"1"

				}],

				"properties":	[

						{"name":	"server.cache.staticResources",	"value":	"false"

						},

						{"name":	"log.console.level",	"value":	"info"

						},

						{"name":	"log.file.level",	"value":	"fine"

						}

				]

}

Schema

Method	that	retrieves	database	Schema,	it	returns	an	array	of	classes	(JSON	parsed	Object).

Syntax:		<databaseInstance>.schema()	

Example:

schemaInfo	=	orientServer.schema();

Return	Example:

Javascript	API

485



{"classes":	[

				{

						"id":	0,

						"name":	"ORole",

						"clusters":	[3],

						"defaultCluster":	3,	"records":	3,

						"properties":	[

								{

								"id":	0,

								"name":	"mode",

								"type":	"BYTE",

								"mandatory":	false,

								"notNull":	false,

								"min":	null,

								"max":	null,

								"indexed":	false

						},

								{

								"id":	1,

								"name":	"rules",

								"linkedType":	"BYTE",

								"type":	"EMBEDDEDMAP",

								"mandatory":	false,

								"notNull":	false,

								"min":	null,

								"max":	null,

								"indexed":	false

						}

		]},

]

}

getClass()

Return	a	schema	class	from	the	schema.

Syntax:		<databaseInstance>.getClass(<className>)	

Example:

var	customerClass	=	orientServer.getClass('Customer');

Return	Example:

{

		"id":	0,

		"name":	"Customer",

		"clusters":	[3],

		"defaultCluster":	3,	"records":	3,

		"properties":	[

				{

						"id":	0,

						"name":	"name",

						"type":	"STRING",

				},

				{

						"id":	1,

						"name":	"surname",

						"type":	"STRING",

				}

		]

}

Security

Roles

Method	that	retrieves	database	Security	Roles,	it	returns	an	array	of	Roles	(JSON	parsed	Object).

Javascript	API

486



Syntax:		<databaseInstance>.securityRoles()	

Example:

roles	=	orientServer.securityRoles();

Return	Example:

{	"roles":	[

				{"name":	"admin",	"mode":	"ALLOW_ALL_BUT",

						"rules":	[]

				},

				{"name":	"reader",	"mode":	"DENY_ALL_BUT",

						"rules":	[{

								"name":	"database",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.internal",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.orole",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.ouser",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.class.*",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.cluster.*",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.query",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.command",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								},	{

								"name":	"database.hook.record",	"create":	false,	"read":	true,	"update":	false,	"delete":	false

								}]

				}

		]

}

Users

Method	that	retrieves	database	Security	Users,	it	returns	an	array	of	Users	(JSON	parsed	Object).

Syntax:		<databaseInstance>.securityUsers()	

Example:

users	=	orientServer.securityUsers();

Return	Example:

{	"users":	[

				{"name":	"admin",	"roles":	"[admin]"},

				{"name":	"reader",	"roles":	"[reader]"},

				{"name":	"writer",	"roles":	"[writer]"}

		]

}

close()

Method	that	disconnects	from	the	server.

Syntax:		<databaseInstance>.close()	

Example:

orientServer.close();

Change	server	URL

Javascript	API

487



Method	that	changes	server	URL	in	the	database	instance.
You'll	need	to	call	the	open	method	to	reconnect	to	the	new	server.

Syntax:		<databaseInstance>.setDatabaseUrl(<newDatabaseUrl>)	

Example:

orientServer.setDatabaseUrl('http://localhost:3040')

Change	database	name

Method	that	changes	database	name	in	the	database	instance.
You'll	need	to	call	the	open	method	to	reconnect	to	the	new	database.

Syntax:		<databaseInstance>.setDatabaseName(<newDatabaseName>)	

Example:

orientServer.setDatabaseName('demo2');

Setting	return	type

This	API	allows	you	to	chose	the	return	type,	Javascript	Object	or	JSON	plain	text.	Default	return	is	Javascript	Object.

Important:	the	javascript	object	is	not	always	the	evaluation	of	JSON	plain	text:	for	each	document	(identified	by	its	Record	ID)	the
JSON	file	contains	only	one	expanded	object,	all	other	references	are	just	its	Record	ID	as	String,	so	the	API	will	reconstruct	the	real
structure	by	re-linking	all	references	to	the	matching	javascript	object.

Syntax:		orientServer.setEvalResponse(<boolean>)	

Examples:

orientServer.setEvalResponse(true);

Return	types	will	be	Javascript	Objects.

orientServer.setEvalResponse(false);

Return	types	will	be	JSON	plain	text.

Cross-site	scripting

To	invoke	OrientDB	cross-site	you	can	use	the		query		command	in	GET	and	the	JSONP	protocol.	Example:

<script	type="text/javascript"	src='http://127.0.0.1:2480/query/database/sql/select+from+XXXX?jsoncallback=var	datajson='></sc

ript>

This	will	put	the	result	of	the	query		select	from	XXXX</code>		into	the	<code>datajson</code>	variable.

Errors

In	case	of	errors	the	error	message	will	be	stored	inside	the	database	instance,	retrievable	by	getErrorMessage()	method.

Syntax:		<databaseInstance>.getErrorMessage()	

Example:

if	(orientServer.getErrorMessage()	!=	null){

							//write	error	message

}

Javascript	API

488



Scala	API
OrientDB	is	a	NoSQL	database	writen	in	Java,	we	can	use	it	in	scala	easily.	Look	also	at	Scala	utilities	and	tests	project	for	Scala	high
level	classes	built	on	top	of	OrientDB.

using	SBT

Use	the	following	configuration:

fork	:=	true

Java	method	invocation	problems

Usually	the	main	problems	are	related	to	calling	conventions	between	Scala	and	Java.

Parameters

Be	careful	to	pass	parameters	to	methods	with	varargs	like		db.query(...)	.	You	need	to	convert	it	to	java's	repeated	args	correctly.

Look	at	these	links:

http://stackoverflow.com/questions/3022865/calling-java-vararg-method-from-scala-with-primitives

http://stackoverflow.com/questions/1008783/using-varargs-from-scala

http://stackoverflow.com/questions/3856536/how-to-pass-a-string-scala-vararg-to-a-java-method-using-scala-2-8

Collections
You	can	only	use	java	collections	when	define	pojos.	If	you	use	scala	collections,	they	can	be	persisted,	but	can't	be	queried.

This's	not	a	problem,	if	you	imported:

import	scala.collection.JavaConverters._

import	scala.collection.JavaConversions._

You	don't	need	to	convert	Java	and	Scala	collections	manually	(even	don't	need	to	invoke		.asJava		or		.asScala	)	You	can	treat	these
java	collections	as	scala's.

models.scala

Scala	API

489

https://github.com/eptx/OrientDBScala
http://stackoverflow.com/questions/3022865/calling-java-vararg-method-from-scala-with-primitives
http://stackoverflow.com/questions/1008783/using-varargs-from-scala
http://stackoverflow.com/questions/3856536/how-to-pass-a-string-scala-vararg-to-a-java-method-using-scala-2-8


package	models

import	javax.persistence.{Version,	Id}

class	User	{

				@Id	var	id:	String	=	_

				var	name:	String	=	_

				var	addresses:	java.util.List[Address]	=	new	java.util.ArrayList()

				@Version	var	version:	String	=	_

				override	def	toString	=	"User:	"	+	this.id	+	",	name:	"	+	this.name	+	",	addresses:	"	+	this.addresses

}

class	Address	{

				var	city:	String	=	_

				var	street:	String	=	_

				override	def	toString	=	"Address:	"	+	this.city	+	",	"	+	this.street

}

class	Question	{

				@Id	var	id:	String	=	_

				var	title:	String	=	_

				var	user:	User	=	_

				@Version	var	version:	String	=	_

				override	def	toString	=	"Question:	"	+	this.id	+	",	title:	"	+	this.title	+	",	belongs:	"	+	user.name

}

test.scala

package	models

import	com.orientechnologies.orient.core.id.ORecordId

import	com.orientechnologies.orient.core.sql.query.OSQLSynchQuery

import	scala.collection.JavaConverters._

import	scala.collection.JavaConversions._

import	com.orientechnologies.orient.`object`.db.{OObjectDatabaseTx,OObjectDatabasePool}

import	com.orientechnologies.orient.core.db.`object`.ODatabaseObject

object	Test	{

				implicit	def	dbWrapper(db:	OObjectDatabaseTx)	=	new	{

								def	queryBySql[T](sql:	String,	params:	AnyRef*):	List[T]	=	{

												val	params4java	=	params.toArray

												val	results:	java.util.List[T]	=	db.query(new	OSQLSynchQuery[T](sql),	params4java:	_*)

												results.asScala.toList

								}

				}

				def	main(args:	Array[String])	=	{

								//	~~~~~~~~~~~~~	create	db	~~~~~~~~~~~~~~~~~~~

								var	uri:	String	=	"plocal:test/orientdb"

								var	db:	OObjectDatabaseTx	=	new	OObjectDatabaseTx(uri)

								if	(!db.exists)	{

												db.create()

								}	else	{

												db.open("admin",	"admin")

								}

								//	~~~~~~~~~~~~	register	models	~~~~~~~~~~~~~~~~

								db.getEntityManager.registerEntityClasses("models")

								//	~~~~~~~~~~~~~	create	some	data	~~~~~~~~~~~~~~~~

								var	user:	User	=	new	User

								user.name	=	"aaa"

								db.save(user)

								var	address1	=	new	Address

								address1.city	=	"NY"

								address1.street	=	"road1"

								var	address2	=	new	Address

								address2.city	=	"ST"

Scala	API

490



								address2.street	=	"road2"

								user.addresses	+=	address1

								user.addresses	+=	address2

								db.save(user)

								var	q1	=	new	Question

								q1.title	=	"How	to	use	orientdb	in	scala?"

								q1.user	=	user

								db.save(q1)

								var	q2	=	new	Question

								q2.title	=	"Show	me	a	demo"

								q2.user	=	user

								db.save(q2)

								//	~~~~~~~~~~~~~~~~	count	them	~~~~~~~~~~~~~~~~

								val	userCount	=	db.countClass(classOf[User])

								println("User	count:	"	+	userCount)

								val	questionCount	=	db.countClass(classOf[Question])

								println("Question	count:	"	+	questionCount)

								//	~~~~~~~~~~~~~~~~~	get	all	users	~~~~~~~~~~~~

								val	users	=	db.queryBySql[User]("select	from	User")

								for	(user	<-	users)	{

												println("	-	user:	"	+	user)

								}

								//	~~~~~~~~~~~~~~~~~~	get	the	first	user	~~~~~~~~

								val	firstUser	=	db.queryBySql[User]("select	from	User	limit	1").head

								println("First	user:	"	+	firstUser)

								//	query	by	id

								val	userById	=	db.queryBySql[User]("select	from	User	where	@rid	=	?",	new	ORecordId(user.id))

								println("User	by	id:	"	+	userById)

								//	query	by	field

								val	userByField	=	db.queryBySql[User]("select	from	User	where	name	=	?",	user.name)

								println("User	by	field:	"	+	userByField)

								//	query	by	city

								val	userByCity	=	db.queryBySql[User]("select	from	User	where	addresses	contains	(	city	=	?	)",	"NY")

								println("User	by	city:	"	+	userByCity)

								//	query	questions	of	the	user

								val	questions	=	db.queryBySql[Question]("select	from	Question	where	user	=	?",	user)

								for	(q	<-	questions)	{

												println("	-	question:	"	+	q)

								}

								db.drop()

								db.close()

				}

}

Scala	API

491



HTTP	Protocol
OrientDB	RESTful	HTTP	protocol	allows	to	talk	with	a	OrientDB	Server	instance	using	the	HTTP	protocol	and	JSON.	OrientDB
supports	also	a	highly	optimized	Binary	protocol	for	superior	performances.

Available	Commands

allocation
DB's	defragmentation

batch
Batch	of	commands

class
Operations	on	schema

classes

cluster
Operations	on

clusters

command
Executes	commands

connect
Create	the	session

database
Information	about

database

disconnect
Disconnect	session

document
Operations	on	documents	by	RID
GET	-	HEAD	-	POST	-	PUT	-

DELETE	-	PATCH

documentbyclass
Operations	on	documents

by	Class

export
Exports	a	database

function
Executes	a	server-side

function

index
Operations	on	indexes

listDatabases
Available	databases

property
Operations	on	schema

properties

query
Query

server
Information	about	the	server

HTTP	Methods

This	protocol	uses	the	four	methods	of	the	HTTP	protocol:

GET,	to	retrieve	values	from	the	database.	It's	idempotent	that	means	no	changes	to	the	database	happen.	Remember	that	in	IE6
the	URL	can	be	maximum	of	2,083	characters.	Other	browsers	supports	longer	URLs,	but	if	you	want	to	stay	compatible	with	all
limit	to	2,083	characters
POST,	to	insert	values	into	the	database
PUT,	to	change	values	into	the	database
DELETE,	to	delete	values	from	the	database

When	using	POST	and	PUT	the	following	are	important	when	preparing	the	contents	of	the	post	message:

Always	have	the	content	type	set	to	“application/json”	or	"application/xml"
Where	data	or	data	structure	is	involved	the	content	is	in	JSON	format
For	OrientDB	SQL	or	Gremlin	the	content	itself	is	just	text

Headers

All	the	requests	must	have	these	2	headers:

'Accept-Encoding':	'gzip,deflate'

'Content-Length':	<content-length>

`

Where	the		<content-length>		is	the	length	of	the	request's	body.

Syntax

The	REST	API	is	very	flexible,	with	the	following	features:

HTTP	API

492

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/JSON


Data	returned	is	in	JSON	format
JSONP	callback	is	supported
Support	for	http	and	https	connections
The	API	itself	is	case	insensitive
API	can	just	be	used	as	a	wrapper	to	retrieve	(and	control)	data	through	requests	written	in	OrientDB	SQL	or	Gremlin
You	can	avoid	using		#		for	RecordIDs	in	URLs,	if	you	prefer.	Just	drop	the		#		from	the	URL	and	it	will	still	work

The	REST	syntax	used	is	the	same	for	all	the	four	HTTP	methods:

Syntax:		http://<server>:<port>/<command>/[<database>/<arguments>]	

Results	are	always	in	JSON	format.	Support	for	'document'	object	types	is	through	the	use	of	the	attribute		@type	:	'd'	.	This	also
applies	when	using	inner	document	objects.	Example:

{

		"@type"		:	"d",

		"Name"			:	"Test",

		"Data"			:	{	"@type":	"d",

															"value":	0	},

		"@class"	:	"SimpleEntity"

}

JSONP	is	also	supported	by	adding	a	callback	parameter	to	the	request	(containing	the	callback	function	name).

Syntax:		http://<server>:<port>/<command>/[<database>/<arguments>]?callback=<callbackFunctionName>	

Commands	are	divided	in	two	main	categories:

Server	commands,	such	as	to	know	server	statistics	and	to	create	a	new	database
Database	commands,	all	the	commands	against	a	database

Authentication	and	security

All	the	commands	(but	the	Disconnect	need	a	valid	authentication	before	to	get	executed.	The	OrientDB	Server	checks	if	the
Authorization	HTTP	header	is	present,	otherwise	answers	with	a	request	of	authentication	(HTTP	error	code:	401).

The	HTTP	client	(or	the	Internet	Browser)	must	send	user	and	password	using	the	HTTP	Base	authentication.	Password	is	encoded
using	Base64	algorithm.	Please	note	that	if	you	want	to	encrypt	the	password	using	a	safe	mode	take	in	consideration	to	use	SSL
connections.

Server	commands	use	the	realm	"OrientDB	Server",	while	the	database	commands	use	a	realm	per	database	in	this	form:		"OrientDB	db-
<database>"	,	where		<database>		is	the	database	name.	In	this	way	the	Browser/HTTP	client	can	reuse	user	and	password	inserted
multiple	times	until	the	session	expires	or	the	"Disconnect"	is	called.

On	first	call	(or	when	the	session	is	expired	and	a	new	authentication	is	required),	OrientDB	returns	the	OSESSIONID	parameter	in
response's	HTTP	header.	On	further	calls	the	client	should	pass	this	OSESSIONID	header	in	the	requests	and	OrientDB	will	skip	the
authentication	because	a	session	is	alive.	By	default	sessions	expire	after	300	seconds	(5	minutes),	but	you	can	change	this	configuration
by	setting	the	global	setting:		network.http.sessionExpireTimeout	

JSON	data	type	handling	and	Schema-less	mode
Since	OrientDB	supports	also	schema-less/hybrid	modes	how	to	manage	types?	JSON	doesn't	support	all	the	types	OrientDB	has,	so
how	can	I	pass	the	right	type	when	it's	not	defined	in	the	schema?

The	answer	is	using	the	special	field	"@fieldTypes"	as	string	containing	all	the	field	types	separated	by	comma.	Example:

{	"@class":"Account",	"date":	1350426789,	"amount":	100.34,

		"@fieldTypes":	"date=t,amount=c"	}

HTTP	API

493

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSONP


The	supported	special	types	are:

'f'	for	float
'c'	for	decimal
'l'	for	long
'd'	for	double
'b'	for	byte	and	binary
'a'	for	date
't'	for	datetime
's'	for	short
'e'	for	Set,	because	arrays	and	List	are	serialized	as	arrays	like	[3,4,5]
'x'	for	links
'n'	for	linksets
'z'	for	linklist
'm'	for	linkmap
'g'	for	linkbag
'u'	for	custom

Keep-Alive

Attention:	OrientDB	HTTP	API	utilizes	Keep-Alive	feature	for	better	performance:	the	TCP/IP	socket	is	kept	open	avoiding	the
creation	of	a	new	one	for	each	command.	If	you	need	to	re-authenticate,	open	a	new	connection	avoiding	to	reuse	the	already	open	one.
To	force	closing	put	"Connection:	close"	in	the	request	header.

HTTP	commands

Connect

GET	-	Connect

Connect	to	a	remote	server	using	basic	authentication.

Syntax:		http://<server>:[<port>]/connect/<database>	

Example

HTTP	GET	request:		http://localhost:2480/connect/demo		HTTP	response:	204	if	ok,	otherwise	401.

Database

GET	-	Database

HTTP	GET	request:		http://localhost:2480/database/demo		HTTP	response:

{

		"server":	{

				"version":	"1.1.0-SNAPSHOT",

				"osName":	"Windows	7",

				"osVersion":	"6.1",

				"osArch":	"amd64",

				"javaVendor":	"Oracle	Corporation",

				"javaVersion":	"23.0-b21"

		},	"classes":	[],

		...

}

HTTP	API

494

http://en.wikipedia.org/wiki/HTTP_persistent_connection


POST	-	Database

Create	a	new	database.

Syntax:		http://<server>:[<port>]/database/<database>/<type>	

HTTP	POST	request:		http://localhost:2480/database/demo/plocal	

HTTP	response:		{	"classes"	:	[],	"clusters":	[],	"users":	[],	"roles":	[],	"config":[],	"properties":{}	}	

Class

GET	-	Class

Gets	informations	about	requested	class.

Syntax:		http://<server>:[<port>]/class/<database>/<class-name>	

HTTP	response:

{	"class":	{

				"name":	"<class-name>"

				"properties":	[

						{	"name":	<property-name>,

								"type":	<property-type>,

								"mandatory":	<mandatory>,

								"notNull":	<not-null>,

								"min":	<min>,

								"max":	<max>

						}

				]

		}

}

For	more	information	about	properties	look	at	the	supported	types,	or	see	the	SQL	Create	property	page	for	text	values	to	be	used
when	getting	or	posting	class	commands

Example

HTTP	GET	request:		http://localhost:2480/class/demo/OFunction		HTTP	response:

HTTP	API

495



{

		"name":	"OFunction",

		"superClass":	"",

		"alias":	null,

		"abstract":	false,

		"strictmode":	false,

		"clusters":	[

				7

		],

		"defaultCluster":	7,

		"records":	0,

		"properties":	[

				{

						"name":	"language",

						"type":	"STRING",

						"mandatory":	false,

						"readonly":	false,

						"notNull":	false,

						"min":	null,

						"max":	null,

						"collate":	"default"

				},

				{

						"name":	"name",

						"type":	"STRING",

						"mandatory":	false,

						"readonly":	false,

						"notNull":	false,

						"min":	null,

						"max":	null,

						"collate":	"default"

				},

				{

						"name":	"idempotent",

						"type":	"BOOLEAN",

						"mandatory":	false,

						"readonly":	false,

						"notNull":	false,

						"min":	null,

						"max":	null,

						"collate":	"default"

				},

				{

						"name":	"code",

						"type":	"STRING",

						"mandatory":	false,

						"readonly":	false,

						"notNull":	false,

						"min":	null,

						"max":	null,

						"collate":	"default"

				},

				{

						"name":	"parameters",

						"linkedType":	"STRING",

						"type":	"EMBEDDEDLIST",

						"mandatory":	false,

						"readonly":	false,

						"notNull":	false,

						"min":	null,

						"max":	null,

						"collate":	"default"

				}

		]

}

POST	-	Class

Create	a	new	class	where	the	schema	of	the	vertexes	or	edges	is	known.	OrientDB	allows	(encourages)	classes	to	be	derived	from	other
class	definitions	–	this	is	achieved	by	using	the	COMMAND	call	with	an	OrientDB	SQL	command.	Returns	the	id	of	the	new	class
created.

Syntax:		http://<server>:[<port>]/class/<database>/<class-name>	

HTTP	API

496



HTTP	POST	request:		http://localhost:2480/class/demo/Address2		HTTP	response:		9	

Property

POST	-	Property

Create	one	or	more	properties	into	a	given	class.	Returns	the	number	of	properties	of	the	class.

Single	property	creation

Syntax:		http://<server>:[<port>]/property/<database>/<class-name>/<property-name>/[<property-type>]	

Creates	a	property	named		<property-name>		in		<class-name>	.	If		<property-type>		is	not	specified	the	property	will	be	created	as
STRING.

Multiple	property	creation

Syntax:		http://<server>:[<port>]/property/<database>/<class-name>/	

Requires	a	JSON	document	post	request	content:

{

		"fieldName":	{

						"propertyType":	"<property-type>"

		},

		"fieldName":	{

						"propertyType":	"LINK",

						"linkedClass":	"<linked-class>"

		},

		"fieldName":	{

						"propertyType":	"<LINKMAP|LINKLIST|LINKSET>",

						"linkedClass":	"<linked-class>"

		},

		"fieldName":	{

						"propertyType":	"<LINKMAP|LINKLIST|LINKSET>",

						"linkedType":	"<linked-type>"

		}

}

Example

Single	property:

String	Property	Example:	HTTP	POST	request:		http://localhost:2480/class/demo/simpleField		HTTP	response:		1	

Type	Property	Example:	HTTP	POST	request:		http://localhost:2480/class/demo/dateField/DATE		HTTP	response:		1	

Link	Property	Example:	HTTP	POST	request:		http://localhost:2480/class/demo/linkField/LINK/Person		HTTP	response:		1	

Multiple	properties:	HTTP	POST	request:		http://localhost:2480/class/demo/		HTTP	POST	content:

HTTP	API

497



{

		"name":	{

						"propertyType":	"STRING"

		},

		"father":	{

						"propertyType":	"LINK",

						"linkedClass":	"Person"

		},

		"addresses":	{

						"propertyType":	"LINKMAP",

						"linkedClass":	"Address"

		},

		"examsRatings":	{

						"propertyType":	"LINKMAP",

						"linkedType":	"INTEGER"

		}

		"events":	{

						"propertyType":	"LINKLIST",

						"linkedType":	"DATE"

		}

		"family":	{

						"propertyType":	"LINKLIST",

						"linkedClass":	"Person"

		}

...

HTTP	response:		6	

Cluster

GET	-	Cluster

Where	the	primary	usage	is	a	document	db,	or	where	the	developer	wants	to	optimise	retrieval	using	the	clustering	of	the	database,	use
the	CLUSTER	command	to	browse	the	records	of	the	requested	cluster.

Syntax:		http://<server>:[<port>]/cluster/<database>/<cluster-name>/	

Where		<limit>		is	optional	and	tells	the	maximum	of	records	to	load.	Default	is	20.

Example

HTTP	GET	request:		http://localhost:2480/cluster/demo/Address	

HTTP	response:

{	"schema":	{

				"id":	5,

				"name":	"Address"

		},

		"result":	[{

						"_id":	"11:0",

						"_ver":	0,

						"@class":	"Address",

						"type":	"Residence",

						"street":	"Piazza	Navona,	1",

						"city":	"12:0"

				}

...

Command

POST	-	Command

Execute	a	command	against	the	database.	Returns	the	records	affected	or	the	list	of	records	for	queries.	Command	executed	via	POST	can
be	non-idempotent	(look	at	Query).

HTTP	API

498



Syntax:		http://<server>:[<port>]/command/<database>/<language>[/<command-text>[/limit[/<fetchPlan>]]]	

The	content	can	be		<command-text>		or	starting	from	v2.2	a	json	containing	the	command	and	parameters:

by	parameter	name:		{"command":<command-text>,	"parameters":{"<param-name>":<param-value>}	}	
by	parameter	position:		{"command":<command-text>,	"parameters":[<param-value>]	}	

Where:

	<language>		is	the	name	of	the	language	between	those	supported.	OrientDB	distribution	comes	with	"sql"	and	GraphDB
distribution	has	both	"sql"	and	"gremlin"
	command-text		is	the	text	containing	the	command	to	execute
	limit		is	the	maximum	number	of	record	to	return.	Optional,	default	is	20
	fetchPlan		is	the	fetching	strategy	to	use.	For	more	information	look	at	Fetching	Strategies.	Optional,	default	is	*:1	(1	depth	level
only)

The	command-text	can	appear	in	either	the	URL	or	the	content	of	the	POST	transmission.	Where	the	command-text	is	included	in	the
URL,	it	must	be	encoded	as	per	normal	URL	encoding.	By	default	the	result	is	returned	in	JSON.	To	have	the	result	in	CSV,	pass
"Accept:	text/csv"	in	HTTP	Request.

Starting	from	v2.2,	the	HTTP	payload	can	be	a	JSON	with	both	command	to	execute	and	parameters.	Example:

Execute	a	query	passing	parameters	by	name:

{

		"command":	"select	from	V	where	name	=	:name	and	city	=	:city",

		"parameters":	{

				"name":	"Luca",

				"city":	"Rome"

		}

}

Execute	a	query	passing	parameters	by	position:

{

		"command":	"select	from	V	where	name	=	?	and	city	=	?",

		"parameters":	[	"Luca",	"Rome"	]

}

Read	the	SQL	section	or	the	Gremlin	introduction	for	the	type	of	commands.

Example

HTTP	POST	request:		http://localhost:2480/command/demo/sql		content:		update	Profile	set	online	=	false	

HTTP	response:		10	

Or	the	same:

HTTP	POST	request:		http://localhost:2480/command/demo/sql/update	Profile	set	online	=	false	

HTTP	response:		10	

Extract	the	user	list	in	CSV	format	using	curl

curl	--user	admin:admin	--header	"Accept:	text/csv"	-d	"select	from	ouser"	"http://localhost:2480/command/GratefulDeadConcerts

/sql"

Batch

POST	-	Batch

HTTP	API

499



Executes	a	batch	of	operations	in	a	single	call.	This	is	useful	to	reduce	network	latency	issuing	multiple	commands	as	multiple	requests.
Batch	command	supports	transactions	as	well.

Syntax:		http://<server>:[<port>]/batch/<database>	

Content:	{	"transaction"	:	,	"operations"	:	[	{	"type"	:	""	}*	]	}

Returns:	the	result	of	last	operation.

Where:	type	can	be:

'c'	for	create,	'record'	field	is	expected.
'u'	for	update,	'record'	field	is	expected.
'd'	for	delete.	The	'@rid'	field	only	is	needed.
'cmd'	for	commands	(Since	v1.6).	The	expected	fields	are:

'language',	between	those	supported	(sql,	gremlin,	script,	etc.)
'command'	as	the	text	of	the	command	to	execute

'script'	for	scripts	(Since	v1.6).	The	expected	fields	are:
'language',	between	the	language	installed	in	the	JVM.	Javascript	is	the	default	one,	but	you	can	also	use	SQL	(see	below)
'script'	as	the	text	of	the	script	to	execute

Example

{	"transaction"	:	true,

		"operations"	:	[

				{	"type"	:	"u",

						"record"	:	{

								"@rid"	:	"#14:122",

								"name"	:	"Luca",

								"vehicle"	:	"Car"

						}

				},	{

						"type"	:	"d",

						"record"	:	{

								"@rid"	:	"#14:100"

						}

				},	{

						"type"	:	"c",

						"record"	:	{

								"@class"	:	"City",

								"name"	:	"Venice"

						}

				},	{

						"type"	:	"cmd",

						"language"	:	"sql",

						"command"	:	"create	edge	Friend	from	#10:33	to	#11:33"

				},	{

						"type"	:	"script",

						"language"	:	"javascript",

						"script"	:	"orient.getGraph().createVertex('class:Account')"

				}

		]

}

SQL	batch

{	"transaction"	:	true,

		"operations"	:	[

				{

						"type"	:	"script",

						"language"	:	"sql",

						"script"	:	[	"LET	account	=	CREATE	VERTEX	Account	SET	name	=	'Luke'",

																			"LET	city	=	SELECT	FROM	City	WHERE	name	=	'London'",

																			"CREATE	EDGE	Lives	FROM	$account	TO	$city	RETRY	100"	]

				}

		]

}

HTTP	API

500



Function

POST	and	GET	-	Function

Executes	a	server-side	function	against	the	database.	Returns	the	result	of	the	function	that	can	be	a	string	or	a	JSON	containing	the
document(s)	returned.

The	difference	between	GET	and	POST	method	calls	are	if	the	function	has	been	declared	as	idempotent.	In	this	case	can	be	called	also
by	GET,	otherwise	only	POST	is	accepted.

Syntax:		http://<server>:[<port>]/function/<database>/<name>[/<argument>*]<server>	

Where

	<name>		is	the	name	of	the	function
	<argument>	,	optional,	are	the	arguments	to	pass	to	the	function.	They	are	passed	by	position.

Creation	of	functions,	when	not	using	the	Java	API,	can	be	done	through	the	Studio	in	either	Orient	DB	SQL	or	Java	–	see	the	OrientDB
Functions	page.

Example

HTTP	POST	request:		http://localhost:2480/function/demo/sum/3/5	

HTTP	response:		8.0	

Database

GET	-	Database

Retrieve	all	the	information	about	a	database.

Syntax:		http://<server>:[<port>]/database/<database>	

Example

HTTP	GET	request:		http://localhost:2480/database/demo	

HTTP	response:

{"classes":	[

		{

				"id":	0,

				"name":	"ORole",

				"clusters":	[3],

				"defaultCluster":	3,	"records":	0},

		{

				"id":	1,

				"name":	"OUser",

				"clusters":	[4],

				"defaultCluster":	4,	"records":	0},

		{

...

POST	-	Database

Create	a	new	database.	Requires	additional	authentication	to	the	server.

Syntax	for	the	url	`http://:

storage	can	be
'plocal'	for	disk-based	database
'memory'	for	in	memory	only	database.

HTTP	API

501



type,	is	optional,	and	can	be	document	or	graph.	By	default	is	a	document.

Example

HTTP	POST	request:		http://localhost:2480/database/demo2/local		HTTP	response:

{	"classes":	[

		{

				"id":	0,

				"name":	"ORole",

				"clusters":	[3],

				"defaultCluster":	3,	"records":	0},

		{

				"id":	1,

				"name":	"OUser",

				"clusters":	[4],

				"defaultCluster":	4,	"records":	0},

		{

...

DELETE	-	Database

Drop	a	database.	Requires	additional	authentication	to	the	server.

Syntax:		http://<server>:[<port>]/database/<databaseName>	

Where:

databaseName	is	the	name	of	database

Example

HTTP	DELETE	request:		http://localhost:2480/database/demo2		HTTP	response	code	204

Export

GET	-	Export

Exports	a	gzip	file	that	contains	the	database	JSON	export.

Syntax:	http://:[]/export/

HTTP	GET	request:		http://localhost:2480/export/demo2		HTTP	response:	demo2.gzip	file

Import

POST	-	Import

Imports	a	database	from	an	uploaded	JSON	text	file.

Syntax:		http://<server>:[<port>]/import/<database>	

Important:	Connect	required:	the	connection	with	the	selected	database	must	be	already	established

Example

HTTP	POST	request:		http://localhost:2480/import/		HTTP	response:	returns	a	JSON	object	containing	the	result	text	Success:

{

		"responseText":	"Database	imported	correctly"

}

HTTP	API

502



_Fail::

{

		"responseText":	"Error	message"

}

List	Databases

GET	-	List	Databases

Retrieves	the	available	databases.

Syntax:		http://<server>:<port>/listDatabases	

To	let	to	the	Studio	to	display	the	database	list	by	default	the	permission	to	list	the	database	is	assigned	to	guest.	Remove	this
permission	if	you	don't	want	anonymous	user	can	display	it.

For	more	details	see	Server	Resources

Example	of	configuration	of	"guest"	server	user:	a15b5e6bb7d06bd5d6c35db97e51400b

Example

HTTP	GET	request:		http://localhost:2480/listDatabases		HTTP	response:

{

		"@type":	"d",	"@version":	0,

				"databases":	["demo",	"temp"]

						}

Disconnect

GET	-	Disconnect

Syntax:		http://<server>:[<port>]/disconnect	

Example

HTTP	GET	request:		http://localhost:2480/disconnect		HTTP	response:	empty.

Document

GET	-	Document

This	is	a	key	way	to	retrieve	data	from	the	database,	especially	when	combined	with	a		<fetchplan>	.	Where	a	single	result	is	required
then	the	RID	can	be	used	to	retrieve	that	single	document.

Syntax:		http://<server>:[<port>]/document/<database>/<record-id>[/<fetchPlan>]	

Where:

	<record-id>		See	Concepts:	RecordID
	<fetchPlan>		Optional,	is	the	fetch	plan	used.	0	means	the	root	record,	-1	infinite	depth,	positive	numbers	is	the	depth	level.	Look
at	Fetching	Strategies	for	more	information.

Example

HTTP	GET	request:		http://localhost:2480/document/demo/9:0	

HTTP	API

503



HTTP	response	can	be:

HTTP	Code	200,	with	the	document	in	JSON	format	in	the	payload,	such	as:

{

"_id":	"9:0",

"_ver":	2,

"@class":	"Profile",

"nick":	"GGaribaldi",

"followings":	[],

"followers":	[],

"name":	"Giuseppe",

"surname":	"Garibaldi",

"location":	"11:0",

"invitedBy":	null,

"sex":	"male",

"online":	true

}

HTTP	Code	404,	if	the	document	was	not	found

The	example	above	can	be	extended	to	return	all	the	edges	and	vertices	beneath	#9:0

HTTP	GET	request:		http://localhost:2480/document/demo/9:0/*:-1	

HEAD	-	Document

Check	if	a	document	exists

Syntax:		http://<server>:[<port>]/document/<database>/<record-id>	

Where:

	<record-id>		See	Concepts:	RecordID

Example

HTTP	HEAD	request:		http://localhost:2480/document/demo/9:0	

HTTP	response	can	be:

HTTP	Code	204,	if	the	document	exists
HTTP	Code	404,	if	the	document	was	not	found

POST	-	Document

Create	a	new	document.	Returns	the	document	with	the	new	@rid	assigned.	Before	1.4.x	the	return	was	the	@rid	content	only.

Syntax:		http://<server>:[<port>]/document/<database>	

Example

HTTP	POST	request:		http://localhost:2480/document/demo	

		content:

		{

				"@class":	"Profile",

				"nick":	"GGaribaldi",

				"followings":	[],

				"followers":	[],

				"name":	"Giuseppe",

				"surname":	"Garibaldi",

				"location":	"11:0",

				"invitedBy":	null,

				"sex":	"male",

				"online":	true

		}

HTTP	API

504



HTTP	response,	as	the	document	created	with	the	assigned	RecordID	as	@rid:

{

		"@rid":	"#11:4456",

		"@class":	"Profile",

		"nick":	"GGaribaldi",

		"followings":	[],

		"followers":	[],

		"name":	"Giuseppe",

		"surname":	"Garibaldi",

		"location":	"11:0",

		"invitedBy":	null,

		"sex":	"male",

		"online":	true

}

PUT	-	Document

Update	a	document.	Remember	to	always	pass	the	version	to	update.	This	prevent	to	update	documents	changed	by	other	users
(MVCC).

Syntax:		http://<server>:[<port>]/document/<database>[/<record-id>][?updateMode=full|partial]		Where:

updateMode	can	be	full	(default)	or	partial.	With	partial	mode	only	the	delta	of	changes	is	sent,	otherwise	the	entire	document	is
replaced	(full	mode)

Example

HTTP	PUT	request:		http://localhost:2480/document/demo/9:0	

content:

{

		"@class":	"Profile",

		"@version":	3,

		"nick":	"GGaribaldi",

		"followings":	[],

		"followers":	[],

		"name":	"Giuseppe",

		"online":	true

}

HTTP	response,	as	the	updated	document	with	the	updated	@version	field	(Since	v1.6):

content:

{

		"@class":	"Profile",

		"@version":	4,

		"nick":	"GGaribaldi",

		"followings":	[],

		"followers":	[],

		"name":	"Giuseppe",

		"online":	true

}

PATCH	-	Document

Update	a	document	with	only	the	difference	to	apply.	Remember	to	always	pass	the	version	to	update.	This	prevent	to	update
documents	changed	by	other	users	(MVCC).

Syntax:		http://<server>:[<port>]/document/<database>[/<record-id>]		Where:

Example

This	is	the	document	9:0	before	to	apply	the	patch:

HTTP	API

505



{

		"@class":	"Profile",

		"@version":	4,

		"name":	"Jay",

		"amount":	10000

}

HTTP	PATCH	request:		http://localhost:2480/document/demo/9:0	

content:

{

		"@class":	"Profile",

		"@version":	4,

		"amount":	20000

}

HTTP	response,	as	the	updated	document	with	the	updated	@version	field	(Since	v1.6):

content:

{

		"@class":	"Profile",

		"@version":	5,

		"name":	"Jay",

		"amount":	20000

}

DELETE	-	Document

Delete	a	document.

Syntax:		http://<server>:[<port>]/document/<database>/<record-id>	

Example

HTTP	DELETE	request:		http://localhost:2480/document/demo/9:0	

HTTP	response:	empty

Document	By	Class

GET	Document	by	Class

Retrieve	a	document	by	cluster	name	and	record	position.

Syntax:		http://<server>:[<port>]/documentbyclass/<database>/<class-name>/<record-position>[/fetchPlan]	

Where:

	<class-name>		is	the	name	of	the	document's	class
	<record-position>		is	the	absolute	position	of	the	record	inside	the	class'	default	cluster
	<fetchPlan>		Optional,	is	the	fetch	plan	used.	0	means	the	root	record,	-1	infinite	depth,	positive	numbers	is	the	depth	level.	Look
at	Fetching	Strategies	for	more	information.

Example

HTTP	GET	request:		http://localhost:2480/documentbyclass/demo/Profile/0	

HTTP	response:

HTTP	API

506



{

		"_id":	"9:0",

		"_ver":	2,

		"@class":	"Profile",

		"nick":	"GGaribaldi",

		"followings":	[],

		"followers":	[],

		"name":	"Giuseppe",

		"surname":	"Garibaldi",

		"location":	"11:0",

		"invitedBy":	null,

		"sex":	"male",

		"online":	true

}

HEAD	-	Document	by	Class

Check	if	a	document	exists

Syntax:		http://<server>:[<port>]/documentbyclass/<database>/<class-name>/<record-position>	

Where:

	<class-name>		is	the	name	of	the	document's	class
	<record-position>		is	the	absolute	position	of	the	record	inside	the	class'	default	cluster

Example

HTTP	HEAD	request:		http://localhost:2480/documentbyclass/demo/Profile/0	

HTTP	response	can	be:

HTTP	Code	204,	if	the	document	exists
HTTP	Code	404,	if	the	document	was	not	found

Allocation

GET	-	Allocation

Retrieve	information	about	the	storage	space	of	a	disk-based	database.

Syntax:		http://<server>:[<port>]/allocation/<database>	

Example

HTTP	GET	request:		http://localhost:2480/allocation/demo	

HTTP	response:		{	"size":	61910,	"segments":	[	{"type":	"d",	"offset":	0,	"size":	33154},	{"type":	"h",	"offset":	33154,	"size":
4859},	{"type":	"h",	"offset":	3420,	"size":	9392},	{"type":	"d",	"offset":	12812,	"size":	49098}	],	"dataSize":	47659,

"dataSizePercent":	76,	"holesSize":	14251,	"holesSizePercent":	24	}	

Index

NOTE:	Every	single	new	database	has	the	default	manual	index	called	"dictionary".

GET	-	Index

Retrieve	a	record	looking	into	the	index.

Syntax:		http://<server>:[<port>]/index/<index-name>/<key>	

Example

HTTP	API

507



HTTP	GET	request:		http://localhost:2480/dictionary/test		HTTP	response:

{

		"name"	:	"Jay",

		"surname"	:	"Miner"

}

PUT	-	Index

Create	or	modify	an	index	entry.

Syntax:		http://<server>:[<port>]/index/<index-name>/<key>	

Example

HTTP	PUT	request:		http://localhost:2480/dictionary/test		content:		{	"name"	:	"Jay",	"surname"	:	"Miner"	}	

HTTP	response:	No	response.

DELETE	-	Index

Remove	an	index	entry.

Syntax:		http://<server>:[<port>]/index/<index-name>/<key>	

Example

HTTP	DELETE	request:		http://localhost:2480/dictionary/test		HTTP	response:	No	response.

Query

GET	-	Query

Execute	a	query	against	the	database.	Query	means	only	idempotent	commands	like	SQL	SELECT	and	TRAVERSE.	Idempotent	means
the	command	is	read-only	and	can't	change	the	database.	Remember	that	in	IE6	the	URL	can	be	maximum	of	2,083	characters.	Other
browsers	supports	longer	URLs,	but	if	you	want	to	stay	compatible	with	all	limit	to	2,083	characters.

Syntax:		http://<server>:[<port>]/query/<database>/<language>/<query-text>[/<limit>][/<fetchPlan>]	

Where:

	<language>		is	the	name	of	the	language	between	those	supported.	OrientDB	distribution	comes	with	"sql"	only.	Gremlin	language
cannot	be	executed	with	query	because	it	cannot	guarantee	to	be	idempotent.	To	execute	Gremlin	use	command	instead.
	query-text		is	the	text	containing	the	query	to	execute
	limit		is	the	maximum	number	of	record	to	return.	Optional,	default	is	20
	fetchPlan		is	the	fetching	strategy	to	use.	For	more	information	look	at	Fetching	Strategies.	Optional,	default	is	*:1	(1	depth	level
only)

Other	key	points:

To	use	commands	that	change	the	database	(non-idempotent),	see	the	POST	–	Command	section
The	command-text	included	in	the	URL	must	be	encoded	as	per	a	normal	URL
See	the	SQL	section	for	the	type	of	queries	that	can	be	sent

Example

HTTP	GET	request:		http://localhost:2480/query/demo/sql/select	from	Profile	

HTTP	response:

HTTP	API

508



{	"result":	[

{

		"_id":	"-3:1",

		"_ver":	0,

		"@class":	"Address",

		"type":	"Residence",

		"street":	"Piazza	di	Spagna",

		"city":	"-4:0"

},

{

		"_id":	"-3:2",

		"_ver":	0,

		"@class":	"Address",

		"type":	"Residence",

		"street":	"test",

		"city":	"-4:1"

}]	}

The	same	query	with	the	limit	to	maximum	20	results	using	the	fetch	plan	*:-1	that	means	load	all	recursively:

HTTP	GET	request:		http://localhost:2480/query/demo/sql/select	from	Profile/20/*:-1	

Server

GET	-	Server

Retrieve	information	about	the	connected	OrientDB	Server.	Requires	additional	authentication	to	the	server.

Syntax:		http://<server>:[<port>]/server	

Example

HTTP	GET	request:		http://localhost:2480/server		HTTP	response:

{

		"connections":	[{

				"id":	"4",

				"id":	"4",

				"remoteAddress":	"0:0:0:0:0:0:0:1:52504",

				"db":	"-",

				"user":	"-",

				"protocol":	"HTTP-DB",

				"totalRequests":	"1",

				"commandInfo":	"Server	status",

				"commandDetail":	"-",

				"lastCommandOn":	"2010-05-26	05:08:58",

				"lastCommandInfo":	"-",

				"lastCommandDetail":	"-",

				"lastExecutionTime":	"0",

				"totalWorkingTime":	"0",

...

POST	-	Server

Changes	server	configuration.	Supported	configuration	are:

any	setting	contained	in	OGlobalConfiguation	class,	by	using	the	prefix		configuration		in	setting-name
logging	level,	by	using	the	prefix		log		in	setting-name

Syntax:		http://<server>:[<port>]/server/<setting-name>/<setting-value>	

Example

Example	on	changing	the	server	log	level	to	FINEST

HTTP	API

509



localhost:2480/server/log.console/FINEST

Example	on	changing	the	default	timeout	for	query	to	10	seconds

localhost:2480/server/configuration.command.timeout/10000

Connection

POST	-	Connection

Syntax:		http://<server>:[<port>]/connection/<command>/<id>	

Where:

command	can	be:
kill	to	kill	a	connection
interrupt	to	interrupt	the	operation	(if	possible)

id,	as	the	connection	id.	To	know	all	the	connections	use	GET	/connection/[<db>]

You've	to	execute	this	command	authenticated	in	the	OrientDB	Server	realm	(no	database	realm),	so	get	the	root	password	from
config/orientdb-server-config.xml	file	(last	section).

HTTP	API

510



Binary	Protocol
Current	protocol	version	for	2.1.x:	32.	Look	at	compatibility	for	retro-compatibility.

Table	of	content
Introduction

Connection
Getting	started
Session

Enable	debug	messages	on	protocol
Exchange
Network	message	format
Supported	types
Record	format
Request

Operation	types
Response

Statuses
Errors

Operations
REQUEST_SHUTDOWN
REQUEST_CONNECT
REQUEST_DB_OPEN
REQUEST_DB_REOPEN
REQUEST_DB_CREATE
REQUEST_DB_CLOSE
REQUEST_DB_EXIST
REQUEST_DB_RELOAD
REQUEST_DB_DROP
REQUEST_DB_SIZE
REQUEST_DB_COUNTRECORDS
REQUEST_DATACLUSTER_ADD	(deprecated)
REQUEST_DATACLUSTER_DROP	(deprecated)
REQUEST_DATACLUSTER_COUNT	(deprecated)
REQUEST_DATACLUSTER_DATARANGE	(deprecated)
REQUEST_RECORD_LOAD
REQUEST_RECORD_CREATE
REQUEST_RECORD_UPDATE
REQUEST_RECORD_DELETE
REQUEST_COMMAND

SQL	command	payload
SQL	Script	command	payload

REQUEST_TX_COMMIT
REQUEST_INDEX_GET
REQUEST_INDEX_PUT
REQUEST_INDEX_REMOVE

Special	use	of	LINKSET	types
Tree	node	binary	structure

History
Version	31
Version	24
Version	23

Binary	Protocol

511



Version	22
Version	21
Version	20
Version	19
Version	18
Version	17
Version	16
Version	15
Version	14
Version	13
Version	12
Version	11

Compatibility

Introduction
The	OrientDB	binary	protocol	is	the	fastest	way	to	interface	a	client	application	to	an	OrientDB	Server	instance.	The	aim	of	this	page	is
to	provide	a	starting	point	from	which	to	build	a	language	binding,	maintaining	high-performance.

If	you'd	like	to	develop	a	new	binding,	please	take	a	look	to	the	available	ones	before	starting	a	new	project	from	scratch:	Existent
Drivers.

Also,	check	the	available	REST	implementations.

Before	starting,	please	note	that:

Record	is	an	abstraction	of	Document.	However,	keep	in	mind	that	in	OrientDB	you	can	handle	structures	at	a	lower	level	than
Documents.	These	include	positional	records,	raw	strings,	raw	bytes,	etc.

For	more	in-depth	information	please	look	at	the	Java	classes:

Client	side:	OStorageRemote.java
Server	side:	ONetworkProtocolBinary.java
Protocol	constants:	OChannelBinaryProtocol.java

Connection

(Since	0.9.24-SNAPSHOT	Nov	25th	2010)	Once	connected,	the	server	sends	a	short	number	(2	byte)	containing	the	binary	protocol
number.	The	client	should	check	that	it	supports	that	version	of	the	protocol.	Every	time	the	protocol	changes	the	version	is
incremented.

Getting	started

After	the	connection	has	been	established,	a	client	can	Connect	to	the	server	or	request	the	opening	of	a	database	Database	Open.
Currently,	only	TCP/IP	raw	sockets	are	supported.	For	this	operation	use	socket	APIs	appropriate	to	the	language	you're	using.	After
the	Connect	and	Database	Open	all	the	client's	requests	are	sent	to	the	server	until	the	client	closes	the	socket.	When	the	socket	is
closed,	OrientDB	Server	instance	frees	resources	the	used	for	the	connection.

The	first	operation	following	the	socket-level	connection	must	be	one	of:

Connect	to	the	server	to	work	with	the	OrientDB	Server	instance
Open	a	database	to	open	an	existing	database

In	both	cases	a	Session-Id	is	sent	back	to	the	client.	The	server	assigns	a	unique	Session-Id	to	the	client.	This	value	must	be	used	for	all
further	operations	against	the	server.	You	may	open	a	database	after	connecting	to	the	server,	using	the	same	Session-Id

Session

Binary	Protocol

512

https://github.com/nuvolabase/orientdb/tree/master/client/src/main/java/com/orientechnologies/orient/client/remote/OStorageRemote.java
https://github.com/nuvolabase/orientdb/tree/master/server/src/main/java/com/orientechnologies/orient/server/network/protocol/binary/ONetworkProtocolBinary.java
https://github.com/nuvolabase/orientdb/tree/master/enterprise/src/main/java/com/orientechnologies/orient/enterprise/channel/binary/OChannelBinaryProtocol.java


The	session	management	supports	two	modes:	stateful	and	stateless:

the	stateful	is	based	on	a	Session-id
the	stateless	is	based	on	a	Token

The	session	mode	is	selected	at	open/connect	operation.

Session-Id
All	the	operations	that	follow	the	open/connect	must	contain,	as	the	first	parameter,	the	client	Session-Id	(as	Integer,	4	bytes)	and	it
will	be	sent	back	on	completion	of	the	request	just	after	the	result	field.

NOTE:	In	order	to	create	a	new	server-side	connection,	the	client	must	send	a	negative	number	into	the	open/connect	calls.

This	Session-Id	can	be	used	into	the	client	to	keep	track	of	the	requests	if	it	handles	multiple	session	bound	to	the	same	connection.	In
this	way	the	client	can	implement	a	sharing	policy	to	save	resources.	This	requires	that	the	client	implementation	handle	the	response
returned	and	dispatch	it	to	the	correct	caller	thread.

Opening	multiple	TCP/IP	sockets	against	OrientDB	Server	allows	to	parallelize	requests.	However,	pay	attention
to	use	one	Session-id	per	connection.	If	multiple	sockets	use	the	same	Session-Id,	requests	will	not	be	executed
concurrently	on	the	server	side.

Token

All	the	operation	in	a	stateless	session	are	based	on	the	token,	the	token	is	a	byte[]	that	contains	all	the	information	for	the	interaction
with	the	server,	the	token	is	acquired	at	the	moment	of	open	or	connect,	and	need	to	be	resend	for	each	request.	the	session	id	used	in
the	stateful	requests	is	still	there	and	is	used	to	associate	the	request	to	the	response.	in	the	response	can	be	resend	a	token	in	case	of
expire	renew.

Enable	debug	messages	on	protocol
To	make	the	development	of	a	new	client	easier	it's	strongly	suggested	to	activate	debug	mode	on	the	binary	channel.	To	activate	this,
edit	the	file		orientdb-server-config.xml		and	configure	the	new	parameter		network.binary.debug		on	the	"binary"	or	"distributed"
listener.	E.g.:

...

<listener	protocol="distributed"	port-range="2424-2430"

ip-address="127.0.0.1">

		<parameters>

				<parameter	name="network.binary.debug"	value="true"	/>

		</parameters>

</listener>

...

In	the	log	file	(or	the	console	if	you	have	configured	the		orientdb-server-log.properties		file)	all	the	packets	received	will	be	printed.

Exchange
This	is	the	typical	exchange	of	messages	between	client	and	server	sides:

Binary	Protocol

513



+------+	+------+

|Client|	|Server|

+------+	+------+

|	TCP/IP	Socket	connection	|

+-------------------------->|

|	DB_OPEN	|

+-------------------------->|

|	RESPONSE	(+	SESSION-ID)	|

+<--------------------------+

...	...

|	REQUEST	(+	SESSION-ID)	|

+-------------------------->|

|	RESPONSE	(+	SESSION-ID)	|

+<--------------------------+

...	...

|	DB_CLOSE	(+	SESSION-ID)	|

+-------------------------->|

|	TCP/IP	Socket	close	|

+-------------------------->|

Network	message	format
In	explaining	the	network	messages	these	conventions	will	be	used:

fields	are	bracketed	by	parenthesis	and	contain	the	name	and	the	type	separated	by	':'.	E.g.		(length:int)	

Supported	types
The	network	protocol	supports	different	types	of	information:

Type
Minimum
length	in
bytes

Maximum
length	in
bytes

Notes Example

boolean 1 1 Single	byte:	1	=	true,	0	=	false 1

byte 1 1 Single	byte,	used	to	store	small	numbers	and
booleans 1

short 2 2 Signed	short	type 01

int 4 4 Signed	integer	type 0001

long 8 8 Signed	long	type 00000001

bytes 4 N Used	for	binary	data.	The	format	is		(length:int)
[(bytes)]	.	Send	-1	as	NULL

	000511111	

string 4 N
Used	for	text	messages.The	format	is:
	(length:int)[(bytes)](content:<length>)	.	Send
-1	as	NULL

	0005Hello	

record 2 N

An	entire	record	serialized.	The	format	depends	if
a	RID	is	passed	or	an	entire	record	with	its
content.	In	case	of	null	record	then	-2	as	short	is
passed.	In	case	of	RID	-3	is	passes	as	short	and
then	the	RID:		(-3:short)(cluster-id:short)
(cluster-position:long)	.	In	case	of	record:
	(0:short)(record-type:byte)(cluster-id:short)

(cluster-position:long)(record-version:int)

(record-content:bytes)	

strings 4 N Used	for	multiple	text	messages.	The	format	is:
	(length:int)[(Nth-string:string)]	

	00020005Hello0007World!	

Note	when	the	type	of	a	field	in	a	response	depends	on	the	values	of	the	previous	fields,	that	field	will	be	written	without	the	type
(e.g.,		(a-field)	).	The	type	of	the	field	will	be	then	specified	based	on	the	values	of	the	previous	fields	in	the	description	of	the
response.

Binary	Protocol

514



Record	format
The	record	format	is	choose	during	the	CONNECT	or	DB_OPEN	request,	the	formats	available	are:

CSV	(serialization-impl	value	"ORecordDocument2csv")	Binary	(serialization-impl	value	"ORecordSerializerBinary")

The	CSV	format	is	the	default	for	all	the	versions	0.	and	1.	or	for	any	client	with	Network	Protocol	Version	<	22

Request
Each	request	has	own	format	depending	of	the	operation	requested.	The	operation	requested	is	indicated	in	the	first	byte:

1	byte	for	the	operation.	See	Operation	types	for	the	list
4	bytes	for	the	Session-Id	number	as	Integer
N	bytes	optional	token	bytes	only	present	if	the	REQUEST_CONNECT/REQUEST_DB_OPEN	return	a	token.
N	bytes	=	message	content	based	on	the	operation	type

Operation	types

Command
Value
as
byte

Description Async

Server	(CONNECT	Operations)

REQUEST_SHUTDOWN 1 Shut	down	server. no

REQUEST_CONNECT 2 Required	initial	operation	to	access	to
server	commands. no

REQUEST_DB_OPEN 3 Required	initial	operation	to	access
to	the	database. no

REQUEST_DB_CREATE 4 Add	a	new	database. no

REQUEST_DB_EXIST 6 Check	if	database	exists. no

REQUEST_DB_DROP 7 Delete	database. no

REQUEST_CONFIG_GET 70 Get	a	configuration	property. no

REQUEST_CONFIG_SET 71 Set	a	configuration	property. no

REQUEST_CONFIG_LIST 72 Get	a	list	of	configuration	properties. no

REQUEST_DB_LIST 74 Get	a	list	of	databases. no

Database	(DB_OPEN	Operations)

REQUEST_DB_CLOSE 5 Close	a	database. no

REQUEST_DB_SIZE 8 Get	the	size	of	a	database	(in	bytes). no

REQUEST_DB_COUNTRECORDS 9 Get	total	number	of	records	in	a
database. no

REQUEST_DATACLUSTER_ADD	(deprecated) 10 Add	a	data	cluster. no

REQUEST_DATACLUSTER_DROP	(deprecated) 11 Delete	a	data	cluster. no

REQUEST_DATACLUSTER_COUNT	(deprecated) 12 Get	the	total	number	of	data	clusters. no

REQUEST_DATACLUSTER_DATARANGE	(deprecated) 13 Get	the	data	range	of	data	clusters. no

Binary	Protocol

515



REQUEST_DATACLUSTER_COPY 14 Copy	a	data	cluster. no

REQUEST_DATACLUSTER_LH_CLUSTER_IS_USED 16 no

REQUEST_RECORD_METADATA 29 Get	metadata	from	a	record. no

REQUEST_RECORD_LOAD 30 Load	a	record. no

REQUEST_RECORD_LOAD_IF_VERSION_NOT_LATEST 44 Load	a	record. no

REQUEST_RECORD_CREATE 31 Add	a	record. yes

REQUEST_RECORD_UPDATE 32 yes

REQUEST_RECORD_DELETE 33 Delete	a	record. yes

REQUEST_RECORD_COPY 34 Copy	a	record. yes

REQUEST_RECORD_CLEAN_OUT 38 Clean	out	record. yes

REQUEST_POSITIONS_FLOOR 39 Get	the	last	record. yes

REQUEST_COUNT	(DEPRECATED) 40 See
REQUEST_DATACLUSTER_COUNT no

REQUEST_COMMAND 41 Execute	a	command. no

REQUEST_POSITIONS_CEILING 42 Get	the	first	record. no

REQUEST_TX_COMMIT 60 Commit	transaction. no

REQUEST_DB_RELOAD 73 Reload	database. no

REQUEST_PUSH_RECORD 79 no

REQUEST_PUSH_DISTRIB_CONFIG 80 no

REQUEST_PUSH_LIVE_QUERY 81 no

REQUEST_DB_COPY 90 no

REQUEST_REPLICATION 91 no

REQUEST_CLUSTER 92 no

REQUEST_DB_TRANSFER 93 no

REQUEST_DB_FREEZE 94 no

REQUEST_DB_RELEASE 95 no

REQUEST_DATACLUSTER_FREEZE	(deprecated) 96 no

REQUEST_DATACLUSTER_RELEASE	(deprecated) 97 no

REQUEST_CREATE_SBTREE_BONSAI 110 Creates	an	sb-tree	bonsai	on	the	remote
server no

REQUEST_SBTREE_BONSAI_GET 111 Get	value	by	key	from	sb-tree	bonsai no

REQUEST_SBTREE_BONSAI_FIRST_KEY 112 Get	first	key	from	sb-tree	bonsai no

REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR 113
Gets	the	portion	of	entries	greater	than
the	specified	one.	If	returns	0	entries
than	the	specified	entrie	is	the	largest

no

REQUEST_RIDBAG_GET_SIZE 114
Rid-bag	specific	operation.	Send	but
does	not	save	changes	of	rid	bag.
Retrieves	computed	size	of	rid	bag.

no

REQUEST_INDEX_GET 120 Lookup	in	an	index	by	key no

REQUEST_INDEX_PUT 121 Create	or	update	an	entry	in	an	index no

REQUEST_INDEX_REMOVE 122 Remove	an	entry	in	an	index	by	key no

Binary	Protocol

516



Response
Every	request	has	a	response	unless	the	command	supports	the	asynchronous	mode	(look	at	the	table	above).

1	byte:	Success	status	of	the	request	if	succeeded	or	failed	(0=OK,	1=ERROR)
4	bytes:	Session-Id	(Integer)
N	bytes	optional	token,	is	only	present	for	token	based	session	(REQUEST_CONNECT/REQUEST_DB_OPEN	return	a	token)
and	is	usually	empty(N=0)	is	only	filled	up	by	the	server	when	renew	of	an	expiring	token	is	required.
N	bytes:	Message	content	depending	on	the	operation	requested

Push	Request
A	push	request	is	a	message	sent	by	the	server	without	any	request	from	the	client,	it	has	a	similar	structure	of	a	response	and	is
distinguished	using	the	respose	status	byte:

1	byte:	Success	status	has	value	3	in	case	of	push	request
4	bytes:	Session-Id	has	everytime	MIN_INTEGER	value	(-2^31)
1	byte:	Push	command	id
N	bytes:	Message	content	depending	on	the	push	massage,	this	is	written	ass	a		(content:bytes)		having	inside	the	details	of	the
specific	message.

Statuses
Every	time	the	client	sends	a	request,	and	the	command	is	not	in	asynchronous	mode	(look	at	the	table	above),	client	must	read	the	one-
byte	response	status	that	indicates	OK	or	ERROR.	The	rest	of	response	bytes	depends	on	this	first	byte.

*	OK	=	0;

*	ERROR	=	1;

*	PUSH_REQUEST	=	3

OK	response	bytes	are	depends	for	every	request	type.	ERROR	response	bytes	sequence	described	below.

Errors

The	format	is:		[(1)(exception-class:string)(exception-message:string)]*(0)(serialized-exception:bytes)	

The	pairs	exception-class	and	exception-message	continue	while	the	following	byte	is	1.	A	0	in	this	position	indicates	that	no	more	data
follows.

E.g.	(parentheses	are	used	here	just	to	separate	fields	to	make	this	easier	to	read:	they	are	not	present	in	the	server	response):

(1)(com.orientechnologies.orient.core.exception.OStorageException)(Can't	open	the	storage	'demo')(0)

Example	of	2	depth-levels	exception:

(1)(com.orientechnologies.orient.core.exception.OStorageException)(Can't	open	the	storage	'demo')(1)(com.orientechnologies.ori

ent.core.exception.OStorageException)(File	not	found)(0)

Since	1.6.1	we	also	send	serialized	version	of	exception	thrown	on	server	side.	This	allows	to	preserve	full	stack	trace	of	server
exception	on	client	side	but	this	feature	can	be	used	by	Java	clients	only.

Operations
This	section	explains	the	request	and	response	messages	of	all	suported	operations.

Binary	Protocol

517



REQUEST_SHUTDOWN

Shut	down	the	server.	Requires	"shutdown"	permission	to	be	set	in	orientdb-server-config.xml	file.

Request:	(user-name:string)(user-password:string)

Response:	empty

Typically	the	credentials	are	those	of	the	OrientDB	server	administrator.	This	is	not	the	same	as	the	admin	user	for	individual	databases.

REQUEST_CONNECT

This	is	the	first	operation	requested	by	the	client	when	it	needs	to	work	with	the	server	instance.	This	operation	returns	the	Session-Id
of	the	new	client	to	reuse	for	all	the	next	calls.

Request:	(driver-name:string)(driver-version:string)(protocol-version:short)(client-id:string)(serialization-impl:string)(toke

n-session:boolean)(user-name:string)(user-password:string)

Response:	(session-id:int)(token:bytes)

Request

client's	driver-name	-	the	name	of	the	client	driver.	Example:	"OrientDB	Java	client".
client's	driver-version	-	the	version	of	the	client	driver.	Example:	"1.0rc8-SNAPSHOT"
client's	protocol-version	-	the	version	of	the	protocol	the	client	wants	to	use.	Example:	30.
client's	client-id	-	can	be	null	for	clients.	In	clustered	configurations	it's	the	distributed	node	ID	as	TCP		host:port	.	Example:
"10.10.10.10:2480".
client's	serialization-impl	-	the	serialization	format	required	by	the	client.
token-session	-	true	if	the	client	wants	to	use	a	token-based	session,	false	otherwise.
user-name	-	the	username	of	the	user	on	the	server.	Example:	"root".
user-password	-	the	password	of	the	user	on	the	server.	Example:	"37aed6392".

Typically	the	credentials	are	those	of	the	OrientDB	server	administrator.	This	is	not	the	same	as	the	admin	user	for	individual	databases.

Response

session-id	-	the	new	session	id	or	a	match	id	in	case	of	token	authentication.
token	-	the	token	for	token-based	authentication.	If	the	clients	sends	token-session	as	false	in	the	request	or	the	server	doesn't
support	token-based	authentication,	this	will	be	an	empty		byte[]	.

REQUEST_DB_OPEN
This	is	the	first	operation	the	client	should	call.	It	opens	a	database	on	the	remote	OrientDB	Server.	This	operation	returns	the	Session-
Id	of	the	new	client	to	reuse	for	all	the	next	calls	and	the	list	of	configured	clusters	in	the	opened	databse.

Request:	(driver-name:string)(driver-version:string)(protocol-version:short)(client-id:string)(serialization-impl:string)(toke

n-session:boolean)(database-name:string)(user-name:string)(user-password:string)

Response:	(session-id:int)(token:bytes)(num-of-clusters:short)[(cluster-name:string)(cluster-id:short)](cluster-config:bytes)(

orientdb-release:string)

Request

client's	driver-name	-	the	name	of	the	client	driver.	Example:	"OrientDB	Java	client".
client's	driver-version	-	the	version	of	the	client	driver.	Example:	"1.0rc8-SNAPSHOT"
client's	protocol-version	-	the	version	of	the	protocol	the	client	wants	to	use.	Example:	30.
client's	client-id	-	can	be	null	for	clients.	In	clustered	configurations	it's	the	distributed	node	ID	as	TCP		host:port	.	Example:
"10.10.10.10:2480".
client's	serialization-impl	-	the	serialization	format	required	by	the	client.

Binary	Protocol

518



token-session	-	true	if	the	client	wants	to	use	a	token-based	session,	false	otherwise.
database-name	-	the	name	of	the	database	to	connect	to.	Example:	"demo".
user-name	-	the	username	of	the	user	on	the	server.	Example:	"root".
user-password	-	the	password	of	the	user	on	the	server.	Example:	"37aed6392".

Response

session-id	-	the	new	session	id	or	a	match	id	in	case	of	token	authentication.
token	-	the	token	for	token-based	authentication.	If	the	clients	sends	token-session	as	false	in	the	request	or	the	server	doesn't
support	token-based	authentication,	this	will	be	an	empty		byte[]	.
num-of-clusters	-	the	size	of	the	array	of	clusters	in	the	form		(cluster-name:string)(cluster-id:short)		that	follows	this	number.
cluster-name,	cluster-id	-	the	name	and	id	of	a	cluster.
cluster-config	-	it's	usually	null	unless	running	in	a	server	clustered	configuration.
orientdb-release	-	contains	the	version	of	the	OrientDB	release	deployed	on	the	server	and	optionally	the	build	number.	Example:
"1.4.0-SNAPSHOT	(build	13)".

REQUEST_DB_REOPEN

Used	on	new	sockets	for	associate	the	specific	socket	with	the	server	side	session	for	the	specific	client,	can	be	used	exclusively	with
the	token	authentication

Request:empty	

Response:(session-id:int)

REQUEST_DB_CREATE

Creates	a	database	in	the	remote	OrientDB	server	instance.

Request:	(database-name:string)(database-type:string)(storage-type:string)

Response:	empty

Request

database-name	-	the	name	of	the	database	to	create.	Example:	"MyDatabase".
database-type	-	the	type	of	the	database	to	create.	Can	be	either		document		or		graph		(since	version	8).	Example:	"document".
storage-type	-	specifies	the	storage	type	of	the	database	to	create.	It	can	be	one	of	the	supported	types:

	plocal		-	persistent	database
	memory		-	volatile	database

Note:	it	doesn't	make	sense	to	use		remote		in	this	context.

REQUEST_DB_CLOSE
Closes	the	database	and	the	network	connection	to	the	OrientDB	server	instance.	No	response	is	expected.	The	TCP	socket	is	also
closed.

Request:	empty

Response:	no	response,	the	socket	is	just	closed	at	server	side

REQUEST_DB_EXIST
Asks	if	a	database	exists	in	the	OrientDB	server	instance.

Binary	Protocol

519



Request:	(database-name:string)(server-storage-type:string)

Response:	(result:boolean)

Request

database-name	-	the	name	of	the	target	database.	Note	that	this	was	empty	before		1.0rc1	.
storage-type	-	specifies	the	storage	type	of	the	database	to	be	checked	for	existance.	Since		1.5-snapshot	.	It	can	be	one	of	the
supported	types:

	plocal		-	persistent	database
	memory		-	volatile	database

Response

result	-	true	if	the	given	database	exists,	false	otherwise.

REQUEST_DB_RELOAD
Reloads	information	about	the	given	database.	Available	since		1.0rc4	.

Request:	empty

Response:	(num-of-clusters:short)[(cluster-name:string)(cluster-id:short)]

Response

num-of-clusters	-	the	size	of	the	array	of	clusters	in	the	form		(cluster-name:string)(cluster-id:short)		that	follows	this	number.
cluster-name,	cluster-id	-	the	name	and	id	of	a	cluster.

REQUEST_DB_DROP
Removes	a	database	from	the	OrientDB	server	instance.	This	operation	returns	a	successful	response	if	the	database	is	deleted
successfully.	Otherwise,	if	the	database	doesn't	exist	on	the	server,	it	returns	an	error	(an		OStorageException	).

Request:	(database-name:string)(storage-type:string)

Response:	empty

Request

database-name	-	the	name	of	the	database	to	remove.
storage-type	-	specifies	the	storage	type	of	the	database	to	create.	Since		1.5-snapshot	.	It	can	be	one	of	the	supported	types:

	plocal		-	persistent	database
	memory		-	volatile	database

REQUEST_DB_SIZE
Returns	the	size	of	the	currently	open	database.

Request:	empty

Response:	(size:long)

Response

size	-	the	size	of	the	current	database.

Binary	Protocol

520



REQUEST_DB_COUNTRECORDS

Returns	the	number	of	records	in	the	currently	open	database.

Request:	empty

Response:	(count:long)

Response

count	-	the	number	of	records	in	the	current	database.

REQUEST_DATACLUSTER_ADD

Add	a	new	data	cluster.	Deprecated.

Request:	(name:string)(cluster-id:short	-	since	1.6	snapshot)

Response:	(new-cluster:short)

Where:	type	is	one	of	"PHYSICAL"	or	"MEMORY".	If	cluster-id	is	-1	(recommended	value)	new	cluster	id	will	be	generated.

REQUEST_DATACLUSTER_DROP

Remove	a	cluster.	Deprecated.

Request:	(cluster-number:short)

Response:	(delete-on-clientside:byte)

Where:

delete-on-clientside	can	be	1	if	the	cluster	has	been	successfully	removed	and	the	client	has	to	remove	too,	otherwise	0

REQUEST_DATACLUSTER_COUNT

Returns	the	number	of	records	in	one	or	more	clusters.	Deprecated.

Request:	(cluster-count:short)(cluster-number:short)*(count-tombstones:byte)

Response:	(records-in-clusters:long)

Where:

cluster-count	the	number	of	requested	clusters
cluster-number	the	cluster	id	of	each	single	cluster
count-tombstones	the	flag	which	indicates	whether	deleted	records	should	be	taken	in	account.	It	is	applicable	for	autosharded
storage	only,	otherwise	it	is	ignored.
records-in-clusters	is	the	total	number	of	records	found	in	the	requested	clusters

Example

Request	the	record	count	for	clusters	5,	6	and	7.	Note	the	"03"	at	the	beginning	to	tell	you're	passing	3	cluster	ids	(as	short	each).	1,000
as	long	(8	bytes)	is	the	answer.

Request:	03050607

Response:	00001000

REQUEST_DATACLUSTER_DATARANGE

Binary	Protocol

521



Returns	the	range	of	record	ids	for	a	cluster.	Deprecated.

Request:	(cluster-number:short)

Response:	(begin:long)(end:long)

Example

Request	the	range	for	cluster	7.	The	range	0-1,000	is	returned	in	the	response	as	2	longs	(8	bytes	each).

Request:	07

Response:	0000000000001000

REQUEST_RECORD_LOAD

Loads	a	record	by	its	RecordID,	according	to	a	fetch	plan.

Request:	(cluster-id:short)(cluster-position:long)(fetch-plan:string)(ignore-cache:boolean)(load-tombstones:boolean)

Response:	[(payload-status:byte)[(record-type:byte)(record-version:int)(record-content:bytes)]*]+

Request

cluster-id,	cluster-position	-	the	RecordID	of	the	record.
fetch-plan	-	the	fetch	plan	to	use	or	an	empty	string.
ignore-cache	-	if	true	tells	the	server	to	ignore	the	cache,	if	false	tells	the	server	to	not	ignore	the	cache.	Available	since	protocol	v.9
(introduced	in	release	1.0rc9).
load-tombstones	-	a	flag	which	indicates	whether	information	about	deleted	record	should	be	loaded.	The	flag	is	applied	only	to
autosharded	storage	and	ignored	otherwise.

Response

payload-status	-	can	be:
	0	:	no	records	remain	to	be	fetched.
	1	:	a	record	is	returned	as	resultset.
	2	:	a	record	is	returned	as	pre-fetched	to	be	loaded	in	client's	cache	only.	It's	not	part	of	the	result	set	but	the	client	knows
that	it's	available	for	later	access.	This	value	is	not	currently	used.

record-type	-	can	be:
	d	:	document
	b	:	raw	bytes
	f	:	flat	data

REQUEST_RECORD_LOAD_IF_VERSION_NOT_LATEST

Loads	a	record	by	RecordID,	according	to	a	fetch	plan.	The	record	is	only	loaded	if	the	persistent	version	is	more	recent	of	the	version
specified	in	the	request.

Request:	(cluster-id:short)(cluster-position:long)(version:int)(fetch-plan:string)(ignore-cache:boolean)

Response:	[(payload-status:byte)[(record-type:byte)(record-version:int)(record-content:bytes)]*]*

Request

cluster-id,	cluster-position	-	the	RecordID	of	the	record.
version	-	the	version	of	the	record	to	fetch.
fetch-plan	-	the	fetch	plan	to	use	or	an	empty	string.
ignore-cache	-	if	true	tells	the	server	to	ignore	the	cache,	if	false	tells	the	server	to	not	ignore	the	cache.	Available	since	protocol	v.9
(introduced	in	release	1.0rc9).

Binary	Protocol

522



Response

	payload-status		-	can	be:
	0	:	no	records	remain	to	be	fetched.
	1	:	a	record	is	returned	as	resultset.
	2	:	a	record	is	returned	as	pre-fetched	to	be	loaded	in	client's	cache	only.	It's	not	part	of	the	result	set	but	the	client	knows
that	it's	available	for	later	access.	This	value	is	not	currently	used.

	record-type		-	can	be:
	d	:	document
	b	:	raw	bytes
	f	:	flat	data

REQUEST_RECORD_CREATE

Creates	a	new	record.	Returns	the	RecordID	of	the	newly	created	record..	New	records	can	have	version	>	0	(since		1.0	)	in	case	the
RecordID	has	been	recycled.

Request:	(cluster-id:short)(record-content:bytes)(record-type:byte)(mode:byte)

Response:	(cluster-id:short)(cluster-position:long)(record-version:int)(count-of-collection-changes)[(uuid-most-sig-bits:long)

(uuid-least-sig-bits:long)(updated-file-id:long)(updated-page-index:long)(updated-page-offset:int)]*

Request

cluster-id	-	the	id	of	the	cluster	in	which	to	create	the	new	record.
record-content	-	the	record	to	create	serialized	using	the	appropriate	serialization	format	chosen	at	connection	time.
record-type	-	the	type	of	the	record	to	create.	It	can	be:

	d	:	document
	b	:	raw	bytes
	f	:	flat	data

mode	-	can	be:
	0		-	synchronous.	It's	the	default	mode	which	waits	for	the	answer	before	the	response	is	sent.
	1		-	asynchronous.	The	response	is	identical	to	the	synchronous	response,	but	the	driver	is	encouraged	to	manage	the
answer	in	a	callback.
	2		-	no-response.	Don't	wait	for	the	answer	(fire	and	forget).	This	mode	is	useful	on	massive	operations	since	it	reduces
network	latency.

In	versions	before		2.0	,	the	response	started	with	an	additional	datasegment-id,	the	segment	id	to	store	the	data	(available	since
version	10	-		1.0-SNAPSHOT	),	with	-1	meaning	default	one.

Response

cluster-id,	cluster-position	-	the	RecordID	of	the	newly	created	record.
record-version	-	the	version	of	the	newly	created	record.

The	last	part	of	response	(from		count-of-collection-changes		on)	refers	to	RidBag	management.	Take	a	look	at	the	main	page	for	more
details.

REQUEST_RECORD_UPDATE

Updates	the	record	identified	by	the	given	RecordID.	Returns	the	new	version	of	the	record.

Request:	(cluster-id:short)(cluster-position:long)(update-content:boolean)(record-content:bytes)(record-version:int)(record-ty

pe:byte)(mode:byte)

Response:	(record-version:int)(count-of-collection-changes)[(uuid-most-sig-bits:long)(uuid-least-sig-bits:long)(updated-file-i

d:long)(updated-page-index:long)(updated-page-offset:int)]*

Request

Binary	Protocol

523



cluster-id,	cluster-position	-	the	RecordID	of	the	record	to	update.
update-content	-	can	be:

true	-	the	content	of	the	record	has	been	changed	and	should	be	updated	in	the	storage.
false	-	the	record	was	modified	but	its	own	content	has	not	changed:	related	collections	(e.g.	RidBags)	have	to	be	updated,	but
the	record	version	and	its	contents	should	not	be	updated.

record-content	-	the	new	contents	of	the	record	serialized	using	the	appropriate	serialization	format	chosen	at	connection	time.
record-version	-	the	version	of	the	record	to	update.
record-type	-	the	type	of	the	record	to	create.	It	can	be:

	d	:	document
	b	:	raw	bytes
	f	:	flat	data

mode	-	can	be:
	0		-	synchronous.	It's	the	default	mode	which	waits	for	the	answer	before	the	response	is	sent.
	1		-	asynchronous.	The	response	is	identical	to	the	synchronous	response,	but	the	driver	is	encouraged	to	manage	the
answer	in	a	callback.
	2		-	no-response.	Don't	wait	for	the	answer	(fire	and	forget).	This	mode	is	useful	on	massive	operations	since	it	reduces
network	latency.

Response

record-version	-	the	new	version	of	the	updated	record

The	last	part	of	response	(from		count-of-collection-changes		on)	refers	to	RidBag	management.	Take	a	look	at	the	main	page	for	more
details.

REQUEST_RECORD_DELETE

Delete	a	record	identified	by	the	given	RecordID.	During	the	optimistic	transaction	the	record	will	be	deleted	only	if	the	given	version
and	the	version	of	the	record	on	the	server	match.	This	operation	returns	true	if	the	record	is	deleted	successfully,	false	otherwise.

Request:	(cluster-id:short)(cluster-position:long)(record-version:int)(mode:byte)

Response:	(has-been-deleted:boolean)

Request

cluster-id,	cluster-position	-	the	RecordID	of	the	record	to	delete.
record-version	-	the	version	of	the	record	to	delete.
mode	-	can	be:

	0		-	synchronous.	It's	the	default	mode	which	waits	for	the	answer	before	the	response	is	sent.
	1		-	asynchronous.	The	response	is	identical	to	the	synchronous	response,	but	the	driver	is	encouraged	to	manage	the
answer	in	a	callback.
	2		-	no-response.	Don't	wait	for	the	answer	(fire	and	forget).	This	mode	is	useful	on	massive	operations	since	it	reduces
network	latency.

Response

has-been-deleted	-	true	if	the	record	is	deleted	successfully,	false	if	it's	not	or	if	the	record	with	the	given	RecordID	doesn't	exist.

REQUEST_COMMAND
Executes	remote	commands.

Binary	Protocol

524



Request:	(mode:byte)(command-payload-length:int)(class-name:string)(command-payload)

Response:

-	synchronous	commands:	[(synch-result-type:byte)[(synch-result-content:?)]]+

-	asynchronous	commands:	[(asynch-result-type:byte)[(asynch-result-content:?)]*](pre-fetched-record-size.md)[(pre-fetched-reco

rd)]*+

Request

mode	-	it	can	assume	one	of	the	following	values:
	a		-	asynchronous	mode
	s		-	synchronous	mode
	l		-	live	mode

command-payload-length	-	the	length	of	the	class-name	field	plus	the	length	of	the	command-payload	field.
class-name	-	the	class	name	of	the	command	implementation.	There	are	some	short	forms	for	the	most	common	commands,	which
are:

	q		-	stands	for	"query"	as	idempotent	command	(e.g.,		SELECT	).	It's	like	passing
	com.orientechnologies.orient.core.sql.query.OSQLSynchquery	.
	c		-	stands	for	"command"	as	non-idempotent	command	(e.g.,		INSERT		or		UPDATE	).	It's	like	passing
	com.orientechnologies.orient.core.sql.OCommandSQL	.
	s		-	stands	for	"script"	(for	server-side	scripting	using	languages	like	JavaScript).	It's	like	passing
	com.orientechnologies.orient.core.command.script.OCommandScript	.
any	other	string	-	the	string	is	the	class	name	of	the	command.	The	command	will	be	created	via	reflection	using	the	default
constructor	and	invoking	the		fromStream()		method	against	it.

command-payload	-	is	the	payload	of	the	command	as	specified	in	the	"Commands"	section.

Response

Response	is	different	for	synchronous	and	asynchronous	request:

synchronous:
synch-result-type	can	be:

'n',	means	null	result
'r',	means	single	record	returned
'l',	list	of	records.	The	format	is:

an	integer	to	indicate	the	collection	size.	Starting	form	v32,	size	can	be	-1	to	stream	a	resultset.	Last	item	will	be	null
all	the	records	and	each	entry	is	typed	with	a	short	that	can	be:

'0'	a	record	in	the	next	bytes
'-2'	no	record	and	is	considered	as	a	null	record
'-3'	only	a	recordId	in	the	next	bytes

's',	set	of	records.	The	format	is:
an	integer	to	indicate	the	collection	size.	Starting	form	v32,	size	can	be	-1	to	stream	a	resultset.	Last	item	will	be	null
all	the	records	and	each	entry	is	typed	with	a	short	that	can	be:

'0'	a	record	in	the	next	bytes
'-2'	no	record	and	is	considered	as	a	null	record
'-3'	only	a	recordId	in	the	next	bytes

'a',	serialized	result,	a	byte[]	is	sent
'i',	iterable	of	records

the	result	records	will	be	streamed,	no	size	as	start	is	given,	each	entry	has	a	flag	at	the	start(same	as	asynch-result-
type)

0:	no	record	remain	to	be	fetched
1:	a	record	in	the	next	bytes
2:	a	recordin	the	next	bytes	to	be	loaded	in	client's	cache	only.	It's	not	part	of	the	result	set	but

synch-result-content,	can	only	be	a	record
pre-fetched-record-size,	as	the	number	of	pre-fetched	records	not	directly	part	of	the	result	set	but	joined	to	it	by	fetching
pre-fetched-record	as	the	pre-fetched	record	content
asynchronous:
asynch-result-type	can	be:

Binary	Protocol

525



0:	no	records	remain	to	be	fetched
1:	a	record	is	returned	as	a	resultset
2:	a	record	is	returned	as	pre-fetched	to	be	loaded	in	client's	cache	only.	It's	not	part	of	the	result	set	but	the	client	knows	that
it's	available	for	later	access

asynch-result-content,	can	only	be	a	record

REQUEST_TX_COMMIT

Commits	a	transaction.	This	operation	flushes	all	the	pending	changes	to	the	server	side.

Request:	(transaction-id:int)(using-tx-log:boolean)(tx-entry)*(0-byte	indicating	end-of-records)

Response:	(created-record-count:int)[(client-specified-cluster-id:short)(client-specified-cluster-position:long)(created-clust

er-id:short)(created-cluster-position:long)]*(updated-record-count:int)[(updated-cluster-id:short)(updated-cluster-position:lo

ng)(new-record-version:int)]*(count-of-collection-changes:int)[(uuid-most-sig-bits:long)(uuid-least-sig-bits:long)(updated-fil

e-id:long)(updated-page-index:long)(updated-page-offset:int)]*

Request

transaction-id	-	the	id	of	the	transaction.	Read	the	"Transaction	ID"	section	below	for	more	information.
using-tx-log	-	tells	the	server	whether	to	use	the	transaction	log	to	recover	the	transaction	or	not.	Use		true		by	default	to	ensure
consistency.	Note:	disabling	the	log	could	speed	up	the	execution	of	the	transaction,	but	it	makes	impossible	to	rollback	the
transaction	in	case	of	errors.	This	could	lead	to	inconsistencies	in	indexes	as	well,	since	in	case	of	duplicated	keys	the	rollback	is	not
called	to	restore	the	index	status.
tx-entry	-	a	list	of	elements	(terminated	by	a	0	byte)	with	the	form	described	below.

Transaction	entry

Each	transaction	entry	can	specify	one	out	of	three	actions	to	perform:	create,	update	or	delete.

The	general	form	of	a	transaction	entry	(tx-entry	above)	is:

(1:byte)(operation-type:byte)(cluster-id:short)(cluster-position:long)(record-type:byte)(entry-content)

The	first	byte	means	that	there's	another	entry	next.	The	values	of	the	rest	of	these	attributes	depend	directly	on	the	operation	type.

Update

operation-type	-	has	the	value	1.
cluster-id,	cluster-position	-	the	RecordID	of	the	record	to	update.
record-type	-	the	type	of	the	record	to	update	(	d		for	document,		b		for	raw	bytes	and		f		for	flat	data).
entry-content	-	has	the	form		(version:int)(update-content:boolean)(record-content:bytes)		where:

update-content	-	can	be:
true	-	the	content	of	the	record	has	been	changed	and	should	be	updated	in	the	storage.
false	-	the	record	was	modified	but	its	own	content	has	not	changed:	related	collections	(e.g.	RidBags)	have	to	be	updated,
but	the	record	version	and	its	contents	should	not	be	updated.

version	-	the	version	of	the	record	to	update.
record-content	-	the	new	contents	of	the	record	serialized	using	the	appropriate	serialization	format	chosen	at	connection
time.

Delete

operation-type	-	has	the	value	2.
cluster-id,	cluster-position	-	the	RecordID	of	the	record	to	update.
record-type	-	the	type	of	the	record	to	update	(	d		for	document,		b		for	raw	bytes	and		f		for	flat	data).
entry-content	-	has	the	form		(version:int)		where:

version	-	the	version	of	the	record	to	delete.

Create

Binary	Protocol

526



operation-type	-	has	the	value	3.
cluster-id,	cluster-position	-	when	creating	a	new	record,	set	the	cluster	id	to		-1	.	The	cluster	position	must	be	an	integer		<
-1	,	unique	in	the	scope	of	the	transaction	(meaning	that	if	two	new	records	are	being	created	in	the	same	transaction,	they	should
have	two	different	ids	both		<	-1	).
record-type	-	the	type	of	the	record	to	update	(	d		for	document,		b		for	raw	bytes	and		f		for	flat	data).
entry-content	-	has	the	form		(record-content:bytes)		where:

record-content	-	the	new	contents	of	the	record	serialized	using	the	appropriate	serialization	format	chosen	at	connection
time.

Transaction	ID

Each	transaction	must	have	an	ID;	the	client	is	responsible	for	assigning	an	ID	to	each	transaction.	The	ID	must	be	unique	in	the	scope
of	each	session.

Response

The	response	contains	two	parts:

a	map	of	"temporary"	client-generated	record	ids	to	"real"	server-provided	record	ids	for	each	created	record	(not	guaranteed	to
have	the	same	order	as	the	records	in	the	request).
a	map	of	updated	record	ids	to	update	record	versions.

If	the	version	of	a	created	record	is	not		0	,	then	the	RecordID	of	the	created	record	will	also	appear	in	the	list	of	"updated"	records,
along	with	its	new	version.	This	is	a	known	bug.

Look	at	Optimistic	Transaction	to	know	how	temporary	RecordIDs	are	managed.

The	last	part	of	response	(from		count-of-collection-changes		on)	refers	to	RidBag	management.	Take	a	look	at	the	main	page	for	more
details.

REQUEST_INDEX_GET
Lookups	in	an	index	by	key.

Request:	(index-name:string)(key:document)(fetch-plan:string)

Response:	(result-type:byte)

Request

index-name	-	the	name	of	the	index.
key	-	a	document	whose		"key"		field	contains	the	key.
fetch-plan	-	the	fetch	plan	to	use	or	an	empty	string.

Response

key	-	is	stored	in	the	field	named	"key"	inside	the	document
result-type	can	be:

'n',	means	null	result
'r',	means	single	record	returned
'l',	list	of	records.	The	format	is:
an	integer	to	indicate	the	collection	size
all	the	records	one	by	one
's',	set	of	records.	The	format	is:
an	integer	to	indicate	the	collection	size
all	the	records	one	by	one
'a',	serialized	result,	a	byte[]	is	sent

synch-result-content,	can	only	be	a	record
pre-fetched-record-size,	as	the	number	of	pre-fetched	records	not	directly	part	of	the	result	set	but	joined	to	it	by	fetching

Binary	Protocol

527

https://github.com/orientechnologies/orientdb/issues/4660


pre-fetched-record	as	the	pre-fetched	record	content

REQUEST_INDEX_PUT

Create	or	update	an	entry	in	index	by	key.

Request:	(index-name:string)(key:document)(value:rid)

Response:	no	response

Where:

key	is	stored	in	the	field	named	"key"	inside	the	document

REQUEST_INDEX_REMOVE

Remove	an	entry	by	key	from	an	index.	It	returns	true	if	the	entry	was	present,	otherwise	false.

Request:	(index-name:string)(key:document)

Response:	(found:boolean)

Where:

key	is	stored	in	the	field	named	"key"	inside	the	document

REQUEST_CREATE_SBTREE_BONSAI

Request:	(clusterId:int)

Response:	(collectionPointer)

See:	serialization	of	collection	pointer

Creates	an	sb-tree	bonsai	on	the	remote	server.

REQUEST_SBTREE_BONSAI_GET

Request:	(collectionPointer)(key:binary)

Response:	(valueSerializerId:byte)(value:binary)

See:	serialization	of	collection	pointer

Get	value	by	key	from	sb-tree	bonsai.

Key	and	value	are	serialized	according	to	format	of	tree	serializer.	If	the	operation	is	used	by	RidBag	key	is	always	a	RID	and	value	can
be	null	or	integer.

REQUEST_SBTREE_BONSAI_FIRST_KEY

Request:	(collectionPointer)

Response:	(keySerializerId:byte)(key:binary)

See:	serialization	of	collection	pointer

Get	first	key	from	sb-tree	bonsai.	Null	if	tree	is	empty.

Key	are	serialized	according	to	format	of	tree	serializer.	If	the	operation	is	used	by	RidBag	key	is	null	or	RID.

REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR

Binary	Protocol

528



Request:	(collectionPointer)(key:binary)(inclusive:boolean)(pageSize:int)

Response:	(count:int)[(key:binary)(value:binary)]*

See:	serialization	of	collection	pointer

Gets	the	portion	of	entries	major	than	specified	one.	If	returns	0	entries	than	the	specified	entry	is	the	largest.

Keys	and	values	are	serialized	according	to	format	of	tree	serializer.	If	the	operation	is	used	by	RidBag	key	is	always	a	RID	and	value	is
integer.

Default	pageSize	is	128.

REQUEST_RIDBAG_GET_SIZE

Request:	(collectionPointer)(collectionChanges)

Response:	(size:int)

See:	serialization	of	collection	pointer,	serialization	of	collection	changes

Rid-bag	specific	operation.	Send	but	does	not	save	changes	of	rid	bag.	Retrieves	computed	size	of	rid	bag.

Special	use	of	LINKSET	types
NOTE.	Since	1.7rc1	this	feature	is	deprecated.	Usage	of	RidBag	is	preferable.

Starting	from	1.0rc8-SNAPSHOT	OrientDB	can	transform	collections	of	links	from	the	classic	mode:

[#10:3,#10:4,#10:5]

to:

(ORIDs@pageSize:16,root:#2:6)

For	more	information	look	at	the	announcement	of	this	new	feature:	https://groups.google.com/d/topic/orient-
database/QF52JEwCuTM/discussion

In	practice	to	optimize	cases	with	many	relationships/edges	the	collection	is	transformed	in	a	mvrb-tree.	This	is	because	the	embedded
object.	In	that	case	the	important	thing	is	the	link	to	the	root	node	of	the	balanced	tree.

You	can	disable	this	behaviour	by	setting

mvrbtree.ridBinaryThreshold	=	-1

Where	mvrbtree.ridBinaryThreshold	is	the	threshold	where	OrientDB	will	use	the	tree	instead	of	plain	collection	(as	before).	-1	means
"hey,	never	use	the	new	mode	but	leave	all	as	before".

Tree	node	binary	structure

To	improve	performance	this	structure	is	managed	in	binary	form.	Below	how	is	made:

+-----------+-----------+--------+------------+----------+-----------+---------------------+

|	TREE	SIZE	|	NODE	SIZE	|	COLOR	.|	PARENT	RID	|	LEFT	RID	|	RIGHT	RID	|	RID	LIST	..........	|

+-----------+-----------+--------+------------+----------+-----------+---------------------+

|	4	bytes	.	|	4	bytes	.	|	1	byte	|	10	bytes	..|	10	bytes	|	10	bytes	.|	10	*	MAX_SIZE	bytes	|

+-----------+-----------+--------+------------+----------+-----------+---------------------+

=	39	bytes	+	10	*	PAGE-SIZE	bytes

Where:

TREE	SIZE	as	signed	integer	(4	bytes)	containing	the	size	of	the	tree.	Only	the	root	node	has	this	value	updated,	so	to	know	the

Binary	Protocol

529

https://groups.google.com/d/topic/orient-database/QF52JEwCuTM/discussion


size	of	the	collection	you	need	to	load	the	root	node	and	get	this	field.	other	nodes	can	contain	not	updated	values	because	upon

rotation	of	pieces	of	the	tree	(made	during	tree	rebalancing)	the	root	can	change	and	the	old	root	will	have	the	"old"	size	as	dirty.
NODE	SIZE	as	signed	integer	(4	bytes)	containing	number	of	entries	in	this	node.	It's	always	<=	to	the	page-size	defined	at	the	tree
level	and	equals	for	all	the	nodes.	By	default	page-size	is	16	items
COLOR	as	1	byte	containing	1=Black,	0=Red.	To	know	more	about	the	meaning	of	this	look	at	Red-Black	Trees
PARENT	RID	as	RID	(10	bytes)	of	the	parent	node	record
LEFT	RID	as	RID	(10	bytes)	of	the	left	node	record
RIGHT	RID	as	RID	(10	bytes)	of	the	right	node	record
RID	LIST	as	the	list	of	RIDs	containing	the	references	to	the	records.	This	is	pre-allocated	to	the	configured	page-size.	Since	each
RID	takes	10	bytes,	a	page-size	of	16	means	16	x	10bytes	=	160bytes

The	size	of	the	tree-node	on	disk	(and	memory)	is	fixed	to	avoid	fragmentation.	To	compute	it:	39	bytes	+	10	*	PAGE-SIZE	bytes.	For
a	page-size	=	16	you'll	have	39	+	160	=	199	bytes.

REQUEST_PUSH_LIVE_QUERY

(operation:byte)(query_token:int)(record-type:byte)(record-version:int)(cluster-id:short)(cluster-position:long)(record-conten

t:bytes)

where:
operation	the	tipe	of	operation	happend,	possible	values

LOADED	=	0
UPDATED	=	1
DELETED	=	2
CREATED	=	3

query_token	the	token	that	identify	the	relative	query	of	the	push	message,	it	match	the	result	token	of	the	live	query	command
request.
record-type	type	of	the	record	('d'	or	'b')
record-version	record	version
cluster-id	record	cluster	id
cluster-position	record	cluster	postion
record-content	record	content

History

version	33
Removed	the	token	data	from	error	heandling	header	in	case	of	non	token	session.	Removed	the	db-type	from	REQUEST_DB_OPEN
added	REQUEST_DB_REOPEN

Version	32
Added	support	of	streamable	resultset	in	case	of	sync	command,	added	a	new	result	of	type	'i'	that	stream	the	result	in	the	same	way	of
async	result.

Version	31
Added	new	commands	to	manipulate	idexes:	REQUEST_INDEX_GET,	REQUEST_INDEX_PUT	and
REQUEST_INDEX_REMOVE.

Version	30

Binary	Protocol

530

http://en.wikipedia.org/wiki/Red%E2%80%93black_tree


Added	new	command	REQUEST_RECORD_LOAD_IF_VERSION_NOT_LATEST

Version	29

Added	support	support	of	live	query	in	REQUEST_COMMAND,	added	new	push	command	REQUEST_PUSH_LIVE_QUERY

Version	28

Since	version	28	the	REQUEST_RECORD_LOAD	response	order	is	changed	from:		[(payload-status:byte)[(record-content:bytes)
(record-version:int)(record-type:byte)]*]+		to:		[(payload-status:byte)[(record-type:byte)(record-version:int)(record-
content:bytes)]*]+	

Version	27

Since	version	27	is	introduced	an	extension	to	allow	use	a	token	based	session,	if	this	modality	is	enabled	a	few	things	change	in	the
modality	the	protocol	works.

in	the	first	negotiation	the	client	should	ask	for	a	token	based	authentication	using	the	token-auth	flag
the	server	will	reply	with	a	token	or	an	empty	byte	array	that	means	that	it	not	support	token	based	session	and	is	using	a	old
style	session.
if	the	server	don't	send	back	the	token	the	client	can	fail	or	drop	back	the	the	old	modality.
for	each	request	the	client	should	send	the	token	and	the	sessionId
the	sessionId	is	needed	only	for	match	a	response	to	a	request
if	used	the	token	the	connections	can	be	shared	between	users	and	db	of	the	same	server,	not	needed	to	have	connection	associated
to	db	and	user.

protocol	methods	changed:

REQUEST_DB_OPEN

request	add	token	session	flag
response	add	of	the	token

REQUEST_CONNECT

request	add	token	session	flag
response	add	of	the	token

Version	26

Added	cluster-id	in	the	REQUEST_CREATE_RECORD	response.

Version	25
Reviewd	serialization	of	index	changes	in	the	REQUEST_TX_COMMIT	for	detais	#2676	Removed	double	serialization	of	commands
parameters,	now	the	parameters	are	directly	serialized	in	a	document	see	Network	Binary	Protocol	Commands	and	#2301

Version	24
cluster-type	and	cluster-dataSegmentId	parameters	were	removed	from	response	for	REQUEST_DB_OPEN,
REQUEST_DB_RELOAD	requests.
datasegment-id	parameter	was	removed	from	REQUEST_RECORD_CREATE	request.
type,	location	and	datasegment-name	parameters	were	removed	from	REQUEST_DATACLUSTER_ADD	request.
REQUEST_DATASEGMENT_ADD	request	was	removed.
REQUEST_DATASEGMENT_DROP	request	was	removed.

Binary	Protocol

531

https://github.com/orientechnologies/orientdb/issues/2676
https://github.com/orientechnologies/orientdb/issues/2301


Version	23

Add	support	of		updateContent		flag	to	UPDATE_RECORD	and	COMMIT

Version	22

REQUEST_CONNECT	and	REQUEST_OPEN	now	send	the	document	serialization	format	that	the	client	require

Version	21

REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR	(which	is	used	to	iterate	through	SBTree)	now	gets	"pageSize"	as	int
as	last	argument.	Version	20	had	a	fixed	pageSize=5.	The	new	version	provides	configurable	pageSize	by	client.	Default	pageSize
value	for	protocol=20	has	been	changed	to	128.

Version	20

Rid	bag	commands	were	introduced.
Save/commit	was	adapted	to	support	client	notifications	about	changes	of	collection	pointers.

Version	19

Serialized	version	of	server	exception	is	sent	to	the	client.

Version	18

Ability	to	set	cluster	id	during	cluster	creation	was	added.

Version	17

Synchronous	commands	can	send	fetched	records	like	asynchronous	one.

Version	16
Storage	type	is	required	for	REQUEST_DB_FREEZE,	REQUEST_DB_RELEASE,	REQUEST_DB_DROP,
REQUEST_DB_EXIST	commands.
This	is	required	to	support	plocal	storage.

Version	15
SET	types	are	stored	in	different	way	then	LIST.	Before	rel.	15	both	were	stored	between	squared	braces	[]	while	now	SET	are
stored	between	<>

Version	14
DB_OPEN	returns	information	about	version	of	OrientDB	deployed	on	server.

Version	13
To	support	upcoming	auto-sharding	support	feature	following	changes	were	done

Binary	Protocol

532



RECORD_LOAD	flag	to	support	ability	to	load	tombstones	was	added.
DATACLUSTER_COUNT	flag	to	support	ability	to	count	tombstones	in	cluster	was	added.

Version	12

DB_OPEN	returns	the	dataSegmentId	foreach	cluster

Version	11

RECORD_CREATE	always	returns	the	record	version.	This	was	necessary	because	new	records	could	have	version	>	0	to	avoid
MVCC	problems	on	RID	recycle

Compatibility
Current	release	of	OrientDB	server	supports	older	client	versions.

version	33:	100%	compatible	2.2-SNAPSHOT
version	32:	100%	compatible	2.1-SNAPSHOT
version	31:	100%	compatible	2.1-SNAPSHOT
version	30:	100%	compatible	2.1-SNAPSHOT
version	29:	100%	compatible	2.1-SNAPSHOT
version	28:	100%	compatible	2.1-SNAPSHOT
version	27:	100%	compatible	2.0-SNAPSHOT
version	26:	100%	compatible	2.0-SNAPSHOT
version	25:	100%	compatible	2.0-SNAPSHOT
version	24:	100%	compatible	2.0-SNAPSHOT
version	23:	100%	compatible	2.0-SNAPSHOT
version	22:	100%	compatible	2.0-SNAPSHOT
version	22:	100%	compatible	2.0-SNAPSHOT
version	21:	100%	compatible	1.7-SNAPSHOT
version	20:	100%	compatible	1.7rc1-SNAPSHOT
version	19:	100%	compatible	1.6.1-SNAPSHOT
version	18:	100%	compatible	1.6-SNAPSHOT
version	17:	100%	compatible.	1.5
version	16:	100%	compatible.	1.5-SNAPSHOT
version	15:	100%	compatible.	1.4-SNAPSHOT
version	14:	100%	compatible.	1.4-SNAPSHOT
version	13:	100%	compatible.	1.3-SNAPSHOT
version	12:	100%	compatible.	1.3-SNAPSHOT
version	11:	100%	compatible.	1.0-SNAPSHOT
version	10:	100%	compatible.	1.0rc9-SNAPSHOT
version	9:	100%	compatible.	1.0rc9-SNAPSHOT
version	8:	100%	compatible.	1.0rc9-SNAPSHOT
version	7:	100%	compatible.	1.0rc7-SNAPSHOT	-	1.0rc8
version	6:	100%	compatible.	Before	1.0rc7-SNAPSHOT
<	version	6:	not	compatible

Binary	Protocol

533



CSV	Serialization
The	CSV	serialzation	is	the	format	how	record	are	serialized	in	the	orientdb	0.	and	1.	version.

Documents	are	serialized	in	a	proprietary	format	(as	a	string)	derived	from	JSON,	but	more	compact.	The	string	retrieved	from	the
storage	could	be	filled	with	spaces.	This	is	due	to	the	oversize	feature	if	it	is	set.	Just	ignore	the	tailing	spaces.

To	know	more	about	types	look	at	Supported	types.

These	are	the	rules:

Any	string	content	must	escape	some	characters:
	"	->	\"	

	\	->	\	

The	class,	if	present,	is	at	the	begin	and	must	end	with	<code>@</code>.	E.g.		Customer@	
Each	Field	must	be	present	with	its	name	and	value	separated	by		:	.	E.g.	name:"Barack"	
Fields	must	be	separated	by		,	.	E.g.		name:"Barack",surname:"Obama"	
All	Strings	must	be	enclosed	by		"		character.	E.g.		city:"Rome"	
All	Binary	content	(like	byte[must	be	encoded	in	Base64	and	enclosed	by	underscore		_		character.	E.g.
	buffer:AAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGx	.	Since	v1.0rc7
Numbers	(integer,	long,	short,	byte,	floats,	double)	are	formatted	as	strings	as	ouput	by	the	Java	toString()	method.	No	thousands
separator	must	be	used.	The	decimal	separator	is	always		.		Starting	from	version	0.9.25,	if	the	type	is	not	integer,	a	suffix	is	used
to	distinguish	the	right	type	when	unmarshalled:	b=byte,	s=short,	l=long,	f=float,	d=double,	c=BigDecimal	(since	1.0rc8).	E.g.
	salary:120.3f		or		code:124b	.
Output	of	Floats
Output	of	Doubles
Output	of	BigDecimal
Booleans	are	expressed	as		true		and		false		always	in	lower-case.	They	are	recognized	as	boolean	since	the	text	has	no	double
quote	as	is	the	case	with	strings
Dates	must	be	in	the	POSIX	format	(also	called	UNIX	format:	http://en.wikipedia.org/wiki/Unix_time).	Are	always	stored	as	longs
but	end	with:
the	't'	character	when	it's	DATETIME	type	(default	in	schema-less	mode	when	a	Date	object	is	used).	Datetime	handles	the
maximum	precision	up	to	milliseconds.	E.g.		lastUpdate:1296279468000t		is	read	as	2011-01-29	05:37:48
the	'a'	character	when	it's	DATE	type.	Date	handles	up	to	day	as	precision.	E.g.		lastUpdate:1306281600000a		is	read	as	2011-05-25
00:00:00	(Available	since	1.0rc2)
RecordID	(link)	must	be	prefixed	by		#	.	A	Record	Id	always	has	the	format		<cluster-id>:<cluster-position>	.	E.g.
	location:#3:2	

Embedded	documents	are	enclosed	by	parenthesis		(		and		)		characters.	E.g.		(name:"rules")	.	Note:	before	SVN	revision	2007
(0.9.24-snapshot)	only			</code>	characters	were	used	to	begin	and	end	the	embedded	document.*
Lists	(array	and	list)	must	be	enclosed	by		[		and		]		characters.	E.g.		[1,2,3]	,		[#10:3,#10:4]		and		[(name:"Luca")]	.	Before
rel.15	SET	type	was	stored	as	a	list,	but	now	it	uses	own	format	(see	below)
Sets	(collections	without	duplicates)	must	be	enclosed	by		<		and		>		characters.	E.g.		<1,2,3>	,		<#10:3,#10:4>		and
	<(name:"Luca")>	.	There	is	a	special	case	when	use	LINKSET	type	reported	in	detail	in	Special	use	of	LINKSET	types	section.
Before	rel.15	SET	type	was	stored	as	a	list	(see	upon).
Maps	(as	a	collection	of	entries	with	key/value)	must	be	enclosed	in		{		and		}		characters.	E.g.		rules:
{"database":2,"database.cluster.internal":2</code>}		(NB.	to	set	a	value	part	of	a	key/value	pair,	set	it	to	the	text	"null",	without
quotation	marks.	Eg.		rules:{"database_name":"fred","database_alias":null}	)
RidBags	a	special	collection	for	link	management.	Represented	as		%(content:binary);		where	the	content	is	binary	data	encoded	in
base64.	Take	a	look	at	the	main	page	for	more	details.
Null	fields	have	an	empty	value	part	of	the	field.	E.g.		salary_cloned:,salary:	

[<class>@][,][<field-name>:<field-value>]*

Simple	example	(line	breaks	introduced	so	it's	visible	on	this	page):

CSV	Serialization

534

http://docs.oracle.com/javase/6/docs/api/java/lang/Float.html#toString%28float%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#toString%28double%29
http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString%28%29
http://en.wikipedia.org/wiki/Unix_time


Profile@nick:"ThePresident",follows:[],followers:[#10:5,#10:6],name:"Barack",surname:"Obama",

location:#3:2,invitedBy:,salary_cloned:,salary:120.3f

Complex	example	used	in	schema	(line	breaks	introduced	so	it's	visible	on	this	page):

name:"ORole",id:0,defaultClusterId:3,clusterIds:[3],properties:[(name:"mode",type:17,offset:0,

mandatory:false,notNull:false,min:,max:,linkedClass:,

linkedType:,index:),(name:"rules",type:12,offset:1,mandatory:false,notNull:false,min:,

max:,linkedClass:,linkedType:17,index:)]

Other	example	of	ORole	that	uses	a	map	(line	breaks	introduced	so	it's	visible	on	this	page):

ORole@name:"reader",inheritedRole:,mode:0,rules:{"database":2,"database.cluster.internal":2,"database.cluster.orole":2,"databa

se.cluster.ouser":2,

"database.class.*":2,"database.cluster.*":2,"database.query":2,"database.command":2,

"database.hook.record":2}

Serialization
Below	the	serialization	of	types	in	JSON	and	Binary	format	(always	refers	to	latest	version	of	the	protocol).

Type JSON	format Binary	descriptor

String 0 Value	ends	with	'b'.	Example:	23b

Short 10000 Value	ends	with	's'.	Example:	23s

Integer 1000000 Just	the	value.	Example:	234392

Long 1000000000 Value	ends	with	'l'.	Example:	23439223l

Float 100000.33333 Value	ends	with	'f'.	Example:	234392.23f

Double 100.33 Value	ends	with	'd'.	Example:	10020.2302d

Decimal 1000.3333 Value	ends	with	'c'.	Example:	234.923c

Boolean true 'true'	or	'false'.	Example:	true

Date 1436983328000 Value	in	milliseconds	ends	with	'a'.	Example:	1436983328000a

Datetime 1436983328000 Value	in	milliseconds	ends	with	't'.	Example:	1436983328000t

Binary base64	encoded	binary,	like:
"A3ERjRFdc0023Kc" Bytes	surrounded	with		_		characters.	Example:		_	2332322	_	

Link #10:3 Just	the	RID.	Example:	#10:232

Link	list 	[#10:3,	#10:4]	
Collections	values	separated	by	commas	and	surrounded	by	brackets	"[	]".
Example:	[#10:3,	#10:6]

Link	set Example:		[#10:3,	#10:6]	 Example:		<#10:3,	#10:4>	

Link	map Example:		{	"name"	:	"#10:3"	}	 Map	entries	separated	by	commas	and	surrounded	by	curly	braces	"{	}".
Example:		{"Jay":#10:3,"Mike":#10:6}	

Embedded 	{"Jay":"#10:3","Mike":"#10:6"}	
Embedded	document	serialized	surrounded	by	parenthesis	"(	)".	Example:
	({"Jay":#10:3,"Mike":#10:6})	

Embedded
list Example:		[20,	30]	 Collections	of	values	separated	by	commas	and	surrounded	by	brackets	"[

]".	Example:		[20,	30]	

Embedded
set

	['is',	'a',	'test']	
Collections	of	values	separated	by	commas	and	surrounded	by	minor	and
major	"<>".	Example:			

Embedded
map

	{	"name"	:	"Luca"	}	
Map	of	values	separated	by	commas	and	surrounded	by	curly	braces	"{
}".	Example:		{"key1":23,"key2":2332}	

Custom base64	encoded	binary,	like:
"A3ERjRFdc0023Kc" -

CSV	Serialization

535



CSV	Serialization

536



Schemaless	Serialization
The	binary	schemaless	serialization	is	an	attempt	to	define	a	serialization	format	that	can	serialize	a	document	containing	all	the
information	about	the	structure	and	the	data	with	support	for	partial	serialization/deserialization.

The	types	described	here	are	different	from	the	types	used	in	the	binary	protocol.

A	serialized	record	has	the	following	shape:

(serialization-version:byte)(class-name:string)(header:byte[])(data:byte[])

Version
1	byte	that	contains	the	version	of	the	current	serialization	(in	order	to	allow	progressive	serialization	upgrades).

Class	Name
A	string	containing	the	name	of	the	class	of	the	record.	If	the	record	has	no	class,		class-name		will	be	just	an	empty	string.

Header
The	header	contains	a	list	of	fields	of	the	serialized	records,	along	with	their	position	in	the		data		field.	The	header	has	the	following
shape:

(field:field-definition)+

Where		field-definition		has	this	shape:

(field-type:varint)(field-contents:byte[])

The	field	contents	depend	on	the	value	of	the		field-type		varint.	Once	decoded	to	an	integer,	its	value	can	be:

	0		-	signals	the	end	of	the	header
a	positive	number		i		-	signals	that	what	follows	is	a	named	field	(and	it's	the	length	of	the	field	name,	see	below)
a	negative	number		i		-	signals	that	what	follows	is	a	property	(and	it	encodes	the	property	id,	see	below)

Named	fields

Named	fields	are	encoded	as:

(field-name:string)(pointer-to-data-structure:int32)(data-type:byte)

	field-name		-	the	name	of	the	field.	The		field-type		varint	is	included	in		field-name		(as	per	the	string	encoding)	as	mentioned
above.
	pointer-to-data-structure		-	a	pointer	to	the	data	structure	for	the	current	field	in	the		data		segment.	It's		0		if	the	field	is	null.
	data-type		-	the	type	id	of	the	type	of	the	value	for	the	current	field.	The	supported	types	(with	their	ids)	are	defined	in	this
section.

Properties

Properties	are	encoded	as:

(property-id:varint)(pointer-to-data-structure:int32)

Schemaless	Serialization

537



	property-id		-	is	the		field-type		described	above.	It's	a	negative	value	that	encodes	a	property	id.	Decoding	of	this	value	into	the
corresponding	property	id	can	be	done	using	this	formula:		(property-id	*	-1)	-	1	.	The	property	identified	by	this	id	will	be
found	in	the	schema	(with	its	name	and	its	type),	stored	in	the		globalProperties		field	at	the	root	of	the	document	that	represents
the	schema	definition.
	pointer-to-data-structure		-	a	pointer	to	the	data	structure	for	the	current	field	in	the		data		segment.	It's		0		if	the	field	is	null.

Data

The	data	segment	is	where	the	values	of	the	fields	are	stored.	It's	an	array	of	data	structures	(each	with	a	type	described	by	the
corresponding	field).

(data:data-structure[])

Each	type	is	serialized	differently,	as	described	below.

Type	serialization

SHORT,	INTEGER,	LONG

Integers	are	encoded	using	the	varint	(with	ZigZag)	algorithm	used	by	Google's	ProtoBuf	(and	specified	here).

BYTE

Bytes	is	stored	raw,	as	single	bytes.

BOOLEAN

Booleans	are	serialized	using	a	single	byte,		0		meaning	false	and		1		meaning	true.

FLOAT

This	is	stored	as	flat	byte	array	copying	the	memory	from	the	float	memory.

(float:byte[4])

DOUBLE

This	is	stored	as	flat	byte	array	copying	the	memory	from	the	double	memory.

(double:byte[8])

DATETIME

The	date	is	converted	to	milliseconds	(from	the	Unix	epoch)	and	stored	as	the	type	LONG.

DATE

The	date	is	converted	to	seconds	(from	the	Unix	epoch),	moved	to	midnight	UTC+0,	divided	by	86400	(the	number	of	seconds	in	a	day)
and	stored	as	the	type	LONG.

STRING

Strings	are	stored	as	binary	structures	(encoded	as	UTF-8).	Strings	are	preceded	by	their	size	(in	bytes).

(size:varint)(string:byte[])

Schemaless	Serialization

538

https://developers.google.com/protocol-buffers/docs/encoding?csw=1


size	-	the	number	of	the	bytes	in	the	string	stored	as	a	varint
string	-	the	bytes	of	the	string	encoded	as	UTF-8

BINARY

Byte	arrays	are	stored	like	STRINGs.

(size:varint)(bytes:byte[])

size	-	the	number	of	the	bytes	to	store
bytes	-	the	raw	bytes

EMBEDDED

Embedded	documents	are	serialized	using	the	protocol	described	in	this	document	(recursively).	The	serialized	document	is	just	a	byte
array.

(serialized-document:bytes[])

EMBEDDEDLIST,	EMBEDDEDSET

The	embedded	collections	are	stored	as	an	array	of	bytes	that	contain	the	serialized	document	in	the	embedded	mode.

(size:varint)(collection-type:byte)(items:item[])

size	-	the	number	of	items	in	the	list/set
collection-type	-	the	type	of	the	elements	in	the	list	or	ANY	if	the	type	is	unknown.
items	an	array	of	values	serialized	by	type	or	if	the	type	of	the	collection	is	ANY	the	item	will	have	it's	own	structure.

The		item		data	structure	has	the	following	shape:

(data-type:byte)(data:byte)

data-type	-	the	type	id	of	the	data	in	the	item
data	-	the	data	in	the	item	serialized	according	to	the	data-type

EMBEDDEDMAP

Maps	can	have	keys	with	the	following	types:

STRING
SHORT
INTEGER
LONG
BYTE
DATE
DATETIME
DECIMAL
FLOAT
DOUBLE

As	of	now	though,	all	keys	are	converted	to	STRINGs.

An	EMBEDDEDMAP	is	serialized	as	an	header	and	a	list	of	values.

(size:varint)(header:header-structure)(values:byte[][])

size	-	the	number	of	key-value	pairs	in	the	map

Schemaless	Serialization

539



header	-	serialized	as		(key-type:byte)(key-value:byte[])(pointer-to-data:int32)(value-type:byte)		(where		pointer-to-data		is
the	same	as	the	one	in	the	header,	offsetting	from	the	start	of	the	top-level	document).
values	-	the	values	serialized	according	to	their	type.

LINK

The	link	is	stored	as	two	64	bit	integers:	the	cluster	id	and	the	record's	position	in	the	cluster.

(cluster-id:int64)(record-position:int64)

LINKLIST,	LINKSET

Link	collections	(lists	and	sets)	are	serialized	as	the	size	of	the	collection	and	then	a	list	of	LINKs.

(size:varint)(links:LINK[])

LINKMAP

Maps	of	links	can	have	keys	with	the	following	types:

STRING
SHORT
INTEGER
LONG
BYTE
DATE
DATETIME
DECIMAL
FLOAT
DOUBLE

As	of	now	though,	all	keys	are	converted	to	STRINGs.

A	LINKMAP	is	serialized	as	the	number	of	key-value	pairs	and	then	the	list	of	key-value	pairs.

(size:varint)(key-value-pairs:key-value[])

A		key-value		pair	is	serialized	as:

(key-type:byte)(key-value:byte[])(link:LINK)

key-type	-	the	type	id	of	the	type	of	the	key
key-value	-	the	value	of	the	key,	serialized	according	to	key-type
link	-	the	link	value

DECIMAL

Decimals	are	converted	to	integers	and	stored	as	the	scale	and	the	value.	For	example,		10234.546		is	storead	as	scale		3		and	value
	10234546	.

(scale:int32)(value-size:int32)(value:byte[])

scale	-	the	scale	of	the	decimal.
value-size	-	the	number	of	bytes	that	form	the		value	.
value	-	the	bytes	representing	the	value	of	the	decimal	(in	big-endian	order).

LINKBAG

Schemaless	Serialization

540



No	documentation	yet.	:(

Schemaless	Serialization

541



Network	Binary	Protocol	Commands

This	is	the	guide	to	the	commands	you	can	send	through	the	binary	protocol.

See	also

List	of	SQL	Commands
Network	Binary	Protocol	Specification

the	commands	are	divided	in	three	main	groups:

SQL	(select)	Query
SQL	Commands
Script	commands

SQL	(Select)	Query

(text:string)(non-text-limit:int)[(fetch-plan:string)](serialized-params:bytes[])

text	text	of	the	select	query
non-text-limit	Limit	can	be	set	in	query's	text,	or	here.	This	field	had	priority.	Send	-1	to	use	limit	from	query's	text
fetch-plan	used	only	for	select	queries,	otherwise	empty
serialized-params	the	byte[]	result	of	the	serialization	of	a	ODocument.

Serialized	Parameters	ODocument	content

The	ODocument	have	to	contain	a	field	called	"params"	of	type	Map.
the	Map	should	have	as	key,	in	case	of	positional	perameters	the	numeric	position	of	the	parameter,	in	case	of	named	parameters	the
name	of	the	parameter	and	as	value	the	value	of	the	parameter.

SQL	Commands

(text:string)(has-simple-parameters:boolean)(simple-paremeters:bytes[])(has-complex-parameters:boolean)(complex-parameters:byt

es[])

text	text	of	the	sql	command
has-simple-parameters	boolean	flag	for	determine	if	the	simple-parameters	byte	array	is	present	or	not
simple-parameters	the	byte[]	result	of	the	serialization	of	a	ODocument.
has-complex-parameters	boolean	flag	for	determine	if	the	complex-parameters	byte	array	is	present	or	not
complex-parameters	the	byte[]	result	of	the	serialization	of	a	ODocument.

Serialized	Simple	Parameters	ODocument	content

The	ODocument	have	to	contain	a	field	called	"parameters"	of	type	Map.
the	Map	should	have	as	key,	in	case	of	positional	perameters	the	numeric	position	of	the	parameter,	in	case	of	named	parameters	the
name	of	the	parameter	and	as	value	the	value	of	the	parameter.

Serialized	Complex	Parameters	ODocument	content

The	ODocument	have	to	contain	a	field	called	"compositeKeyParams"	of	type	Map.
the	Map	should	have	as	key,	in	case	of	positional	perameters	the	numeric	position	of	the	parameter,	in	case	of	named	parameters	the
name	of	the	parameter	and	as	value	a	List	that	is	the	list	of	composite	parameters.

Script

Commands

542



(language:string)(text:string)(has-simple-parameters:boolean)(simple-paremeters:bytes[])(has-complex-parameters:boolean)(compl

ex-parameters:bytes[])

language	the	language	of	the	script	present	in	the	text	field.	All	the	others	paramenters	are	serialized	as	the	SQL	Commands

Commands

543



SQL
When	it	comes	to	query	languages,	SQL	is	the	mostly	widely	recognized	standard.	The	majority	of	developers	have	experience	and	are
comfortable	with	SQL.	For	this	reason	Orient	DB	uses	SQL	as	it's	query	language	and	adds	some	extensions	to	enable	graph
functionality.	There	are	a	few	differences	between	the	standard	SQL	syntax	and	that	supported	by	OrientDB,	but	for	the	most	part,	it
should	feel	very	natural.	The	differences	are	covered	in	the	OrientDB	SQL	dialect	section	of	this	page.

Many	SQL	commands	share	the	WHERE	condition.	Keywords	and	class	names	in	OrientDB	SQL	are	case	insensitive.	Field	names	and
values	are	case	sensitive.	In	the	following	examples	keywords	are	in	uppercase	but	this	is	not	strictly	required.

If	you	are	not	yet	familiar	with	SQL,	we	suggest	you	to	get	the	course	on	KhanAcademy.

For	example,	if	you	have	a	class		MyClass		with	a	field	named		id	,	then	the	following	SQL	statements	are	equivalent:

SELECT	FROM	MyClass	WHERE	id	=	1

select	from	myclass	where	id	=	1

The	following	is	NOT	equivalent.	Notice	that	the	field	name	'ID'	is	not	the	same	as	'id'.

SELECT	FROM	MyClass	WHERE	ID	=	1

Automatic	usage	of	indexes

OrientDB	allows	you	to	execute	queries	against	any	field,	indexed	or	not-indexed.	The	SQL	engine	automatically	recognizes	if	any
indexes	can	be	used	to	speed	up	execution.	You	can	also	query	any	indexes	directly	by	using		INDEX:<index-name>		as	a	target.	Example:

SELECT	FROM	INDEX:myIndex	WHERE	key	=	'Jay'

Extra	resources

SQL	expression	syntax
Where	clause
Operators
Functions

Pagination
Pivoting-With-Query
SQL	batch

OrientDB	SQL	dialect

OrientDB	supports	SQL	as	a	query	language	with	some	differences	compared	with	SQL.	Orient	Technologies	decided	to	avoid	creating
Yet-Another-Query-Language.	Instead	we	started	from	familiar	SQL	with	extensions	to	work	with	graphs.	We	prefer	to	focus	on
standards.

If	you	want	learn	SQL,	there	are	many	online	courses	such	as:

Online	course	Introduction	to	Databases	by	Jennifer	Widom	from	Stanford	university
Introduction	to	SQL	at	W3	Schools
Beginner	guide	to	SQL
SQLCourse.com
YouTube	channel	Basic	SQL	Training	by	Joey	Blue

To	know	more,	look	to	OrientDB	SQL	Syntax.

Or	order	any	book	like	these

SQL	Reference

544

http://cs-blog.khanacademy.org/2015/05/just-released-full-introductory-sql.html
https://www.coursera.org/course/db
http://www.w3schools.com/sql/sql_intro.asp
https://blog.udemy.com/beginners-guide-to-sql/
http://www.sqlcourse2.com/intro2.html
http://www.youtube.com/playlist?list=PLD20298E653A970F8
http://www.amazon.com/s/ref=nb_sb_noss/189-0251150-4407173?url=search-alias%3Daps&field-keywords=sql


JOINs

The	most	important	difference	between	OrientDB	and	a	Relational	Database	is	that	relationships	are	represented	by		LINKS		instead	of
JOINs.

For	this	reason,	the	classic	JOIN	syntax	is	not	supported.	OrientDB	uses	the	"dot	(	.	)	notation"	to	navigate		LINKS	.	Example	1	:	In
SQL	you	might	create	a	join	such	as:

SELECT	*

FROM	Employee	A,	City	B

WHERE	A.city	=	B.id

AND	B.name	=	'Rome'

In	OrientDB	an	equivalent	operation	would	be:

SELECT	*	FROM	Employee	WHERE	city.name	=	'Rome'

This	is	much	more	straight	forward	and	powerful!	If	you	use	multiple	JOINs,	the	OrientDB	SQL	equivalent	will	be	an	even	larger
benefit.	Example	2:	In	SQL	you	might	create	a	join	such	as:

SELECT	*

FROM	Employee	A,	City	B,	Country	C,

WHERE	A.city	=	B.id

AND	B.country	=	C.id

AND	C.name	=	'Italy'

In	OrientDB	an	equivalent	operation	would	be:

SELECT	*	FROM	Employee	WHERE	city.country.name	=	'Italy'

Projections
In	SQL	projections	are	mandatory	and	you	can	use	the	star	character		*		to	include	all	of	the	fields.	With	OrientDB	this	type	of
projection	is	optional.	Example:	In	SQL	to	select	all	of	the	columns	of	Customer	you	would	write:

SELECT	*	FROM	Customer

In	OrientDB	the		*		is	optional:

SELECT	FROM	Customer

DISTINCT

In	SQL,		DISTINCT		is	a	keyword	but	in	OrientDB	it	is	a	function,	so	if	your	query	is:

SELECT	DISTINCT	name	FROM	City

In	OrientDB	you	would	write:

SELECT	DISTINCT(name)	FROM	City

HAVING

OrientDB	does	not	support	the		HAVING		keyword,	but	with	a	nested	query	it's	easy	to	obtain	the	same	result.	Example	in	SQL:

SQL	Reference

545



SELECT	city,	sum(salary)	AS	salary

FROM	Employee

GROUP	BY	city

HAVING	salary	>	1000

This	groups	all	of	the	salaries	by	city	and	extracts	the	result	of	aggregates	with	the	total	salary	greater	than	1,000	dollars.	In	OrientDB
the		HAVING		conditions	go	in	a	select	statement	in	the	predicate:

SELECT	FROM	(	SELECT	city,	SUM(salary)	AS	salary	FROM	Employee	GROUP	BY	city	)	WHERE	salary	>	1000

Select	from	multiple	targets

OrientDB	allows	only	one	class	(classes	are	equivalent	to	tables	in	this	discussion)	as	opposed	to	SQL,	which	allows	for	many	tables	as
the	target.	If	you	want	to	select	from	2	classes,	you	have	to	execute	2	sub	queries	and	join	them	with	the		UNIONALL		function:

SELECT	FROM	E,	V

In	OrientDB,	you	can	accomplish	this	with	a	few	variable	definitions	and	by	using	the		expand		function	to	the	union:

SELECT	EXPAND(	$c	)	LET	$a	=	(	SELECT	FROM	E	),	$b	=	(	SELECT	FROM	V	),	$c	=	UNIONALL(	$a,	$b	)

Query	metadata

OrientDB	provides	the		metadata:		target	to	retrieve	information	about	OrientDB's	metadata:

	schema	,	to	get	classes	and	properties
	indexmanager	,	to	get	information	about	indexes

Query	the	schema

Get	all	the	configured	classes:

select	expand(classes)	from	metadata:schema

----+-----------+---------+----------------+----------+--------+--------+----------+----------+------------+----------

#			|name							|shortName|defaultClusterId|strictMode|abstract|overSize|clusterIds|properties|customFields|superClass

----+-----------+---------+----------------+----------+--------+--------+----------+----------+------------+----------

0			|UserGroup		|null					|13														|false					|false			|0.0					|[1]							|[2]							|null								|V

1			|WallPost			|null					|15														|false					|false			|0.0					|[1]							|[4]							|null								|V

2			|Owner						|null					|12														|false					|false			|0.0					|[1]							|[1]							|null								|E

3			|OTriggered	|null					|-1														|false					|true				|0.0					|[1]							|[0]							|null								|null

4			|E										|E								|10														|false					|false			|0.0					|[1]							|[0]							|null								|null

5			|OUser						|null					|5															|false					|false			|0.0					|[1]							|[4]							|null								|OIdentity

6			|OSchedule		|null					|7															|false					|false			|0.0					|[1]							|[7]							|null								|null

7			|ORestricted|null					|-1														|false					|true				|0.0					|[1]							|[4]							|null								|null

8			|AssignedTo	|null					|11														|false					|false			|0.0					|[1]							|[1]							|null								|E

9			|V										|null					|9															|false					|false			|2.0					|[1]							|[0]							|null								|null

10		|OFunction		|null					|6															|false					|false			|0.0					|[1]							|[5]							|null								|null

11		|ORole						|null					|4															|false					|false			|0.0					|[1]							|[4]							|null								|OIdentity

12		|ORIDs						|null					|8															|false					|false			|0.0					|[1]							|[0]							|null								|null

13		|OIdentity		|null					|-1														|false					|true				|0.0					|[1]							|[0]							|null								|null

14		|User							|null					|14														|false					|false			|0.0					|[1]							|[2]							|null								|V

----+-----------+---------+----------------+----------+--------+--------+----------+----------+------------+----------

Get	all	the	configured	properties	for	the	class	OUser:

SQL	Reference

546



select	expand(properties)	from	(

			select	expand(classes)	from	metadata:schema

)	where	name	=	'OUser'

----+--------+----+---------+--------+-------+----+----+------+------------+-----------

#			|name				|type|mandatory|readonly|notNull|min	|max	|regexp|customFields|linkedClass

----+--------+----+---------+--------+-------+----+----+------+------------+-----------

0			|status		|7			|true					|false			|true			|null|null|null		|null								|null

1			|roles			|15		|false				|false			|false		|null|null|null		|null								|ORole

2			|password|7			|true					|false			|true			|null|null|null		|null								|null

3			|name				|7			|true					|false			|true			|null|null|null		|null								|null

----+--------+----+---------+--------+-------+----+----+------+------------+-----------

Get	only	the	configured		customFields		properties	for	OUser	(assuming	you	added	CUSTOM	metadata	like	foo=bar):

select	customFields	from	(

				select	expand(classes)	from	metadata:schema	

)	where	name="OUser"

----+------+------------

#			|@CLASS|customFields

----+------+------------

0			|null		|{foo=bar}

----+------+------------

Or,	if	you	wish	to	get	only	the	configured		customFields		of	an	attribute,	like	if	you	had	a	comment	for	the	password	attribute	for	the
OUser	class.

select	customFields	from	(

		select	expand(properties)	from	(

					select	expand(classes)	from	metadata:schema	

		)	where	name="OUser"

)	where	name="password"

----+------+----------------------------------------------------

#			|@CLASS|customFields

----+------+----------------------------------------------------

0			|null		|{comment=Foo	Bar	your	password	to	keep	it	secure!}

----+------+----------------------------------------------------

Query	the	available	indexes

Get	all	the	configured	indexes:

select	expand(indexes)	from	metadata:indexmanager

----+------+------+--------+---------+---------+------------------------------------+-----------------------------------------

-------------

#			|@RID		|mapRid|clusters|type					|name					|indexDefinition																					|indexDefinitionClass

----+------+------+--------+---------+---------+------------------------------------+-----------------------------------------

-------------

0			|#-1:-1|#2:0		|[0]					|DICTIO...|dictio...|{keyTypes:[1]}																						|com.orientechnologies.orient.core.index.O

SimpleKeyI...

1			|#-1:-1|#1:1		|[1]					|UNIQUE			|OUser....|{className:OUser,field:name,keyTy...|com.orientechnologies.orient.core.index.O

PropertyIn...

2			|#-1:-1|#1:0		|[1]					|UNIQUE			|ORole....|{className:ORole,field:name,keyTy...|com.orientechnologies.orient.core.index.O

PropertyIn...

----+------+------+--------+---------+---------+------------------------------------+-----------------------------------------

SQL	Reference

547



SQL
Most	NoSQL	products	employ	a	custom	query	language.	In	this,	OrientDB	differs	by	focusing	on	standards	in	query	languages.	That	is,
instead	of	inventing	"Yet	Another	Query	Language,"	it	begins	with	the	widely	used	and	well-understood	language	of	SQL.	It	then
extends	SQL	to	support	more	complex	graphing	concepts,	such	as	Trees	and	Graphs.

Why	SQL?	Because	SQL	is	ubiquitous	in	the	database	development	world.	It	is	familiar	and	more	readable	and	concise	than	its
competitors,	such	as	Map	Reduce	scripts	or	JSON	based	querying.

	SELECT	

The		SELECT		statement	queries	the	database	and	returns	results	that	match	the	given	parameters.	For	instance,	earlier	in	Getting	Started,
two	queries	were	presented	that	gave	the	same	results:		BROWSE	CLUSTER	ouser		and		BROWSE	CLASS	OUser	.	Here	is	a	third	option,
available	through	a		SELECT		statement.

orientdb>	SELECT	FROM	OUser

Notice	that	the	query	has	no	projections.	This	means	that	you	do	not	need	to	enter	a	character	to	indicate	that	the	query	should	return
the	entire	record,	such	as	the	asterisk	in	the	Relational	model,	(that	is,		SELECT	*	FROM	OUser	).

Additionally,	OUser	is	a	class.	By	default,	OrientDB	executes	queries	against	classes.	Targets	can	also	be:

Clusters	To	execute	against	a	cluster,	rather	than	a	class,	prefix		CLUSTER		to	the	target	name.

orientdb>	SELECT	FROM	CLUSTER:Ouser

Record	ID	To	execute	against	one	or	more	Record	ID's,	use	the	identifier(s)	as	your	target.	For	example.

orientdb>	SELECT	FROM	#10:3

orientdb>	SELECT	FROM	[#10:1,	#10:30,	#10:5]

Indexes	To	execute	a	query	against	an	index,	prefix		INDEX		to	the	target	name.

orientdb>	SELECT	VALUE	FROM	INDEX:dictionary	WHERE	key='Jay'

	WHERE	

Much	like	the	standard	implementation	of	SQL,	OrientDB	supports		WHERE		conditions	to	filter	the	returning	records	too.	For	example,

orientdb>	SELECT	FROM	OUser	WHERE	name	LIKE	'l%'

This	returns	all		OUser		records	where	the	name	begins	with		l	.	For	more	information	on	supported	operators	and	functions,	see
	WHERE	.

	ORDER	BY	

In	addition	to		WHERE	,	OrientDB	also	supports		ORDER	BY		clauses.	This	allows	you	to	order	the	results	returned	by	the	query	according
to	one	or	more	fields,	in	either	ascending	or	descending	order.

orientdb>	SELECT	FROM	Employee	WHERE	city='Rome'	ORDER	BY	surname	ASC,	name	ASC

The	example	queries	the		Employee		class,	it	returns	a	listing	of	all	employees	in	that	class	who	live	in	Rome	and	it	orders	the	results	by
surname	and	name,	in	ascending	order.

CRUD	Operations

548



	GROUP	BY	

In	the	event	that	you	need	results	of	the	query	grouped	together	according	to	the	values	of	certain	fields,	you	can	manage	this	using	the
	GROUP	BY		clause.

orientdb>	SELECT	SUM(salary)	FROM	Employee	WHERE	age	<	40	GROUP	BY	job

In	the	example,	you	query	the		Employee		class	for	the	sum	of	the	salaries	of	all	employees	under	the	age	of	forty,	grouped	by	their	job
types.

	LIMIT	

In	the	event	that	your	query	returns	too	many	results,	making	it	difficult	to	read	or	manage,	you	can	use	the		LIMIT		clause	to	reduce	it
to	the	top	most	of	the	return	values.

orientdb>	SELECT	FROM	Employee	WHERE	gender='male'	LIMIT	20

In	the	example,	you	query	the		Employee		class	for	a	list	of	male	employees.	Given	that	there	are	likely	to	be	a	number	of	these,	you
limit	the	return	to	the	first	twenty	entries.

	SKIP	

When	using	the		LIMIT		clause	with	queries,	you	can	only	view	the	topmost	of	the	return	results.	In	the	event	that	you	would	like	to
view	certain	results	further	down	the	list,	for	instance	the	values	from	twenty	to	forty,	you	can	paginate	your	results	using	the		SKIP	
keyword	in	the		LIMIT		clause.

orientdb>	SELECT	FROM	Employee	WHERE	gender='male'	LIMIT	20

orientdb>	SELECT	FROM	Employee	WHERE	gender='male'	SKIP	20	LIMIT	20

orientdb>	SELECT	FROM	Employee	WHERE	gender='male'	SKIP	40	LIMIT	20

The	first	query	returns	the	first	twenty	results,	the	second	returns	the	next	twenty	results,	the	third	up	to	sixty.	You	can	use	these
queries	to	manage	pages	at	the	application	layer.

	INSERT	

The		INSERT		statement	adds	new	data	to	a	class	and	cluster.	OrientDB	supports	three	forms	of	syntax	used	to	insert	new	data	into	your
database.

The	standard	ANSI-93	syntax:

orientdb>	INSERT	INTO				Employee(name,	surname,	gender)

								VALUES('Jay',	'Miner',	'M')

The	simplified	ANSI-92	syntax:

orientdb>	INSERT	INTO	Employee	SET	name='Jay',	surname='Miner',	gender='M'

The	JSON	syntax:

orientdb>	INSERT	INTO	Employee	CONTENT	{name	:	'Jay',	surname	:	'Miner',

								gender	:	'M'}

Each	of	these	queries	adds	Jay	Miner	to	the		Employee		class.	You	can	choose	whichever	syntax	that	works	best	with	your	application.

CRUD	Operations

549



	UPDATE	

The		UPDATE		statement	changes	the	values	of	existing	data	in	a	class	and	cluster.	In	OrientDB	there	are	two	forms	of	syntax	used	to
update	data	on	your	database.

The	standard	ANSI-92	syntax:

orientdb>	UPDATE	Employee	SET	local=TRUE	WHERE	city='London'

The	JSON	syntax,	used	with	the		MERGE		keyword,	which	merges	the	changes	with	the	current	record:

orientdb>	UPDATE	Employee	MERGE	{	local	:	TRUE	}	WHERE	city='London'

Each	of	these	statements	updates	the		Employee		class,	changing	the		local		property	to		TRUE		when	the	employee	is	based	in	London.

	DELETE	

The		DELETE		statement	removes	existing	values	from	your	class	and	cluster.	OrientDB	supports	the	standard	ANSI-92	compliant
syntax	for	these	statements:

orientdb>	DELETE	FROM	Employee	WHERE	city	<>	'London'

Here,	entries	are	removed	from	the		Employee		class	where	the	employee	in	question	is	not	based	in	London.

See	also:

The	SQL	Reference
The	Console	Command	Reference

CRUD	Operations

550



	SELECT	

OrientDB	supports	the	SQL	language	to	execute	queries	against	the	database	engine.	For	more	information,	see	operators	and	functions.
For	more	information	on	the	differences	between	this	implementation	and	the	SQL-92	standard,	see	OrientDB	SQL.

Syntax:

SELECT	[	<Projections>	]	[	FROM	<Target>	[	LET	<Assignment>*	]	]

				[	WHERE	<Condition>*	]

				[	GROUP	BY	<Field>*	]

				[	ORDER	BY	<Fields>*	[	ASC|DESC	]	*	]

				[	UNWIND	<Field>*	]

				[	SKIP	<SkipRecords>	]

				[	LIMIT	<MaxRecords>	]

				[	FETCHPLAN	<FetchPlan>	]

				[	TIMEOUT	<Timeout>	[	<STRATEGY>	]

				[	LOCK	default|record	]

				[	PARALLEL	]

				[	NOCACHE	]

	<Projections>		Indicates	the	data	you	want	to	extract	from	the	query	as	the	result-set.	Note:	In	OrientDB,	this	variable	is
optional.
	FROM		Designates	the	object	to	query.	This	can	be	a	class,	cluster,	single	Recprd	ID,	set	of	Record	ID's,	or	(beginning	in	version
1.7.7)	index	values	sorted	by	ascending	or	descending	key	order.

When	querying	a	class,	for		<target>		use	the	class	name.
When	querying	a	cluster,	for		<target>		use		CLUSTER:<cluster-name>	.	This	causes	the	query	to	execute	only	on	records	in
that	cluster.
When	querying	record	ID's,	you	can	specific	one	or	a	small	set	of	records	to	query.	This	is	useful	when	you	need	to	specify	a
starting	point	in	navigating	graphs.
When	querying	indexes,	use	the	following	prefixes:

	INDEXVALUES:<index>		and		INDEXVALUESASC:<index>		sorts	values	into	an	ascending	order	of	index	keys.
	INDEXVALUESDESC:<index>		sorts	the	values	into	a	descending	order	of	index	keys.

	WHERE		Designates	conditions	to	filter	the	result-set.
	LET		Binds	context	variables	to	use	in	projections,	conditions	or	sub-queries.
	GROUP	BY		Designates	field	on	which	to	group	the	result-set.	In	the	current	release,	you	can	only	group	on	one	field.
	ORDER	BY		Designates	the	field	with	which	to	order	the	result-set.	Use	the	optional		ASC		and		DESC		operators	to	define	the
direction	of	the	order.	The	default	is	ascending.	Additionally,	if	you	are	using	a	projection,	you	need	to	include	the		ORDER	BY		field
in	the	projection.	Note	that	ORDER	BY	works	only	on	projection	fields	(fields	that	are	returned	in	the	result	set)	not	on	LET
variables.
	UNWIND		Designates	the	field	on	which	to	unwind	the	collection.	Introduced	in	version	2.1.
	SKIP		Defines	the	number	of	records	you	want	to	skip	from	the	start	of	the	result-set.	You	may	find	this	useful	in	pagination,
when	using	it	in	conjunction	with		LIMIT	.
	LIMIT		Defines	the	maximum	number	of	records	in	the	result-set.	You	may	find	this	useful	in	pagination,	when	using	it	in
conjunction	with		SKIP	.
	FETCHPLAN		Defines	how	you	want	it	to	fetch	results.	For	more	information,	see	Fetching	Strategy.
	TIMEOUT		Defines	the	maximum	time	in	milliseconds	for	the	query.	By	default,	queries	have	no	timeouts.	If	you	don't	specify	a
timeout	strategy,	it	defaults	to		EXCEPTION	.	These	are	the	available	timeout	strategies:

	RETURN		Truncate	the	result-set,	returning	the	data	collected	up	to	the	timeout.
	EXCEPTION		Raises	an	exception.

	LOCK		Defines	the	locking	strategy.	These	are	the	available	locking	strategies:
	DEFAULT		Locks	the	record	for	the	read.
	RECORD		Locks	the	record	in	exclusive	mode	for	the	current	transaction,	until	the	transaction	commits	or	you	perform	a
rollback	operation.

	PARALLEL		Executes	the	query	against	x	concurrent	threads,	where	x	refers	to	the	number	of	processors	or	cores	found	on	the	host
operating	system	of	the	query.	You	may	find		PARALLEL		execution	useful	on	long	running	queries	or	queries	that	involve	multiple
cluster.	For	simple	queries,	using		PARALLEL		may	cause	a	slow	down	due	to	the	overhead	inherent	in	using	multiple	threads.
	NOCACHE		Defines	whether	you	want	to	avoid	using	the	cache.

Select

551



NOTE:	Beginning	with	version	1.0	rc	7,	the		RANGE		operator	was	removed.	To	execute	range	queries,	instead	use	the		BETWEEN	
operator	against		@RID	.	For	more	information,	see	Pagination.

Examples:

Return	all	records	of	the	class		Person	,	where	the	name	starts	with		Luk	:

orientdb>	SELECT	FROM	Person	WHERE	name	LIKE	'Luk%'

Alternatively,	you	might	also	use	either	of	these	queries:

orientdb>	SELECT	FROM	Person	WHERE	name.left(3)	=	'Luk'

orientdb>	SELECT	FROM	Person	WHERE	name.substring(0,3)	=	'Luk'

Return	all	records	of	the	type		!AnimalType		where	the	collection		races		contains	at	least	one	entry	where	the	first	character	is
	e	,	ignoring	case:

orientdb>	SELECT	FROM	animaltype	WHERE	races	CONTAINS(	name.toLowerCase().subString(

										0,	1)	=	'e'	)

Return	all	records	of	type		!AnimalType		where	the	collection		races		contains	at	least	one	entry	with	names		European		or
	Asiatic	:

orientdb>	SELECT	*	FROM	animaltype	WHERE	races	CONTAINS(name	in	['European',

										'Asiatic'])

Return	all	records	in	the	class		Profile		where	any	field	contains	the	word		danger	:

orientdb>	SELECT	FROM	Profile	WHERE	ANY()	LIKE	'%danger%'

Return	any	record	at	any	level	that	has	the	word		danger	:

DEPRECIATED	SYNTAX

orientdb>	SELECT	FROM	Profile	WHERE	ANY()	TRAVERSE(	ANY()	LIKE	'%danger%'	)

Return	any	record	where	up	to	the	third	level	of	connections	has	some	field	that	contains	the	word		danger	,	ignoring	case:

orientdb>	SELECT	FROM	Profile	WHERE	ANY()	TRAVERSE(0,	3)	(	

										ANY().toUpperCase().indexOf('danger')	>	-1	)

Return	all	results	on	class		Profile	,	ordered	by	the	field		name		in	descending	order:

orientdb>	SELECT	FROM	Profile	ORDER	BY	name	DESC

Return	the	number	of	records	in	the	class		Account		per	city:

orientdb>	SELECT	SUM(*)	FROM	Account	GROUP	BY	city

Traverse	records	from	a	root	node:

orientdb>	SELECT	FROM	11:4	WHERE	ANY()	TRAVERSE(0,10)	(address.city	=	'Rome')

Return	only	a	limited	set	of	records:

Select

552



orientdb>	SELECT	FROM	[#10:3,	#10:4,	#10:5]

Return	three	fields	from	the	class		Profile	:

orientdb>	SELECT	nick,	followings,	followers	FROM	Profile

Return	the	field		name		in	uppercase	and	the	field	country	name	of	the	linked	city	of	the	address:

orientdb>	SELECT	name.toUppercase(),	address.city.country.name	FROM	Profile

Return	records	from	the	class		Profile		in	descending	order	of	their	creation:

orientdb>	SELECT	FROM	Profile	ORDER	BY	@rid	DESC

Beginning	in	version	1.7.7,	OrientDB	can	open	an	inverse	cursor	against	clusters.	This	is	very	fast	and	doesn't	require	the	classic
ordering	resources,	CPU	and	RAM.

Projections

In	the	standard	implementations	of	SQL,	projections	are	mandatory.	In	OrientDB,	the	omission	of	projects	translates	to	its	returning	the
entire	record.	That	is,	it	reads	no	projection	as	the	equivalent	of	the		*		wildcard.

orientdb>	SELECT	FROM	Account

For	all	projections	except	the	wildcard		*	,	it	creates	a	new	temporary	document,	which	does	not	include	the		@rid		and		@version	
fields	of	the	original	record.

orientdb>	SELECT	name,	age	FROM	Account

The	naming	convention	for	the	returned	document	fields	are:

Field	name	for	plain	fields,	like		invoice		becoming		invoice	.
First	field	name	for	chained	fields,	like		invoice.customer.name		becoming		invoice	.
Function	name	for	functions,	like		MAX(salary)		becoming		max	.

In	the	event	that	the	target	field	exists,	it	uses	a	numeric	progression.	For	instance,

orientdb>	SELECT	MAX(incoming),	MAX(cost)	FROM	Balance

------+------

	max		|	max2

------+------

	1342	|	2478

------+------

To	override	the	display	for	the	field	names,	use	the		AS	.

Select

553



orientdb>	SELECT	MAX(incoming)	AS	max_incoming,	MAX(cost)	AS	max_cost	FROM	Balance

---------------+----------

	max_incoming		|	max_cost

---------------+----------

	1342										|	2478

---------------+----------

With	the	dollar	sign		$	,	you	can	access	the	context	variables.	Each	time	you	run	the	command,	OrientDB	accesses	the	context	to	read
and	write	the	variables.	For	instance,	say	you	want	to	display	the	path	and	depth	levels	up	to	the	fifth	of	a		TRAVERSE		on	all	records	in
the		Movie		class.

orientdb>	SELECT	$path,	$depth	FROM	(	TRAVERSE	*	FROM	Movie	WHERE	$depth	

	LET		Block

The		LET		block	contains	context	variables	to	assign	each	time	OrientDB	evaluates	a	record.	It	destroys	these	values	once	the	query
execution	ends.	You	can	use	context	variables	in	projections,	conditions,	and	sub-queries.

Assigning	Fields	for	Reuse

OrientDB	allows	for	crossing	relationships.	In	single	queries,	you	need	to	evaluate	the	same	branch	of	the	nested	relationship.	This	is
better	than	using	a	context	variable	that	refers	to	the	full	relationship.

orientdb>	SELECT	FROM	Profile	WHERE	address.city.name	LIKE	'%Saint%"'	AND	

										(	address.city.country.name	=	'Italy'	OR	

												address.city.country.name	=	'France'	)

Using	the		LET		makes	the	query	shorter	and	faster,	because	it	traverses	the	relationships	only	once:

orientdb>	SELECT	FROM	Profile	LET	$city	=	address.city	WHERE	$city.name	LIKE	

										'%Saint%"'	AND	($city.country.name	=	'Italy'	OR	$city.country.name	=	'France')

In	this	case,	it	traverses	the	path	till		address.city		only	once.

Sub-query

The		LET		block	allows	you	to	assign	a	context	variable	to	the	result	of	a	sub-query.

orientdb>	SELECT	FROM	Document	LET	$temp	=	(	SELECT	@rid,	$depth	FROM	(TRAVERSE	

										V.OUT,	E.IN	FROM	$parent.current	)	WHERE	@class	=	'Concept'	AND	

										(	id	=	'first	concept'	OR	id	=	'second	concept'	))	WHERE	$temp.SIZE()	>	0

	LET		Block	in	Projection

You	can	use	context	variables	as	part	of	a	result-set	in	projections.	For	instance,	the	query	below	displays	the	city	name	from	the
previous	example:

orientdb>	SELECT	$temp.name	FROM	Profile	LET	$temp	=	address.city	WHERE	$city.name	

										LIKE	'%Saint%"'	AND	(	$city.country.name	=	'Italy'	OR	

										$city.country.name	=	'France'	)

Select

554



Unwinding

Beginning	with	version	2.1,	OrientDB	allows	unwinding	of	collection	fields	and	obtaining	multiple	records	as	a	result,	one	for	each
element	in	the	collection:

orientdb>	SELECT	name,	OUT("Friend").name	AS	friendName	FROM	Person

--------+-------------------

	name			|	friendName

--------+-------------------

	'John'	|	['Mark',	'Steve']

--------+-------------------

In	the	event	if	you	want	one	record	for	each	element	in		friendName	,	you	can	rewrite	the	query	using		UNWIND	:

orientdb>	SELECT	name,	OUT("Friend").name	AS	friendName	FROM	Person	UNWIND	friendName

--------+-------------

	name			|	friendName

--------+-------------

	'John'	|	'Mark'

	'John'	|	'Steve'

--------+-------------

NOTE:	For	more	information	on	other	SQL	commands,	see	SQL	commands.

History
1.7.7:	New	target	prefixes		INDEXVALUES:	,		INDEXVALUESASC:		and		INDEXVALUESDESC:		added.
1.7:		PARALLEL		keyword	added	to	execute	the	query	against	x	concurrent	threads,	where	x	is	the	number	of	processors	or	cores
found	on	the	operating	system	where	the	query	runs.		PARALLEL		execution	is	useful	on	long	running	queries	or	queries	that	involve
multiple	clusters.	On	simple	queries,	using		PARALLEL		can	cause	a	slow	down	due	to	the	overhead	of	using	multiple	threads.

Select

555



	INSERT	

The		INSERT		command	creates	a	new	record	in	the	database.	Records	can	be	schema-less	or	follow	rules	specified	in	your	model.

Syntax:

INSERT	INTO	[CLASS:]<class>|CLUSTER:<cluster>|INDEX:<index>

		[(<field>[,]*)	VALUES	(<expression>[,]*)[,]*]|

		[SET	<field>	=	<expression>|<sub-command>[,]*]|

		[CONTENT	{<JSON>}]

		[RETURN	<expression>]	

		[FROM	<query>]

	CONTENT		Defines	JSON	data	as	an	option	to	set	field	values.
	RETURN		Defines	an	expression	to	return	instead	of	the	number	of	inserted	records.	You	can	use	any	valid	SQL	expression.	The
most	common	use-cases,

	@rid		Returns	the	Record	ID	of	the	new	record.
	@this		Returns	the	entire	new	record.

	FROM		Defines	where	you	want	to	insert	the	result-set.	Introduced	in	version	1.7.

Examples:

Inserts	a	new	record	with	the	name		Jay		and	surname		Miner	.

As	an	example,	in	the	SQL-92	standard,	such	as	with	a	Relational	database,	you	might	use:

orientdb>	INSERT	INTO	Profile	(name,	surname)	

										VALUES	('Jay',	'Miner')

Alternatively,	in	the	OrientDB	abbreviated	syntax,	the	query	would	be	written	as,

orientdb>	INSERT	INTO	Profile	SET	name	=	'Jay',	surname	=	'Miner'

In	JSON	content	syntax,	it	would	be	written	as	this,

orientdb>	INSERT	INTO	Profile	CONTENT	{"name":	"Jay",	"surname":	"Miner"}

Insert	a	new	record	of	the	class		Profile	,	but	in	a	different	cluster	from	the	default.

In	SQL-92	syntax:

orientdb>	INSERT	INTO	Profile	CLUSTER	profile_recent	(name,	surname)	VALUES	

										('Jay',	'Miner')

Alternative,	in	the	OrientDB	abbreviated	syntax:

orientdb>	INSERT	INTO	Profile	CLUSTER	profile_recent	SET	name	=	'Jay',	

										surname	=	'Miner'

Insert	several	records	at	the	same	time:

orientdb>	INSERT	INTO	Profile(name,	surname)	VALUES	('Jay',	'Miner'),	

										('Frank',	'Hermier'),	('Emily',	'Sout')

Insert	a	new	record,	adding	a	relationship.

Insert

556



In	SQL-93	syntax:

orientdb>	INSERT	INTO	Employee	(name,	boss)	VALUES	('jack',	#11:09)

In	the	OrientDB	abbreviated	syntax:

orientdb>	INSERT	INTO	Employee	SET	name	=	'jack',	boss	=	#11:99

Insert	a	new	record,	add	a	collection	of	relationships.

In	SQL-93	syntax:

orientdb>	INSERT	INTO	Profile	(name,	friends)	VALUES	('Luca',	[#10:3,	#10:4])

In	the	OrientDB	abbreviated	syntax:

orientdb>	INSERT	INTO	Profiles	SET	name	=	'Luca',	friends	=	[#10:3,	#10:4]

Inserts	using		SELECT		sub-queries

orientdb>	INSERT	INTO	Diver	SET	name	=	'Luca',	buddy	=	(SELECT	FROM	Diver	

										WHERE	name	=	'Marko')

Inserts	using		INSERT		sub-queries:

orientdb>	INSERT	INTO	Diver	SET	name	=	'Luca',	buddy	=	(INSERT	INTO	Diver	

										SET	name	=	'Marko')

Inserting	into	a	different	cluster:

orientdb>	INSERT	INTO	CLUSTER:asiaemployee	(name)	VALUES	('Matthew')

However,	note	that	the	document	has	no	assigned	class.	To	create	a	document	of	a	certain	class,	but	in	a	different	cluster	than	the
default,	instead	use:

orientdb>	INSERT	INTO	CLUSTER:asiaemployee	(@class,	content)	VALUES	

										('Employee',	'Matthew')

That	inserts	the	document	of	the	class		Employee		into	the	cluster		asiaemployee	.

Insert	a	new	record,	adding	it	as	an	embedded	document:

orientdb>	INSERT	INTO	Profile	(name,	address)	VALUES	('Luca',	{	"@type":	"d",	

										"street":	"Melrose	Avenue",	"@version":	0	})

Insert	from	a	query.

To	copy	records	from	another	class,	use:

orientdb>	INSERT	INTO	GermanyClient	FROM	SELECT	FROM	Client	WHERE	

										country	=	'Germany'

This	inserts	all	the	records	from	the	class		Client		where	the	country	is	Germany,	in	the	class		GermanyClient	.

To	copy	records	from	one	class	into	another,	while	adding	a	field:

Insert

557



orientdb>	INSERT	INTO	GermanyClient	FROM	SELECT	*,	true	AS	copied	FROM	Client	

										WHERE	country	=	'Germany'

This	inserts	all	records	from	the	class		Client		where	the	country	is	Germany	into	the	class		GermanClient	,	with	the	addition	field
	copied		to	the	value		true	.

For	more	information	on	SQL,	see	SQL	commands.

Insert

558



	UPDATE	

Update	one	or	more	records	in	the	current	database.	Remember:	OrientDB	can	work	in	schema-less	mode,	so	you	can	create	any	field
on-the-fly.	Furthermore,	the	command	also	supports	extensions	to	work	on	collections.

Syntax:

UPDATE	<class>|CLUSTER:<cluster>|<recordID>

		[SET|INCREMENT|ADD|REMOVE|PUT	<field-name>	=	<field-value>[,]*]|[CONTENT|MERGE	<JSON>]

		[UPSERT]

		[RETURN	<returning>	[<returning-expression>]]

		[WHERE	<conditions>]

		[LOCK	default|record]

		[LIMIT	<max-records>]	[TIMEOUT	<timeout>]

	SET		Defines	the	fields	to	update.
	INCREMENT		Increments	the	field	by	the	value.

For	instance,	record	at		10		with		INCREMENT	value	=	3		sets	the	new	value	to		13	.	You	may	find	this	useful	in	atomic	updates	of
counters.	Use	negative	numbers	to	decrement.	Additionally,	you	can	use		INCREMENT		to	implement	sequences	and	auto-increment.

	ADD		Adds	a	new	item	in	collection	fields.
	REMOVE		Removes	an	item	in	collection	and	map	fields.
	PUT		Puts	an	entry	into	a	map	field.
	CONTENT		Replaces	the	record	content	with	a	JSON	document.
	MERGE		Merges	the	record	content	with	a	JSON	document.
	LOCK		Specifies	how	to	lock	the	record	between	the	load	and	update.	You	can	use	one	of	the	following	lock	strategies:

	DEFAULT		No	lock.	Use	in	the	event	of	concurrent	updates,	the	MVCC	throws	an	exception.
	RECORD		Locks	the	record	during	the	update.

	UPSERT		Updates	a	record	if	it	exists	or	inserts	a	new	record	if	it	doesn't.	This	avoids	the	need	to	execute	two	commands,	(one	for
each	condition,	inserting	and	updating).

	UPSERT		requires	a		WHERE		clause	and	a	class	target.	There	are	further	limitations	on		UPSERT	,	explained	below.

	RETURN		Specifies	an	expression	to	return	instead	of	the	record	and	what	to	do	with	the	result-set	returned	by	the	expression.	The
available	return	operators	are:

	COUNT		Returns	the	number	of	updated	records.	This	is	the	default	return	operator.
	BEFORE		Returns	the	records	before	the	update.
	AFTER		Return	the	records	after	the	update.

	WHERE	

	LIMIT		Defines	the	maximum	number	of	records	to	update.
	TIMEOUT		Defines	the	time	you	want	to	allow	the	update	run	before	it	times	out.

NOTE:	The	Record	ID	must	have	a		#		prefix.	For	instance,		#12:3	.

Examples:

Update	to	change	the	value	of	a	field:

orientdb>	UPDATE	Profile	SET	nick	=	'Luca'	WHERE	nick	IS	NULL

Updated	2	record(s)	in	0.008000	sec(s).

Update	to	remove	a	field	from	all	records:

orientdb>	UPDATE	Profile	REMOVE	nick

Update	to	add	a	value	into	a	collection:

Update

559



orientdb>	UPDATE	Account	ADD	address=#12:0

NOTE:	Beginning	with	version	2.0.5,	the	OrientDB	server	generates	a	server	error	if	there	is	no	space	between		#		and	the
	=	.	You	must	write	the	command	as:

orientdb>	UPDATE	Account	ADD	address	=	#12:0

Update	to	remove	a	value	from	a	collection,	if	you	know	the	exact	value	that	you	want	to	remove:

Remove	an	element	from	a	link	list	or	set:

orientdb>	UPDATE	Account	REMOVE	address	=	#12:0

Remove	an	element	from	a	list	or	set	of	strings:

orientdb>	UPDATE	Account	REMOVE	addresses	=	'Foo'

Update	to	remove	a	value,	filtering	on	value	attributes.

Remove	addresses	based	in	the	city	of	Rome:

orientdb>	UPDATE	Account	REMOVE	addresses	=	addresses[city	=	'Rome']

Update	to	remove	a	value,	filtering	based	on	position	in	the	collection.

orientdb>	UPDATE	Account	REMOVE	addresses	=	addresses[1]

This	remove	the	second	element	from	a	list,	(position	numbers	start	from		0	,	so		addresses[1]		is	the	second	elelment).

Update	to	put	a	map	entry	into	the	map:

orientdb>	UPDATE	Account	PUT	addresses	=	'Luca',	#12:0

Update	to	remove	a	value	from	a	map

orientdb>	UPDATE	Account	REMOVE	addresses	=	'Luca'

Update	an	embedded	document.	The		UPDATE		command	can	take	JSON	as	a	value	to	update.

orientdb>	UPDATE	Account	SET	address={	"street":	"Melrose	Avenue",	"city":	{	

										"name":	"Beverly	Hills"	}	}

Update	the	first	twenty	records	that	satisfy	a	condition:

orientdb>	UPDATE	Profile	SET	nick	=	'Luca'	WHERE	nick	IS	NULL	LIMIT	20

Update	a	record	or	insert	if	it	doesn't	already	exist:

orientdb>	UPDATE	Profile	SET	nick	=	'Luca'	UPSERT	WHERE	nick	=	'Luca'

Update	a	web	counter,	avoiding	concurrent	accesses:

Update

560



orientdb>	UPDATE	Counter	INCREMENT	views	=	1	WHERE	pages	=	'/downloads/'	

										LOCK	RECORD

Updates	using	the		RETURN		keyword:

orientdb>	UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	@rid

orientdb>	UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	@version

orientdb>	UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	@this

orientdb>	UPDATE	♯7:0	INCREMENT	Counter	=	123	RETURN	BEFORE	$current.Counter

orientdb>	UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	$current.exclude(

										"really_big_field")

orientdb>	UPDATE	♯7:0	ADD	out_Edge	=	♯12:1	RETURN	AFTER	$current.outE("Edge")

In	the	event	that	a	single	field	is	returned,	OrientDB	wraps	the	result-set	in	a	record	storing	the	value	in	the	field		result	.	This	avoids
introducing	a	new	serialization,	as	there	is	no	primitive	values	collection	serialization	in	the	binary	protocol.	Additionally,	it	provides
useful	fields	like		version		and		rid		from	the	original	record	in	corresponding	fields.	The	new	syntax	allows	for	optimization	of	client-
server	network	traffic.

For	more	information	on	SQL	syntax,	see		SELECT	.

Limitations	of	the	 	UPSERT		Clause

The		UPSERT		clause	only	guarantees	atomicity	when	you	use	a		UNIQUE		index	and	perform	the	look-up	on	the	index	through	the		WHERE	
condition.

orientdb>	UPDATE	Client	SET	id	=	23	UPSERT	WHERE	id	=	23

Here,	you	must	have	a	unique	index	on		Client.id		to	guarantee	uniqueness	on	concurrent	operations.

Update

561



	DELETE	

Removes	one	or	more	records	from	the	database.	You	can	refine	the	set	of	records	that	it	removes	using	the		WHERE		clause.

NOTE:	Don't	use		DELETE		to	remove	Vertices	or	Edges.	Instead	use	the		DELETE	VERTEX		or		DELETE	EDGE		commands,	which
ensures	the	integrity	of	the	graph.

Syntax:

DELETE	FROM	<Class>|CLUSTER:<cluster>|INDEX:<index>	[LOCK	<default|record>]	[RETURN	<returning>]

		[WHERE	<Condition>*]	[LIMIT	<MaxRecords>]	[TIMEOUT	<timeout>]

	LOCK		Determines	how	the	database	locks	the	record	between	load	and	delete.	It	takes	one	of	the	following	values:
	DEFAULT		Defines	no	locks	during	the	delete.	In	the	case	of	concurrent	deletes,	the	MVCC	throws	an	exception.
	RECORD		Defines	record	locks	during	the	delete.

	RETURN		Defines	what	values	the	database	returns.	It	takes	one	of	the	following	values:
	COUNT		Returns	the	number	of	deleted	records.	This	is	the	default	option.
	BEFORE		Returns	the	number	of	records	before	the	removal.

	WHERE		Filters	to	the	records	you	want	to	delete.
	LIMIT		Defines	the	maximum	number	of	records	to	delete.
	TIMEOUT		Defines	the	time	period	to	allow	the	operation	to	run,	before	it	times	out.

Examples:

Delete	all	recods	with	the	surname		unknown	,	ignoring	case:

orientdb>	DELETE	FROM	Profile	WHERE	surname.toLowerCase()	=	'unknown'

For	more	information,	see	SQL	commands.

Delete

562



SQL	-		MATCH	
Queries	the	database	in	a	declarative	manner,	using	pattern	matching.	This	feature	was	introduced	in	version	2.2.

Simplified	Syntax

MATCH	

		{

				[class:	<class>],	

				[as:	<alias>],	

				[where:	(<whereCondition>)]

		}

		.<functionName>(){

				[class:	<className>],	

				[as:	<alias>],	

				[where:	(<whereCondition>)],	

				[while:	(<whileCondition>)]

				[maxDepth:	<number>]

		}*

RETURN	<alias>	[,	<alias>]*

LIMIT	<number>

	<class>		Defines	a	valid	target	class.
	as:	<alias>		Defines	an	alias	for	a	node	in	the	pattern.
	<whereCondition>		Defines	a	filter	condition	to	match	a	node	in	the	pattern.	It	supports	the	normal	SQL		WHERE		clause.	You	can
also	use	the		$currentMatch		and		$matched		context	variables.
	<functionName>		Defines	a	graph	function	to	represent	the	connection	between	two	nodes.	For	instance,		out()	,		in()	,		outE()	,
	inE()	,	etc.
	<whileCondition>		Defines	a	condition	that	the	statement	must	meet	to	allow	the	traversal	of	this	path.	It	supports	the	normal
SQL		WHERE		clause.	You	can	also	use	the		$currentMatch	,		$matched		and		$depth		context	variables.	For	more	information,	see
Deep	Traversal	While	Condition,	below.
	<maxDepth>		Defines	the	maximum	depth	for	this	single	path.
	RETURN	<alias>		Defines	elements	in	the	pattern	that	you	want	returned.	It	can	use	one	of	the	following:

Aliases	defined	in	the		as:		block.
	$matches		Indicating	all	defined	aliases.
	$paths		Indicating	the	full	traversed	paths.

BNF	Syntax

MatchStatement					:=	(	<MATCH>	MatchExpression	(	<COMMA>	MatchExpression	)*	<RETURN>	Identifier	(	<COMMA>	Identifier	)*	(	Lim

it	)?	)

MatchExpression							:=	(	MatchFilter	(	(	MatchPathItem	|	MultiMatchPathItem	)	)*	)

MatchPathItem							:=	(	MethodCall	(	MatchFilter	)?	)

MatchPathItemFirst	:=	(	FunctionCall	(	MatchFilter	)?	)

MultiMatchPathItem	:=	(	<DOT>	<LPAREN>	MatchPathItemFirst	(	MatchPathItem	)*	<RPAREN>	(	MatchFilter	)?	)

MatchFilter								:=	(	<LBRACE>	(	MatchFilterItem	(	<COMMA>	MatchFilterItem	)*	)?	<RBRACE>	)

MatchFilterItem				:=	(	(	<CLASS>	<COLON>	Expression	)		|	(	<AS>	<COLON>	Identifier	)	|	(	<WHERE>	<COLON>	<LPAREN>	(	WhereClau

se	)	<RPAREN>	)	|	(	<WHILE>	<COLON>	<LPAREN>	(	WhereClause	)	<RPAREN>	)	|	(	<MAXDEPTH>	<COLON>	Integer	)	)

Examples

The	following	examples	are	based	on	this	sample	data-set	from	the	class		People	:

Match

563



Find	all	people	with	the	name	John:

orientdb>	MATCH	{class:	Person,	as:	people,	where:	(name	=	'John')}	

										RETURN	people

---------

		people	

---------

		#12:0

		#12:1

---------

Find	all	people	with	the	name	John	and	the	surname	Smith:

Match

564



orientdb>	MATCH	{class:	Person,	as:	people,	where:	(name	=	'John'	AND	

										surname	=	'Smith')}	RETURN	people

-------

people

-------

	#12:1

-------

Find	people	named	John	with	their	friends:

orientdb>	MATCH	{class:	Person,	as:	person,	where:	

										(name	=	'John')}.both('Friend')	{as:	friend}	

										RETURN	person,	friend

--------+---------

	people	|	friend	

--------+---------

	#12:0		|	#12:1

	#12:0		|	#12:2

	#12:0		|	#12:3

	#12:1		|	#12:0

	#12:1		|	#12:2

--------+---------

Find	friends	of	friends:

orientdb>	MATCH	{class:	Person,	as:	person,	where:	(name	=	'John'	AND

										surname	=	'Doe')}.both('Friend').both('Friend')

										{as:	friendOfFriend}	RETURN	person,	friendOfFriend

--------+----------------

	people	|	friendOfFriend	

--------+----------------

	#12:0		|	#12:0

	#12:0		|	#12:1

	#12:0		|	#12:2

	#12:0		|	#12:3

	#12:0		|	#12:4

--------+----------------

Find	people,	excluding	the	current	user:

Match

565



orientdb>	MATCH	{class:	Person,	as:	person,	where:	(name	=	'John'	AND	

										surname	=	'Doe')}.both('Friend').both('Friend'){as:	friendOfFriend,

										where:	($matched.person	!=	$currentMatch)}	

										RETURN	person,	friendOfFriend

--------+----------------

	people	|	friendOfFriend

--------+----------------

	#12:0		|	#12:1

	#12:0		|	#12:2

	#12:0		|	#12:3

	#12:0		|	#12:4

--------+----------------

Find	friends	of	friends	to	the	sixth	degree	of	separation:

orientdb>	MATCH	{class:	Person,	as:	person,	where:	(name	=	'John'	AND	

										surname	=	'Doe')}.both('Friend'){as:	friend,	

										where:	($matched.person	!=	$currentMatch)	while:	($depth	<	6)}	

										RETURN	person,	friend

--------+---------

	people	|	friend

--------+---------

	#12:0		|	#12:0

	#12:0		|	#12:1

	#12:0		|	#12:2

	#12:0		|	#12:3

	#12:0		|	#12:4

--------+---------

Finding	friends	of	friends	to	six	degrees	of	separation,	since	a	particular	date:

orientdb>	MATCH	{class:	Person,	as:	person,	

										where:	(name	=	'John')}.(bothE('Friend'){

										where:	(date	<	?)}.bothV()){as:	friend,	

										while:	($depth	<	6)}	RETURN	person,	friend

In	this	case,	the	condition		$depth	<	6		refers	to	traversing	the	block		bothE('Friend')		six	times.

Find	friends	of	my	friends	who	are	aslo	my	friends,	using	multiple	paths:

orientdb>	MATCH	{class:	Person,	as:	person,	where:	(name	=	'John'	AND	

										surname	=	'Doe')}.both('Friend').both('Friend'){as:	friend},

										{	as:	person	}.both('Friend'){	as:	friend	}	

										RETURN	person,	friend

--------+--------

	people	|	friend

--------+--------

	#12:0		|	#12:1

	#12:0		|	#12:2

--------+--------

In	this	case,	the	statement	matches	two	expression:	the	first	to	friends	of	friends,	the	second	to	direct	friends.	Each	expression
shares	the	common	aliases	(	person		and		friend	).	To	match	the	whole	statement,	the	result	must	match	both	expressions,	where
the	alias	values	for	the	first	expression	are	the	same	as	that	of	the	second.

Match

566



Find	common	friends	of	John	and	Jenny:

orientdb>	MATCH	{class:	Person,	where:	(name	=	'John'	AND	

										surname	=	'Doe')}.both('Friend'){as:	friend}.both('Friend')

										{class:	Person,	where:	(name	=	'Jenny')}	RETURN	friend

--------

	friend

--------

	#12:1

--------

The	same,	with	two	match	expressions:

orientdb>	MATCH	{class:	Person,	where:	(name	=	'John'	AND	

										surname	=	'Doe')}.both('Friend'){as:	friend},	

										{class:	Person,	where:	(name	=	'Jenny')}.both('Friend')

										{as:	friend}	RETURN	friend

Context	Variables
When	running	these	queries,	you	can	use	any	of	the	following	context	variables:

Variable Description

	$matched	

Gives	the	current	matched	record.	You	must	explicitly	define	the	attributes	for	this	record	in	order	to	access
them.	You	can	use	this	in	the		where:		and		while:		conditions	to	refer	to	current	partial	matches	or	as	part
of	the		RETURN		value.

	$currentMatch	 Gives	the	current	complete	node	during	the	match.

	$depth	 Gives	the	traversal	depth,	following	a	single	path	item	where	a		while:		condition	is	defined.

Use	Cases

Expanding	Attributes

You	can	run	this	statement	as	a	sub-query	inside	of	another	statement.	Doing	this	allows	you	to	obtain	details	and	aggregate	data	from
the	inner		SELECT		query.

orientdb>	SELECT	person.name	AS	name,	person.surname	AS	surname,

										friend.name	AS	friendName,	friend.surname	AS	friendSurname

										FROM	(MATCH	{class:	Person,	as:	person,

										where:	(name	=	'John')}.both('Friend'){as:	friend}

										RETURN	person,	friend)

--------+----------+------------+---------------

	name			|	surname		|	friendName	|	friendSurname

--------+----------+------------+---------------

	John			|	Doe						|	John							|	Smith

	John			|	Doe						|	Jenny						|	Smith

	John			|	Doe						|	Frank						|	Bean

	John			|	Smith				|	John							|	Doe

	John			|	Smith				|	Jenny						|	Smith

--------+----------+------------+---------------

Incomplete	Hierarchy

Match

567



Consider	building	a	database	for	a	company	that	shows	a	hierarchy	of	departments	within	the	company.	For	instance,

											[manager]	department								

										(employees	in	department)				

																[m0]0																			

																	(e1)																		

																	/			\																	

																/					\																

															/							\															

											[m1]1								[m2]2

										(e2,	e3)					(e4,	e5)								

													/	\									/	\											

												3			4							5			6										

										(e6)	(e7)			(e8)		(e9)							

										/		\																									

						[m3]7				8																							

						(e10)			(e11)																				

							/																															

						9																																

		(e12,	e13)

This	loosely	shows	that,

Department		0		is	the	company	itself,	manager	0	(	m0	)	is	the	CEO
	e10		works	at	department		7	,	his	manager	is		m3	
	e12		works	at	department		9	,	this	department	has	no	direct	manager,	so		e12	's	manager	is		m3		(the	upper	manager)

In	this	case,	you	would	use	the	following	query	to	find	out	who's	the	manager	to	a	particular	employee:

orientdb>	SELECT	EXPAND(manager)	FROM	(MATCH	{class:Employee,	

										where:	(name	=	?)}.out('WorksAt').out('ParentDepartment')

										{while:	(out('Manager').size()	==	0),	

										where:	(out('Manager').size()	>	0)}.out('Manager')

										{as:	manager}	RETURN	manager)

Deep	Traversal

Match	path	items	act	in	a	different	manners,	depending	on	whether	or	not	you	use		while:		conditions	in	the	statement.

For	instance,	consider	the	following	graph:

[name='a']	-FriendOf->	[name='b']	-FriendOf->	[name='c']

Running	the	following	statement	on	this	graph	only	returns		b	:

orientdb>	MATCH	{class:	Person,	where:	(name	=	'a')}.out("FriendOf")

										{as:	friend}	RETURN	friend

--------

	friend	

--------

	b

--------

What	this	means	is	that	it	traverses	the	path	item		out("FriendOf")		exactly	once.	It	only	returns	the	result	of	that	traversal.

If	you	add	a		while		condition:

Match

568



orientdb>	MATCH	{class:	Person,	where:	(name	=	'a')}.out("FriendOf")

										{as:	friend,	while:	($depth	

---------

	friend	

---------

	a

	b

---------

Including	a		while:		condition	on	the	match	path	item	causes	OrientDB	to	evaluate	this	item	as	zero	to	n	times.	That	means	that	it
returns	the	starting	node,	(	a	,	in	this	case),	as	the	result	of	zero	traversal.

To	exclude	the	starting	point,	you	need	to	add	a		where:		condition,	such	as:

orientdb>	MATCH	{class:	Person,	where:	(name	=	'a')}.out("FriendOf")

										{as:	friend,	while:	($depth		0)}	

										RETURN	friend

As	a	general	rule,

	while		Conditions:	Define	this	if	it	must	execute	the	next	traversal,	(it	evaluates	at	level	zero,	on	the	origin	node).
	where		Condition:	Define	this	if	the	current	element,	(the	origin	node	at	the	zero	iteration	the	right	node	on	the	iteration	is	greater
than	zero),	must	be	returned	as	a	result	of	the	traversal.

For	instance,	suppose	that	you	have	a	genealogical	tree.	In	the	tree,	you	want	to	show	a	person,	grandparent	and	the	grandparent	of	that
grandparent,	and	so	on.	The	result:	saying	that	the	person	is	at	level	zero,	parents	at	level	one,	grandparents	at	level	two,	etc.,	you
would	see	all	ancestors	on	even	levels.	That	is,		level	%	2	==	0	.

To	get	this,	you	might	use	the	following	query:

orientdb>	MATCH	{class:	Person,	where:	(name	=	'a')}.out("Parent")

										{as:	ancestor,	while:	(true)	where:	($depth	%	2	=	0)}	

										RETURN	ancestor

Best	practices
Queries	can	involve	multiple	operations,	based	on	the	domain	model	and	use	case.	In	some	cases,	like	projection	and	aggregation,	you
can	easily	manage	them	with	a		SELECT		query.	With	others,	such	as	pattern	matching	and	deep	traversal,		MATCH		statements	are	more
appropriate.

Use		SELECT		and		MATCH		statements	together	(that	is,	through	sub-queries),	to	give	each	statement	the	correct	responsibilities.	Here,

Filtering	Record	Attributes	for	a	Single	Class

Filtering	based	on	record	attributes	for	a	single	class	is	a	trivial	operation	through	both	statements.	That	is,	finding	all	people	named
John	can	be	written	as:

orientdb>	SELECT	FROM	Person	WHERE	name	=	'John'

You	can	also	write	it	as,

orientdb>	MATCH	{class:	Person,	as:	person,	where:	(name	=	'John')}	

										RETURN	person

The	efficiency	remains	the	same.	Both	queries	use	an	index.	With		SELECT	,	you	obtain	expanded	records,	while	with		MATCH	,	you	only
obtain	the	Record	ID's.

Match

569



Filtering	on	Record	Attributes	of	Connected	Elements

Filtering	based	on	the	record	attributes	of	connected	elements,	such	as	neighboring	vertices,	can	grow	trick	when	using		SELECT	,	while
with		MATCH		it	is	simple.

For	instance,	find	all	people	living	in	Rome	that	have	a	friend	called	John.	There	are	three	different	ways	you	can	write	this,	using
	SELECT	:

orientdb>	SELECT	FROM	Person	WHERE	BOTH('Friend').name	CONTAINS	'John'

										AND	out('LivesIn').name	CONTAINS	'Rome'

orientdb>	SELECT	FROM	(SELECT	BOTH('Friend')	FROM	Person	WHERE	name

										'John')	WHERE	out('LivesIn').name	CONTAINS	'Rome'

orientdb>	SELECT	FROM	(SELECT	in('LivesIn')	FROM	City	WHERE	name	=	'Rome')

										WHERE	BOTH('Friend').name	CONTAINS	'John'

In	the	first	version,	the	query	is	more	readable,	but	it	does	not	use	indexes,	so	it	is	less	optimal	in	terms	of	execution	time.	The	second
and	third	use	indexes	if	they	exist,	(on		Person.name		or		City.name	,	both	in	the	sub-query),	but	they're	harder	to	read.	Which	index
they	use	depends	only	on	the	way	you	write	the	query.	That	is,	if	you	only	have	an	index	on		City.name		and	not		Person.name	,	the
second	version	doesn't	use	an	index.

Using	a		MATCH		statement,	the	query	becomes:

orientdb>	MATCH	{class:	Person,	where:	(name	=	'John')}.both("Friend")

										{as:	result}.out('LivesIn'){class:	City,	where:	(name	=	'Rome')}

										RETURN	result

Here,	the	query	executor	optimizes	the	query	for	you,	choosing	indexes	where	they	exist.	Moreover,	the	query	becomes	more	readable,
especially	in	complex	cases,	such	as	multiple	nested		SELECT		queries.

	TRAVERSE		Alternative

There	are	similar	limitations	to	using		TRAVERSE	.	You	may	benefit	from	using		MATCH		as	an	alternative.

For	instance,	consider	a	simple		TRAVERSE		statement,	like:

orientdb>	TRAVERSE	out('Friend')	FROM	(SELECT	FROM	Person	WHERE	name	=	'John')	

										WHILE	$depth	<	3

Using	a		MATCH		statement,	you	can	write	the	same	query	as:

orientdb>	MATCH	{class:	Person,	where:	(name	=	'John')}.both("Friend")

										{as:	friend,	while:	($depth	<	3)}	RETURN	friend

Consider	a	case	where	you	have	a		since		date	property	on	the	edge		Friend	.	You	want	to	traverse	the	relationship	only	for	edges
where	the		since		value	is	greater	than	a	given	date.	In	a		TRAVERSE		statement,	you	might	write	the	query	as:

orientdb>	TRAVERSE	bothE('Friend')[since	>	date('2012-07-02',	'yyyy-MM-dd')].bothV()

										FROM	(SELECT	FROM	Person	WHERE	name	=	'John')	WHILE	$depth	<	3

Unforunately,	this	statement	DOESN"T	WORK	in	the	current	release.	However,	you	can	get	the	results	you	want	using	a		MATCH	
statement:

Match

570



orientdb>	MATCH	{class:	Person,	where:	(name	=	'John')}.(bothE("Friend")

										{where:	(since	>	date('2012-07-02',	'yyyy-MM-dd'))}.bothV())

										{as:	friend,	while:	($depth	<	3)}	RETURN	friend

Projections	and	Grouping	Operations

Projections	and	grouping	operations	are	better	expressed	with	a		SELECT		query.	If	you	need	to	filter	and	do	projection	or	aggregation	in
the	same	query,	you	can	use		SELECT		and		MATCH		in	the	same	statement.

This	is	particular	important	when	you	expect	a	result	that	contains	attributes	from	different	connected	records	(cartesian	product).	FOr
instance,	to	retrieve	names,	their	friends	and	the	date	since	they	became	friends:

orientdb>	SELECT	person.name	AS	name,	friendship.since	AS	since,	friend.name	

										AS	friend	FROM	(MATCH	{class:	Person,	as:	person}.bothE('Friend')

										{as:	friendship}.bothV(){as:	friend,	

										where:	($matched.person	!=	$currentMatch)}	

										RETURN	person,	friendship,	friend)

Match

571



SQL	Commands

CRUD Graph Schema Indexes Database Utility

SELECT CREATE
VERTEX

CREATE
CLASS

CREATE
INDEX CREATE	CLUSTER CREATE	LINK

INSERT CREATE
EDGE

ALTER
CLASS

REBUILD
INDEX ALTER	CLUSTER FIND

REFERENCES

UPDATE DELETE
VERTEX DROP	CLASS DROP

INDEX DROP	CLUSTER EXPLAIN

DELETE DELETE
EDGE

CREATE
PROPERTY ALTER	DATABASE GRANT

TRAVERSE MATCH ALTER
PROPERTY

CREATE	DATABASE
(console	only) REVOKE

TRUNCATE
CLASS

DROP
PROPERTY

DROP	DATABASE
(console	only)

CREATE
FUNCTION

TRUNCATE
CLUSTER OPTIMIZE	DATABASE

TRUNCATE
RECORD

Commands

572



SQL	-		ALTER	CLASS	
Updates	attributes	on	an	existing	class	in	the	schema.

Syntax

ALTER	CLASS	<class>	<attribute-name>	<attribute-value>

	<class>		Defines	the	class	you	want	to	change.
	<attribute-name>		Defines	the	attribute	you	want	to	change.	For	a	list	of	supported	attributes,	see	the	table	below.
	<attribute-value>		Defines	the	value	you	want	to	set.

Examples

Define	a	super-class:

orientdb>	ALTER	CLASS	Employee	SUPERCLASS	Person

Define	multiple	inheritances:

orientdb>	ALTER	CLASS	Employee	SUPERCLASS	Person,	ORestricted

This	feature	was	introduced	in	version	2.1.

Add	a	super-class:

orientdb>	ALTER	CLASS	Employee	SUPERCLASS	+Person

This	feature	was	introduced	in	version	2.1.

Remove	a	super-class:

orientdb>	ALTER	CLASS	Employee	SUPERCLASS	-Person

This	feature	was	introduced	in	version	2.1.

Update	the	class	name	from		Account		to		Seller	:

orientdb>	ALTER	CLASS	Account	NAME	Seller

Update	the	oversize	factor	on	the	class		Account	:

orientdb>	ALTER	CLASS	Account	OVERSIZE	2

Add	a	cluster	to	the	class		Account	.

orientdb>	ALTER	CLASS	Account	ADDCLUSTER	account2

In	the	event	that	the	cluster	does	not	exist,	it	automatically	creates	it.

Remove	a	cluster	from	the	class		Account		with	the	ID		34	:

orientdb>	ALTER	CLASS	Account	REMOVECLUSTER	34

Add	custom	properties:

Alter	Class

573



orientdb>	ALTER	CLASS	Post	CUSTOM	onCreate.fields=_allowRead,_allowUpdate

orientdb>	ALTER	CLASS	Post	CUSTOM	onCreate.identityType=role

Create	a	new	cluster	for	the	class		Employee	,	then	set	the	cluster	selection	strategy	to		balanced	:

orientdb>	CREATE	CLUSTER	employee_1

orientdb>	ALTER	CLASS	Employee	ADDCLUSTER	employee_1

orientdb>	ALTER	CLASS	Employee	CLUSTERSELECTION	balanced

Convert	the	class		TheClass		to	an	abstract	class:

orientdb>	ALTER	CLASS	TheClass	ABSTRACT	true

For	more	information	see		CREATE	CLASS	,		DROP	CLASS	,		ALTER	CLUSTER		commands.	For	more	information	on	other	commands,
see		Console		and	SQL	commands.

Supported	Attributes

Attribute Type Support Description

	NAME	 String Changes	the	class	name.

	SHORTNAME	 String Defines	a	short	name,	(that	is,	an	alias),	for	the	class.	Use		NULL		to	remove	a
short	name	assignment.

	SUPERCLASS	 String

Defines	a	super-class	for	the	class.	Use		NULL		to	remove	a	super-class
assignment.	Beginning	with	version	2.1,	it	supports	multiple	inheritances.	To
add	a	new	class,	you	can	use	the	syntax		+<class>	,	to	remove	it	use		-
<class>	.

	OVERSIZE	
Decimal
number Defines	the	oversize	factor.

	ADDCLUSTER	 String
Adds	a	cluster	to	the	class.	If	the	cluster	doesn't	exist,	it	creates	a	physical
cluster.	Adding	clusters	to	a	class	is	also	useful	in	storing	records	in
distributed	servers.	For	more	information,	see	Distributed	Sharding.

	REMOVECLUSTER	 String Removes	a	cluster	from	a	class.	It	does	not	delete	the	cluster,	only	removes	it
from	the	class.

	STRICTMODE	

Enalbes	or	disables	strict	mode.	When	in	strict	mode,	you	work	in	schema-
full	mode	and	cannot	add	new	properties	to	a	record	if	they're	part	of	the
class'	schema	definition.

	CLUSTERSELECTION	 1.7
Defines	the	selection	strategy	in	choosing	which	cluster	it	uses	for	new
records.	On	class	creation	it	inherits	the	setting	from	the	database.	For	more
information,	see	Cluster	Selection.

	CUSTOM	

Defines	custom	properties.	Property	names	and	values	must	follow	the
syntax		<property-name>=<value>		without	spaces	between	the	name	and
value.

	ABSTRACT	 Boolean Converts	class	to	an	abstract	class	or	the	opposite.

Java	API
In	addition	to	updating	a	class	through	the	console	or	SQL,	you	can	also	change	it	through	the	Java	API,	using	either	the	Graph	or
Document	API.

Graph	API:

Alter	Class

574



//	ADD	A	CLUSTER	TO	A	VERTEX	CLASS

graph.getVertexType("Customer").addCluster("customer_usa");

//	ADD	A	CLUSTER	TO	AN	EDGE	CLASS

graph.getEdgeType("WorksAt").addCluster("WorksAt_2015");

Document	API

db.getMetadata().getSchema().getClass("Customer").addCluster("customer_usa")

History

2.1

Added	support	for	multiple	inheritance.

1.7

Added	support	for		CLUSTERSELECTION		that	sets	the	strategy	used	on	selecting	the	cluster	to	use	when	creating	new	records.

Alter	Class

575



SQL	-		ALTER	CLUSTER	
Updates	attributes	on	an	existing	cluster.

Syntax

ALTER	CLUSTER	<cluster>	<attribute-name>	<attribute-value>

	<cluster>		Defines	the	cluster	you	want	to	change.	You	can	use	its	logical	name	or	ID.	Beginning	with	version	2.2,	you	can	use	the
wildcard		*		to	update	multiple	clusters	together.
	<attribute-name>		Defines	the	attribute	you	want	to	change.	For	a	list	of	supported	attributes,	see	the	table	below.
	<attribute-value>		Defines	the	value	you	want	to	set.

Examples

Change	the	name	of	a	cluster,	using	its	name:

orientdb>	ALTER	CLUSTER	profile	NAME	profile2

Change	the	name	of	a	cluster,	using	its	ID:

orientdb>	ALTER	CLUSTER	9	NAME	profile2

Update	the	cluster	conflict	strategy	to		automerge	:

orientdb>	ALTER	CLUSTER	V	CONFLICTSTRATEGY	automerge

Put	cluster		V_2012		offline:

orientdb>	ALTER	CLUSTER	V_2012	STATUS	OFFLINE

Update	multiple	clusters	with	a	similar	name:

orientdb>	ALTER	CLUSTER	employee*	status	offline

For	more	information	see,		CREATE	CLUSTER	,		DROP	CLUSTER	,		ALTER	CLUSTER		commands.	For	more	information	on	other
commands,	see	Console	and	SQL	commands.

Supported	Attributes

Alter	Cluster

576



Name Type Support Description

	NAME	 String Changes	the	cluster	name.

	STATUS	 String

Changes	the	cluster	status.	Allowed	values	are		ONLINE		and
	OFFLINE	.	By	default,	clusters	are	online.	When	offline,	OrientDB
no	longer	opens	the	physical	files	for	the	cluster.	You	may	find
this	useful	when	you	want	to	archive	old	data	elsewhere	and
restore	when	needed.

	COMPRESSION	 String

Defines	the	compression	type	to	use.	Allowed	values	are
	NOTHING	,		SNAPPY	,		GZIP	,	and	any	other	compression	types
registered	in	the		OCompressionFactory		class.	OrientDB	class	the
	compress()		method	each	time	it	saves	the	record	to	the	storage,
and	the		uncompress()		method	each	time	it	loads	the	record	from
storage.	You	can	also	use	the		OCompression		interface	to	manage
encryption.

	USE_WAL	 Boolean Defines	whether	it	uses	the	Journal	(Write	Ahead	Log)	when
OrientDB	operates	against	the	cluster.

	RECORD_GROW_FACTOR	 Integer

Defines	the	grow	factor	to	save	more	space	on	record	creation.
You	may	find	this	useful	when	you	update	the	record	with
additional	information.	In	larger	records,	this	avoids
defragmentation,	as	OrientDB	doesn't	have	to	find	new	space	in
the	event	of	updates	with	more	data.

	RECORD_OVERFLOW_GROW_FACTOR	 Integer Defines	grow	factor	on	updates.	When	it	reaches	the	size	limit,	is
uses	this	setting	to	get	more	space,	(factor	>	1).

	CONFLICTSTRATEGY	 String 2.0+

Defines	the	strategy	it	uses	to	handle	conflicts	in	the	event	that
OrientDB	MVCC	finds	an	update	or	a	delete	operation	it	executes
against	an	old	record.	If	you	don't	define	a	strategy	at	the	cluster-
level,	it	uses	the	database-level	configuration.	For	more
information	on	supported	strategies,	see	the	section	below.

Supported	Conflict	Strategies

Strategy Description

	version	 Throws	an	exception	when	versions	are	different.	This	is	the	default	setting.

	content	
In	the	event	that	the	versions	are	different,	it	checks	for	changes	in	the	content,	otherwise	it	uses	the	highest
version	to	avoid	throwing	an	exception.

	automerge	 Merges	the	changes.

To	know	more	about	other	SQL	commands,	take	a	look	at	SQL	commands.

Alter	Cluster

577



SQL	-		ALTER	DATABASE	
Updates	attributes	on	the	current	database.

Syntax

ALTER	DATABASE	<attribute-name>	<attribute-value>

	<attribute-name>		Defines	the	attribute	that	you	want	to	change.	For	a	list	of	supported	attributes,	see	the	section	below.
	<attribute-value>		Defines	the	value	you	want	to	set.

Examples

Disable	new	SQL	strict	parser:

orientdb>	ALTER	DATABASE	CUSTOM	strictSQL=false

Update	a	Graph	database	that	was	created	before	version	1.4:

orientdb>	ALTER	DATABASE	CUSTOM	useLightweightEdges=FALSE

orientdb>	ALTER	DATABASE	CUSTOM	useClassForEdgeLabel=FALSE

orientdb>	ALTER	DATABASE	CUSTOM	useClassForVertexLabel=FALSE

orientdb>	ALTER	DATABASE	CUSTOM	useVertexFieldsForEdgeLabel=FALSE

Version	1.4	introduced	Lightweight	Edges,	which	was	disabled	by	default	beginning	in	version	2.0.	Use	the	above	commands
to	maintain	compatibility	when	using	older	databases	with	newer	versions	of	OrientDB.

To	create	a	database,	see	the		CREATE	DATABASE	.	To	remove	a	database,	see	the		DROP	DATABASE		command.	For	more	information
on	other	commands,	see	Console	and	SQL	commands.

Supported	Attributes
STATUS 	database's	status	between:

CLOSED	to	set	closed	status
IMPORTING	to	set	importing	status
OPEN	to	set	open	status

DEFAULTCLUSTERID	to	set	the	default	cluster.	By	default	is	2	=	"default"
DATEFORMAT	sets	the	default	date	format.	Look	at	Java	Date	Format	for	more	information.	Default	is	"yyyy-MM-dd"
DATETIMEFORMAT	sets	the	default	date	time	format.	Look	at	Java	Date	Format	for	more	information.	Default	is	"yyyy-MM-
dd	HH:mm:ss"
TIMEZONE	set	the	default	timezone.	Look	at	Java	Date	TimeZones	for	more	information.	Default	is	the	JVM's	default	timezone
LOCALECOUNTRY	sets	the	default	locale	country.	Look	at	Java	Locales	for	more	information.	Default	is	the	JVM's	default
locale	country.	Example:	"GB"
LOCALELANGUAGE	sets	the	default	locale	language.	Look	at	Java	Locales	for	more	information.	Default	is	the	JVM's	default
locale	language.	Example:	"en"
CHARSET	set	the	default	charset	charset.	Look	at	Java	Charset	for	more	information.	Default	is	the	JVM's	default	charset.
Example:	"utf8"
CLUSTERSELECTION	sets	the	default	strategy	used	on	selecting	the	cluster	where	to	create	new	records.	This	setting	is	read	on
class	creation.	After	creation,	each	class	has	own	modifiable	strategy.	Supported	strategies	are:

default,	uses	always	the	Class's		defaultClusterId		property.	This	was	the	default	before	1.7
round-robin,	put	the	Class's	configured	clusters	in	a	ring	and	returns	a	different	cluster	every	time	restarting	from	the	first
when	the	ring	is	completed
balanced,	checks	the	records	in	all	the	clusters	and	returns	the	smaller	cluster.	This	allows	the	cluster	to	have	all	the
underlying	clusters	balanced	on	size.	On	adding	a	new	cluster	to	an	existent	class,	the	new	empty	cluster	will	be	filled	before

Alter	Database

578

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html


the	others	because	more	empty	then	the	others.	In	distributed	configuration	when	configure	clusters	on	different	servers	this

setting	allows	to	keep	the	server	balanced	with	the	same	amount	of	data.	Calculation	of	cluster	size	is	made	every	5	or	more
seconds	to	avoid	to	slow	down	insertion

MINIMUMCLUSTERS ,	as	the	minimum	number	of	clusters	to	create	automatically	when	a	new	class	is	created.	By	default	is	1,
but	on	multi	CPU/core	having	multiple	clusters/files	improves	read/write	performance
CONFLICTSTRATEGY,	(since	v2.0)	is	the	name	of	the	strategy	used	to	handle	conflicts	when	OrientDB's	MVCC	finds	an
update	or	delete	operation	executed	against	an	old	record.	The	strategy	is	applied	for	the	entire	database,	but	single	clusters	can
have	own	strategy	(use	ALTER	CLUSTER	command	for	this).	While	it's	possible	to	inject	custom	logic	by	writing	a	Java	class,	the
out	of	the	box	modes	are:

	version	,	the	default,	throw	an	exception	when	versions	are	different
	content	,	in	case	the	version	is	different	checks	if	the	content	is	changed,	otherwise	use	the	highest	version	and	avoid
throwing	exception
	automerge	,	merges	the	changes

CUSTOM	sets	custom	properties
VALIDATION,	(Since	v2.2)	disable	or	enable	the	validation	for	the	entire	database.	This	setting	is	not	persistent,	so	at	the	next
restart	the	validation	is	active	(Default).	Disabling	the	validation	sometimes	is	needed	in	case	of	remote	import	database.

History

1.7

Adds	support	for		CLUSTERSELECTION		that	sets	the	strategy	used	on	selecting	the	cluster	where	to	create	new	records.
Adds		MINIMUMCLUSTERS		to	pre-create	X	clusters	every	time	a	new	class	is	created.

Alter	Database

579



SQL	-		ALTER	PROPERTY	
Updates	attributes	on	the	existing	property	and	class	in	the	schema.

Syntax

ALTER	PROPERTY	<class>.<property>	<attribute-name>	<attribute-value>

	<class>		Defines	the	class	to	which	the	property	belongs.
	<property>		Defines	the	property	you	want	to	update.
	<attribute-name>		Defines	the	attribute	you	want	to	change.
	<attribute-value>		Defines	the	value	you	want	to	set	on	the	attribute.

Examples

Change	the	name	of	the	property		age		in	the	class		Account		to		born	:

orientdb>	ALTER	PROPERTY	Account.age	NAME	born

Update	a	property	to	make	it	mandatory:

orientdb>ALTER	PROPERTY	Account.age	MANDATORY	TRUE

Define	a	Regular	Expression	as	constraint:

orientdb>	ALTER	PROPERTY	Account.gender	REGEXP	"[M|F]"

Define	a	field	as	case-insensitive	to	comparisons:

orientdb>	ALTER	PROPERTY	Employee.name	COLLATE	ci

Define	a	custom	field	on	a	property:

orientdb>	ALTER	PROPERTY	Foo.bar1	custom	stereotype	=	visible

Set	the	default	value	for	the	current	date:

orientdb>	ALTER	PROPERTY	Client.created	DEFAULT	sysdate()

Define	a	unqiue	id	that	cannot	be	changed	after	creation:

orientdb>	ALTER	PROPERTY	Client.id	DEFAULT	uuid()	READONLY

orientdb>	ALTER	PROPERTY	Client.id	READONLY	TRUE

Supported	Attributes

Alter	Property

580



Attribute Type Support Description

	LINKEDCLASS	 String Defines	the	linked	class	name.	Use		NULL		to	remove	an	existing	value.

	LINKEDTYPE	 String Defines	the	link	type.	Use		NULL		to	remove	an	existing	value.

	MIN	 Integer

Defines	the	minimum	value	as	a	constraint.	Use		NULL		to	remove	an	existing
constraint.	On	String	attributes,	it	defines	the	minimum	length	of	the	string.	On
Integer	attributes,	it	defines	the	minimum	value	for	the	number.	On	Date	attributes,
the	earliest	date	accepted.	For	multi-value	attributes	(lists,	sets	and	maps),	it
defines	the	fewest	number	of	entries.

	MANDATORY	 Boolean Defines	whether	the	proprety	requires	a	value.

	MAX	 Integer

Defines	the	maximum	value	as	a	constraint.	Use		NULL		to	remove	an	existing
constraint.	On	String	attributes,	it	defines	the	greatest	length	of	the	string.	On
Integer	attributes,	it	defines	the	maximum	value	for	the	number.	On	Date
attributes,	the	last	date	accepted.	For	multi-value	attributes	(lists,	sets	and	maps),
it	defines	the	highest	number	of	entries.

	NAME	 String Defines	the	property	name.

	NOTNULL	 Boolean Defines	whether	the	property	can	have	a	null	value.

	REGEX	 String Defines	a	Regular	Expression	as	constraint.	Use		NULL		to	remove	an	existing
constraint.

	TYPE	 String Defines	a	property	type.

	COLLATE	 String Sets	collate	to	one	of	the	defined	comparison	strategies.	By	default,	it	is	set	to
case-sensitive	(	cs	).	You	can	also	set	it	to	case-insensitive	(	ci	).

	READONLY	 Boolean
Defines	whether	the	property	value	is	immutable.	That	is,	if	it	is	possible	to
change	it	after	the	first	assignment.	Use	with		DEFAULT		to	have	immutable	values
on	creation.

	CUSTOM	 String Defines	custom	properties.	The	syntax	for	custom	properties	is		<custom-name>	=
<custom-value>	,	such	as		stereotype	=	icon	.

	DEFAULT	
Defines	the	default	value	or	function.	Feature	introduced	in	version	2.1,	(see	the
section	above	for	examples).

When	altering		NAME		or		TYPE		this	command	runs	a	data	update	that	may	take	some	time,	depending	on	the	amount	of	data.	Don't	shut
the	database	down	during	this	migration.

To	create	a	property,	use	the		CREATE	PROPERTY		command,	to	remove	a	property	the		DROP	PROPERTY		command.	For	more
information	on	other	commands,	see	Console	and	SQL	commands.

Alter	Property

581



SQL	-	ALTER		SEQUENCE	
Changes	the	sequence.	Using	this	parameter	you	can	change	all	sequence	options,	except	for	the	sequence	type.

This	feature	was	introduced	in	version	2.2.

Syntax

ALTER	SEQUENCE	<sequence>	[START	<start-point>]	[INCREMENT	<increment>]	[CACHE	<cache>]

	<sequence>		Defines	the	sequence	you	want	to	change.
	START		Defines	the	initial	sequence	value.
	INCREMENT		Defines	the	value	to	increment	when	it	calls		.next()	.
	CACHE		Defines	the	number	of	values	to	cache,	in	the	event	that	the	sequence	is	of	the	type		CACHED	.

Examples

Alter	a	sequence,	resetting	the	start	value	to		1000	:

orientdb>	ALTER	SEQUENCE	idseq	START	1000

For	more	information,	see

	CREATE	SEQUENCE	

	DROP	SEQUENCE	

Sequences	and	Auto-increment
SQL	Commands.

Alter	Sequence

582



SQL	-		CREATE	CLASS	
Creates	a	new	class	in	the	schema.

Syntax

CREATE	CLASS	<class>	[EXTENDS	<super-class>]	[CLUSTER	<cluster-id>*]	[CLUSTERS	<total-cluster-number>]	[ABSTRACT]

	<class>		Defines	the	name	of	the	class	you	want	to	create.	You	must	use	a	letter,	underscore	or	dollar	for	the	first	character,	for	all
other	characters	you	can	use	alphanumeric	characters,	underscores	and	dollar.
	<super-class>		Defines	the	super-class	you	want	to	extend	with	this	class.
	<cluster-id>		Defines	in	a	comma-separated	list	the	ID's	of	the	clusters	you	want	this	class	to	use.
	<total-cluster-number>		Defines	the	total	number	of	clusters	you	want	to	create	for	this	class.	The	default	value	is		1	.	This
feature	was	introduced	in	version	2.1.
	ABSTRACT		Defines	whether	the	class	is	abstract.	For	abstract	classes,	you	cannot	create	instances	of	the	class.

In	the	event	that	a	cluster	of	the	same	name	exists	in	the	cluster,	the	new	class	uses	this	cluster	by	default.	If	you	do	not	define	a	cluster
in	the	command	and	a	cluster	of	this	name	does	not	exist,	OrientDB	creates	one.	The	new	cluster	has	the	same	name	as	the	class,	but	in
lower-case.

When	working	with	multiple	cores,	it	is	recommended	that	you	use	multiple	clusters	to	improve	concurrency	during	inserts.	To	change
the	number	of	clusters	created	by	default,		ALTER	DATABASE		command	to	update	the		minimumclusters		property.	Beginning	with	version
2.1,	you	can	also	define	the	number	of	clusters	you	want	to	create	using	the		CLUSTERS		option	when	you	create	the	class.

Examples

Create	the	class		Account	:

orientdb>	CREATE	CLASS	Account

Create	the	class		Car		to	extend		Vehicle	:

orientdb>	CREATE	CLASS	Car	EXTENDS	Vehicle

Create	the	class		Car	,	using	the	cluster	ID	of		10	:

orientdb>	CREATE	CLASS	Car	CLUSTER	10

Create	the	class		Person		as	an	abstract	class:

orientdb>	CREATE	CLASS	Person	ABSTRACT

Cluster	Selection	Strategies
When	you	create	a	class,	it	inherits	the	cluster	selection	strategy	defined	at	the	database-level.	By	default	this	is	set	to	round-robin.	You
can	change	the	database	default	using	the		ALTER	DATABASE		command	and	the	selection	strategy	for	the	class	using	the		ALTER	CLASS	
command.

Supported	Strategies:

Create	Class

583



Strategy Description

	default	
Selects	the	cluster	using	the	class	property		defaultClusterId	.	This	was	the	default	selection	strategy	before
version	1.7.

	round-

robin	
Selects	the	next	cluster	in	a	circular	order,	restarting	once	complete.

	balanced	

Selects	the	smallest	cluster.	Allows	the	class	to	have	all	underlying	clusters	balanced	on	size.	When	adding	a	new
cluster	to	an	existing	class,	it	fills	the	new	cluster	first.	When	using	a	distributed	database,	this	keeps	the	servers
balanced	with	the	same	amount	of	data.	It	calculates	the	cluster	size	every	five	seconds	or	more	to	avoid	slow-
downs	on	insertion.

For	more	information,	see

	ALTER	CLASS	

	DROP	CLASS	

	CREATE	CLUSTER	

SQL	Commands
Console	Commands

Create	Class

584



SQL	-		CREATE	CLUSTER	
Creates	a	new	cluster	in	the	database.	Once	created,	you	can	use	the	cluster	to	save	records	by	specifying	its	name	during	saves.	If	you
want	to	add	the	new	cluster	to	a	class,	follow	its	creation	with	the		ALTER	CLASS		command,	using	the		ADDCLUSTER		option.

Syntax

CREATE	CLUSTER	<cluster>	[ID	<cluster-id>]

	<cluster>		Defines	the	name	of	the	cluster	you	want	to	create.	You	must	use	a	letter	for	the	first	character,	for	all	other	characters,
you	can	use	alphanumeric	characters,	underscores	and	dashes.
	<cluster-id>		Defines	the	numeric	ID	you	want	to	use	for	the	cluster.

Examples

Create	the	cluster		account	:

orientdb>	CREATE	CLUSTER	account

For	more	information	see,

	DROP	CLUSTER	

SQL	Commands
Console	Commands

Create	Cluster

585



SQL	-		CREATE	EDGE	
Creates	a	new	edge	in	the	database.

Syntax

CREATE	EDGE	<class>	[CLUSTER	<cluster>]	FROM	<rid>|(<query>)|[<rid>]*	TO	<rid>|(<query>)|[<rid>]*

																				[SET	<field>	=	<expression>[,]*]|CONTENT	{<JSON>}

																				[RETRY	<retry>	[WAIT	<pauseBetweenRetriesInMs]]	[BATCH	<batch-size>]

	<class>		Defines	the	class	name	for	the	edge.	Use	the	default	edge	class		E		in	the	event	that	you	don't	want	to	use	sub-types.
	<cluster>		Defines	the	cluster	in	which	you	want	to	store	the	edge.
	JSON		Provides	JSON	content	to	set	as	the	record.	Use	this	instead	of	entering	data	field	by	field.
	RETRY		Define	the	number	of	retries	to	attempt	in	the	event	of	conflict,	(optimistic	approach).
	WAIT		Defines	the	time	to	delay	between	retries	in	milliseconds.
	BATCH		Defines	whether	it	breaks	the	command	down	into	smaller	blocks	and	the	size	of	the	batches.	This	helps	to	avoid	memory
issues	when	the	number	of	vertices	is	too	high.	By	default,	it	is	set	to		100	.	This	feature	was	introduced	in	version	2.1.3.

Edges	and	Vertices	form	the	main	components	of	a	Graph	database.	OrientDB	supports	polymorphism	on	edges.	The	base	class	for	an
edge	is		E	.

Beginning	with	version	2.1,	when	no	edges	are	created	OrientDB	throws	a		OCommandExecutionException		error.	This	makes	it	easier	to
integrate	edge	creation	in	transactions.	In	such	cases,	if	the	source	or	target	vertices	don't	exist,	it	rolls	back	the	transaction.	(Prior	to	2.1,
no	such	error	is	thrown.)

Examples

Create	an	edge	of	the	class		E		between	two	vertices:

orientdb>	CREATE	EDGE	FROM	#10:3	TO	#11:4

Create	a	new	edge	type	and	an	edge	of	the	new	type:

orientdb>	CREATE	CLASS	E1	EXTENDS	E

orientdb>	CREATE	EDGE	E1	FROM	#10:3	TO	#11:4

Create	an	edge	in	a	specific	cluster:

orientdb>	CREATE	EDGE	E1	CLUSTER	EuropeEdges	FROM	#10:3	TO	#11:4

Create	an	edge	and	define	its	properties:

orientdb>	CREATE	EDGE	FROM	#10:3	TO	#11:4	SET	brand	=	'fiat'

Create	an	edge	of	the	type		E1		and	define	its	properties:

orientdb>	CREATE	EDGE	E1	FROM	#10:3	TO	#11:4	SET	brand	=	'fiat',	name	=	'wow'

Create	edges	of	the	type		Watched		between	all	action	movies	in	the	database	and	the	user	Luca,	using	sub-queries:

orientdb>	CREATE	EDGE	Watched	FROM	(SELECT	FROM	account	WHERE	name	=	'Luca')	TO	

										(SELECT	FROM	movies	WHERE	type.name	=	'action')

Create	an	edge	using	JSON	content:

Create	Edge

586



orientdb>	CREATE	EDGE	E	FROM	#22:33	TO	#22:55	CONTENT	{	"name":	"Jay",	

										"surname":	"Miner"	}

For	more	information,	see

	CREATE	VERTEX	

Control	Vertices	Version	Increment
Creating	and	deleting	edges	causes	OrientDB	to	update	versions	involved	in	the	vertices.	To	avoid	this	behavior,	use	the	Bonsai
Structure.

By	default,	OrientDB	uses	Bonsai	as	soon	as	it	reaches	the	threshold	to	optimize	operation.	To	always	use	Bonsai	on	your	database,
either	set	this	configuration	on	the	JVM	or	in	the		orientdb-server-config.xml		configuration	file.

$	java	-DridBag.embeddedToSbtreeBonsaiThreshold=-1

Alternatively,	in	your	Java	application	use	the	following	call	before	opening	the	database:

OGlobalConfiguration.RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD.setValue(-1);

For	more	information,	see	Concurrency	on	Adding	Edges.

When	running	a	distributed	database,	edge	creation	can	sometimes	be	done	in	two	steps,	(that	is,	create	and
update).	This	can	break	some	constraints	defined	in	the	Edge	at	the	class-level.	To	avoid	such	problems,	disable

the	constraints	in	the	Edge	class.	Bear	in	mind	that	in	distributed	mode	SB	Tree	index	algorithm	is	not
supported.	You	must	set		ridBag.embeddedToSbtreeBonsaiThreashold=Integer.Max\_VALUE		to	avoid	replication	errrors

History

2.0

Disables	Lightweight	Edges	in	new	databases	by	default.	This	command	now	creates	a	regular	edge.

1.4

Command	uses	the	Blueprints	API.	If	you	are	in	Java	using	the		OGraphDatabase		API,	you	may	experience	some	differences	in
how	OrientDB	manages	edges.

To	force	the	command	to	work	with	the	older	API,	change	the	GraphDB	settings,	as	described	in	Graph	backwards
compatibility.

1.2

Implements	support	for	query	and	collection	of	Record	ID's	in	the		FROM...TO		clause.

1.1

Initial	version.

Create	Edge

587



SQL	-		CREATE	FUNCTION	
Creates	a	new	Server-side	function.	You	can	execute	Functions	from	SQL,	HTTP	and	Java.

Syntax

CREATE	FUNCTION	<name>	<code>

																[PARAMETERS	[<comma-separated	list	of	parameters'	name>]]

																[IDEMPOTENT	true|false]

																[LANGUAGE	<language>]

	<name>		Defines	the	function	name.
	<code>		Defines	the	function	code.
	PARAMETERS		Defines	a	comma-separated	list	of	parameters	bound	to	the	execution	heap.	You	must	wrap	your	parameters	list	in
square	brackets	[].
	IDEMPOTENT		Defines	whether	the	function	can	change	the	database	status.	This	is	useful	given	that	HTTP	GET	can	call
	IDEMPOTENT		functions,	while	others	are	called	by	HTTP	POST.	By	default,	it	is	set	to		FALSE	.
	LANGUAGE		Defines	the	language	to	use.	By	default,	it	is	set	to	JavaScript.

Examples

Create	a	function		test()		in	JavaScript,	which	takes	no	parameters:

orientdb>	CREATE	FUNCTION	test	"print('\nTest!')"

Create	a	function		test(a,b)		in	JavaScript,	which	takes	2	parameters:

orientdb>	CREATE	FUNCTION	test	"return	a	+	b;"	PARAMETERS	[a,b]

Create	a	function		allUsersButAdmin		in	SQL,	which	takes	with	no	parameters:

orientdb>	CREATE	FUNCTION	allUsersButAdmin	"SELECT	FROM	ouser	WHERE	name	<>	

										'admin'"	LANGUAGE	SQL

For	more	information,	see

Functions
SQL	Commands
Console	Commands

Create	Function

588



SQL	-		CREATE	INDEX	
Creates	a	new	index.	Indexes	can	be

Unique	Where	they	don't	allow	duplicates.
Not	Unique	Where	they	allow	duplicates.
Full	Text	Where	they	index	any	single	word	of	text.

There	are	several	index	algorithms	available	to	determine	how	OrientDB	indexes	your	database.	For	more	information	on	these,
see	Indexes.

Syntax

CREATE	INDEX	<name>	[ON	<class>	(<property>)]	<index-type>	[<key-type>]

													METADATA	[{<json>}]

	<name>		Defines	the	logical	name	for	the	index.	If	a	schema	already	exists,	you	can	use		<class>.<property>		to	create	automatic
indexes	bound	to	the	schema	property.	Because	of	this,	you	cannot	use	the	period	"	.	"	character	in	index	names.
	<class>		Defines	the	class	to	create	an	automatic	index	for.	The	class	must	already	exist.
	<property>		Defines	the	property	you	want	to	automatically	index.	The	property	must	already	exist.

If	the	property	is	one	of	the	Map	types,	such	as		LINKMAP		or		EMBEDDEDMAP	,	you	can	specify	the	keys	or	values	to	use	in
index	generation,	using	the		BY	KEY		or		BY	VALUE		clause.

	<index-type>		Defines	the	index	type	you	want	to	use.	For	a	complete	list,	see	Indexes.

	<key-type>		Defines	the	key	type.	With	automatic	indexes,	the	key	type	is	automatically	selected	when	the	database	reads	the
target	schema	property.	For	manual	indexes,	when	not	specified,	it	selects	the	key	at	run-time	during	the	first	insertion	by	reading
the	type	of	the	class.	In	creating	composite	indexes,	it	uses	a	comma-separated	list	of	types.
	METADATA		Defines	additional	metadata	through	JSON.

To	create	an	automatic	index	bound	to	the	schema	property,	use	the		ON		clause,	or	use	a		<class>.<property>		name	for	the	index.	In
order	to	create	an	index,	the	schema	must	already	exist	in	your	database.

In	the	event	that	the		ON		and		<key-type>		clauses	both	exist,	the	database	validates	the	specified	property	types.	If	the	property
types	don't	equal	those	specified	in	the	key	type	list,	it	throws	an	exception.

You	can	use	list	key	types	when	creating	manual	composite	indexes,	but	bear	in	mind	that	such	indexes	are	not	yet	fully
supported.

Examples

Create	a	manual	index	to	store	dates:

orientdb>	CREATE	INDEX	mostRecentRecords	UNIQUE	DATE

Create	an	automatic	index	bound	to	the	new	property		id		in	the	class		User	:

orientdb>	CREATE	PROPERTY	User.id	BINARY

orientdb>	CREATE	INDEX	User.id	UNIQUE

Create	a	series	automatic	indexes	for	the		thumbs		property	in	the	class		Movie	:

orientdb>	CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs)	UNIQUE

orientdb>	CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs	BY	KEY)	UNIQUE

orientdb>	CREATE	INDEX	thumbsValue	ON	Movie	(thumbs	BY	VALUE)	UNIQUE

Create	a	series	of	properties	and	on	them	create	a	composite	index:

Create	Index

589



orientdb>	CREATE	PROPERTY	Book.author	STRING

orientdb>	CREATE	PROPERTY	Book.title	STRING

orientdb>	CREATE	PROPERTY	Book.publicationYears	EMBEDDEDLIST	INTEGER

orientdb>	CREATE	INDEX	books	ON	Book	(author,	title,	publicationYears)	UNIQUE

Create	an	index	on	an	edge's	date	range:

orientdb>	CREATE	CLASS	File	EXTENDS	V

orientdb>	CREATE	CLASS	Has	EXTENDS	E

orientdb>	CREATE	PROPERTY	Has.started	DATETIME

orientdb>	CREATE	PROPERTY	Has.ended	DATETIME

orientdb>	CREATE	INDEX	Has.started_ended	ON	Has	(started,	ended)	NOTUNIQUE

You	can	create	indexes	on	edge	classes	only	if	they	contain	the	begin	and	end	date	range	of	validity.	This	is	use	case	is	very
common	with	historical	graphs,	such	as	the	example	above.

Using	the	above	index,	retrieve	all	the	edges	that	existed	in	the	year	2014:

orientdb>	SELECT	FROM	Has	WHERE	started	>=	'2014-01-01	00:00:00.000'	AND	

										ended	<	'2015-01-01	00:00:00.000'

Using	the	above	index,	retrieve	all	edges	that	existed	in	2014	and	write	them	to	the	parent	file:

orientdb>	SELECT	outV()	FROM	Has	WHERE	started	>=	'2014-01-01	00:00:00.000'	

										AND	ended	<	'2015-01-01	00:00:00.000'

Using	the	above	index,	retrieve	all	the	2014	edges	and	connect	them	to	children	files:

orientdb>	SELECT	inV()	FROM	Has	WHERE	started	>=	'2014-01-01	00:00:00.000'	

										AND	ended	<	'2015-01-01	00:00:00.000'

Create	an	index	that	includes	null	values.

By	default,	indexes	ignore	null	values.	Queries	against	null	values	that	use	an	index	returns	no	entries.	To	index	null	values,	see		{
ignoreNullValues:	false	}		as	metadata.

orientdb>	CREATE	INDEX	addresses	ON	Employee	(address)	NOTUNIQUE

											METADATA	{	ignoreNullValues	:	false	}

For	more	information,	see

	DROP	INDEX	

Indexes
SQL	commands

Create	Index

590



SQL	-		CREATE	LINK	
Creates	a	link	between	two	simple	values.

Syntax

CREATE	LINK	<link>	TYPE	[<link-type>]	FROM	<source-class>.<source-property>	TO	<destination-class>.<destination-property>	[INV

ERSE]

	<link	>	Defines	the	property	for	the	link.	When	not	expressed,	the	link	overwrites	the		<destination-property>		field.
	<link-type>		Defines	the	type	for	the	link.	In	the	event	of	an	inverse	relationship,	(the	most	common),	you	can	specify		LINKSET	
or		LINKLIST		for	1-n	relationships.
	<source-class>		Defines	the	class	to	link	from.
	<source-property>		Defines	the	property	to	link	from.
	<destination-class>		Defines	the	class	to	link	to.
	<destination-property>		Defines	the	property	to	link	to.
	INVERSE		Defines	whether	to	create	a	connection	on	the	opposite	direction.	This	option	is	common	when	creating	1-n	relationships
from	a	Relational	database,	where	they	are	mapped	at	the	opposite	direction.

Example

Create	an	inverse	link	between	the	classes		Comments		and		Post	:

	orientdb>	CREATE	LINK	comments	TYPE	LINKSET	FROM	Comments.PostId	TO	Posts.Id	

											INVERSE

	

For	more	information,	see

Relationships
Importing	from	Relational	Databases
SQL	Commands

Conversion	from	Relational	Databases

You	may	find	this	useful	when	imported	data	from	a	Relational	database.	In	the	Relational	world,	the	database	uses	links	to	resolve
foreign	keys.	In	general,	this	is	not	the	way	to	create	links,	but	rather	a	way	to	convert	two	values	in	two	different	classes	into	a	link.

As	an	example,	consider	a	Relational	database	where	the	table		Post		has	a	1-n	relationship	with	the	table		Comment	.	That	is		Post	1	---
>	*	Comment	,	such	as:

Create	Link

591



reldb>	SELECT	*	FROM	Post;

+----+----------------+

|	Id	|	Title										|

+----+----------------+

|	10	|	NoSQL	movement	|

+----+----------------+

|	20	|	New	OrientDB			|

+----+----------------+

reldb>	SELECT	*	FROM	Comment;

+----+--------+--------------+

|	Id	|	PostID	|	Text									|

+----+--------+--------------+

|		0	|	10					|	First								|

+----+--------+--------------+

|		1	|	10					|	Second							|

+----+--------+--------------+

|	21	|	10					|	Another						|

+----+--------+--------------+

|	41	|	20					|	First	again		|

+----+--------+--------------+

|	82	|	20					|	Second	Again	|

+----+--------+--------------+

In	OrientDB,	instead	of	a	separate	table	for	the	relationship,	you	use	a	direct	relationship	as	your	object	model.	Meaning	that	the
database	navigates	from		Post		to		Comment		and	not	vice	versa,	as	with	Relational	databases.	To	do	so,	you	would	also	need	to	create
the	link	with	the		INVERSE		option.

Create	Link

592



SQL	-		CREATE	PROPERTY	
Creates	a	new	property	in	the	schema.	It	requires	that	the	class	for	the	property	already	exist	on	the	database.

Syntax

CREATE	PROPERTY	<class>.<property>	<type>	[<link-type>|<link-class>]	[UNSAFE]

	<class>		Defines	the	class	for	the	new	property.
	<property>		Defines	the	logical	name	for	the	property.
	<type>		Defines	the	property	data	type.	For	supported	types,	see	the	table	below.
	<link-type>		Defines	the	contained	type	for	container	property	data	types.	For	supported	link	types,	see	the	table	below.
	<link-class>		Defines	the	contained	class	for	container	property	data	types.	For	supported	link	types,	see	the	table	below.
	UNSAFE		Defines	whether	it	checks	existing	records.	On	larger	databases,	with	millions	of	records,	this	could	take	a	great	deal	of
time.	Skip	the	check	when	you	are	sure	the	property	is	new.	Introduced	in	version	2.0.

When	you	create	a	property,	OrientDB	checks	the	data	for	property	and	type.	In	the	event	that	persistent	data	contains
incompatible	values	for	the	specified	type,	the	property	creation	fails.	It	applies	no	other	constraints	on	the	persistent	data.

Examples

Create	the	property		name		of	the	string	type	in	the	class		User	:

orientdb>	CREATE	PROPERTY	User.name	STRING

Create	a	property	formed	from	a	list	of	strings	called		tags		in	the	class		Profile	:

orientdb>	CREATE	PROPERTY	Profile.tags	EMBEDDEDLIST	STRING

Create	the	property		friends	,	as	an	embedded	map	in	a	circular	reference:

orientdb>	CREATE	PROPERTY	Profile.friends	EMBEDDEDMAP	Profile

For	more	information,	see

	DROP	PROPERTY	

SQL	Commands
Console	Commands

Supported	Types
OrientDB	supports	the	following	data	types	for	standard	properties:

	BOOLEAN	 	SHORT	 	DATE	 	BYTE	

	INTEGER	 	LONG	 	STRING	 	LINK	

	DOUBLE	 	FLOAT	 	BINARY	 	EMBEDDED	

It	supports	the	following	data	types	for	container	properties.

	EMBEDDEDLIST	 	EMBEDDEDSET	 	EMBEDDEDMAP	

	LINKLIST	 	LINKSET	 	LINKMAP	

For	these	data	types,	you	can	optionally	define	the	contained	type	and	class.	The	supported	link	types	are	the	same	as	the	standard
property	data	types	above.

Create	Property

593



Create	Property

594



SQL	-		CREATE	SEQUENCE	
Creates	a	new	sequence.	Command	introduced	in	version	2.2.

Syntax

CREATE	SEQUENCE	<sequence>	TYPE	<CACHED|ORDERED>	[START	<start>]	

[INCREMENT	<increment>]	[CACHE	<cache>]

	<sequence>		Logical	name	for	the	sequence	to	cache.
	TYPE		Defines	the	sequence	type.	Supported	types	are,

	CACHED		For	sequences	where	it	caches	N	items	on	each	node	to	improve	performance	when	you	require	many	calls	to	the
	.next()		method.	(Bear	in	mind,	this	many	create	holes	with	numeration).
	ORDERED		For	sequences	where	it	draws	on	a	new	value	with	each	call	to	the		.next()		method.

	START		Defines	the	initial	value	of	the	sequence.
	INCREMENT		Defines	the	increment	for	each	call	of	the		.next()		method.
	CACHE		Defines	the	number	of	value	to	pre-cache,	in	the	event	that	you	use	the	cached	sequence	type.

Examples

Create	a	new	sequence	to	handle	id	numbers:

orientdb>	CREATE	SEQUENCE	idseq	TYPE	ORDERED

Use	the	new	sequence	to	insert	id	values

orientdb>	INSERT	INTO	Account	SET	id	=	sequence('idseq').next()

For	more	information,	see

	ALTER	SEQUENCE	

DROP	SEQUENCE
Sequences	and	Auto-increment
SQL	commands.

Create	Sequence

595



SQL	-		CREATE	USER	
Creates	a	user	in	the	current	database,	using	the	specified	password	and	an	optional	role.	When	the	role	is	unspecified,	it	defaults	to
	writer	.

The	command	was	introduced	in	version	2.2.	It	is	a	simple	wrapper	around	the		OUser		and		ORole		classes.	More	information	is
available	at	Security.

Syntax

CREATE	USER	<user>	IDENTIFIED	BY	<password>	[ROLE	<role>]

	<user>		Defines	the	logical	name	of	the	user	you	want	to	create.
	<password>		Defines	the	password	to	use	for	this	user.
	ROLE		Defines	the	role	you	want	to	set	for	the	user.	For	multiple	roles,	use	the	following	syntax:		['author',	'writer']	.

Examples

Create	a	new	admin	user	called		Foo		with	the	password		bar	:

orientdb>	CREATE	USER	Foo	IDENTIFIED	BY	bar	ROLE	admin

Create	a	new	user	called		Bar		with	the	password		foo	:

orientdb>	CREATE	USER	Bar	IDENTIFIED	BY	Foo

For	more	information,	see

Security
	DROP	USER	

SQL	Commands

Create	User

596



SQL	-		CREATE	VERTEX	
Creates	a	new	vertex	in	the	database.

The	Vertex	and	Edge	are	the	main	components	of	a	Graph	database.	OrientDB	supports	polymorphism	on	vertices.	The	base	class	for	a
vertex	is		V	.

Syntax

CREATE	VERTEX	[<class>]	[CLUSTER	<cluster>]	[SET	<field>	=	<expression>[,]*]

	<class>		Defines	the	class	to	which	the	vertex	belongs.
	<cluster>		Defines	the	cluster	in	which	it	stores	the	vertex.
	<field>		Defines	the	field	you	want	to	set.
	<expression>		Defines	the	express	to	set	for	the	field.

|----|----|	|	 	|	NOTE:	When	using	a	distributed	database,	you	can	create	vertexes	through	two	steps	(creation
and	update).	Doing	so	can	break	constraints	defined	at	the	class-level	for	vertices.	To	avoid	these	issues,	disable	constraints	in	the	vertex
class.|

Examples

Create	a	new	vertex	on	the	base	class		V	:

orientdb>	CREATE	VERTEX

Create	a	new	vertex	class,	then	create	a	vertex	in	that	class:

orientdb>	CREATE	CLASS	V1	EXTENDS	V

orientdb>	CREATE	VERTEX	V1

Create	a	new	vertex	within	a	particular	cluster:

orientdb>	CREATE	VERTEX	V1	CLUSTER	recent

Create	a	new	vertex,	defining	its	properties:

orientdb>	CREATE	VERTEX	SET	brand	=	'fiat'

Create	a	new	vertex	of	the	class		V1	,	defining	its	properties:

orientdb>	CREATE	VERTEX	V1	SET	brand	=	'fiat',	name	=	'wow'

Create	a	vertex	using	JSON	content:

orientdb>	CREATE	VERTEX	Employee	CONTENT	{	"name"	:	"Jay",	"surname"	:	"Miner"	}

Create	Vertex

597



For	more	information,	see

	CREATE	EDGE	

SQL	Commands

History

1.4

Command	begins	using	the	Blueprints	API.	When	using	Java	with	the	OGraphDatabase	API,	you	may	experience	unexpected
results	in	how	it	manages	edges.

To	force	the	command	to	work	with	the	older	API,	update	the	GraphDB	settings,	use	the		ALTER	DATABASE		command.

1.1

Initial	implementation	of	feature.

Create	Vertex

598



SQL	-		MOVE	VERTEX	
Moves	one	or	more	vertices	into	a	different	class	or	cluster.

Following	the	move,	the	vertices	use	a	different	Record	ID.	The	command	updates	all	edges	to	use	the	moved	vertices.	When	using	a
distributed	database,	if	you	specify	a	cluster,	it	moves	the	vertices	to	the	server	owner	of	the	target	cluster.

Syntax

MOVE	VERTEX	<source>	TO	<destination>	[SET	[<field>=<value>]*	[,]]	[MERGE	<JSON>]	

[BATCH	<batch-size>]

	<source>		Defines	the	vertex	you	want	to	move.	It	supports	the	following	values,
Vertex	Using	the	Record	ID	of	a	single	vertex.
Array	Using	an	array	of	record	ID's	for	vertices	you	want	to	move.

	<destination>		Defines	where	you	want	to	move	the	vertex	to.	It	supports	the	following	values,
Class	Using		CLASS:<class>		with	the	class	you	want	to	move	the	vertex	into.
Cluster	Using		CLUSTER:<cluster>		with	the	cluster	you	want	to	move	the	vertex	into.

	SET		Clause	to	set	values	on	fields	during	the	transition.
	MERGE		Clause	to	set	values	on	fields	during	the	transition,	through	JSON.
	BATCH		Defines	the	batch	size,	allowing	you	to	execute	the	command	in	smaller	blocks	to	avoid	memory	problems	when	moving	a
large	number	of	vertices.

WARNING:	This	command	updates	all	connected	edges,	but	not	the	links.	When	using	the	Graph	API,
it	is	recommend	that	you	always	use	edges	connected	to	vertices	and	never	links.

Examples

Move	a	single	vertex	from	its	current	position	to	the	class		Provider	:

orientdb>	MOVE	VERTEX	#34:232	TO	CLASS:Provider

Move	an	array	of	vertices	by	their	record	ID's	to	the	class		Provider	:

orientdb>	MOVE	VERTEX	[#34:232,#34:444]	TO	CLASS:Provider

Move	a	set	of	vertices	to	the	class		Provider	,	defining	those	you	want	to	move	with	a	subquery:

orientdb>	MOVE	VERTEX	(SELECT	FROM	V	WHERE	city	=	'Rome')	TO	CLASS:Provider

Move	a	vertex	from	its	current	position	to	the	European	cluster

orientdb>	MOVE	VERTEX	#3:33	TO	CLUSTER:providers_europe

You	may	find	this	useful	when	using	a	distributed	database,	where	you	can	move	vertices	onto	different	servers.

Move	a	set	of	vertices	to	the	class		Provider	,	while	doing	so	update	the	property		movedOn		to	the	current	date:

orientdb>	MOVE	VERTEX	(SELECT	FROM	V	WHERE	type	=	'provider')	TO	CLASS:Provider	

										SET	movedOn	=	Date()

Note	the	similarities	this	syntax	has	with	the		UPDATE		command.

Move	Vertex

599



Move	the	vertex	using	a	subquery,	using	JSON	update	the	properties	during	the	transition:

orientdb>	MOVE	VERTEX	(SELECT	FROM	User)	TO	CLUSTER:users_europe	BATCH	50

Move	the	same	vertices	as	above	using	only	one	transaction:

		orientdb>	MOVE	VERTEX	(SELECT	FROM	User)	TO	CLUSTER:users_europe	BATCH	-1

		

For	more	information,	see

	CREATE	VERTEX	

	CREATE	EDGE	

SQL	Commands

Use	Cases

Refactoring	Graphs	through	Sub-types

It's	a	very	common	situation	where	you	begin	modeling	your	domain	one	way,	but	find	later	that	you	need	more	flexibility.

For	instance,	say	that	you	start	out	with	a	vertex	class	called		Person	.	After	using	the	database	for	several	months,	populating	it	with
new	vertices,	you	decide	that	you	need	to	split	these	vertices	into	two	new	classes,	or	sub-types,	called		Customer		and		Provider	,
(rendering		Person		into	an	abstract	class).

Create	the	new	classes	for	your	sub-types:

orientdb>	CREATE	CLASS	Customer	EXTENDS	Person

orientdb>	CREATE	CLASS	Provider	EXTENDS	Person

Move	the	providers	and	customers	from		Person		into	their	respective	sub-types:

orientdb>	MOVE	VERTEX	(SELECT	FROM	Person	WHERE	type	=	'Customer')	TO	

										CLASS:Customer

orientdb>	MOVE	VERTEX	(SELECT	FROM	Person	WHERE	type	=	'Provider')	TO	

										CLASS:Provider

Make	the	class		Person		an	abstract	class:

orientdb>	ALTER	CLASS	Person	ABSTRACT	TRUE

Moving	Vertices	onto	Different	Servers

With	OrientDB,	you	can	scale	your	infrastructure	up	by	adding	new	servers.	When	you	add	a	new	server,	OrientDB	automatically
creates	a	new	cluster	with	the	name	of	the	class	plus	the	node	name.	For	instance,		customer_europe	.

The	best	practice	when	you	need	to	scale	up	is	partitioning,	especially	on	writes.	If	you	have	a	graph	with		Customer		vertices	and	you
want	to	move	some	of	these	onto	a	different	server,	you	can	move	them	to	the	cluster	owned	by	the	server.

For	instance,	move	all	customers	that	live	in	Italy,	Germany	or	the	United	Kingdom	onto	the	cluster		customer_europe	,	which	is
assigned	to	the	node		Europe	.	This	means	that	access	to	European	customers	is	faster	with	applications	connected	to	the	European
node.

orientdb>	MOVE	VERTEX	(SELECT	FROM	Customer	WHERE	['Italy',	'Germany',	'UK']	IN	

										out('city').out('country')	)	TO	CLUSTER:customer_europe

Move	Vertex

600



History

2.0

Initial	implementation	of	the	feature.

Move	Vertex

601



SQL	-		UPDATE	EDGE	
Updates	edge	records	in	the	current	database.	This	is	the	equivalent	of	the		UPDATE		command,	with	the	addition	of	checking	and
maintaining	graph	consistency	with	vertices,	in	the	event	that	you	update	the		out		and		in		properties.

Bear	in	mind	that	OrientDB	can	also	work	in	schema-less	mode,	allowing	you	to	create	fields	on	the	fly.	Furthermore,	that	it	works	on
collections	and	necessarily	includes	some	extensions	to	the	standard	SQL	for	handling	collections.

This	command	was	introduced	in	version	2.2.

Syntax

UPDATE	EDGE	<edge>	

		[SET|INCREMENT|ADD|REMOVE|PUT	<field-name>	=	<field-value>[,]*]|[CONTENT|MERGE	<JSON>]

		[RETURN	<returning>	[<returning-expression>]]

		[WHERE	<conditions>]

		[LOCK	default|record]

		[LIMIT	<max-records>]	[TIMEOUT	<timeout>]

	<edge>		Defines	the	edge	that	you	want	to	update.	You	can	choose	between:
Class	Updating	edges	by	class.
Cluster	Updating	edges	by	cluster,	using		CLUSTER		prefix.
Record	ID	Updating	edges	by	Record	ID.

	SET		Updates	the	field	to	the	given	value.
	INCREMENT		Increments	the	given	field	by	the	value.
	ADD		Defines	an	item	to	add	to	a	collection	of	fields.
	REMOVE		Defines	an	item	to	remove	from	a	collection	of	fields.
	PUT		Defines	an	entry	to	put	into	a	map	field.
	RETURN		Defines	the	expression	you	want	to	return	after	running	the	update.

	COUNT		Returns	the	number	of	updated	records.	This	is	the	default	operator.
	BEFORE		Returns	the	records	before	the	update.
	AFTER		Returns	the	records	after	the	update.

	WHERE		Defines	the	filter	conditions.
	LOCK		Defines	how	the	record	locks	between	the	load	and	update.	You	can	choose	between	the	following	lock	strategies:

	DEFAULT		Disables	locking.	Use	this	in	the	event	of	concurrent	updates.	It	throws	an	exception	in	the	event	of	conflict.
	RECORD		Locks	the	record	during	the	update.

	LIMIT		Defines	the	maximum	number	of	records	to	update.

Examples

Change	the	edge	endpoint:

orientdb>	UPDATE	EDGE	Friend	SET	out	=	(SELECT	FROM	Person	WHERE	name	=	'John')	

										WHERE	foo	=	'bar'

For	more	information,	see

	UPDATE	

SQL	Commands

Update	edge

602



SQL	-		DELETE	EDGE	
Removes	edges	from	the	database.	This	is	the	equivalent	of	the		DELETE		command,	with	the	addition	of	checking	and	maintaining
consistency	with	vertices	by	removing	all	cross-references	to	the	edge	from	both	the		in		and		out		vertex	properties.

Syntax

DELETE	EDGE	

				(	<rid>

						|

						[<rid>	(,	<rid>)*]

						|

						(	[	FROM	(<rid>	|	<select_statement>	)	]	[	TO	(	<rid>	|	<select_statement>	)	]	)

						|

						[<class>]	

				(

				[WHERE	<conditions>]

				[LIMIT	<MaxRecords>]	

				[BATCH	<batch-size>]

	FROM		Defines	the	starting	point	vertex	of	the	edge	to	delete.
	TO		Defines	the	ending	point	vertex	of	the	edge	to	delete.
	WHERE		Defines	the	filtering	conditions.
	LIMIT		Defines	the	maximum	number	of	edges	to	delete.
	BATCH		Defines	the	block	size	for	the	operation,	allowing	you	to	break	large	transactions	down	into	smaller	units	to	reduce
resource	demands.	Its	default	is		100	.	Feature	introduced	in	2.1.

Examples

Delete	edges	where	the	data	is	a	property	that	might	exist	in	one	or	more	edges	between	two	vertices:

orientdb>	DELETE	EDGE	FROM	#11:101	TO	#11:117	WHERE	date	>=	"2012-01-15"

Delete	edges	filtering	by	the	edge	class:

orientdb>	DELETE	EDGE	FROM	#11:101	TO	#11:117	WHERE	@class	=	'Owns'	AND	comment	

										LIKE	"regex	of	forbidden	words"

Delete	edge	filtering	by	the	edge	class	and	date:

orientdb>	DELETE	EDGE	Owns	WHERE	date	<	"2011-11"

Note	that	this	syntax	is	faster	than	filtering	the	class	through	the		WHERE		clause.

Delete	edges	where		in.price		shows	the	condition	on	the		to		vertex	for	the	edge:

orientdb>	DELETE	EDGE	Owns	WHERE	date	<	"2011-11"	AND	in.price	>=	202.43

Delete	edges	in	blocks	of	one	thousand	per	transaction.

orientdb>	DELETE	EDGE	Owns	WHERE	date	<	"2011-11"	BATCH	1000

This	feature	was	introduced	in	version	2.1.

For	more	information,	see

	DELETE	

SQL	Commands

Delete	Edge

603



Use	Cases

Controling	Vertex	Version	Increments

Creating	and	deleting	edges	causes	OrientDB	to	increment	versions	on	the	involved	vertices.	You	can	prevent	this	operation	by
implementing	the	Bonsai	Structure.

By	default,	OrientDB	only	uses	Bonsai	as	soon	as	it	reaches	the	threshold,	in	order	to	optimize	operation.	To	always	use	Bonsai,
configure	it	on	the	JVM	or	in	the		orientdb-server-config.xml		configuration	file.

$	javac	...	-DridBag.embeddedToSbtreeBonsaiThreshold=-1

To	implement	it	in	Java,	add	the	following	line	to	your	application	at	a	point	before	opening	the	database:

OGlobalConfiguration.RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD.setValue(-1);

For	more	information,	see	Concurrency	on	Adding	Edges.

NOTE:	When	using	a	distributed	database,	OrientDB	does	not	support	SBTree	indexes.	In	these
environments,	you	must	set		ridBag.embeddedToSbtreeBonsaiThreshold=Integer.MAX\_VALUE		to	avoid	replication

errors._

Deleting	Edges	from	a	Sub-query

Consider	a	situation	where	you	have	an	edge	with	a	Record	ID	of		#11:0		that	you	want	to	delete.	In	attempting	to	do	so,	you	run	the
following	query:

orientdb>	DELETE	EDGE	FROM	(SELECT	FROM	#11:0)

This	does	not	delete	the	edge.	To	delete	edges	using	sub-queries,	you	have	to	use	a	somewhat	different	syntax.	For	instance,

orientdb>	DELETE	EDGE	E	WHERE	@rid	IN	(SELECT	FROM	#11:0)

This	removes	the	edge	from	your	database.

Deleting	Edges	through	Java

When	a		User		node	follows	a		company		node,	we	create	an	edge	between	the	user	and	the	company	of	the	type		followCompany		and
	CompanyFollowedBy		classes.	We	can	then	remove	the	relevant	edges	through	Java.

node1	is	User	node,

node2	is	company	node

OGraphDatabase	rawGraph	=	orientGraph.getRawGraph();

String[]	arg={"followCompany,"CompanyFollowedBy"};

Set<OIdentifiable>	edges=rawGraph.getEdgesBetweenVertexes(node1,	node2,null,arg);

for	(OIdentifiable	oIdentifiable	:	edges)	{

				**rawGraph.removeEdge(oIdentifiable);

}

History

2.1

Implements	support	for	the	option		BATCH		clause

Delete	Edge

604



1.4

Command	implements	the	Blueprints	API.	In	the	event	that	you	are	working	in	Java	using	the	OGraphDatabase	API,	you	may
experience	some	unexpected	results	in	how	edges	are	managed	between	versions.	To	force	the	command	to	use	the	older	API,
change	the	GraphDB	settings,	as	described	on	the	[	ALTER	DATABASE	])SQL-Alter-Database.md)	command	examples.

1.1

First	implementation	of	the	feature.

Delete	Edge

605



SQL	-		DELETE	VERTEX	
Removes	vertices	from	the	database.	This	is	the	equivalent	of	the		DELETE		command,	with	the	addition	of	checking	and	maintaining
consistency	with	edges,	removing	all	cross-references	to	the	deleted	vertex	in	all	edges	involved.

Syntax

DELETE	VERTEX	<vertex>	[WHERE	<conditions>]	[LIMIT	<MaxRecords>>]	[BATCH	<batch-size>]

	<vertex>		Defines	the	vertex	that	you	want	to	remove,	using	its	Class,	Record	ID,	or	through	a	sub-query	using	the		FROM	(<sub-
query)		clause.
	WHERE		Filter	condition	to	determine	which	records	the	command	removes.
	LIMIT		Defines	the	maximum	number	of	records	to	remove.
	BATCH		Defines	how	many	records	the	command	removes	at	a	time,	allowing	you	to	break	large	transactions	into	smaller	blocks	to
save	on	memory	usage.	By	default,	it	operates	on	blocks	of	100.

Example

Remove	the	vertex	and	disconnect	all	vertices	that	point	towards	it:

orientdb>	DELETE	VERTEX	#10:231

Remove	all	user	accounts	marked	with	an	incoming	edge	on	the	class		BadBehaviorInForum	:

orientdb>	DELETE	VERTEX	Account	WHERE	in.@Class	CONTAINS	

										'BadBehaviorInForum'

Remove	all	vertices	from	the	class		EmailMessages		marked	with	the	property		isSpam	:

orientdb>	DELETE	VERTEX	EMailMessage	WHERE	isSpam	=	TRUE

Remove	vertices	of	the	class		Attachment	,	where	the	vertex	has	an	edge	of	the	class		HasAttachment		where	the	property		date		is
set	before	1990	and	the	vertex		Email		connected	to	class		Attachment		with	the	condition	that	its	property		from		is	set	to
	bob@example.com	:

orientdb>	DELETE	VERTEX	Attachment	WHERE	in[@Class	=	'HasAttachment'].date	

										<=	"1990"	AND	in.out[@Class	=	"Email"].from	=	'some...@example.com'

Remove	vertices	in	blocks	of	one	thousand:

orientdb>	DELETE	VERTEX	v	BATCH	1000

This	feature	was	introduced	in	version	2.1.

History

Version	2.1

Introduces	the	optional		BATCH		clause	for	managing	batch	size	on	the	operation.

Version	1.4

Command	begins	using	the	Blueprints	API.	When	working	in	Java	using	the	OGraphDatabase	API,	you	may	experience	differences

Delete	Vertex

606



in	how	the	database	manages	edges.	To	force	the	command	to	work	with	the	older	API,	change	the	Graph	DB	settings	using		ALTER
DATABASE	.

Version	1.1

Initial	version.

Delete	Vertex

607



SQL	-		DROP	CLASS	
Removes	a	class	from	the	schema.

Syntax

DROP	CLASS	<class>	[	UNSAFE	]

	<class>		Defines	the	class	you	want	to	remove.
	UNSAFE		Defines	whether	the	command	drops	non-empty	edge	and	vertex	classes.	Note,	this	can	disrupt	data	consistency.	Be	sure
to	create	a	backup	before	running	it.

NOTE:	Bear	in	mind,	that	the	schema	must	remain	coherent.	For	instance,	avoid	removing	calsses	that	are	super-classes	to
others.	This	operation	won't	delete	the	associated	cluster.

Examples

Remove	the	class		Account	:

orientdb>	DROP	CLASS	Account

For	more	information,	see

	CREATE	CLASS	

	ALTER	CLASS	

	ALTER	CLUSTER	

SQL	Commands
Console	Commands

Drop	Class

608



SQL	-		DROP	CLUSTER	
Removes	the	cluster	and	all	of	its	content.	This	operation	is	permanent	and	cannot	be	rolled	back.

Syntax

DROP	CLUSTER	<cluster-name>|<cluster-id>

	<cluster-name>		Defines	the	name	of	the	cluster	you	want	to	remove.
	<cluster-id>		Defines	the	ID	of	the	cluster	you	want	to	remove.

Examples

Remove	the	cluster		Account	:

orientdb>	DROP	CLUSTER	Account

For	more	information,	see

	CREATE	CLUSTER	

	ALTER	CLUSTER	

	DROP	CLASS	

SQL	Commands
Console	Commands

Drop	Cluster

609



SQL	-		DROP	INDEX	
Removes	an	index	from	a	property	defined	in	the	schema.

Syntax

DROP	INDEX	<index>|<class>.<property>

	<index>		Defines	the	name	of	the	index.
	<class>		Defines	the	class	the	index	uses.
	<property>		Defines	the	property	the	index	uses.

Examples

Remove	the	index	on	the		Id		property	of	the		Users		class:

orientdb>	DROP	INDEX	Users.Id

For	more	information,	see

	CREATE	INDEX	

Indexes
SQL	Commands

Drop	Index

610



SQL	-		DROP	PROPERTY	
Removes	a	property	from	the	schema.	Does	not	remove	the	property	values	in	the	records,	it	just	changes	the	schema	information.
Records	continue	to	have	the	property	values,	if	any.

Syntax

DROP	PROPERTY	<class>.<property>	[FORCE]

	<class>		Defines	the	class	where	the	property	exists.
	<property>		Defines	the	property	you	want	to	remove.
FORCE	In	case	one	or	more	indexes	are	defined	on	the	property,	the	command	will	throw	an	exception.	Use	FORCE	to	drop
indexes	together	with	the	property

Examples

Remove	the		name		property	from	the	class		User	:

orientdb>	DROP	PROPERTY	User.name

For	more	information,	see

	CREATE	PROPERTY	

SQL	Commands
Console	Commands

Drop	Property

611



SQL	-		DROP	SEQUENCE	
Removes	a	sequence.	This	feature	was	introduced	in	version	2.2.

Syntax

DROP	SEQUENCE	<sequence>

	<sequence>		Defines	the	name	of	the	sequence	you	want	to	remove.

Examples

Remove	the	sequence		idseq	:

orientdb>	DROP	SEQUENCE	idseq

For	more	information,	see

	CREATE	SEQUENCE	

	DROP	SEQUENCE	

Sequences	and	auto	increment
SQL	commands

Drop	Sequence

612



SQL	-		DROP	USER	
Removes	a	user	from	the	current	database.	This	feature	was	introduced	in	version	2.2

Syntax

DROP	USER	<user>

	<user>		Defines	the	user	you	want	to	remove.

NOTE:	This	is	a	wrapper	on	the	class		OUser	.	For	more	information,	see	Security.

Examples

Remove	the	user		Foo	:

orientdb>	DROP	USER	Foo

For	more	information,	see,

	CREATE	USER	

SQL	commands

Drop	User

613



SQL	-		EXPLAIN	
Profiles	any	command	and	returns	a	JSON	data	on	the	result	of	its	execution.	You	may	find	this	useful	to	see	why	queries	are	running
slow.	Use	it	as	a	keyword	before	any	command	that	you	want	to	profile.

Syntax

EXPLAIN	<command>

	<command>		Defines	the	command	that	you	want	to	profile.

Examples

Profile	a	query	that	executes	on	a	class	without	indexes:

orientdb>	EXPLAIN	SELECT	FROM	Account

Profiled	command	'{documentReads:1126,	documentReadsCompatibleClass:1126,	

recordReads:1126,	elapsed:209,	resultType:collection,	resultSize:1126}'	

in	0,212000	sec(s).

Profile	a	query	that	executes	on	a	class	with	indexes:

orientdb>	EXPLAIN	SELECT	FROM	Profile	WHERE	name	=	'Luca'

Profiled	command	'{involvedIndexes:[1],	indexReads:1,	resultType:collection

resultSize:1,	documentAnalyzedCompatibleClass:1,	elapsed:1}'	

in	0,002000	sec(s).

For	more	information,s	ee

SQL	Commands

Understanding	the	Profile
When	you	run	this	command,	it	returns	JSON	data	containing	all	of	the	following	profile	metrics:

Metric Description

	elapsed	 Time	to	execute	in	seconds.	The	precision	is	the	nanosecond.

	resultType	 The	result-type:		collection	,		document	,	or		number	.

	resultSize	 Number	of	records	retrieved,	in	cases	where	the	result-type	is		collection	.

	recordReads	 Number	of	records	read	from	disk.

	documentReads	

Number	of	documents	read	from	disk.	This	metric	may	differ	from		recordReads		in	the
event	that	other	kinds	of	records	are	present	in	the	command	target.	For	instance,	if	you
have	documents	and	recordbytes	in	the	same	cluster	it	may	skip	many	records.	That	said,
in	case	of	scans,	it	is	recommended	that	you	store	different	records	in	separate	clusters.

	documentAnalyzedCompatibleClass	

Number	of	documents	analyzed	in	the	class.	For	instance,	if	you	use	the	same	cluster	in
documents	for	the	classes		Account		and		Invoice	,	it	would	skip	records	of	the	class
	Invoice		when	you	target	the	class		Account	.	In	case	of	scans,	it	is	recommended	that
you	store	different	classes	in	separate	clusters.

	involvedIndexes	 Indexes	involved	in	the	command.

	indexReads	 Number	of	records	read	from	the	index.

Explain

614



SQL	-		FIND	REFERENCES	
Searches	records	in	the	database	that	contain	links	to	the	given	Record	ID	in	the	database	or	a	subset	of	the	specified	class	and	cluster,
returning	the	matching	Record	ID's.

Syntax

FIND	REFERENCES	<record-id>|(<sub-query>)	[class-list]

	<record-id>		Defines	the	Record	ID	you	want	to	find	links	to	in	the	database.
	<sub-query>		Defines	a	sub-query	for	the	Record	ID's	you	want	to	find	links	to	in	the	database.	This	feature	was	introduced	in
version	1.0rc9.
	<class-list>		Defines	a	comma-separated	list	of	classes	or	clusters	that	you	want	to	search.

This	command	returns	a	document	containing	two	fields:

Field Description

	rid	 Record	ID	searched.

	referredBy	
Set	of	Record	ID's	referenced	by	the	Record	ID	searched,	if	any.	In	the	event	that	no	records	reference	the
searched	Record	ID,	it	returns	an	empty	set.

Examples

Find	records	that	contain	a	link	to		#5:0	:

orientdb>	FIND	REFERENCES	5:0

RESULT:

------+-----------------

	rid		|	referredBy						

------+-----------------

	#5:0	|	[#10:23,	#30:4]	

------+-----------------

Find	references	to	the	default	cluster	record

orientdb>	FIND	REFERENCES	(SELECT	FROM	CLUSTER:default)

Find	all	records	in	the	classes		Profile		and		AnimalType		that	contain	a	link	to		#5:0	:

orientdb>		FIND	REFERENCES	5:0	[Profile,	AnimalType]

Find	all	records	in	the	cluster		profile		and	class		AnimalType		that	contain	a	link	to		#5:0	:

orientdb>	FIND	REFERENCES	5:0	[CLUSTER:profile,	AnimalType]

For	more	information,	see

SQL	Commands

Find	References

615



SQL	-		GRANT	
Changes	the	permission	of	a	role,	granting	it	access	to	one	or	more	resources.	To	remove	access	to	a	resource	from	the	role,	see	the
	REVOKE		command.

Syntax

GRANT	<permission>	ON	<resource>	TO	<role>

	<permission>		Defines	the	permission	you	want	to	grant	to	the	role.
	<resource>		Defines	the	resource	on	which	you	want	to	grant	the	permissions.
	<role>		Defines	the	role	you	want	to	grant	the	permissions.

Examples

Grant	permission	to	update	any	record	in	the	cluster		account		to	the	role		backoffice	:

orientdb>	GRANT	UPDATE	ON	database.cluster.account	TO	backoffice

For	more	information,	see

`REVOKE
SQL	Commands

Supported	Permissions

Using	this	command,	you	can	grant	the	following	permissions	to	a	role.

Permission Description

	NONE	 Grants	no	permissions	on	the	resource.

	CREATE	 Grants	create	permissions	on	the	resource,	such	as	the		CREATE	CLASS		or		CREATE	CLUSTER		commands.

	READ	 Grants	read	permissions	on	the	resource,	such	as	the		SELECT		query.

	UPDATE	 Grants	update	permissions	on	the	resource,	such	as	the		UPDATE		or		UPDATE	EDGE		commands.

	DELETE	 Grants	delete	permissions	on	the	resource,	such	as	the		DROP	INDEX		or		DROP	SEQUENCE		commands.

	ALL	 Grants	all	permissions	on	the	resource.

Supported	Resources

Using	this	command,	you	can	grant	permissions	on	the	following	resources.

Grant

616



Resource Description

	database	 Grants	access	on	the	current	database.

	database.class.

<class>	
Grants	access	on	records	contained	in	the	indicated	class.	Use		**		to	indicate	all	classes.

	database.cluster.

<cluster>	
Grants	access	to	records	contained	in	the	indicated	cluster.	Use		**		to	indicate	all	clusters.

	database.query	 Grants	the	ability	to	execute	a	query,	(	READ		is	sufficient).

	database.command.

<command>	

Grants	the	ability	to	execute	the	given	command.	Use		CREATE		for		INSERT	,		READ		for		SELECT	,
	UPDATE		for		UPDATE		and		DELETE		for		DELETE	.

	database.config.

<permission>	
Grants	access	to	the	configuration.	Valid	permissions	are		READ		and		UPDATE	.

	database.hook.record	 Grants	the	ability	to	set	hooks.

	server.admin	 Grants	the	ability	to	access	server	resources.

Grant

617



SQL	-		OPTIMIZE	DATABASE	
Optimizes	the	database	for	particular	operations.

Syntax

OPTIMIZE	DATABASE	[-lwedges]	[-noverbose]

	-lwedges		Converts	regular	edges	into	Lightweight	Edges.
	-noverbose		Disables	output.

Currently,	this	command	only	supports	optimization	for	Lightweight	Edges.	Additional	optimization	options	are	planned	for
future	releases	of	OrientDB.

Examples

Convert	regular	edges	into	Lightweight	Edges:

orientdb>	OPTIMIZE	DATABASE	-lwedges

For	more	information,	see

Lightweight	Edges
SQL	Commands
Console	Commands

Optimize	Database

618



SQL	-		REBUILD	INDEXES	
Rebuilds	automatic	indexes.

Syntax

REBUILD	INDEX	<index>

	<index>		Defines	the	index	that	you	want	to	rebuild.	Use		*		to	rebuild	all	automatic	indexes.

NOTE:	During	the	rebuild,	any	idempotent	queries	made	against	the	index,	skip	the	index	and	perform	sequential	scans.	This
means	that	queries	run	slower	during	this	operation.	Non-idempotent	commands,	such	as		INSERT	,		UPDATE	,	and		DELETE		are
blocked	waiting	until	the	indexes	are	rebuilt.

Examples

Rebuild	an	index	on	the		nick		property	on	the	class		Profile	:

orientdb>	REBUILD	INDEX	Profile.nick

Rebuild	all	indexes:

orientdb>	REBUILD	INDEX	*

For	more	information,	see

	CREATE	INDEX	

	DROP	INDEX	

Indexes
SQL	commands

Rebuild	Index

619



SQL	-		REVOKE	
Changes	permissions	of	a	role,	revoking	access	to	one	or	more	resources.	To	give	access	to	a	resource	to	the	role,	see	the		GRANT	
command.

Syntax

REVOKE	<permission>	ON	<resource>	FROM	<role>

	<permission>		Defines	the	permission	you	want	to	revoke	from	the	role.
	<resource>		Defines	the	resource	on	which	you	want	to	revoke	the	permissions.
	<role>		Defines	the	role	you	want	to	revoke	the	permissions.

Examples

Revoke	permission	to	delete	records	on	any	cluster	to	the	role		backoffice	:

orientdb>	REVOKE	DELETE	ON	database.cluster.*	TO	backoffice

For	more	information,	see

SQL	commands.

Supported	Permissions

Using	this	command,	you	can	grant	the	following	permissions	to	a	role.

Permission Description

	NONE	 Revokes	no	permissions	on	the	resource.

	CREATE	 Revokes	create	permissions	on	the	resource,	such	as	the		CREATE	CLASS		or		CREATE	CLUSTER		commands.

	READ	 Revokes	read	permissions	on	the	resource,	such	as	the		SELECT		query.

	UPDATE	 Revokes	update	permissions	on	the	resource,	such	as	the		UPDATE		or		UPDATE	EDGE		commands.

	DELETE	 Revokes	delete	permissions	on	the	resource,	such	as	the		DROP	INDEX		or		DROP	SEQUENCE		commands.

	ALL	 Revokes	all	permissions	on	the	resource.

Supported	Resources

Using	this	command,	you	can	grant	permissions	on	the	following	resources.

Revoke

620



Resource Description

	database	 Revokes	access	on	the	current	database.

	database.class.

<class>	
Revokes	access	on	records	contained	in	the	indicated	class.	Use		**		to	indicate	all	classes.

	database.cluster.

<cluster>	
Revokes	access	to	records	contained	in	the	indicated	cluster.	Use		**		to	indicate	all	clusters.

	database.query	 Revokes	the	ability	to	execute	a	query,	(	READ		is	sufficient).

	database.command.

<command>	

Revokes	the	ability	to	execute	the	given	command.	Use		CREATE		for		INSERT	,		READ		for		SELECT	,
	UPDATE		for		UPDATE		and		DELETE		for		DELETE	.

	database.config.

<permission>	
Revokes	access	to	the	configuration.	Valid	permissions	are		READ		and		UPDATE	.

	database.hook.record	 Revokes	the	ability	to	set	hooks.

	server.admin	 Revokes	the	ability	to	access	server	resources.

Revoke

621



SQL	-		TRAVERSE	
Retrieves	connected	records	crossing	relationships.	This	works	with	both	the	Document	and	Graph	API's,	meaning	that	you	can
traverse	relationships	between	say	invoices	and	customers	on	a	graph,	without	the	need	to	model	the	domain	using	the	Graph	API.

In	many	cases,	you	may	find	it	more	efficient	to	use		SELECT	,	which	can	result	in	shorter	and	faster	queries.
For	more	information,	see		TRAVERSE		versus		SELECT		below.

Syntax

TRAVERSE	<[class.]field>|*|any()|all()

									[FROM	<target>]

									[MAXDEPTH	<number>]

									WHILE	<condition>

									[LIMIT	<max-records>]

									[STRATEGY	<strategy>]

	<fields>		Defines	the	fields	you	want	to	traverse.
	<target>		Defines	the	target	you	want	to	traverse.	This	can	be	a	class,	one	or	more	clusters,	a	single	Record	ID,	set	of	Record	ID's,
or	a	sub-query.
	MAXDEPTH		Defines	the	maximum	depth	of	the	traversal.		0		indicates	that	you	only	want	to	traverse	the	root	node.	Negative	values
are	invalid.
	WHILE		Defines	the	condition	for	continuing	the	traversal	while	it	is	true.
	LIMIT		Defines	the	maximum	number	of	results	the	command	can	return.
	STRATEGY		Defines	strategy	for	traversing	the	graph.

NOTE:	The	use	of	the		WHERE		clause	has	been	deprecated	for	this	command.

Examples

In	a	social	network-like	domain,	a	user	profile	is	connected	to	friends	through	links.	The	following	examples	consider	common
operations	on	a	user	with	the	record	ID		#10:1234	.

Traverse	all	fields	in	the	root	record:

orientdb>	TRAVERSE	*	FROM	#10:1234

Specify	fields	and	depth	up	to	the	htird	level,	using	the		BREADTH_FIRST		strategy:

orientdb>	TRAVERSE	out("Friend")	FROM	#10:1234	WHILE	$depth	<=	3	

										STRATEGY	BREADTH_FIRST

Execute	the	same	command,	this	time	filtering	for	a	minimum	depth	to	exclude	the	first	target	vertex:

orientdb>	SELECT	FROM	(TRAVERSE	out("Friend")	FROM	#10:1234	WHILE	$depth	<=	3)	

										WHERE	$depth	>=	1

NOTE:	You	can	also	define	the	maximum	depth	in	the		SELECT		command,	but	it's	much	more	efficient	to	set	it	at	the	inner
	TRAVERSE		statement	because	the	returning	record	sets	are	already	filtered	by	depth.

Combine	traversal	with		SELECT		command	to	filter	the	result-set.	Repeat	the	above	example,	filtering	for	users	in	Rome:

orientdb>	SELECT	FROM	(TRAVERSE	out("Friend")	FROM	#10:1234	WHILE	$depth	<=	3)	

										WHERE	city	=	'Rome'

Traverse

622



Extract	movies	of	actors	that	have	worked,	at	least	once,	in	any	movie	produced	by	J.J.	Abrams:

orientdb>	SELECT	FROM	(TRAVERSE	out("Actors"),	out("Movies")	FROM	(SELECT	FROM	

										Movie	WHERE	producer	=	"J.J.	Abrams")	WHILE	$depth	<=	3)	WHERE	

										@class	=	'Movie'

Display	the	current	path	in	the	traversal:

orientdb>	SELECT	$path	FROM	(	TRAVERSE	out()	FROM	V	WHILE	$depth	<=	10	)

Supported	Variables

Fields

Defines	the	fields	that	you	want	to	traverse.	If	set	to		*	,		any()		or		all()		then	it	traverses	all	fields.	This	can	prove	costly	to
performance	and	resource	usage,	so	it	is	recommended	that	you	optimize	the	command	to	only	traverse	the	pertinent	fields.

In	addition	tot	his,	you	can	specify	the	fields	at	a	class-level.	Polymorphism	is	supported.	By	specifying		Person.city		and	the	class
	Customer		extends	person,	you	also	traverse	fields	in		Customer	.

Field	names	are	case-sensitive,	classes	not.

Target

Targets	for	traversal	can	be,

	<class>		Defines	the	class	that	you	want	to	traverse.
	CLUSTER:<cluster>		Defines	the	cluster	you	want	to	traverse.
	<record-id>		Individual	root	Record	ID	that	you	want	to	traverse.
	[<record-id>,<record-id>,...]		Set	of	Record	ID's	that	you	want	to	traverse.	This	is	useful	when	navigating	graphs	starting	from
the	same	root	nodes.

Context	Variables

In	addition	to	the	above,	you	can	use	the	following	context	variables	in	traversals:

	$parent		Gives	the	parent	context,	if	any.	You	may	find	this	useful	when	traversing	from	a	sub-query.
	$current		Gives	the	current	record	in	the	iteration.	To	get	the	upper-level	record	in	nested	queries,	you	can	use
	$parent.$current	.
	$depth		Gives	the	current	depth	of	nesting.
	$path		Gives	a	string	representation	of	the	current	path.	For	instance,		#5:0#.out	.	You	can	also	display	it	through		SELECT	:

orientdb>	SELECT	$path	FROM	(TRAVERSE	**	FROM	V)

	$stack		Gives	a	list	of	operations	in	the	stack.	Use	it	to	access	the	traversal	history.	It's	a		List<OTraverseAbstractProcess<?>>	,
where	the	process	implementations	are:

	OTraverseRecordSetProcess		The	base	target	of	traversal,	usually	the	first	given.
	OTraverseRecordProcess		The	traversed	record.
	OTraverseFieldProcess		The	traversal	through	the	record's	fields.
	OTraverseMultiValueProcess		Use	on	fields	that	are	multivalue,	such	as	arrays,	collections	and	maps.

	$history		Gives	a	set	of	records	traversed	as		SET<ORID>	.

Use	Cases

	TRAVERSE		versus		SELECT	

Traverse

623



When	you	already	know	traversal	information,	such	as	relationship	names	and	depth-level,	consider	using		SELECT		instead	of
	TRAVERSE		as	it	is	faster	in	some	cases.

For	example,	this	query	traverses	the		follow		relationship	on	Twitter	accounts,	getting	the	second	level	of	friendship:

orientdb>	SELECT	FROM	(TRAVERSE	out('follow')	FROM	TwitterAccounts	WHILE	

										$depth	<=	2)	WHERE	$depth	=	2

But,	you	could	also	express	this	same	query	using		SELECT		operation,	in	a	way	that	is	also	shorter	and	faster:

orientdb>	SELECT	out('follow').out('follow')	FROM	TwitterAccounts

	TRAVERSE		with	the	Graph	Model	and	API

While	you	can	use	the		TRAVERSE		command	with	any	domain	model,	it	provides	the	greatest	utility	in	[Graph	Databases[(Graph-
Database-Tinkerpop.md)	model.

This	model	is	based	on	the	concepts	of	the	Vertex	(or	Node)	as	the	class		V		and	the	Edge	(or	Arc,	Connection,	Link,	etc.)	as	the	class
	E	.	If	you	want	to	traverse	in	a	direction,	you	have	to	use	the	class	name	when	declaring	the	traversing	fields.	The	supported	directions
are:

Vertex	to	outgoing	edges	Using		outE()		or		outE('EdgeClassName')	.	That	is,	going	out	from	a	vertex	and	into	the	outgoing	edges.
Vertex	to	incoming	edges	Using		inE()		or		inE('EdgeClassName')	.	That	is,	going	from	a	vertex	and	into	the	incoming	edges.
Vertex	to	all	edges	Using		bothE()		or		bothE('EdgeClassName')	.	That	is,	going	from	a	vertex	and	into	all	the	connected	edges.
Edge	to	Vertex	(end	point)	Using		inV()		.	That	is,	going	out	from	an	edge	and	into	a	vertex.
Edge	to	Vertex	(starting	point)	Using		outV()		.	That	is,	going	back	from	an	edge	and	into	a	vertex.
Edge	to	Vertex	(both	sizes)	Using		bothV()		.	That	is,	going	from	an	edge	and	into	connected	vertices.
Vertex	to	Vertex	(outgoing	edges)	Using		out()		or		out('EdgeClassName')	.	This	is	the	same	as		outE().inV()	
Vertex	to	Vertex	(incoming	edges)	Using		in()		or		in('EdgeClassName')	.	This	is	the	same	as		outE().inV()	
Vertex	to	Vertex	(all	directions)	Using		both()		or		both('EdgeClassName')	.

For	instance,	traversing	outgoing	edges	on	the	record		#10:3434	:

orientdb>	TRAVERSE	out()	FROM	#10:3434

In	a	domain	for	emails,	to	find	all	messages	sent	on	January	1,	2012	from	the	user	Luca,	assuming	that	they	are	stored	in	the	vertex	class
	User		and	that	the	messages	are	contained	in	the	vertex	class		Message	.	Sent	messages	are	stored	as		out		connections	on	the	edge	class
	SentMessage	:

orientdb>	SELECT	FROM	(TRAVERSE	outE(),	inV()	FROM	(SELECT	FROM	User	WHERE	

										name	=	'Luca')	WHILE	$depth	

Deprecated	 	TRAVERSE		Operator

Before	the	introduction	of	the		TRAVERSE		command,	OrientDB	featured	a		TRAVERSE		operator,	which	worked	in	a	different	manner	and
was	applied	to	the		WHERE		condition.

More	recent	releases	deprecated	this	operator.	It	is	recommended	that	you	transition	to	the		TRAVERSE		command	with		SELECT		queries
to	utilize	more	power.

The	deprecated	syntax	for	the		TRAVERSE		operator	looks	like	this:

Traverse

624



WARNING:	Beginning	in	version	2.1,	OrientDB	no	longer	supports	this	syntax.

Syntax

SELECT	FROM	<target>	WHERE	<field>	TRAVERSE[(<minDeep>	[,<maxDeep>	[,<fields>]])]	(<conditions>)

	<target>		Defines	the	query	target.
	<field>		Defines	the	field	to	traverse.	Supported	fields	are,

	out		Gives	outgoing	edges.
	in		Gives	incoming	edges.
	any()		Any	field,	including		in		and		out	.
	all()		All	fields,	including		in		and		out	.
Any	attribute	of	the	vertex.

	minDeep		Defines	the	minimum	depth-level	to	begin	applying	the	conditions.	This	is	usually		0		for	the	root	vertex,	or		1		for
only	the	outgoing	vertices.
	maxDeep		Defines	the	maximum	depth-level	to	read.	Default	is		-1	,	for	infinite	depth.
	[<field>,	<field>,...]		Defines	a	list	of	fields	to	traverse.	Default	is		any()	.
	<conditions>		Defines	conditions	to	check	on	any	traversed	vertex.

For	more	information,	see	SQL	syntax.

Examples

Find	all	vertices	that	have	at	least	one	friend,	(connected	through		out	),	up	to	the	third	depth,	that	lives	in	Rome:

orientdb>	SELECT	FROM	Profile	WHERE	any()	TRAVERSE(0,3)	(city	=	'Rome')

Alternatively,	you	can	write	the	above	as:

orientdb>	SELECT	FROM	Profile	LET	$temp	=	(SELECT	FROM	(TRAVERSE	*	FROM	$current

										WHILE	$depth	<=	3)	WHERE	city	=	'Rome')	WHERE	$temp.size()	>	0

Consider	an	example	using	the	Graph	Query,	with	the	following	schema:

Vertex				edge									Vertex

User----->Friends----->User

										Label='f'

Find	the	first-level	friends	of	the	user	with	the	Record	ID		#10:11	:

orientdb>	SELECT	DISTINCT(in.lid)	AS	lid,distinct(in.fid)	AS	fid	FROM	

										(TRAVERSE	outE(),	inV()	FROM	#10:11	WHILE	$depth	<=1)	WHERE	

										@class	=	'Friends'

By	changing	the	depth	to	3,	you	can	find	the	second-level	friends	of	the	user:

orientdb>	SELECT	distinct(in.lid)	AS	lid,	distinct(in.fid)	AS	fid	FROM	

										(TRAVERSE	outE(),	inV()	FROM	#10:11	WHILE	$depth	<=3)	WHERE	

										@class	=	'Friends'

Traverse

625

http://code.google.com/p/orient/wiki/SQLWhere


For	more	information,	see

Java-Traverse	page.
SQL	Commands

Traverse

626



SQL	-		TRUNCATE	CLASS	
Deletes	records	of	all	clusters	defined	as	part	of	the	class.

By	default,	every	class	has	an	associated	cluster	with	the	same	name.	This	command	operates	at	a	lower	level	that		DELETE	.	This
commands	ignores	sub-classes,	(That	is,	their	records	remain	in	their	clusters).	If	you	want	to	also	remove	all	records	from	the	class
hierarchy,	you	need	to	use	the		POLYMORPHIC		keyword.

Truncation	is	not	permitted	on	vertex	or	edge	classes,	but	you	can	force	its	execution	using	the		UNSAFE		keyword.	Forcing	truncation	is
strongly	discouraged,	as	it	can	leave	the	graph	in	an	inconsistent	state.

Syntax

TRUNCATE	CLASS	<class>	[	POLYMORPHIC	]	[	UNSAFE	]

	<class>		Defines	the	class	you	want	to	truncate.
	POLYMORPHIC		Defines	whether	the	command	also	truncates	the	class	hierarchy.
	UNSAFE		Defines	whether	the	command	forces	truncation	on	vertex	or	edge	classes,	(that	is,	sub-classes	that	extend	the	classes		V	
or		E	).

Examples

Remove	all	records	of	the	class		Profile	:

orientdb>	TRUNCATE	CLASS	Profile

For	more	information,	see

	DELETE	

	TRUNCATE	CLUSTER	

	CREATE	CLASS	

SQL	Commands
Console	Commands

Truncate	Class

627



SQL	-		TRUNCATE	CLUSTER	
Deletes	all	records	of	a	cluster.	This	command	operates	at	a	lower	level	than	the	standard		DELETE		command.

Syntax

TRUNCATE	CLUSTER	<cluster>

	<cluster>		Defines	the	cluster	to	delete.

Examples

Remove	all	records	in	the	cluster		profile	:

orientdb>	TRUNCATE	CLUSTER	profile

For	more	information,	see

	DELETE	

	TRUNCATE	CLASS	

SQL	Commands
Console	Commands

Truncate	Cluster

628



SQL	-		TRUNCATE	RECORD	
Deletes	a	record	or	records	without	loading	them.	Useful	in	cases	where	the	record	is	corrupted	in	a	way	that	prevents	OrientDB	from
correctly	loading	it.

Syntax

TRUNCATE	RECORD	<record-id>*

	<record-id>		Defines	the	Record	ID	you	want	to	truncate.	You	can	also	truncate	multiple	records	using	a	comma-separated	list
within	brackets.

This	command	returns	the	number	of	records	it	truncates.

Examples

Truncate	a	record:

orientdb>	TRUNCATE	RECORD	20:3

Truncate	three	records	together:

orientdb>	TRUNCATE	RECORD	[20:0,	20:1,	20:2]

For	more	information,	see

	DELETE	

SQL	Commands
Console	Commands

Truncate	Record

629



SQL	-	Filtering
The	Where	condition	is	shared	among	many	SQL	commands.

Syntax
	[<item>]	<operator>	<item>	

Items
And		item		can	be:

What Description Example Available
since

field Document	field where	price	>	1000000 0.9.1

field<indexes> Document	field	part.	To	know	more	about	field
part	look	at	the	full	syntax:	Document_Field_Part

where	tags[name='Hi']	or	tags[0-3]	IN
('Hello')	and	employees	IS	NOT
NULL

1.0rc5

record
attribute Record	attribute	name	with	@	as	prefix where	@class	=	'Profile' 0.9.21

column The	number	of	the	column.	Useful	in	Column
Database where	column(1)	>	300 0.9.1

any()
Represents	any	field	of	the	Document.	The
condition	is	true	if	ANY	of	the	fields	matches	the
condition

where	any()	like	'L%' 0.9.10

all()
Represents	all	the	fields	of	the	Document.	The
condition	is	true	if	ALL	the	fields	match	the
condition

where	all()	is	null 0.9.10

functions Any	function	between	the	defined	ones where	distance(x,	y,	52.20472,
0.14056	)	<=	30 0.9.25

$variable Context	variable	prefixed	with	$ where	$depth	<=	3 1.2.0

Record	attributes

Filtering

630



Name Description Example Available
since

@this returns	the	record	it	self
select
@this.toJSON()
from	Account

0.9.25

@rid

returns	the	RecordID	in	the	form	<cluster:position>.	It's	null	for	embedded
records.	NOTE:	using	@rid	in	where	condition	slow	down	queries.	Much
better	to	use	the	RecordID	as	target.	Example:	change	this:	select	from
Profile	where	@rid	=	#10:44	with	this:	select	from	#10:44

@rid	=	#11:0 0.9.21

@class returns	Class	name	only	for	record	of	type	Schema	Aware.	It's	null	for	the
others @class	=	'Profile' 0.9.21

@version returns	the	record	version	as	integer.	Version	starts	from	0.	Can't	be	null @version	>	0 0.9.21

@size returns	the	record	size	in	bytes @size	>	1024 0.9.21

@fields returns	the	number	of	fields	in	document select	@fields
from	V -

@type returns	the	record	type	between:	'document',	'column',	'flat',	'bytes' @type	=	'flat' 0.9.21

Operators

Conditional	Operators

Apply	to Operator Description Example

any = Equals	to name	=	'Luke'

string like Similar	to	equals,	but	allow	the
wildcard	'%'	that	means	'any' name	like	'Luk%'

any < Less	than age	<	40

any <= Less	than	or	equal	to age	<=	40

any > Greater	than age	>	40

any >= Greater	than	or	equal	to age	>=	40

any <> Not	equals	(same	of	!=) age	<>	40

any BETWEEN
The	value	is	between	a	range.	It's
equivalent	to	<field>	>=	<from-value>
AND	<field>	<=	<to-value>

price	BETWEEN	10	and	30

any IS Used	to	test	if	a	value	is	NULL children	is	null

record,
string	(as
class
name)

INSTANCEOF Used	to	check	if	the	record	extends	a
class

@this	instanceof	'Customer'	or
@class	instanceof	'Provider'

collection IN contains	any	of	the	elements	listed name	in	['European','Asiatic']

collection CONTAINS

true	if	the	collection	contains	at	least
one	element	that	satisfy	the	next
condition.	Condition	can	be	a	single
item:	in	this	case	the	behaviour	is	like
the	IN	operator

children	contains	(name	=	'Luke')	-
map.values()	contains	(name	=
'Luke')

collection CONTAINSALL true	if	all	the	elements	of	the	collection
satisfy	the	next	condition children	containsAll	(name	=	'Luke')

map CONTAINSKEY

true	if	the	map	contains	at	least	one
key	equals	to	the	requested.	You	can
also	use	map.keys()	CONTAINS	in
place	of	it

connections	containsKey	'Luke'

Filtering

631



map CONTAINSVALUE

true	if	the	map	contains	at	least	one
value	equals	to	the	requested.	You	can
also	use	map.values()	CONTAINS	in
place	of	it

connections	containsValue	10:3

string CONTAINSTEXT

used	with
89cd72a14eb5493801e99a43c5034685.
Current	limitation	is	that	it	must	be	the
unique	condition	of	a	query.	When
used	against	an	indexed	field,	a	lookup
in	the	index	will	be	performed	with	the
text	specified	as	key.	When	there	is	no
index	a	simple	Java	indexOf	will	be
performed.	So	the	result	set	could	be
different	if	you	have	an	index	or	not	on
that	field

text	containsText	'jay'

string MATCHES
Matches	the	string	using	a
[http://www.regular-expressions.info/
Regular	Expression]

text	matches	'\b[A-Z0-9.%+-]+@[A-
Z0-9.-]+.[A-Z]{2,4}\b'

any TRAVERSE[(<minDepth>
[,<maxDepth>	[,<fields>]]

This	function	was	born	before	the	SQL
Traverse	statement	and	today	it's	pretty
limited.	Look	at	Traversing	graphs	to
know	more	about	traversing	in	better
ways.	
true	if	traversing	the	declared	field(s)	at
the	level	from	<minDepth>	to
<maxDepth>	matches	the	condition.	A
minDepth	=	0	means	the	root	node,
maxDepth	=	-1	means	no	limit:
traverse	all	the	graph	recursively.	If
<minDepth>	and	<maxDepth>	are	not
used,	then	(0,	-1)	will	be	taken.	If
<fields>	is	not	passed,	than	any()	will
be	used.

select	from	profile	where	any()
traverse(0,7,'followers,followings')
(	address.city.name	=	'Rome'	)

Logical	Operators

Operator Description Example Available
since

AND true	if	both	the	conditions	are	true name	=	'Luke'	and
surname	like	'Sky%' 0.9.1

OR true	if	at	least	one	of	the	condition	is	true name	=	'Luke'	or	surname
like	'Sky%' 0.9.1

NOT true	if	the	condition	is	false.	NOT	needs	parenthesis	on	the	right
with	the	condition	to	negate not	(	name	=	'Luke') 1.2

Mathematics	Operators

Apply	to Operator Description Example Available	since

Numbers + Plus age	+	34 1.0rc7

Numbers - Minus salary	-	34 1.0rc7

Numbers * Multiply factor	*	1.3 1.0rc7

Numbers / Divide total	/	12 1.0rc7

Numbers % Mod total	%	3 1.0rc7

Starting	from	v1.4	OrientDB	supports	the		eval()		function	to	execute	complex	operations.	Example:

select	eval(	"amount	*	120	/	100	-	discount"	)	as	finalPrice	from	Order

Filtering

632

http://www.regular-expressions.info/


Methods

Also	called	"Field	Operators",	are	are	treated	on	a	separate	page.

Functions
All	the	SQL	functions	are	treated	on	a	separate	page.

Variables
OrientDB	supports	variables	managed	in	the	context	of	the	command/query.	By	default	some	variables	are	created.	Below	the	table	with
the	available	variables:

Name Description Command(s) Since

$parent Get	the	parent	context	from	a	sub-query.	Example:	select	from	V	let	$type	=	(
traverse	*	from	$parent.$current.children	)

SELECT	and
TRAVERSE 1.2.0

$current Current	record	to	use	in	sub-queries	to	refer	from	the	parent's	variable SELECT	and
TRAVERSE 1.2.0

$depth The	current	depth	of	nesting TRAVERSE 1.1.0

$path The	string	representation	of	the	current	path.	Example:	#6:0.in.#5:0#.out.	You	can
also	display	it	with	->	select	$path	from	(traverse	*	from	V) TRAVERSE 1.1.0

$stack The	List	of	operation	in	the	stack.	Use	it	to	access	to	the	history	of	the	traversal TRAVERSE 1.1.0

$history The	set	of	all	the	records	traversed	as	a	Set<ORID> TRAVERSE 1.1.0

To	set	custom	variable	use	the	LET	keyword.

Filtering

633



SQL	-	Functions

Bundled	functions

Functions	by	category

Graph Math Collections Misc

out() eval() set() date()

in() min() map() sysdate()

both() max() list() format()

outE() sum() difference() distance()

inE() abs() first() ifnull()

bothE() intersect() coalesce()

outV() avg() distinct() uuid()

inV() count() expand() if()

traversedElement() mode() unionall()

traversedVertex() median() flatten()

traversedEdge() percentile() last()

shortestPath() variance() symmetricDifference()

dijkstra() stddev()

Functions	by	name

abs() avg() both() bothE()

coalesce() count() date() difference()

dijkstra() distance() distinct() eval()

expand() format() first() flatten()

if() ifnull() in() inE()

inV() intersect() list() map()

min() max() median() mode()

out() outE() outV() percentile()

set() shortestPath() stddev() sum()

symmetricDifference() sysdate() traversedElement() traversedEdge()

traversedVertex() unionall() uuid() variance()

SQL	Functions	are	all	the	functions	bundled	with	OrientDB	SQL	engine.	You	can	create	your	own	Database	Functions	in	any	language
supported	by	JVM.	Look	also	to	SQL	Methods.

SQL	Functions	can	work	in	2	ways	based	on	the	fact	that	they	can	receive	1	or	more	parameters:

Aggregated	mode

Functions

634



When	only	one	parameter	is	passed,	the	function	aggregates	the	result	in	only	one	record.	The	classic	example	is	the		sum()		function:

SELECT	SUM(salary)	FROM	employee

This	will	always	return	1	record	with	the	sum	of	salary	field.

Inline	mode
When	two	or	more	parameters	are	passed:

SELECT	SUM(salary,	extra,	benefits)	AS	total	FROM	employee

This	will	return	the	sum	of	the	field	"salary",	"extra"	and	"benefits"	as	"total".

In	case	you	need	to	use	a	function	inline,	when	you	only	have	one	parameter,	then	add	"null"	as	the	second	parameter:

SELECT	first(	out('friends').name,	null	)	as	firstFriend	FROM	Profiles

In	the	above	example,	the		first()		function	doesn't	aggregate	everything	in	only	one	record,	but	rather	returns	one	record	per
	Profile	,	where	the		firstFriend		is	the	first	item	of	the	collection	received	as	the	parameter.

Function	Reference

out()

Get	the	adjacent	outgoing	vertices	starting	from	the	current	record	as	Vertex.

Syntax:		out([<label-1>][,<label-n>]*)	

Available	since:	1.4.0

Example

Get	all	the	outgoing	vertices	from	all	the	Vehicle	vertices:

SELECT	out()	FROM	V

Get	all	the	incoming	vertices	connected	with	edges	with	label	(class)	"Eats"	and	"Favorited"	from	all	the	Restaurant	vertices	in	Rome:

SELECT	out('Eats','Favorited')	FROM	Restaurant	WHERE	city	=	'Rome'

in()

Get	the	adjacent	incoming	vertices	starting	from	the	current	record	as	Vertex.

Syntax:

in([<label-1>][,<label-n>]*)

Available	since:	1.4.0

Example

Get	all	the	incoming	vertices	from	all	the	Vehicle	vertices:

Functions

635



SELECT	in()	FROM	V

Get	all	the	incoming	vertices	connected	with	edges	with	label	(class)	"Friend"	and	"Brother":

SELECT	in('Friend','Brother')	FROM	V

both()

Get	the	adjacent	outgoing	and	incoming	vertices	starting	from	the	current	record	as	Vertex.

Syntax:

both([<label1>][,<label-n>]*)

Available	since:	1.4.0

Example

Get	all	the	incoming	and	outgoing	vertices	from	vertex	with	rid	#13:33:

SELECT	both()	FROM	#13:33

Get	all	the	incoming	and	outgoing	vertices	connected	with	edges	with	label	(class)	"Friend"	and	"Brother":

SELECT	both('Friend','Brother')	FROM	V

outE()

Get	the	adjacent	outgoing	edges	starting	from	the	current	record	as	Vertex.

Syntax:

outE([<label1>][,<label-n>]*)

Available	since:	1.4.0

Example

Get	all	the	outgoing	edges	from	all	the	vertices:

SELECT	outE()	FROM	V

Get	all	the	outgoing	edges	of	type	"Eats"	from	all	the	SocialNetworkProfile	vertices:

SELECT	outE('Eats')	FROM	SocialNetworkProfile

inE()

Get	the	adjacent	incoming	edges	starting	from	the	current	record	as	Vertex.

Syntax:

Functions

636



inE([<label1>][,<label-n>]*)

Example

Get	all	the	incoming	edges	from	all	the	vertices:

SELECT	inE()	FROM	V

Get	all	the	incoming	edges	of	type	"Eats"	from	the	Restaurant	'Bella	Napoli':

SELECT	inE('Eats')	FROM	Restaurant	WHERE	name	=	'Bella	Napoli'

bothE()

Get	the	adjacent	outgoing	and	incoming	edges	starting	from	the	current	record	as	Vertex.

Syntax:		bothE([<label1>][,<label-n>]*)	

Available	since:	1.4.0

Example

Get	both	incoming	and	outgoing	edges	from	all	the	vertices:

SELECT	bothE()	FROM	V

Get	all	the	incoming	and	outgoing	edges	of	type	"Friend"	from	the	Profile	with	nick	'Jay'

SELECT	bothE('Friend')	FROM	Profile	WHERE	nick	=	'Jay'

outV()

Get	outgoing	vertices	starting	from	the	current	record	as	Edge.

Syntax:

outV()

Available	since:	1.4.0

Example

SELECT	outV()	FROM	E

inV()

Get	incoming	vertices	starting	from	the	current	record	as	Edge.

Syntax:

inV()

Available	since:	1.4.0

Example

Functions

637



SELECT	inV()	FROM	E

eval()

Syntax:		eval('<expression>')	

Evaluates	the	expression	between	quotes	(or	double	quotes).

Available	since:	1.4.0

Example

SELECT	eval('price	*	120	/	100	-	discount')	AS	finalPrice	FROM	Order

coalesce()

Returns	the	first	field/value	not	null	parameter.	If	no	field/value	is	not	null,	returns	null.

Syntax:

coalesce(<field|value>	[,	<field-n|value-n>]*)

Available	since:	1.3.0

Example

SELECT	coalesce(amount,	amount2,	amount3)	FROM	Account

if()

Syntax:

if(<expression>,	<result-if-true>,	<result-if-false>)

Evaluates	a	condition	(first	parameters)	and	returns	the	second	parameter	if	the	condition	is	true,	the	third	one	otherwise

Example:

SELECT	if(eval("name	=	'John'"),	"My	name	is	John",	"My	name	is	not	John")	FROM	Person

ifnull()

Returns	the	passed	field/value	(or	optional	parameter	return_value_if_not_null).	If	field/value	is	not	null,	otherwise	it	returns
return_value_if_null.

Syntax:

ifnull(&lt;field&#124;value&gt;,	&lt;return_value_if_null&gt;	[,&lt;return_value_if_not_null&gt;](,&lt;field&.md#124;value&gt;

]*)

Available	since:	1.3.0

Example

SELECT	ifnull(salary,	0)	FROM	Account

Functions

638



expand()

Available	since:	1.4.0

This	function	has	two	meanings:

When	used	on	a	collection	field,	it	unwinds	the	collection	in	the	field	and	use	it	as	result.
When	used	on	a	link	(RID)	field,	it	expands	the	document	pointed	by	that	link.

Syntax:		expand(<field>)	

Since	version	2.1	the	preferred	operator	to	unwind	collections	is	UNWIND.	Expand	usage	for	this	use	case	will	probably	be	deprecated
in	next	releases

Example

on	collectinos:

SELECT	EXPAND(	addresses	)	FROM	Account.

on	RIDs

SELECT	EXPAND(	addresses	)	FROM	Account.

This	replaces	the	flatten()	now	deprecated

flatten()

Deprecated,	use	the	EXPAND()	instead.

Extracts	the	collection	in	the	field	and	use	it	as	result.

Syntax:

flatten(<field>)

Available	since:	1.0rc1

Example

SELECT	flatten(	addresses	)	FROM	Account

first()

Retrieves	only	the	first	item	of	multi-value	fields	(arrays,	collections	and	maps).	For	non	multi-value	types	just	returns	the	value.

Syntax:		first(<field>)	

Available	since:	1.2.0

Example

select	first(	addresses	)	from	Account

Functions

639



last()

Retrieves	only	the	last	item	of	multi-value	fields	(arrays,	collections	and	maps).	For	non	multi-value	types	just	returns	the	value.

Syntax:		last(<field>)	

Available	since:	1.2.0

Example

SELECT	last(	addresses	)	FROM	Account

count()

Counts	the	records	that	match	the	query	condition.	If	*	is	not	used	as	a	field,	then	the	record	will	be	counted	only	if	the	field	content	is
not	null.

Syntax:		count(<field>)	

Available	since:	0.9.25

Example

SELECT	COUNT(*)	FROM	Account

min()

Returns	the	minimum	value.	If	invoked	with	more	than	one	parameters,	the	function	doesn't	aggregate,	but	returns	the	minimum	value
between	all	the	arguments.

Syntax:		min(<field>	[,	<field-n>]*	)	

Available	since:	0.9.25

Example

Returns	the	minimum	salary	of	all	the	Account	records:

SELECT	min(salary)	FROM	Account

Returns	the	minimum	value	between	'salary1',	'salary2'	and	'salary3'	fields.

SELECT	min(salary1,	salary2,	salary3)	FROM	Account

max()

Returns	the	maximum	value.	If	invoked	with	more	than	one	parameters,	the	function	doesn't	aggregate,	but	returns	the	maximum	value
between	all	the	arguments.

Syntax:		max(<field>	[,	<field-n>]*	)	

Available	since:	0.9.25

Example

Returns	the	maximum	salary	of	all	the	Account	records:

Functions

640



SELECT	max(salary)	FROM	Account.

Returns	the	maximum	value	between	'salary1',	'salary2'	and	'salary3'	fields.

SELECT	max(salary1,	salary2,	salary3)	FROM	Account

abs()

Returns	the	absolute	value.	It	works	with	Integer,	Long,	Short,	Double,	Float,	BigInteger,	BigDecimal,	null.

Syntax:		abs(<field>)	

Available	since:	2.2

Example

SELECT	abs(score)	FROM	Account

SELECT	abs(-2332)	FROM	Account

SELECT	abs(999)	FROM	Account

avg()

Returns	the	average	value.

Syntax:		avg(<field>)	

Available	since:	0.9.25

Example

SELECT	avg(salary)	FROM	Account

sum()

Syntax:		sum(<field>)	

Returns	the	sum	of	all	the	values	returned.

Available	since:	0.9.25

Example

SELECT	sum(salary)	FROM	Account

date()

Returns	a	date	formatting	a	string.	<date-as-string>	is	the	date	in	string	format,	and	<format>	is	the	date	format	following	these	rules.	If
no	format	is	specified,	then	the	default	database	format	is	used.	To	know	more	about	it,	look	at	Managing	Dates.

Syntax:		date(	<date-as-string>	[<format>]	[,<timezone>]	)	

Available	since:	0.9.25

Functions

641

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html


Example

SELECT	FROM	Account	WHERE	created	<=	date('2012-07-02',	'yyyy-MM-dd')

sysdate()

Returns	the	current	date	time.	To	know	more	about	it,	look	at	Managing	Dates.

Syntax:		sysdate(	[<format>]	[,<timezone>]	)	

Available	since:	0.9.25

Example

SELECT	sysdate('dd-MM-yyyy')	FROM	Account

format()

Formats	a	value	using	the	String.format()	conventions.	Look	here	for	more	information.

Syntax:		format(	<format>	[,<arg1>	](,<arg-n>]*.md)	

Available	since:	0.9.25

Example

SELECT	format("%d	-	Mr.	%s	%s	(%s)",	id,	name,	surname,	address)	FROM	Account

dijkstra()

Returns	the	cheapest	path	between	two	vertices	using	the	[http://en.wikipedia.org/wiki/Dijkstra's_algorithm	Dijkstra	algorithm]	where
the	weightEdgeFieldName	parameter	is	the	field	containing	the	weight.	Direction	can	be	OUT	(default),	IN	or	BOTH.

Syntax:		dijkstra(<sourceVertex>,	<destinationVertex>,	<weightEdgeFieldName>	[,	<direction>])	

Available	since:	1.3.0

Example

SELECT	dijkstra($current,	#8:10,	'weight')	FROM	V

shortestPath()

Returns	the	shortest	path	between	two	vertices.	Direction	can	be	OUT	(default),	IN	or	BOTH.

Available	since:	1.3.0

Syntax:		shortestPath(	<sourceVertex>,	<destinationVertex>	[,	<direction>	[,	<edgeClassName>	[,	<additionalParams>]]])	

Where:

	sourceVertex		is	the	source	vertex	where	to	start	the	path
	destinationVertex		is	the	destination	vertex	where	the	path	ends
	direction	,	optional,	is	the	direction	of	traversing.	By	default	is	"BOTH"	(in+out).	Supported	values	are	"BOTH"	(incoming	and

Functions

642

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html#syntax
http://en.wikipedia.org/wiki/Dijkstra's_algorithm


outgoing),	"OUT"	(outgoing)	and	"IN"	(incoming)
	edgeClassName	,	optional,	is	the	edge	class	to	traverse.	By	default	all	edges	are	crossed.	Since	2.0.9	and	2.1-rc2
	additionalParams		(since	v	2.1.12),	optional,	here	you	can	pass	a	map	of	additional	parametes	(Map	in	Java,	JSON	from	SQL).
Currently	allowed	parameters	are

'maxDepth':	integer,	maximum	depth	for	paths	(ignore	path	longer	that	'maxDepth')

Example	on	finding	the	shortest	path	between	vertices	#8:32	and	#8:10

SELECT	shortestPath(#8:32,	#8:10)

Example	on	finding	the	shortest	path	between	vertices	#8:32	and	#8:10	only	crossing
outgoing	edges

SELECT	shortestPath(#8:32,	#8:10,	'OUT')

Example	on	finding	the	shortest	path	between	vertices	#8:32	and	#8:10	only	crossing
incoming	edges	of	type	'Friend'

SELECT	shortestPath(#8:32,	#8:10,	'IN',	'Friend')

Example	on	finding	the	shortest	path	between	vertices	#8:32	and	#8:10,	long	at	most	five
hops

SELECT	shortestPath(#8:32,	#8:10,	null,	null,	{"maxDepth":	5})

distance()

Syntax:		distance(	<x-field>,	<y-field>,	<x-value>,	<y-value>	)	

Returns	the	distance	between	two	points	in	the	globe	using	the	Haversine	algorithm.	Coordinates	must	be	as	degrees.

Available	since:	0.9.25

Example

SELECT	FROM	POI	WHERE	distance(x,	y,	52.20472,	0.14056	)	<=	30

distinct()

Syntax:		distinct(<field>)	

Retrieves	only	unique	data	entries	depending	on	the	field	you	have	specified	as	argument.	The	main	difference	compared	to	standard
SQL	DISTINCT	is	that	with	OrientDB,	a	function	with	parenthesis	and	only	one	field	can	be	specified.

Available	since:	1.0rc2

Example

SELECT	distinct(name)	FROM	City

Functions

643



unionall()

Syntax:		unionall(<field>	[,<field-n>]*)	

Works	as	aggregate	or	inline.	If	only	one	argument	is	passed	then	aggregates,	otherwise	executes	and	returns	a	UNION	of	all	the
collections	received	as	parameters.	Also	works	also	with	no	collection	values.

Available	since:	1.7

Example

SELECT	unionall(friends)	FROM	profile

select	unionall(inEdges,	outEdges)	from	OGraphVertex	where	label	=	'test'

intersect()

Syntax:		intersect(<field>	[,<field-n>]*)	

Works	as	aggregate	or	inline.	If	only	one	argument	is	passed	than	aggregates,	otherwise	executes,	and	returns,	the	INTERSECTION	of
the	collections	received	as	parameters.

Available	since:	1.0rc2

Example

SELECT	intersect(friends)	FROM	profile	WHERE	jobTitle	=	'programmer'

SELECT	intersect(inEdges,	outEdges)	FROM	OGraphVertex

difference()

Syntax:		difference(<field>	[,<field-n>]*)	

Works	as	aggregate	or	inline.	If	only	one	argument	is	passed	than	aggregates,	otherwise	executes,	and	returns,	the	DIFFERENCE
between	the	collections	received	as	parameters.

Available	since:	1.0rc2

Example

SELECT	difference(tags)	FROM	book

SELECT	difference(inEdges,	outEdges)	FROM	OGraphVertex

symmetricDifference()

Syntax:		symmetricDifference(<field>	[,<field-n>]*)	

Works	as	aggregate	or	inline.	If	only	one	argument	is	passed	than	aggregates,	otherwise	executes,	and	returns,	the	SYMMETRIC
DIFFERENCE	between	the	collections	received	as	parameters.

Available	since:	2.0.7

Functions

644



Example

SELECT	difference(tags)	FROM	book

SELECT	difference(inEdges,	outEdges)	FROM	OGraphVertex

set()

Adds	a	value	to	a	set.	The	first	time	the	set	is	created.	If		<value>		is	a	collection,	then	is	merged	with	the	set,	otherwise		<value>		is
added	to	the	set.

Syntax:		set(<field>)	

Available	since:	1.2.0

Example

SELECT	name,	set(roles.name)	AS	roles	FROM	OUser

list()

Adds	a	value	to	a	list.	The	first	time	the	list	is	created.	If		<value>		is	a	collection,	then	is	merged	with	the	list,	otherwise		<value>		is
added	to	the	list.

Syntax:		list(<field>)	

Available	since:	1.2.0

Example

SELECT	name,	list(roles.name)	AS	roles	FROM	OUser

map()

Adds	a	value	to	a	map.	The	first	time	the	map	is	created.	If		<value>		is	a	map,	then	is	merged	with	the	map,	otherwise	the	pair		<key>	
and		<value>		is	added	to	the	map	as	new	entry.

Syntax:		map(<key>,	<value>)	

Available	since:	1.2.0

Example

SELECT	map(name,	roles.name)	FROM	OUser

traversedElement()

Returns	the	traversed	element(s)	in	Traverse	commands.

Syntax:		traversedElement(<index>	[,<items>])	

Where:

Functions

645



	<index>		is	the	starting	item	to	retrieve.	Value	>=	0	means	absolute	position	in	the	traversed	stack.	0	means	the	first	record.
Negative	values	are	counted	from	the	end:	-1	means	last	one,	-2	means	the	record	before	last	one,	etc.
	<items>	,	optional,	by	default	is	1.	If	>1	a	collection	of	items	is	returned

Available	since:	1.7

Example

Returns	last	traversed	item	of	TRAVERSE	command:

SELECT	traversedElement(-1)	FROM	(	TRAVERSE	out()	FROM	#34:3232	WHILE	$depth	<=	10	)

Returns	last	3	traversed	items	of	TRAVERSE	command:

SELECT	traversedElement(-1,	3)	FROM	(	TRAVERSE	out()	FROM	#34:3232	WHILE	$depth	<=	10	)

traversedEdge()

Returns	the	traversed	edge(s)	in	Traverse	commands.

Syntax:		traversedEdge(<index>	[,<items>])	

Where:

	<index>		is	the	starting	edge	to	retrieve.	Value	>=	0	means	absolute	position	in	the	traversed	stack.	0	means	the	first	record.
Negative	values	are	counted	from	the	end:	-1	means	last	one,	-2	means	the	edge	before	last	one,	etc.
	<items>	,	optional,	by	default	is	1.	If	>1	a	collection	of	edges	is	returned

Available	since:	1.7

Example

Returns	last	traversed	edge(s)	of	TRAVERSE	command:

SELECT	traversedEdge(-1)	FROM	(	TRAVERSE	outE(),	inV()	FROM	#34:3232	WHILE	$depth	<=	10	)

Returns	last	3	traversed	edge(s)	of	TRAVERSE	command:

SELECT	traversedEdge(-1,	3)	FROM	(	TRAVERSE	outE(),	inV()	FROM	#34:3232	WHILE	$depth	<=	10	)

traversedVertex()

Returns	the	traversed	vertex(es)	in	Traverse	commands.

Syntax:		traversedVertex(<index>	[,<items>])	

Where:

	<index>		is	the	starting	vertex	to	retrieve.	Value	>=	0	means	absolute	position	in	the	traversed	stack.	0	means	the	first	vertex.
Negative	values	are	counted	from	the	end:	-1	means	last	one,	-2	means	the	vertex	before	last	one,	etc.
	<items>	,	optional,	by	default	is	1.	If	>1	a	collection	of	vertices	is	returned

Available	since:	1.7

Example

Returns	last	traversed	vertex	of	TRAVERSE	command:

Functions

646



SELECT	traversedVertex(-1)	FROM	(	TRAVERSE	out()	FROM	#34:3232	WHILE	$depth	<=	10	)

Returns	last	3	traversed	vertices	of	TRAVERSE	command:

SELECT	traversedVertex(-1,	3)	FROM	(	TRAVERSE	out()	FROM	#34:3232	WHILE	$depth	<=	10	)

mode()

Returns	the	values	that	occur	with	the	greatest	frequency.	Nulls	are	ignored	in	the	calculation.

Syntax:		mode(<field>)	

Available	since:	2.0-M1

Example

SELECT	mode(salary)	FROM	Account

median()

Returns	the	middle	value	or	an	interpolated	value	that	represent	the	middle	value	after	the	values	are	sorted.	Nulls	are	ignored	in	the
calculation.

Syntax:		median(<field>)	

Available	since:	2.0-M1

Example

select	median(salary)	from	Account

percentile()

Returns	the	nth	percentiles	(the	values	that	cut	off	the	first	n	percent	of	the	field	values	when	it	is	sorted	in	ascending	order).	Nulls	are
ignored	in	the	calculation.

Syntax:		percentile(<field>	[,	<quantile-n>]*)	

Available	since:	2.0-M1

Examples

SELECT	percentile(salary,	95)	FROM	Account

SELECT	percentile(salary,	25,	75)	AS	IQR	FROM	Account

variance()

Returns	the	middle	variance:	the	average	of	the	squared	differences	from	the	mean.	Nulls	are	ignored	in	the	calculation.

Syntax:		variance(<field>)	

Available	since:	2.0-M1

Functions

647



Example

SELECT	variance(salary)	FROM	Account

stddev()

Returns	the	standard	deviation:	the	measure	of	how	spread	out	values	are.	Nulls	are	ignored	in	the	calculation.

Syntax:		stddev(<field>)	

Available	since:	2.0-M1

Example

SELECT	stddev(salary)	FROM	Account

uuid()

Generates	a	UUID	as	a	128-bits	value	using	the	Leach-Salz	variant.	For	more	information	look	at:
http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html.

Available	since:	2.0-M1

Syntax:		uuid()	

Example

Insert	a	new	record	with	an	automatic	generated	id:

INSERT	INTO	Account	SET	id	=	UUID()

Custom	functions
The	SQL	engine	can	be	extended	with	custom	functions	written	with	a	Scripting	language	or	via	Java.

Database's	function

Look	at	the	Functions	page.

Custom	functions	in	Java

Before	to	use	them	in	your	queries	you	need	to	register:

Functions

648

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html


//	REGISTER	'BIGGER'	FUNCTION	WITH	FIXED	2	PARAMETERS	(MIN/MAX=2)

OSQLEngine.getInstance().registerFunction("bigger",

																																										new	OSQLFunctionAbstract("bigger",	2,	2)	{

		public	String	getSyntax()	{

				return	"bigger(<first>,	<second>)";

		}

		public	Object	execute(Object[]	iParameters)	{

				if	(iParameters[0]	==	null	||	iParameters[1]	==	null)

						//	CHECK	BOTH	EXPECTED	PARAMETERS

						return	null;

				if	(!(iParameters[0]	instanceof	Number)	||	!(iParameters[1]	instanceof	Number))

						//	EXCLUDE	IT	FROM	THE	RESULT	SET

						return	null;

				//	USE	DOUBLE	TO	AVOID	LOSS	OF	PRECISION

				final	double	v1	=	((Number)	iParameters[0]).doubleValue();

				final	double	v2	=	((Number)	iParameters[1]).doubleValue();

				return	Math.max(v1,	v2);

		}

		public	boolean	aggregateResults()	{

				return	false;

		}

});

Now	you	can	execute	it:

List<ODocument>	result	=	database.command(

		new	OSQLSynchQuery<ODocument>("SELECT	FROM	Account	WHERE	bigger(	salary,	10	)	>	10")	)

		.execute();

Functions

649



SQL	Methods
SQL	Methods	are	similar	to	SQL	functions	but	they	apply	to	values.	In	Object	Oriented	paradigm	they	are	called	"methods",	as
functions	related	to	a	class.	So	what's	the	difference	between	a	function	and	a	method?

This	is	a	SQL	function:

SELECT	FROM	sum(	salary	)	FROM	employee

This	is	a	SQL	method:

SELECT	FROM	salary.toJSON()	FROM	employee

As	you	can	see	the	method	is	executed	against	a	field/value.	Methods	can	receive	parameters,	like	functions.	You	can	concatenate	N
operators	in	sequence.

Note:	operators	are	case-insensitive.

Bundled	methods

Methods	by	category

Conversions String	manipulation Collections Misc

convert() append() [] exclude()

asBoolean() charAt() size() include()

asDate() indexOf() remove() javaType()

asDatetime() left() removeAll() toJSON()

asDecimal() right() keys() type()

asFloat() prefix() values()

asInteger() trim()

asList() replace()

asLong() length()

asMap() subString()

asSet() toLowerCase()

asString() toUpperCase()

normalize() hash()

format()

Methods	by	name

Methods

650



[] append() asBoolean() asDate() asDatetime()

asDecimal() asFloat() asInteger() asList() asLong() asMap()

asSet() asString() charAt() convert() exclude() format()

hash() include() indexOf() javaType() keys() left()

length() normalize() prefix() remove() removeAll() replace()

right() size() subString() trim() toJSON() toLowerCase()

toUpperCase() type() values()

	[]	

Execute	an	expression	against	the	item.	An	item	can	be	a	multi-value	object	like	a	map,	a	list,	an	array	or	a	document.	For	documents	and
maps,	the	item	must	be	a	string.	For	lists	and	arrays,	the	index	is	a	number.

Syntax:		<value>[<expression>]	

Applies	to	the	following	types:

document,
map,
list,
array

Examples

Get	the	item	with	key	"phone"	in	a	map:

SELECT	FROM	Profile	WHERE	'+39'	IN	contacts[phone].left(3)

Get	the	first	10	tags	of	posts:

SELECT	FROM	tags[0-9]	FROM	Posts

History

1.0rc5:	First	version

.append()

Appends	a	string	to	another	one.

Syntax:		<value>.append(<value>)	

Applies	to	the	following	types:

string

Examples

SELECT	name.append('	').append(surname)	FROM	Employee

History

1.0rc1:	First	version

Methods

651



.asBoolean()

Transforms	the	field	into	a	Boolean	type.	If	the	origin	type	is	a	string,	then	"true"	and	"false"	is	checked.	If	it's	a	number	then	1	means
TRUE	while	0	means	FALSE.

Syntax:		<value>.asBoolean()	

Applies	to	the	following	types:

string,
short,
int,
long

Examples

SELECT	FROM	Users	WHERE	online.asBoolean()	=	true

History

0.9.15:	First	version

.asDate()

Transforms	the	field	into	a	Date	type.	To	know	more	about	it,	look	at	Managing	Dates.

Syntax:		<value>.asDate()	

Applies	to	the	following	types:

string,
long

Examples

Time	is	stored	as	long	type	measuring	milliseconds	since	a	particular	day.	Returns	all	the	records	where	time	is	before	the	year	2010:

SELECT	FROM	Log	WHERE	time.asDateTime()	<	'01-01-2010	00:00:00'

History

0.9.14:	First	version

.asDateTime()

Transforms	the	field	into	a	Date	type	but	parsing	also	the	time	information.	To	know	more	about	it,	look	at	Managing	Dates.

Syntax:		<value>.asDateTime()	

Applies	to	the	following	types:

string,
long

Examples

Time	is	stored	as	long	type	measuring	milliseconds	since	a	particular	day.	Returns	all	the	records	where	time	is	before	the	year	2010:

Methods

652



SELECT	FROM	Log	WHERE	time.asDateTime()	<	'01-01-2010	00:00:00'

History

0.9.14:	First	version

.asDecimal()

Transforms	the	field	into	an	Decimal	type.	Use	Decimal	type	when	treat	currencies.

Syntax:		<value>.asDecimal()	

Applies	to	the	following	types:

any

Examples

SELECT	salary.asDecimal()	FROM	Employee

History

1.0rc1:	First	version

.asFloat()

Transforms	the	field	into	a	float	type.

Syntax:		<value>.asFloat()	

Applies	to	the	following	types:

any

Examples

SELECT	ray.asFloat()	>	3.14

History

0.9.14:	First	version

.asInteger()

Transforms	the	field	into	an	integer	type.

Syntax:		<value>.asInteger()	

Applies	to	the	following	types:

any

Examples

Converts	the	first	3	chars	of	'value'	field	in	an	integer:

Methods

653



SELECT	value.left(3).asInteger()	FROM	Log

History

0.9.14:	First	version

.asList()

Transforms	the	value	in	a	List.	If	it's	a	single	item,	a	new	list	is	created.

Syntax:		<value>.asList()	

Applies	to	the	following	types:

any

Examples

SELECT	tags.asList()	FROM	Friend

History

1.0rc2:	First	version

.asLong()

Transforms	the	field	into	a	Long	type.	To	know	more	about	it,	look	at	Managing	Dates.

Syntax:		<value>.asLong()	

Applies	to	the	following	types:

any

Examples

SELECT	date.asLong()	FROM	Log

History

1.0rc1:	First	version

.asMap()

Transforms	the	value	in	a	Map	where	even	items	are	the	keys	and	odd	items	are	values.

Syntax:		<value>.asMap()	

Applies	to	the	following	types:

collections

Examples

SELECT	tags.asMap()	FROM	Friend

Methods

654



History

1.0rc2:	First	version

.asSet()

Transforms	the	value	in	a	Set.	If	it's	a	single	item,	a	new	set	is	created.	Sets	doesn't	allow	duplicates.

Syntax:		<value>.asSet()	

Applies	to	the	following	types:

any

Examples

SELECT	tags.asSet()	FROM	Friend

History

1.0rc2:	First	version

.asString()

Transforms	the	field	into	a	string	type.

Syntax:		<value>.asString()	

Applies	to	the	following	types:

any

Examples

Get	all	the	salaries	with	decimals:

SELECT	salary.asString().indexof('.')	>	-1

History

0.9.14:	First	version

.charAt()

Returns	the	character	of	the	string	contained	in	the	position	'position'.	'position'	starts	from	0	to	string	length.

Syntax:		<value>.charAt(<position>)	

Applies	to	the	following	types:

string

Examples

Get	the	first	character	of	the	users'	name:

SELECT	FROM	User	WHERE	name.charAt(	0	)	=	'L'

Methods

655



History

0.9.7:	First	version

.convert()

Convert	a	value	to	another	type.

Syntax:		<value>.convert(<type>)	

Applies	to	the	following	types:

any

Examples

SELECT	dob.convert(	'date'	)	FROM	User

History

1.0rc2:	First	version

.exclude()

Excludes	some	properties	in	the	resulting	document.

Syntax:		<value>.exclude(<field-name>[,]*)	

Applies	to	the	following	types:

document	record

Examples

SELECT	EXPAND(	@this.exclude(	'password'	)	)	FROM	OUser

.format()

Returns	the	value	formatted	using	the	common	"printf"	syntax.	For	the	complete	reference	goto	Java	Formatter	JavaDoc.	To	know	more
about	it,	look	at	Managing	Dates.

Syntax:		<value>.format(<format>)	

Applies	to	the	following	types:

any

Examples

Formats	salaries	as	number	with	11	digits	filling	with	0	at	left:

SELECT	salary.format("%-011d")	FROM	Employee

History

0.9.8:	First	version

Methods

656

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html#syntax


.hash()

Returns	the	hash	of	the	field.	Supports	all	the	algorithms	available	in	the	JVM.

Syntax:		<value>	.hash([])```

Applies	to	the	following	types:

string

Example

Get	the	SHA-512	of	the	field	"password"	in	the	class	User:

SELECT	password.hash('SHA-512')	FROM	User

History

1.7:	First	version

.include()

Include	only	some	properties	in	the	resulting	document.

Syntax:		<value>.include(<field-name>[,]*)	

Applies	to	the	following	types:

document	record

Examples

SELECT	EXPAND(	@this.include(	'name'	)	)	FROM	OUser

History

1.0rc2:	First	version

.indexOf()

Returns	the	position	of	the	'string-to-search'	inside	the	value.	It	returns	-1	if	no	occurrences	are	found.	'begin-position'	is	the	optional
position	where	to	start,	otherwise	the	beginning	of	the	string	is	taken	(=0).

Syntax:		<value>.indexOf(<string-to-search>	[,	<begin-position>)	

Applies	to	the	following	types:

string

Examples

Returns	all	the	UK	numbers:

SELECT	FROM	Contact	WHERE	phone.indexOf('+44')	>	-1

History

Methods

657



0.9.10:	First	version

.javaType()

Returns	the	corresponding	Java	Type.

Syntax:		<value>.javaType()	

Applies	to	the	following	types:

any

Examples

Prints	the	Java	type	used	to	store	dates:

SELECT	FROM	date.javaType()	FROM	Events

History

1.0rc1:	First	version

.keys()

Returns	the	map's	keys	as	a	separate	set.	Useful	to	use	in	conjunction	with	IN,	CONTAINS	and	CONTAINSALL	operators.

Syntax:		<value>.keys()	

Applies	to	the	following	types:

maps
documents

Examples

SELECT	FROM	Actor	WHERE	'Luke'	IN	map.keys()

History

1.0rc1:	First	version

.left()

Returns	a	substring	of	the	original	cutting	from	the	begin	and	getting	'len'	characters.

Syntax:		<value>.left(<length>)	

Applies	to	the	following	types:

string

Examples

SELECT	FROM	Actors	WHERE	name.left(	4	)	=	'Luke'

History

Methods

658



0.9.7:	First	version

.length()

Returns	the	length	of	the	string.	If	the	string	is	null	0	will	be	returned.

Syntax:		<value>.length()	

Applies	to	the	following	types:

string

Examples

SELECT	FROM	Providers	WHERE	name.length()	>	0

History

0.9.7:	First	version

.normalize()

Form	can	be	NDF,	NFD,	NFKC,	NFKD.	Default	is	NDF.	pattern-matching	if	not	defined	is	"\p{InCombiningDiacriticalMarks}+".	For
more	information	look	at	Unicode	Standard.

Syntax:		<value>.normalize(	[<form>]	[,<pattern-matching>]	)	

Applies	to	the	following	types:

string

Examples

SELECT	FROM	V	WHERE	name.normalize()	AND	name.normalize('NFD')

History

-	1.4.0:	First	version

.prefix()

Prefixes	a	string	to	another	one.

Syntax:		<value>.prefix('<string>')	

Applies	to	the	following	types:

string

Examples

SELECT	name.prefix('Mr.	')	FROM	Profile

History

1.0rc1:	First	version

Methods

659

http://www.unicode.org/reports/tr15/tr15-23.html


.remove()

Removes	the	first	occurrence	of	the	passed	items.

Syntax:		<value>.remove(<item>*)	

Applies	to	the	following	types:

collection

Examples

SELECT	out().in().remove(	@this	)	FROM	V

History

1.0rc1:	First	version

.removeAll()

Removes	all	the	occurrences	of	the	passed	items.

Syntax:		<value>.removeAll(<item>*)	

Applies	to	the	following	types:

collection

Examples

SELECT	out().in().removeAll(	@this	)	FROM	V

History

1.0rc1:	First	version

.replace()

Replace	a	string	with	another	one.

Syntax:		<value>.replace(<to-find>,	<to-replace>)	

Applies	to	the	following	types:

string

Examples

SELECT	name.replace('Mr.',	'Ms.')	FROM	User

History

1.0rc1:	First	version

Methods

660



.right()

Returns	a	substring	of	the	original	cutting	from	the	end	of	the	string	'lenght'	characters.

Syntax:		<value>.right(<length>)	

Applies	to	the	following	types:

string

Examples

Returns	all	the	vertices	where	the	name	ends	by	"ke".

SELECT	FROM	V	WHERE	name.right(	2	)	=	'ke'

History

0.9.7:	First	version

.size()

Returns	the	size	of	the	collection.

Syntax:		<value>.size()	

Applies	to	the	following	types:

collection

Examples

Returns	all	the	items	in	a	tree	with	children:

SELECT	FROM	TreeItem	WHERE	children.size()	>	0

History

0.9.7:	First	version

.subString()

Returns	a	substring	of	the	original	cutting	from	'begin'	and	getting	'length'	characters.	'begin'	starts	from	0	to	string	length	-	1.

Syntax:		<value>.subString(<begin>	[,<length>]	)	

Applies	to	the	following	types:

string

Examples

Get	all	the	items	where	the	name	begins	with	an	"L":

SELECT	name.substring(	0,	1	)	=	'L'	FROM	StockItems

History

Methods

661



0.9.7:	First	version

.trim()

Returns	the	original	string	removing	white	spaces	from	the	begin	and	the	end.

Syntax:		<value>.trim()	

Applies	to	the	following	types:

string

Examples

SELECT	name.trim()	==	'Luke'	FROM	Actors

History

0.9.7:	First	version

.toJSON()

Returns	the	record	in	JSON	format.

Syntax:		<value>.toJSON([<format>])	

Where:

format	optional,	allows	custom	formatting	rules	(separate	multiple	options	by	comma).	Rules	are	the	following:
type	to	include	the	fields'	types	in	the	"@fieldTypes"	attribute
rid	to	include	records's	RIDs	as	attribute	"@rid"
version	to	include	records'	versions	in	the	attribute	"@version"
class	to	include	the	class	name	in	the	attribute	"@class"
attribSameRow	put	all	the	attributes	in	the	same	row
indent	is	the	indent	level	as	integer.	By	Default	no	ident	is	used
fetchPlan	is	the	FetchPlan	to	use	while	fetching	linked	records
alwaysFetchEmbedded	to	always	fetch	embedded	records	(without	considering	the	fetch	plan)
dateAsLong	to	return	dates	(Date	and	Datetime	types)	as	long	numers
prettyPrint	indent	the	returning	JSON	in	readeable	(pretty)	way

Applies	to	the	following	types:

record

Examples

create	class	Test	extends	V

insert	into	Test	content	{"attr1":	"value	1",	"attr2":	"value	2"}

select	@this.toJson('rid,version,fetchPlan:in_*:-2	out_*:-2')	from	Test

History

0.9.8:	First	version

.toLowerCase()

Methods

662



Returns	the	string	in	lower	case.

Syntax:		<value>.toLowerCase()	

Applies	to	the	following	types:

string

Examples

SELECT	name.toLowerCase()	==	'luke'	FROM	Actors

History

-	0.9.7:	First	version

.toUpperCase()

Returns	the	string	in	upper	case.

Syntax:		<value>.toUpperCase()	

Applies	to	the	following	types:

string

Examples

SELECT	name.toUpperCase()	==	'LUKE'	FROM	Actors

History

0.9.7:	First	version

.type()

Returns	the	value's	OrientDB	Type.

Syntax:		<value>.type()	

Applies	to	the	following	types:

any

Examples

Prints	the	type	used	to	store	dates:

SELECT	FROM	date.type()	FROM	Events

History

1.0rc1:	First	version

.values()

Methods

663



Returns	the	map's	values	as	a	separate	collection.	Useful	to	use	in	conjunction	with	IN,	CONTAINS	and	CONTAINSALL	operators.

Syntax:		<value>.values()	

Applies	to	the	following	types:

maps
documents

Examples

SELECT	FROM	Clients	WHERE	map.values()	CONTAINSALL	(	name	is	not	null)

History

-	1.0rc1:	First	version

Methods

664



SQL	Batch
OrientDB	allows	execution	of	arbitrary	scripts	written	in	Javascript	or	any	scripting	language	installed	in	the	JVM.	OrientDB	supports
a	minimal	SQL	engine	to	allow	a	batch	of	commands.

Batch	of	commands	are	very	useful	when	you	have	to	execute	multiple	things	at	the	server	side	avoiding	the	network	roundtrip	for	each
command.

SQL	Batch	supports	all	the	OrientDB	SQL	commands,	plus	the	following:

	begin	[isolation	<isolation-level>]	,	where		<isolation-level>		can	be		READ_COMMITTED	,		REPEATABLE_READ	.	By	default	is
	READ_COMMITTED	

	commit	[retry	<retry>]	,	where:
is	the	number	of	retries	in	case	of	concurrent	modification	exception

	let	<variable>	=	<SQL>	,	to	assign	the	result	of	a	SQL	command	to	a	variable.	To	reuse	the	variable	prefix	it	with	the	dollar	sign	$
	if(<expression>){<statememt>}	.	Look	at	Conditional	execution.
	sleep	<ms>	,	put	the	batch	in	wait	for		<ms>		milliseconds.
	console.log	<text>	,	logs	a	message	in	the	console.	Context	variables	can	be	used	with		${<variable>}	.	Since	2.2.
	console.error	<text>	,	writes	a	message	in	the	console's	standard	output.	Context	variables	can	be	used	with		${<variable>}	.
Since	2.2.
	console.output	<text>	,	writes	a	message	in	the	console's	standard	error.	Context	variables	can	be	used	with		${<variable>}	.	Since
2.2.
	return		,	where	value	can	be:

any	value.	Example:		return	3	
any	variable	with	$	as	prefix.	Example:		return	$a	
arrays.	Example:		return	[	$a,	$b	]	
maps.	Example:		return	{	'first'	:	$a,	'second'	:	$b	}	

See	also

Javascript-Command

Optimistic	transaction

Example	to	create	a	new	vertex	in	a	Transaction	and	attach	it	to	an	existent	vertex	by	creating	a	new	edge	between	them.	If	a	concurrent
modification	occurs,	repeat	the	transaction	up	to	100	times:

begin

let	account	=	create	vertex	Account	set	name	=	'Luke'

let	city	=	select	from	City	where	name	=	'London'

let	edge	=	create	edge	Lives	from	$account	to	$city

commit	retry	100

return	$edge

Note	the	usage	of	$account	and	$city	in	further	SQL	commands.

Pessimistic	transaction

This	script	above	used	an	Optimistic	approach:	in	case	of	conflict	it	retries	up	top	100	times	by	re-executing	the	entire	transaction
(commit	retry	100).	To	follow	a	Pessimistic	approach	by	locking	the	records,	try	this:

Batch

665



BEGIN

let	account	=	CREATE	VERTEX	Account	SET	name	=	'Luke'

let	city	=	SELECT	FROM	City	WHERE	name	=	'London'	LOCK	RECORD

let	edge	=	CREATE	EDGE	Lives	FROM	$account	TO	$city

COMMIT

return	$edge

Note	the	"lock	record"	after	the	select.	This	means	the	returning	records	will	be	locked	until	commit	(or	rollback).	In	this	way	concurrent
updates	against	London	will	wait	for	this	transaction	to	complete.

NOTE:	locks	inside	transactions	works	ONLY	against	MEMORY	storage,	we're	working	to	provide	such	feature	also	against	plocal.
Stay	tuned	(Issue	https://github.com/orientechnologies/orientdb/issues/1677)

Conditional	execution
(since	2.1.7)	SQL	Batch	provides	IF	constructor	to	allow	conditional	execution.	The	syntax	is

if(<sql-predicate>){

			<statement>

			<statement>

			...

}

	<sql-predicate>		is	any	valid	SQL	predicate	(any	condition	that	can	be	used	in	a	WHERE	clause).	In	current	release	it's	mandatory	to
have		IF(){	,		<statement>		and		}		on	separate	lines,	eg.	the	following	is	not	a	valid	script

if($a.size()	>	0)	{	ROLLBACK	}

The	right	syntax	is	following:

if($a.size()	>	0)	{	

			ROLLBACK	

}

Java	API

This	can	be	used	by	Java	API	with:

database.open("admin",	"admin");

String	cmd	=	"begin\n";

cmd	+=	"let	a	=	CREATE	VERTEX	SET	script	=	true\n";

cmd	+=	"let	b	=	SELECT	FROM	v	LIMIT	1\n";

cmd	+=	"let	e	=	CREATE	EDGE	FROM	$a	TO	$b\n";

cmd	+=	"COMMIT	RETRY	100\n";

cmd	+=	"return	$e";

OIdentifiable	edge	=	database.command(new	OCommandScript("sql",	cmd)).execute();

Remember	to	put	one	command	per	line	(postfix	it	with	\n)	or	use	the	semicolon	(;)	as	separator.

HTTP	REST	API
And	via	HTTP	REST	interface	(https://github.com/orientechnologies/orientdb/issues/2056).	Execute	a	POST	against	/batch	URL	by
sending	a	payload	in	this	format:

Batch

666

https://github.com/orientechnologies/orientdb/issues/1677
https://github.com/orientechnologies/orientdb/issues/2056


{	"transaction"	:	false,

		"operations"	:	[

				{

						"type"	:	"script",

						"language"	:	"sql",

						"script"	:	<text>

				}

		]

}

Example:

{	"transaction"	:	false,

		"operations"	:	[

				{

						"type"	:	"script",

						"language"	:	"sql",

						"script"	:	[	"BEGIN;let	account	=	CREATE	VERTEX	Account	SET	name	=	'Luke';let	city	=SELECT	FROM	City	WHERE	name	=	'Londo

n';CREATE	EDGE	Lives	FROM	$account	TO	$city;COMMIT	RETRY	100"	]

				}

		]

}

To	separate	commands	use	semicolon	(;)	or	linefeed	(\n).	Starting	from	release	1.7	the	"script"	property	can	be	an	array	of	strings	to	put
each	command	on	separate	item,	example:

{	"transaction"	:	false,

		"operations"	:	[

				{

						"type"	:	"script",

						"language"	:	"sql",

						"script"	:	[	"begin",

																			"let	account	=	CREATE	VERTEX	Account	SET	name	=	'Luke'",

																			"let	city	=	SELECT	FROM	City	WHERE	name	=	'London'",

																			"CREATE	EDGE	Lives	FROM	$account	TO	$city",

																			"COMMIT	RETRY	100"	]

				}

		]

}

Hope	this	new	feature	will	simplify	your	development	improving	performance.

What	about	having	more	complex	constructs	like	IF,	FOR,	etc?	If	you	need	more	complexity,	we	suggest	you	to	use	Javascript	as
language	that	already	support	all	these	concepts.

Batch

667



OrientDB	supports	pagination	natively.	Pagination	doesn't	consume	server	side	resources	because	no	cursors	are	used.	Only	RecordIDs
are	used	as	pointers	to	the	physical	position	in	the	cluster.

There	are	2	ways	to	achieve	pagination:

Use	the	SKIP-LIMIT

The	first	and	simpler	way	to	do	pagination	is	to	use	the		SKIP	/	LIMIT		approach.	This	is	the	slower	way	because	OrientDB	repeats	the
query	and	just	skips	the	first	X	records	from	the	result.	Syntax:

SELECT	FROM	<target>	[WHERE	...]	SKIP	<records-to-skip>	LIMIT	<max-records>

Where:

records-to-skip	is	the	number	of	records	to	skip	before	starting	to	collect	them	as	the	result	set
max-records	is	the	maximum	number	of	records	returned	by	the	query

Example

Use	the	RID-LIMIT
This	method	is	faster	than	the		SKIP	-	LIMIT		because	OrientDB	will	begin	the	scan	from	the	starting	RID.	OrientDB	can	seek	the	first
record	in	about	O(1)	time.	The	downside	is	that	it's	more	complex	to	use.

The	trick	here	is	to	execute	the	query	multiple	times	setting	the		LIMIT		as	the	page	size	and	using	the	greater	than		>		operator	against
	@rid	.	The	lower-rid	is	the	starting	point	to	search,	for	example		#10:300	.

Syntax:

SELECT	FROM	<target>	WHERE	@rid	>	<lower-rid>	...	[LIMIT	<max-records>]

Where:

lower-rid	is	the	exclusive	lower	bound	of	the	range	as	RecordID
max-records	is	the	maximum	number	of	records	returned	by	the	query

In	this	way,	OrientDB	will	start	to	scan	the	cluster	from	the	given	position	lower-rid	+	1.	After	the	first	call,	the	lower-rid	will	be	the
rid	of	the	last	record	returned	by	the	previous	call.	To	scan	the	cluster	from	the	beginning,	use		#-1:-1		as	lower-rid	.

Handle	it	by	hand

database.open("admin",	"admin");

final	OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Customer	where	@rid	>	?	LIMIT	20");

List<ODocument>	resultset	=	database.query(query,	new	ORecordId());

while	(!resultset.isEmpty())	{

				ORID	last	=	resultset.get(resultset.size()	-	1).getIdentity();

				for	(ODocument	record	:	resultset)	{

								//	ITERATE	THE	PAGINATED	RESULT	SET

				}

				resultset	=	database.query(query,	last);

}

database.close();

Automatic	management

In	order	to	simplify	the	pagination,	the		OSQLSynchQuery		object	(usually	used	in	queries)	keeps	track	of	the	current	page	and,	if	executed
multiple	times,	it	advances	page	to	page	automatically	without	using	the		>		operator.

Pagination

668



Example:

OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Customer	LIMIT	20");

for	(List<ODocument>	resultset	=	database.query(query);	!resultset.isEmpty();	resultset	=	database.query(query))	{

				...

}

Usage	of	indexes

This	is	the	faster	way	to	achieve	pagination	with	large	clusters.

If	you've	defined	an	index,	you	can	use	it	to	paginate	results.	An	example	is	to	get	all	the	names	next	to		Jay		limiting	it	to	20:

Collection<ODocument>	indexEntries	=	(Collection<ODocument>)	index.getEntriesMajor("Jay",	true,	20);

Pagination

669



Sequences	and	auto	increment
Starting	from	v2.2,	OrientDB	supports	sequences	like	most	of	RDBMS.	What's	a	sequence?	It's	a	structure	that	manage	counters.
Sequences	are	mostly	used	when	you	need	a	number	that	always	increments.	Sequence	types	can	be:

ORDERED:	each	call	to		.next()		will	result	in	a	new	value.
CACHED:	the	sequence	will	cache	N	items	on	each	node,	thus	improving	the	performance	if	many		.next()		calls	are	required.
However,	this	may	create	holes.

To	manipulate	sequences	you	can	use	the	Java	API	or	SQL	commands.

Create	a	sequence

Create	a	sequence	with	Java	API

OSequenceLibrary	sequenceLibrary	=	database.getMetadata().getSequenceLibrary();

OSequence	seq	=	sequenceLibrary.createSequence("idseq",	SEQUENCE_TYPE.ORDERED,	new	OSequence.CreateParams().setStart(0));

SQL	CREATE	SEQUENCE

CREATE	SEQUENCE	idseq

INSERT	INTO	account	SET	id	=	sequence('idseq').next()

For	more	information	look	at	SQL	CREATE	SEQUENCE.

Using	a	sequence

Using	a	sequence	with	Java	API

OSequence	seq	=	graph.getRawGraph().getMetadata().getSequenceLibrary().getSequence("idseq");

graph.addVertex("class:Account",	"id",	seq.next());

Using	a	sequence	from	SQL

You	can	use	a	sequence	from	SQL	with	the	following	syntax:

sequence('<sequence>').<method>

Where:

	method		can	be:
	next()		retrieves	the	next	value
	current()		gets	the	current	value
	reset()		resets	the	sequence	value	to	it's	initial	value

Example

INSERT	INTO	Account	SET	id	=	sequence('mysequence').next()

Alter	a	sequence

Alter	a	sequence	with	Java	API

Sequences	and	auto	increment

670



graph.getRawGraph().getMetadata().getSequenceLibrary().getSequence("idseq").updateParams(	new	OSequence.CreateParams().setStar

t(1000)	);

SQL	ALTER	SEQUENCE

ALTER	SEQUENCE	idseq	START	1000

For	more	information	look	at	SQL	ALTER	SEQUENCE.

Drop	a	sequence

Drop	a	sequence	with	Java	API

graph.getRawGraph().getMetadata().getSequenceLibrary().dropSequence("idseq");

SQL	DROP	SEQUENCE

DROP	SEQUENCE	idseq

For	more	information	look	at	SQL	DROP	SEQUENCE.

OrientDB	before	v2.2
OrientDB	before	v2.2	doesn't	support	sequences	(autoincrement),	so	you	can	manage	your	own	counter	in	this	way	(example	using
SQL):

CREATE	CLASS	counter

INSERT	INTO	counter	SET	name='mycounter',	value=0

And	then	every	time	you	need	a	new	number	you	can	do:

UPDATE	counter	INCREMENT	value	=	1	WHERE	name	=	'mycounter'

This	works	in	a	SQL	batch	in	this	way:

BEGIN

let	$counter	=	UPDATE	counter	INCREMENT	value	=	1	return	after	$current	WHERE	name	=	'mycounter'

INSERT	INTO	items	SET	id	=	$counter.value[0],	qty	=	10,	price	=	1000

COMMIT

Sequences	and	auto	increment

671



When	planning	an	OrientDB	SELECT	query,	it	is	important	to	determine	the	model	class	that	will	be	used	as	the	pivot	class	of	the
query.	This	class	is	expressed	in	the	FROM	clause.	It	affects	other	elements	in	the	query	as	follows:

projections	will	be	relative	to	the	pivot	class.	It	is	possible	to	traverse	within	a	projection	to	refer	to	neighboring	classes	by
chaining	edge	syntax	expressions	(i.e.		in[label='office'].out.out[label='office'].size()	).	However,	consider	that	multiple
results	from	a	projection	traversed	from	the	pivot	class	will	be	returned	as	a	collection	within	the	result	set	(unless	there	is	only	a
single	value).
filtering	conditions	in	the	WHERE	clause	are	also	relative	to	the	pivot	class.	It	is	also	possible	to	traverse	to	neighboring	classes	in
order	to	compose	advanced	conditions	by	using	edge	syntax	expressions	(e.g.		and
in[label='company'].out.out[label='employee'].in.id	IN	'0000345'	).
the	ORDER	BY	clause	will	be	relative	to	one	of	the	projections	and	must	be	returned	as	a	single	value	per	record	(i.e.	an	attribute	of
the	pivot	class	or	a	single	attribute	of	a	neighboring	class).	It	will	not	be	possible	to	order	by	traversed	projections	in	a	single	query
if	they	return	multiple	results	(as	a	collection).	Therefore,	in	queries	using	an	ORDER	BY	clause,	there	is	only	one	possible	choice
for	the	pivot	class	as	it	must	be	the	class	containing	the	attribute	to	order	by.

Additionally,	there	are	performance	considerations	that	should	be	considered	on	selecting	the	pivot	class.	Assuming	2	classes	as	follows:

+--------------------+											+-------------------+

|	Class:	CountryType	|	-------->	|	Class:	PersonType	|

|	attr:	name									|											|		attr:	name							|

|	atr:	code										|											|		attr:	lat								|

|																				|											|		attr:	long							|

+--------------------+											+-------------------+

		(tens	of	vertices)													(millions	of	vertices)

Queries:

	SELECT	[...]	FROM	CountryType	WHERE	[...]

	SELECT	[...]	FROM	PersonType	WHERE	[...]

The	first	query	will	apply	the	WHERE	filtering	and	projections	to	fewer	vertices,	and	as	a	result	will	perform	faster	that	the	second
query.	Therefore,	it	is	advisable	to	assign	the	pivot	class	to	the	class	that	contains	the	most	relevant	items	for	the	query	to	avoid
unnecessary	loops	from	the	evaluation,	i.e.	usually	the	one	with	lower	multiplicity.

Switching	the	pivot	class	within	a	query
Based	on	the	previous	discussion,	there	may	be	conflicting	requirements	on	determining	the	pivot	class.	Take	the	case	where	we	need	to
ORDER	BY	a	class	with	a	very	high	multiplicity	(say,	millions	of	vertices),	but	most	of	these	vertices	are	not	relevant	for	the	outcome
of	our	query.

On	one	hand,	according	to	the	requirements	of	the	ORDER	BY	clause,	we	are	forced	to	choose	the	class	containing	the	attribute	to	order
by	as	the	pivot	class.	But,	as	we	also	saw,	this	class	can	not	be	an	optimal	choice	from	a	performance	point	of	view	if	only	a	small
subset	of	vertices	is	relevant	to	the	query.	In	this	case,	we	have	a	choice	between	poor	performance	resulting	from	setting	the	pivot	class
as	the	class	containing	the	attribute	to	order	by	even	though	it	has	a	higher	multiplicity,	or	good	performance	by	taking	out	the	ORDER
BY	clause	and	ordering	results	after	the	fact	in	the	invoking	Java	code,	which	is	more	work.	If	we	choose	to	execute	the	full	operation	in
one	query,	indices	can	be	used	to	improve	the	poor	performance,	but	it	would	be	usually	an	overkill	as	a	consequence	of	a	bad	query
planning.

A	more	elegant	solution	can	be	achieved	by	using	the	nested	query	technique,	as	shown	below:

Pivoting	with	Query

672



SELECT																																																														--	outer	query

		in[label='city'].out.name	AS	name,

		in[label='city'].out.out[label='city'].size()	AS	city_count,

		CityLat,

		CityLong,

		distance(CityLat,	CityLong,	51.513363,	-0.089178)	AS	distance					--	order	by	parameter

FROM	(																																																														--	inner	query

		SELECT	flatten(	in[label='region'].out.out[label='city'].in	)

		FROM	CountryType	WHERE	id	IN	'0032'

)

WHERE	CityLat	<>	''	AND	CityLong		<>	''

ORDER	BY	distance

This	nested	query	represents	a	two-fold	operation,	taking	the	best	of	both	worlds.	The	inner	query	uses	the		CountryType		class	which
has	lower	multiplicity	as	pivot	class,	so	the	number	of	required	loops	is	smaller,	and	as	a	result	delivers	better	performance.	The	set	of
vertices	resulting	from	the	inner	query	is	taken	as	pivot	class	for	the	outer	query.	The		flatten()		function	is	required	to	expose	items
from	the	inner	query	as	a	flat	structure	to	the	outer	query.	The	higher	the	multiplicity	and	number	of	irrelevant	records	in	the	class	with
the	parameter	to	order	by,	the	more	convenient	using	this	approach	becomes.

Pivoting	with	Query

673



Command	Cache
Starting	from	release	2.2,	OrientDB	supports	caching	of	commands	results.	Caching	command	results	has	been	used	by	other	DBMSs
and	proven	to	dramatically	improve	the	following	use	cases:

database	is	mostly	read	than	write
there	are	a	few	heavy	queries	that	result	a	small	result	set
you	have	available	RAM	to	use	or	caching	results

By	default,	the	command	cache	is	disabled.	To	enable	it,	set		command.timeout=true	.

Settings
There	are	some	settings	to	tune	the	command	cache.	Below	find	the	table	containing	all	the	available	settings.

Parameter Description Type Default	value

command.cache.enabled Enable	command	cache Boolean false

command.cache.evictStrategy Command	cache	strategy	between:
[INVALIDATE_ALL,PER_CLUSTER] String.class PER_CLUSTER

command.cache.minExecutionTime Minimum	execution	time	to	consider	caching
result	set Integer.class 10

command.cache.maxResultsetSize Maximum	resultset	time	to	consider	caching
result	set Integer 500

Eviction	strategies

Using	a	cache	that	holds	old	data	could	be	meaningless,	unless	you	could	accept	eventual	consistency.	For	this	reason,	the	command
cache	supports	2	eviction	strategies	to	keep	the	cache	consistent:

INVALIDATE_ALL	to	remove	all	the	query	results	at	every	Create,	Update	and	Delete	operation.	This	is	faster	than
PER_CLUSTER	if	many	writes	occur.
PER_CLUSTER	to	remove	all	the	query	results	only	related	to	the	modified	cluster.	This	operation	is	more	expensive	then
INVALIDATE_ALL

Command	Cache

674



Indexes
OrientDB	supports	four	index	algorithms:

SB-Tree	Index	Provides	a	good	mix	of	features	available	from	other	index	types,	good	for	general	use.	It	is	durable,	transactional
and	supports	range	queries.	It	is	the	default	index	type.
Hash	Index	Provides	fast	lookup	and	is	very	light	on	disk	usage.	It	is	durable	and	transactional,	but	does	not	support	range
queries.	It	works	like	a	HashMap,	which	makes	it	faster	on	punctual	lookups	and	it	consumes	less	resources	than	other	index
types.
Lucene	Full	Text	Index	Provides	good	full-text	indexes,	but	cannot	be	used	to	index	other	types.	It	is	durable,	transactional	and
supports	range	queries.
Lucene	Spatial	Index	Provides	good	spatial	indexes,	but	cannot	be	used	to	index	other	types.	It	is	durable,	transactional	and
supports	range	queries.

Understanding	Indexes

OrientDB	can	handle	indexes	in	the	same	manner	as	classes,	using	the	SQL	language	and	prefixing	the	name	with		index:		followed	by
the	index	name.	An	index	is	like	a	class	with	two	properties:

	key		The	index	key.
	rid		The	Record	ID,	which	points	to	the	record	associated	with	the	key.

Index	Target

OrientDB	can	use	two	methods	to	update	indexes:

Automatic	Where	the	index	is	bound	to	schema	properties.	(For	example,		User.id	.)	If	you	have	a	schema-less	database	and	you
want	to	create	an	automatic	index,	then	you	need	to	create	the	class	and	the	property	before	using	the	index.

Manual	Where	the	index	is	handled	by	the	application	developer,	using	the	Java	API	and	SQL	commands	(see	below).	You	can	use
them	as	Persistent	Maps,	where	the	entry's	value	are	the	records	pointed	to	by	the	index.

You	can	rebuild	automatic	indexes	using	the		REBUILD	INDEX		command.

Index	Types

When	you	create	an	index,	you	create	it	as	one	of	several	available	algorithm	types.	Once	you	create	an	index,	you	cannot	change	its
type.	OrientDB	supports	four	index	algorithms	and	several	types	within	each.	You	also	have	the	option	of	using	any	third-party	index
algorithms	available	through	plugins.

SB-Tree	Algorithm
	UNIQUE		These	indexes	do	not	allow	duplicate	keys.	For	composite	indexes,	this	refers	to	the	uniqueness	of	the	composite
keys.
	NOTUNIQUE		These	indexes	allow	duplicate	keys.
	FULLTEXT		These	indexes	are	based	on	any	single	word	of	text.	You	can	use	them	in	queries	through	the		CONTAINSTEXT	
operator.
	DICTIONARY		These	indexes	are	similar	to	those	that	use		UNIQUE	,	but	in	the	case	of	duplicate	keys,	they	replaces	the	existing
record	with	the	new	record.

HashIndex	Algorithm
	UNIQUE_HASH_INDEX		These	indexes	do	not	allow	duplicate	keys.	For	composite	indexes,	this	refers	to	the	uniqueness	of	the
composite	keys.	Available	since	version	1.5.x.
	NOTUNIQUE_HASH_INDEX		These	indexes	allow	duplicate	keys.	Available	since	version	1.5.x.
	FULLTEXT_HASH_INDEX		These	indexes	are	based	on	any	single	word	of	text.	You	can	use	them	in	queries	through	the
	CONTAINSTEXT		operator.	Available	since	version	1.5.x.
	DICTIONARY_HASH_INDEX		These	indexes	are	similar	to	those	that	use		UNIQUE_HASH_INDEX	,	but	in	cases	of	duplicate	keys,	they
replaces	the	existing	record	with	the	new	record.	Available	since	version	1.5.x.

Indexing

675



Lucene	Engine
	FULLTEXT		These	indexes	use	the	Lucene	engine	to	index	string	content.	You	can	use	them	in	queries	with	the		LUCENE	
operator.
	SPATIAL		These	indexes	use	the	Lucene	engine	to	index	geospatial	coordinates.

Every	database	has	a	default	manual	index	type		DICTIONARY	,	which	uses	strings	as	keys.	You	may	find	this	useful	in	handling	the	root
records	of	trees	and	graphs,	and	handling	singleton	records	in	configurations.

Indexes	and	Null	Values

By	default,	indexes	do	not	support	null	values.	Queries	made	against		NULL		values	that	use	indexes	fail	with	the		Null	keys	are	not
supported		exception.

In	the	event	that	you	want	to	index	null	values,	you	must	set		{ignoreNullValues:	false}		in	the	metadata.	For	instance,

orientdb>	CREATE	INDEX	addresses	ON	Employee	(address)	NOTUNIQUE	METADATA	{ignoreNullValues:	false}

Indexes	and	Composite	Keys

Operations	that	work	with	indexes	also	work	with	indexes	formed	from	composite	keys.	By	its	nature,	a	composite	key	is	acollection	of
values,	so,	syntactically,	it	is	a	collection.

For	example,	consider	a	case	where	you	have	a	class		Book	,	indexed	by	three	fields:		author	,		title		and		publicationYear	.	You	might
use	the	following	query	to	look	up	an	individual	book:

orientdb>	SELECT	FROM	INDEX:books	WHERE	key	=	["Donald	Knuth",	"The	Art	of	Computer

										Programming",	1968]

Alternatively,	you	can	look	a	public	up	through	the	field		publicationYear	:

orientdb>	SELECT	FROM	INDEX:books	WHERE	key	BETWEEN	["Donald	Knuth",	"The	Art	of	

										Computer	Programming",	1960]	AND	["Donald	Knuth",	"The	Art	of	Computer	

										Programming",	2000]

Partial	Match	Searches

Occasionally,	you	may	need	to	search	an	index	record	by	several	fields	of	its	composite	key.	In	these	partial	match	searches,	the
remaining	fields	with	undefined	values	can	match	any	value	in	the	result.

Only	use	composite	indexes	for	partial	match	searches	when	the	declared	fields	in	the	composite	index	are	used	from	left	to	right.	For
instance,	from	the	example	above	searching	only		title		wouldn't	work	with	a	composite	index,	since		title		is	the	second	value.	But,
you	could	use	it	when	searching		author		and		title	.

For	example,	consider	a	case	where	you	don't	care	when	the	books	in	your	database	were	published.	This	allows	you	to	use	a	somewhat
different	query,	to	return	all	books	with	the	same	author	and	title,	but	from	any	publication	year.

orientdb>	SELECT	FROM	INDEX:books	WHERE	key	=	["Donald	Knuth",	"The	Art	of	Computer	

										Programming"]

In	the	event	that	you	also	don't	know	the	title	of	the	work	you	want,	you	can	further	reduce	it	to	only	search	all	books	with	the	same
author.

orientdb>	SELECT	FROM	INDEX:books	WHERE	key	=	["Donald	Knuth"]

Or,	the	equivalent,

Indexing

676



orientdb>	SELECT	FROM	INDEX:books	WHERE	key	=	"Donald	Knuth"

Insertion	for	Composite	Indexes

Direct	insertion	for	composite	indexes	is	not	yet	supported	in	OrientDB.

Range	Queries

In	the	case	of	range	queries,	the	field	subject	to	the	range	must	be	the	last	one,	(that	is,	the	one	on	the	far	right).	For	example,

orientdb>	SELECT	FROM	INDEX:books	WHERE	key	BETWEEN	["Donald	Knuth",	"The	Art	of	

										Computer	Programming",	1900]	AND	["Donald	Knuth",	"The	Art	of	Computer	

										Programming",	2014]

Operations	against	Indexes
Once	you	have	a	good	understanding	of	the	theoretical	side	of	what	indexes	are	and	some	of	basic	concepts	that	go	into	their	use,	it's
time	to	consider	the	practical	aspects	of	creating	and	using	indexes	with	your	application.

Creating	Indexes

When	you	have	created	the	relevant	classes	that	you	want	to	index,	create	the	index.	To	create	an	automatic	index,	bound	to	a	schema
property,	use	the		ON		section	or	use	the	name	in	the		<class>.<property>		notation.

Syntax:

CREATE	INDEX	<name>	[ON	<class-name>	(prop-names)]	<type>	[<key-type>]

																				[METADATA	{<metadata>}]

	<name>		Provides	the	logical	name	for	the	index.	You	can	also	use	the		<class.property>		notation	to	create	an	automatic	index
bound	to	a	schema	property.	In	this	case,	for		<class>		use	the	class	of	the	schema	and		<property>		the	property	created	in	the
class.

Bear	in	mind	that	this	means	case	index	names	cannot	contain	the	period	(	.	)	symbol,	as	OrientDB	would	interpret	the	text	after
as	a	property.

	<class-name>		Provides	the	name	of	the	class	that	you	are	creating	the	automatic	index	to	index.	Thisclass	must	already	exist	in	the
database.

	<prop-names>		Provides	a	comma-separated	list	of	properties,	which	you	want	the	automatic	index	to	index.	These	properties
must	already	exist	in	the	schema.

If	the	property	belongs	to	one	of	the	Map	types,	(such	as		LINKMAP	,	or		EMBEDDEDMAP	),	you	can	specify	the	keys	or	values	to	use
in	generating	indexes.	You	can	do	this	with	the		BY	KEY		or		BY	VALUE		expressions,	if	nothing	is	specified,	these	keys	are	used
during	index	creation.

	<type>		Provides	the	algorithm	and	type	of	index	that	you	want	to	create.	For	information	on	the	supported	index	types,	see
Index	Types.

Indexing

677



	<key-type>		Provides	the	optional	key	type.	With	automatic	indexes,	the	key	type	OrientDB	automatically	determines	the	key
type	by	reading	teh	target	schema	property	where	the	index	is	created.	With	manual	indexes,	if	not	specified,	OrientDB
automatically	determines	the	key	type	at	run-time,	during	the	first	insertion	by	reading	the	type	of	the	class.

	<metadata>		Provides	a	JSON	representation

Examples:

Creating	custom	indexes:

orientdb>	CREATE	INDEX	mostRecentRecords	UNIQUE	date

Creating	automatic	indexes	bound	to	the	property		id		of	the	class		User	:

orientdb>	CREATE	PROPERTY	User.id	BINARY

orientdb>	CREATE	INDEX	User.id	UNIQUE

Creating	another	index	for	the	property		id		of	the	class		User	:

orientdb>	CREATE	INDEX	indexForId	ON	User	(id)	UNIQUE

Creating	indexes	for	property		thumbs		on	class		Movie	:

orientdb>	CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs)	UNIQUE

orientdb>	CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs	BY	KEY)	UNIQUE

orientdb>	CREATE	INDEX	thumbsValue	on	Movie	(thumbs	BY	VALUE)	UNIQUE

Creating	composite	indexes:

orientdb>	CREATE	PROPERTY	Book.author	STRING

orientdb>	CREATE	PROPERTY	Book.title	STRING

orientdb>	CREATE	PROPERTY	Book.publicationYears	EMBEDDEDLIST	INTEGER

orientdb>	CREATE	INDEX	books	ON	Book	(author,	title,	publicationYears)	UNIQUE

For	more	information	on	creating	indexes,	see	the		CREATE	INDEX		command.

Dropping	Indexes

In	the	event	that	you	have	an	index	that	you	no	longer	want	to	use,	you	can	drop	it	from	the	database.	This	operation	does	not	remove
linked	records.

Syntax:

DROP	INDEX	<name>

	<name>		provides	the	name	of	the	index	you	want	to	drop.

For	more	information	on	dropping	indexes,	see	the		DROP	INDEX		command.

Querying	Indexes

When	you	have	an	index	created	and	in	use,	you	can	query	records	in	the	index	using	the		SELECT		command.

Syntax:

SELECT	FROM	INDEX:<index-name>	WHERE	key	=	<key>

Indexing

678



Example:

Selecting	from	the	index		dictionary		where	the	key	matches	to		Luke	:

orientdb>	SELECT	FROM	INDEX:dictionary	WHERE	key='Luke'

Case-insensitive	Matching	with	Indexes

In	the	event	that	you	would	like	the	index	to	use	case-insensitive	matching,	set	the		COLLATE		attribute	of	the	indexed	properties	to		ci	.
For	instance,

orientdb>	CREATE	INDEX	OUser.name	ON	OUser	(name	COLLATE	ci)	UNIQUE

Inserting	Index	Entries

You	can	insert	new	entries	into	the	index	using	the		key		and		rid		pairings.

Syntax:

INSERT	INTO	INDEX:<index-name>	(key,rid)	VALUES	(<key>,<rid>)

Example:

Inserting	the	key		Luke		and	Record	ID		#10:4		into	the	index		dictionary	:

orientdb>	INSERT	INTO	INDEX:dictionary	(key,	rid)	VALUES	('Luke',	#10:4)

Querying	Index	Ranges

In	addition	to	querying	single	results	from	the	index,	you	can	also	query	a	range	of	results	between	minimum	and	maximum	values.	Bear
in	mind	that	not	all	index	types	support	this	operation.

Syntax:

SELECT	FROM	INDEX:<index-name>	WHERE	key	BETWEEN	<min>	AND	<max>

Example:

Querying	from	the	index		coordinates		and	range	between		10.3		and		10.7	:

orientdb>	SELECT	FROM	INDEX:coordinates	WHERE	key	BETWEEN	10.3	AND	10.7

Removing	Index	Entries

You	can	delete	entries	by	passing	the		key		and		rid		values.	This	operation	returns		TRUE		if	the	removal	was	successful	and		FALSE		if
the	entry	wasn't	found.

Syntax:

DELETE	FROM	INDEX:<index-name>	WHERE	key	=	<key>	AND	rid	=	<rid>

Example:

Removing	an	entry	from	the	index		dictionary	:

orientdb>	DELETE	FROM	INDEX:dictionary	WHERE	key	=	'Luke'	AND	rid	=	#10:4

Indexing

679



Removing	Index	Entries	by	Key

You	can	delete	all	entries	from	the	index	through	the	requested	key.

Syntax:

DELETE	FROM	INDEX:<index-name>	WHERE	key	=	<key>

Example:

Delete	entries	from	the	index		addressbook		whee	the	key	matches	to		Luke	:

orientdb>	DELETE	FROM	INDEX:addressbook	WHERE	key	=	'Luke'

Removing	Index	Entries	by	RID

You	can	remove	all	index	entries	to	a	particular	record	by	its	record	ID.

Syntax:

DELETE	FROM	INDEX:<index-name>	WHERE	rid	=	<rid>

Example:

Removing	entries	from	index		dictionary		tied	to	the	record	ID		#10:4	:

orientdb>	DELETE	FROM	INDEX:dictionary	WHERE	rid	=	#10:4

Counting	Index	Entries

To	see	the	number	of	entries	in	a	given	index,	you	can	use	the		COUNT()		function.

Syntax:

SELECT	COUNT(*)	AS	size	FROM	INDEX:<index-name>

Example:

Counting	the	entries	on	the	index		dictionary	:

orientdb>	SELECT	COUNT(*)	AS	size	FROM	INDEX:dictionary

Querying	Keys	from	Indexes

You	can	query	all	keys	in	an	index	using	the		SELECT		command.

Syntax:

SELECT	key	FROM	INDEX:<index-name>

Example:

Querying	the	keys	in	the	index		dictionary	:

orientdb>	SELECT	key	FROM	INDEX:dictionary

Querying	Index	Entries

Indexing

680



You	can	query	for	all	entries	on	an	index	as		key		and		rid		pairs.

Syntax:

SELECT	key,	value	FROM	INDEX:<index-name>

Example:

Querying	the		key	/	rid		pairs	from	the	index		dictionary	:

orientdb>	SELECT	key,	value	FROM	INDEX:dictionary

Clearing	Indexes

Remove	all	entries	from	an	index.	After	running	this	command,	the	index	is	empty.

Syntax:

DELETE	FROM	INDEX:<index-name>

Example:

Removing	all	entries	from	the	index		dictionary	:

orientdb>	DELETE	FROM	INDEX:dictionary

Custom	Keys

OrientDB	includes	support	for	the	creation	of	custom	keys	for	indexes.	This	feature	has	been	available	since	version	1.0,	and	can
provide	you	with	a	huge	performance	improvement,	in	the	event	that	you	would	like	minimize	memory	usage	by	developing	your	own
serializer.

For	example,	consider	a	case	where	you	want	to	handle	SHA-256	data	as	binary	keys	without	using	a	string	to	represent	it,	which	would
save	on	disk	space,	CPU	and	memory	usage.

To	implement	this,	begin	by	creating	your	own	type,

public	static	class	ComparableBinary	implements	Comparable<ComparableBinary>	{

						private	byte[]	value;

						public	ComparableBinary(byte[]	buffer)	{

												value	=	buffer;

						}

						public	int	compareTo(ComparableBinary	o)	{

												final	int	size	=	value.length;

												for	(int	i	=	0;	i	<	size;	++i)	{

																		if	(value[i]	>	o.value[i])

																								return	1;

																		else	if	(value[i]	<	o.value[i])

																								return	-1;

												}

												return	0;

						}

						public	byte[]	toByteArray()	{

												return	value;

						}

}

With	your	index	type	created,	next	create	a	binary	selector	for	it	to	use:

Indexing

681



public	static	class	OHash256Serializer	implements	OBinarySerializer<ComparableBinary>	{

						public	static	final	OBinaryTypeSerializer	INSTANCE	=	new	OBinaryTypeSerializer();

						public	static	final	byte	ID	=	100;

						public	static	final	int	LENGTH	=	32;

						public	int	getObjectSize(final	int	length)	{

												return	length;

						}

						public	int	getObjectSize(final	ComparableBinary	object)	{

												return	object.toByteArray().length;

						}

						public	void	serialize(

									final	ComparableBinary	object,

									final	byte[]	stream,

					final	int	startPosition)	{

																		final	byte[]	buffer	=	object.toByteArray();

																		System.arraycopy(buffer,	0,	stream,	startPosition,	buffer.length);

												}

						public	ComparableBinary	deserialize(

									final	byte[]	stream,

					final	int	startPosition)	{

																	final	byte[]	buffer	=	Arrays.copyOfRange(

																		stream,

																		startPosition,

																		startPosition	+	LENGTH);

																		return	new	ComparableBinary(buffer);

						}

						public	int	getObjectSize(byte[]	stream,	int	startPosition)	{

												return	LENGTH;

						}

						public	byte	getId()	{

												return	ID;

						}

}

Lastly,	register	the	new	serializer	with	OrientDB:

OBinarySerializerFactory.INSTANCE.registerSerializer(new	OHash256Serializer(),	null);

index	=	database.getMetadata().getIndexManager().createIndex("custom-hash",	"UNIQUE",	new	ORuntimeKeyIndexDefinition(OHash256S

erializer.ID),	null,	null);

Your	custom	keys	are	now	available	for	use	in	searches:

ComparableBinary	key1	=	new	ComparableBinary(new	byte[]	{	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	0,	1,	2,	

3,	4,	5,	6,	7,	8,	9,	0,	1	});

ODocument	doc1	=	new	ODocument().field("k",	"key1");

index.put(key1,	doc1);

Query	the	available	indexes

To	access	to	the	indexes,	you	can	use	SQL.

Create	your	index	engine

Here	you	can	find	a	guide	how	to	create	a	custom	index	engine.

Create	a	manual	index	in	Java

Indexing

682



To	create	a	manual	index	in	Java,	you	can	use	the	following	method:

OIndexManager.createIndex(final	String	iName,	final	String	iType,	final	OIndexDefinition	indexDefinition,	final	int[]	clusterI

dsToIndex,	final	OProgressListener	progressListener,	final	ODocument	metadata)

	iName	:	the	index	name
	iType	:	the	index	type	(UNIQUE,	NOTUNIQUE,	HASH_INDEX	ecc.)
	indexDefinition	:	the	definition	of	the	key	type.	You	can	use	OSimpleKeyIndexDefinition
	clusterIdsToIndex	:	this	has	to	be	null,	because	you	are	creating	a	manual	index
	progressListener	:	a	progress	index	for	the	index	creation	(it	can	be	null)
	metadata	:	the	index	metadata	(Eg.	the	index	engine).	For	basic	unique	and	notunique	indexes	it	can	be	null

An	example	of	its	usage	is	following:

OIndexManager	idxManager	=	db.getMetadata().getIndexManager();

idxManager.createIndex("myManualIndex",	"NOTUNIQUE",	new	OSimpleKeyIndexDefinition(-1,	OType.STRING),	null,	null,	null);

Indexing

683



SB-Tree	Index	Algorithm
This	indexing	algorithm	provides	a	good	mix	of	features,	similar	to	the	features	available	from	other	index	types.	It	is	good	for	general	use
and	is	durable,	transactional	and	supports	range	queries.	There	are	four	index	types	that	utilize	the	SB-Tree	index	algorithm:

	UNIQUE		Does	not	allow	duplicate	keys,	fails	when	it	encounters	duplicates.
	NOTUNIQUE		Does	allow	duplicate	keys.
	FULLTEXT		Indexes	to	any	single	word	of	text.
	DICTIONARY		Does	not	allow	duplicate	keys,	overwrites	when	it	encounters	duplicates.

For	more	information	on		FULLTEXT_HASH_INDEX	,	see	FullText	Index.

The	SB-Tree	index	algorithm	is	based	on	the	B-Tree	index	algorithm.	It	has	been	adapted	with	several	optimizations,	which	relate	to	data
insertion	and	range	queries.	As	is	the	case	with	all	other	tree-based	indexes,	SB-Tree	index	algorithm	experiences		log(N)		complexity,
but	the	base	to	this	logarithm	is	about	500.

NOTE:	There	is	an	issue	in	the	replacement	of	indexes	based	on	B-Tree	with	those	based	on	COLA	Tree	to	avoid	slowdowns
introduced	by	random	I/O	operations.	For	more	information	see	Issue	#1756.

SB-Tree

684

https://en.wikipedia.org/wiki/B-tree
https://github.com/orientechnologies/orientdb/issues/1756


Hash	Index	Algorithm
This	indexing	algorithm	provides	a	fast	lookup	and	is	very	light	on	disk	usage.	It	is	durable	and	transactional,	but	does	not	support	range
queries.	It	is	similar	to	a	HashMap,	which	makes	it	faster	on	punctual	lookups	and	it	consumes	less	resources	than	other	index	types.
The	Hash	index	algorithm	supports	four	index	types,	which	have	been	available	since	version	1.5.x:

	UNIQUE_HASH_INDEX		Does	not	allow	duplicate	keys,	it	fails	when	it	encounters	duplicates.
	NOTUNIQUE_HASH_INDEX		Does	allow	duplicate	keys.
	FULLTEXT_HASH_INDEX		Indexes	to	any	single	word.
	DICTIONARY		Does	not	allow	duplicate	keys,	it	overwrites	when	it	encounters	duplicates.

For	more	information	on		FULLTEXT_HASH_INDEX	,	see	FullText	Index.

Hash	indexes	are	able	to	perform	index	read	operations	in	one	I/O	operation	and	write	operations	in	a	maximum	of	three	I/O	operations.
The	Hash	Index	algorithm	is	based	on	the	Extendible	Hashing	algorithm.	Despite	not	providing	support	for	range	queries,	it	is	noticeably
faster	than	SB-Tree	Index	Algorithms,	(about	twice	as	fast	when	querying	through	ten	million	records).

NOTE:	There	is	an	issue	relating	to	the	enhancement	of	Hash	indexes	to	avoid	slowdowns	introduced	by	random	I/O	operations
using	LSM	Tree	approaches.	For	more	information,	see	Issue	#1757.

Hash

685

http://en.wikipedia.org/wiki/Extendible_hashing
https://github.com/orientechnologies/orientdb/issues/1757


FullText	Indexes
The	SB-Tree	index	algorithm	provides	support	for	FullText	indexes.	These	indexes	allow	you	to	index	text	as	a	single	word	and	its	radix.
FullText	indexes	are	like	having	a	search	engine	on	your	database.

NOTE:	Bear	in	mind	that	there	is	a	difference	between		FULLTEXT		without	the		LUCENE		operator,	which	uses	a	FullText	index
with	the	SB-Tree	index	algorithm	and		FULLTEXT		with	the		LUCENE		operator,	which	uses	a	FullText	index	through	the	Lucene
Engine.

For	more	information	on	the	latter,	see	Lucene	FullText	Index.

Creating	FullText	Indexes
If	you	want	to	create	an	index	using	the	FullText	SB-Tree	index	algorithm,	you	can	do	so	using	the		CREATE	INDEX		command.

orientdb>	CREATE	INDEX	City.name	ON	City(name)	FULLTEXT

This	creates	a	FullText	index	on	the	property		name		of	the	class		City	,	using	the	default	configuration.

FullText	Index	Parameters

In	the	event	that	the	default	FullText	Index	configuration	is	not	sufficient	to	your	needs,	there	are	a	number	of	parameters	available	to
fine	tune	how	it	generates	the	index.

Parameter Default Description

	indexRadix	 	TRUE	
Word	prefixes	will	be	also
index

	ignoreChars	 	"	
Chars	to	skip	when
indexing

	separatorChars	 	\r\n\t:;,.&#124;+*/\=!?[](.md)	

	minWordLength	 	3	
Minimum	word	length	to
index

	stopWords	
	the	in	a	at	as	and	or	for	his	her	him	this	that	what	which	while	up

with	be	was	were	is	

Stop	words	escluded	from
indexing

To	configure	a	FullText	Index,	from	version	1.7	on,	you	can	do	so	through	the	OrientDB	console	or	the	Java	API.	When	configuring	the
index	from	the	console,	use	the		CREATE	INDEX		command	with	the		METADATA		operator.

orientdb>	CREATE	INDEX	City.name	ON	City(name)	FULLTEXT	METADATA	

										{"indexRadix":	true,	"ignoreChars":	"&",	"separatorChars":	"	|()",	

										"minWordLength":	4,	"stopWords":	["the",	"of"]}

Alternatively,	you	can	configure	the	index	in	Java.

OSchema	schema	=	db.getMetadata().getSchema();

OClass	city	=	schema.getClass("City");

ODocument	metadata	=	new	ODocument();

metadata.field("indexRadix",	true);

metadata.field("stopWords",	Arrays.asList(new	String[]	{	"the",	"in",	"a",	"at"	}));

metadata.field("separatorChars",	"	:;?[](.md)");

metadata.field("ignoreChars",	"$&");

metadata.field("minWordLength",	5);

city.createIndex("City.name",	"FULLTEXT",	null,	metadata,	null,	new	String[]	{	"name"	});

Full	Text

686



Lucene	FullText	Index
In	addition	to	the	standard	FullText	Index,	which	uses	the	SB-Tree	index	algorithm,	you	can	also	create	FullText	indexes	using	the
Lucene	Engine.	Beginning	from	version	2.0,	this	plugin	is	packaged	with	OrientDB	distribution.

Syntax:

CREATE	INDEX	<name>	ON	<class-name>	(prop-names)	FULLTEXT	ENGINE	LUCENE

The	following	SQL	statement	will	create	a	FullText	index	on	the	property		name		for	the	class		City	,	using	the	Lucene	Engine.

orientdb>	CREATE	INDEX	City.name	ON	City(name)	FULLTEXT	ENGINE	LUCENE

Indexes	can	also	be	created	on	n-properties.	For	example,	create	an	index	on	the	properties		name		and		description		on	the	class		City	.

orientdb>	CREATE	INDEX	City.name_description	ON	City(name,	description)

										FULLTEXT	ENGINE	LUCENE

Analyzer

This	creates	a	basic	FullText	Index	with	the	Lucene	Engine	on	the	specified	properties.	In	the	even	that	you	do	not	specify	the	analyzer,
OrientDB	defaults	to	StandardAnalyzer.

In	addition	to	the	StandardAnalyzer,	you	can	also	create	indexes	that	use	different	analyzer,	using	the		METADATA		operator	through
	CREATE	INDEX	.

orientdb>	CREATE	INDEX	City.name	ON	City(name)	FULLTEXT	ENGINE	LUCENE	METADATA

										{"analyzer":	"org.apache.lucene.analysis.en.EnglishAnalyzer"}

(from	2.2)

Starting	from	2.2	it	is	possible	to	configure	different	analyzers	for	indexing	and	querying.

orientdb>	CREATE	INDEX	City.name	ON	City(name)	FULLTEXT	ENGINE	LUCENE	METADATA

										{

										"index_analyzer":	"org.apache.lucene.analysis.en.EnglishAnalyzer",

										"query_analyzer":	"org.apache.lucene.analysis.standard.StandardAnalyzer"

										}

EnglishAnalyzer	will	be	used	to	analyze	text	while	indexing	and	the	StandardAnalyzer	will	be	used	to	analyze	query	terms.

It	is	posssbile	to	configure	analyzers	at	field	level

orientdb>	CREATE	INDEX	City.name_description	ON	City(name,	description)	FULLTEXT	ENGINE	LUCENE	METADATA

										{

										"index_analyzer":	"org.apache.lucene.analysis.en.EnglishAnalyzer",

										"query_analyzer":	"org.apache.lucene.analysis.standard.StandardAnalyzer",

										"name_index_analyzer":	"org.apache.lucene.analysis.standard.StandardAnalyzer",

										"name_query_analyzer":	"org.apache.lucene.analysis.core.KeywordAnalyzer"

										}

With	this	configuration	name	will	be	indexed	with	StandardAnalyzer	and	query	will	be	analyzed	with	the	KeywordAnalyzer:
description	hasn't	a	custom	configuration,	so	default	analyzers	for	indexing	an	querying	will	be	used.

You	can	also	use	the	FullText	Index	with	the	Lucene	Engine	through	the	Java	API.

Lucene	Full	Text

687

http://lucene.apache.org/core/4_7_0/analyzers-common/org/apache/lucene/analysis/standard/StandardAnalyzer.html


OSchema	schema	=	databaseDocumentTx.getMetadata().getSchema();

OClass	oClass	=	schema.createClass("Foo");

oClass.createProperty("name",	OType.STRING);

oClass.createIndex("City.name",	"FULLTEXT",	null,	null,	"LUCENE",	new	String[]	{	"name"});

Querying	Lucene	FullText	Indexes
You	can	query	the	Lucene	FullText	Index	using	the	custom	operator		LUCENE		with	the	[Query	Parser
Synta]x(http://lucene.apache.org/core/5_4_1/queryparser/org/apache/lucene/queryparser/classic/package-
summary.html#package_description)	from	the	Lucene	Engine.

orientdb>	SELECT	FROM	V	WHERE	name	LUCENE	"test*"

This	query	searches	for		test	,		tests	,		tester	,	and	so	on	from	the	property		name		of	the	class		V	.

Working	with	Multiple	Fields

In	addition	to	the	standard	Lucene	query	above,	you	can	also	query	multiple	fields.	For	example,

orientdb>	SELECT	FROM	Class	WHERE	[prop1,	prop2]	LUCENE	"query"

In	this	case,	if	the	word		query		is	a	plain	string,	the	engine	parses	the	query	using	MultiFieldQueryParser	on	each	indexed	field.

To	execute	a	more	complex	query	on	each	field,	surround	your	query	with	parentheses,	which	causes	the	query	to	address	specific
fields.

orientdb>	SELECT	FROM	CLass	WHERE	[prop1,	prop2]	LUCENE	"(prop1:foo	AND	prop2:bar)"

Here,	hte	engine	parses	the	query	using	the	QueryParser

Creating	a	Manual	Lucene	Index

Beginning	with	version	2.1,	the	Lucene	Engine	supports	index	creation	without	the	need	for	a	class.

Syntax:

CREATE	INDEX	<name>	FULLTEXT	ENGINE	LUCENE		[<key-type>]	[METADATA	{<metadata>}]

For	example,	create	a	manual	index	using	the		CREATE	INDEX		command:

orientdb>	CREATE	INDEX	Manual	FULLTEXT	ENGINE	LUCENE	STRING,	STRING

Once	you	have	created	the	index		Manual	,	you	can	insert	values	in	index	using	the		INSERT	INTO	INDEX:...		command.

orientdb>	INSERT	INTO	INDEX:Manual	(key,	rid)	VALUES(['Enrico',	'Rome'],	#5:0)

You	can	then	query	the	index	through		SELECT...FROM	INDEX:	:

orientdb>	SELECT	FROM	INDEX:Manual	WHERE	key	LUCENE	"Enrico"

Lucene	Full	Text

688

http://lucene.apache.org/core/5_4_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://lucene.apache.org/core/4_7_0/queryparser/org/apache/lucene/queryparser/classic/MultiFieldQueryParser.html
http://lucene.apache.org/core/4_7_0/queryparser/org/apache/lucene/queryparser/classic/QueryParser.html


Lucene	Spatial
For	now	the	Index	Engine	can	only	index	Points.	Other	Shapes	like	rectangles	and	polygons	will	be	added	in	the	future.

How	to	create	a	Spatial	Index

The	index	can	be	created	on	a	class	that	has	two	fields	declared	as		DOUBLE		(	latitude	,	longitude	)	that	are	the	coordinates	of	the
Point.

For	example	we	have	a	class		Place		with	2	double	fields		latitude		and		longitude	.	To	create	the	spatial	index	on		Place		use	this
syntax.

CREATE	INDEX	Place.l_lon	ON	Place(latitude,longitude)	SPATIAL	ENGINE	LUCENE

The	Index	can	also	be	created	with	the	Java	Api.	Example:

OSchema	schema	=	databaseDocumentTx.getMetadata().getSchema();

OClass	oClass	=	schema.createClass("Place");

oClass.createProperty("latitude",	OType.DOUBLE);

oClass.createProperty("longitude",	OType.DOUBLE);

oClass.createProperty("name",	OType.STRING);

oClass.createIndex("Place.latitude_longitude",	"SPATIAL",	null,	null,	"LUCENE",	new	String[]	{	"latitude",	"longitude"	});

How	to	query	the	Spatial	Index

Two	custom	operators	has	been	added	to	query	the	Spatial	Index:

1.	 	NEAR	:	to	find	all	Points	near	a	given	location	(	latitude	,		longitude	)
2.	 	WITHIN	:	to	find	all	Points	that	are	within	a	given	Shape

NEAR	operator

Finds	all	Points	near	a	given	location	(	latitude	,		longitude	).

Syntax

SELECT	FROM	Class	WHERE	[<lat-field>,<long-field>]	NEAR	[lat,lon]

To	specify		maxDistance		we	have	to	pass	a	special	variable	in	the	context:

SELECT	FROM	Class	WHERE	[<lat-field>,<long-field>,$spatial]	NEAR	[lat,lon,{"maxDistance":	distance}]

The		maxDistance		field	has	to	be	in	kilometers,	not	radians.	Results	are	sorted	from	nearest	to	farthest.

To	know	the	exact	distance	between	your	Point	and	the	Points	matched,	use	the	special	variable	in	the	context	$distance.

SELECT	*,	$distance	FROM	Class	WHERE	[<lat-field>,<long-field>,$spatial]	NEAR	[lat,lon,{"maxDistance":	distance}]

Examples

Let's	take	the	example	we	have	written	before.	We	have	a	Spatial	Index	on	Class		Place		on	properties		latitude		and		longitude	.

Example:	How	to	find	the	nearest	Place	of	a	given	point:

SELECT	*,$distance	FROM	Place	WHERE	[latitude,longitude,$spatial]	NEAR	[51.507222,-0.1275,{"maxDistance":1}]

Lucene	Spatial	Index

689



WITHIN	operator

Finds	all	Points	that	are	within	a	given	Shape.

The	current	release	supports	only	Bounding	Box	shape

Syntax

SELECT	FROM	Class	WHERE	[<lat	field>,<long	field>]	WITHIN	[	[	<lat1>,	<lon1>	]	,	[	<lat2>,	<lon2>	]	...	]

Examples

Example	with	previous	configuration:

SELECT	*	FROM	Places	WHERE	[latitude,longitude]	WITHIN	[[51.507222,-0.1275],[55.507222,-0.1275]]

This	query	will	return	all	Places	within	the	given	Bounding	Box.

Future	Plans

In	OrientDB	2.2	a	new	Spatial-Module	will	replace	this	implementation	with:

GeoSpatial	standard	(ST_*)	functions
Index	All	types	of	shape

Lucene	Spatial	Index

690



Spatial	Module
(Versions	2.2	and	after	only)Replacement	for	Spatial-Index

OrientDB	offers	a	brand	new	module	to	handle	geospatial	information	provided	as	external	plugin.

Install

Download	the	plugin	jar	from	maven	central

http://central.maven.org/maven2/com/orientechnologies/orientdb-spatial/VERSION/orientdb-spatial-VERSION-dist.jar

where	VERSION	must	be	the	same	of	the	OrientDB	installation.	After	download,	copy	the	jar	to	orient	lib	directory.	On	*nix	system	it
could	be	done	this	way:

wget		http://central.maven.org/maven2/com/orientechnologies/orientdb-spatial/VERSION/orientdb-spatial-VERSION-dist.jar

cp	orientdb-spatial-VERSION-dist.jar	/PATH/orientdb-community-VERSION/lib/

Orient	db	will	load	the	spatial	plugin	on	startup.

Geometry	Data
OrientDB	supports	the	following	Geometry	objects	:

Point
Line
Polygon
MultiPoint
MultiLine
MultiPolygon
Geometry	Collections

OrientDB	stores	those	objects	like	embedded	documents	with	special	classes.	The	module	creates	abstract	classes	that	represent	each
Geometry	object	type,	and	those	classes	can	be	embedded	in	user	defined	classes	to	provide	geospatial	information.

Each	spatial	classes	(Geometry	Collection	excluded)	comes	with	field	coordinates	that	will	be	used	to	store	the	geometry	structure.	The
"coordinates"	field	of	a	geometry	object	is	composed	of	one	position	(Point),	an	array	of	positions	(LineString	or	MultiPoint),	an	array
of	arrays	of	positions	(Polygons,	MultiLineStrings)	or	a	multidimensional	array	of	positions	(MultiPolygon).

Geometry	data	Example

Restaurants	Domain

CREATE	class	Restaurant

CREATE	PROPERTY	Restaurant.name	STRING

CREATE	PROPERTY	Restaurant.location	EMBEDDED	OPoint

To	insert	restaurants	with	location

From	SQL

INSERT	INTO		Restaurant	SET	name	=	'Dar	Poeta',	location	=	{"@class":	"OPoint","coordinates"	:	[12.4684635,41.8914114]}

or	as	an	alternative,	if	you	use	WKT	format	you	can	use	the	function		ST_GeomFromText		to	create	the	OrientDB	geometry	object.

Lucene	Spatial	Module

691

https://it.wikipedia.org/wiki/Well-Known_Text


INSERT	INTO		Restaurant	SET	name	=	'Dar	Poeta',	location	=	St_GeomFromText("POINT	(12.4684635	41.8914114)")

From	JAVA

ODocument	location	=	new	ODocument("OPoint");

location.field("coordinates",	Arrays.asList(12.4684635,	41.8914114));

ODocument	doc	=	new	ODocument("Restaurant");

doc.field("name","Dar	Poeta");

doc.field("location",location);

doc.save();

OrientDB	follows	The	Open	Geospatial	Consortium	OGC	for	extending	SQL	to	support	spatial	data.	OrientDB	implements	a	subset	of
SQL-MM	functions	with	ST	prefix	(Spatial	Type)

Functions

ST_AsText

Syntax	:	ST_AsText(geom)

Example

SELECT	ST_AsText({"@class":	"OPoint","coordinates"	:	[12.4684635,41.8914114]})

Result

----------

POINT	(12.4684635	41.8914114)

ST_GeomFromText

Syntax	:	ST_GeomFromText(text)

Example

select	ST_GeomFromText("POINT	(12.4684635	41.8914114)")

Result

----------------------------------------------------------------------------------

{"@type":"d","@version":0,"@class":"OPoint","coordinates":[12.4684635,41.8914114]}

ST_Equals

Returns	true	if	geom1	is	spatially	equal	to	geom2

Syntax	:	ST_Equals(geom1,geom2)

Example

SELECT	ST_Equals(ST_GeomFromText('LINESTRING(0	0,	10	10)'),	ST_GeomFromText('LINESTRING(0	0,	5	5,	10	10)'))

Result

-----------

true

ST_Within

Returns	true	if	geom1	is	inside	geom2

Syntax	:	ST_Within(geom1,geom2)

Lucene	Spatial	Module

692

http://www.opengeospatial.org/standards/sfs


This	function	will	use	an	index	if	available.

Example

select	*	from	City	where		ST_WITHIN(location,'POLYGON	((12.314015	41.8262816,	12.314015	41.963125,	12.6605063	41.963125,	12.66

05063	41.8262816,	12.314015	41.8262816))')	=	true

ST_Contains

Returns	true	if	geom1	contains	geom2

Syntax	:	ST_Contains(geom1,geom2)

This	function	will	use	an	index	if	available.

Example

SELECT	ST_Contains(ST_Buffer(ST_GeomFromText('POINT(0	0)'),10),ST_GeomFromText('POINT(0	0)'))

Result

----------

true

SELECT	ST_Contains(ST_Buffer(ST_GeomFromText('POINT(0	0)'),10),ST_Buffer(ST_GeomFromText('POINT(0	0)'),20))

Result

----------

false

ST_Disjoint

Returns	true	if	geom1	does	not	spatially	intersects	geom2

Syntax:	St_Disjoint(geom1,geom2)

This	function	does	not	use	indexes

Example

SELECT	ST_Disjoint(ST_GeomFromText('POINT(0	0)'),	ST_GeomFromText('LINESTRING	(	2	0,	0	2	)'));

Result

-----------------

true

SELECT	ST_Disjoint(ST_GeomFromText('POINT(0	0)'),	ST_GeomFromText('LINESTRING	(	0	0,	0	2	)'));

Result

-----------------

false

ST_Intersects

Returns	true	if	geom1	spatially	intersects	geom2

Syntax:	ST_Intersects(geom1,geom2)

Example

SELECT	ST_Intersects(ST_GeomFromText('POINT(0	0)'),	ST_GeomFromText('LINESTRING	(	2	0,	0	2	)'));

Result

-------------

false

Lucene	Spatial	Module

693



SELECT	ST_Intersects(ST_GeomFromText('POINT(0	0)'),	ST_GeomFromText('LINESTRING	(	0	0,	0	2	)'));

Result

-------------

true

ST_AsBinary

Returns	the	Well-Known	Binary	(WKB)	representation	of	the	geometry

Syntax	:	ST_AsBinary(geometry)

Example

SELECT	ST_AsBinary(ST_GeomFromText('POINT(0	0)'))

ST_Envelope

Returns	a	geometry	representing	the	bounding	box	of	the	supplied	geometry

Syntax	:	ST_Envelope(geometry)

Example

SELECT	ST_AsText(ST_Envelope(ST_GeomFromText('POINT(1	3)')));

Result

----------

POINT	(1	3)

SELECT	ST_AsText(ST_Envelope(ST_GeomFromText('LINESTRING(0	0,	1	3)')))

Result

-----------------------------------

POLYGON	((0	0,	0	3,	1	3,	1	0,	0	0))

ST_Buffer

Returns	a	geometry	that	represents	all	points	whose	distance	from	this	Geometry	is	less	than	or	equal	to	distance.

Syntax:	ST_Buffer(geometry,distance	[,config])

where	config	is	an	additional	parameter	(JSON)	that	can	be	use	to	set:

quadSegs:	int	->	number	of	segments	used	to	approximate	a	quarter	circle	(defaults	to	8).

{	

		quadSegs	:	1

}

endCap	:	round|flat|square	->	endcap	style	(defaults	to	"round").

{

		endCap	:	'square'

}

join	:	round|mitre|bevel	->	join	style	(defaults	to	"round")

{	

		join	:	'bevel'

}

Lucene	Spatial	Module

694



mitre	:	double	->	mitre	ratio	limit	(only	affects	mitered	join	style).

{	

		join	:	'mitre',	

		mitre	:	5.0

}

Example

SELECT	ST_AsText(ST_Buffer(ST_GeomFromText('POINT(100	90)'),50))

SELECT	ST_AsText(ST_Buffer(ST_GeomFromText('POINT(100	90)'),	50,	{	quadSegs	:	2	}));

Operators

A	&&	B

Overlaps	operator.	Returns	true	if	bounding	box	of	A	overlaps	bounding	box	of	B.	This	operator	will	use	an	index	if	available.

Example

CREATE	CLASS	TestLineString

CREATE	PROPERTY	TestLineString.location	EMBEDDED	OLineString

INSERT	INTO	TestLineSTring	SET	name	=	'Test1'	,	location	=	St_GeomFromText("LINESTRING(0	0,	3	3)")

INSERT	INTO	TestLineSTring	SET	name	=	'Test2'	,	location	=	St_GeomFromText("LINESTRING(0	1,	0	5)")

SELECT	FROM	TestLineString	WHERE	location	&&	"LINESTRING(1	2,	4	6)"

Spatial	Indexes

To	speed	up	spatial	search	and	match	condition,	spatial	operators	and	functions	can	use	a	spatial	index	if	defined	to	avoid	sequential	full
scan	of	every	records.

The	current	spatial	index	implementation	is	built	upon	lucene-spatial.

The	syntax	for	creating	a	spatial	index	on	a	geometry	field	is	:

CREATE	INDEX	<name>	ON	<class-name>	(geometry-field)	SPATIAL	ENGINE	LUCENE

Install

2.2.0-SNAPSHOT

The	module	has	been	merged	into	the	main	repository	branch	develop

Take	the	latest	OrientDB	2.2.0-Snapshot	here

Or

build	the	develop	branch	from	scratch

2.2	GA

This	module	is	part	of	orientdb-lucene	plugin	and	will	be	included	in	OrientDB	2.2	GA

Lucene	Spatial	Module

695

https://github.com/orientechnologies/orientdb/tree/develop
https://oss.sonatype.org/content/repositories/snapshots/com/orientechnologies/orientdb-community/2.2.0-SNAPSHOT/


Distributed	Architecture
OrientDB	can	be	distributed	across	different	servers	and	used	in	different	ways	to	achieve	the	maximum	of	performance,	scalability	and
robustness.

OrientDB	uses	the	Hazelcast	Open	Source	project	to	manage	the	clustering.	Many	of	the	references	in	this	page	are	linked	to	the
Hazelcast	official	documentation	to	get	more	information	about	such	topic.

Presentation

1	of	23 

Main	topics

Distributed	Architecture	Lifecycle
Configure	the	Cluster	of	servers
Replication	of	databases
Sharding
Distributed	Cache
Tutorial	to	setup	a	distributed	database
Tuning

Server	roles

Scaling

696

http://www.hazelcast.com


OrientDB	has	a	multi-master	distributed	architecture	(called	also	as	"master-less")	where	each	server	can	read	and	write.	Starting	from
v2.1,	OrientDB	support	the	role	of	"REPLICA",	where	the	server	is	in	read-only	mode,	accepting	only	idempotent	commands,	like
Reads	and	Query.	Furthermore	when	the	server	joins	the	distributed	cluster	as	"REPLICA",	own	record	clusters	are	not	created	like	does
the	"MASTER"	nodes.

Creation	of	records	(documents,	vertices	and	edges)

In	distributed	mode	the	RID	is	assigned	with	cluster	locality.	If	you	have	class		Customer		and	3	nodes	(node1,	node2,	node3),	you'll
have	these	clusters:

	customer		with	id=#15	(this	is	the	default	one,	assigned	to	node1)
	customer_node2		with	id=#16
	customer_node3		with	id=#17

So	if	you	create	a	new	Customer	on	node1,	it	will	get	the	RID	with	cluster-id	of	"customer"	cluster:	#15.	The	same	operation	on	node2
will	generate	a	RID	with	cluster-id=16	and	17	on	node3.

In	this	way	RID	never	collides	and	each	node	can	be	a	master	on	insertion	without	any	conflicts.

Distributed	transactions

Starting	from	v1.6,	OrientDB	supports	distributed	transactions.	When	a	transaction	is	committed,	all	the	updated	records	are	sent	across
all	the	servers,	so	each	server	is	responsible	to	commit	the	transaction.	In	case	one	or	more	nodes	fail	on	commit,	the	quorum	is	checked.
If	the	quorum	has	been	respected,	then	the	failing	nodes	are	aligned	to	the	winner	nodes,	otherwise	all	the	nodes	rollback	the	transaction.

What	about	the	visibility	during	distributed	transaction?

During	the	distributed	transaction,	in	case	of	rollback,	there	could	be	an	amount	of	time	when	the	records	appear	changed	before	they	are
rollbacked.

Split	brain	network	problem
OrientDB	guarantees	strong	consistency	if	it's	configured	to	have	a		writeQuorum		set	to	a	value	as	the	majority	of	the	number	of	nodes.	I
you	have	5	nodes,	it's	3,	but	if	you	have	4	nodes,	it's	still	3	to	have	a	majority.	While		writeQuorum		setting	can	be	configured	at	database
and	cluster	level	too,	it's	not	suggested	to	set	a	value	minor	than	the	majority	of	nodes,	because	in	case	of	re-merge	of	the	2	split
networks,	you'd	have	both	network	partitions	with	updated	data	and	OrientDB	doesn't	support	(yet)	the	merging	of	2	non	read-only
networks.	So	the	suggestion	is	to	always	provide	a		writeQuorum		with	a	value	to,	at	least,	the	majority	of	the	nodes.

Limitations

OrientDB	v2.1.x	has	some	limitations	you	should	notice	when	you	work	in	Distributed	Mode:

in	memory	database	is	not	supported
	hotAlignment:true		could	bring	the	database	status	as	inconsistent.	Please	set	it	always	to	'false',	the	default
Creation	of	a	database	on	multiple	nodes	could	cause	synchronization	problems	when	clusters	are	automatically	created.	Please
create	the	databases	before	to	run	in	distributed	mode
If	an	error	happen	during	CREATE	RECORD,	the	operation	is	fixed	across	the	entire	cluster,	but	some	node	could	have	a	wrong
RID	upper	bound	(the	created	record,	then	deleted	as	fix	operation).	In	this	case	a	new	database	deploy	operation	must	be	executed
Constraints	with	distributed	databases	could	cause	problems	because	some	operations	are	executed	at	2	steps:	create	+	update.	For
example	in	some	circumstance	edges	could	be	first	created,	then	updated,	but	constraints	like	MANDATORY	and	NOTNULL
against	fields	would	fail	at	the	first	step	making	the	creation	of	edges	not	possible	on	distributed	mode.
Auto-Sharding	is	not	supported	in	the	common	meaning	of	Distributed	Hash	Table	(DHT).	Selecting	the	right	shard	(cluster)	is	up
to	the	application.	This	will	be	addressed	by	next	releases
Sharded	Indexes	are	not	supported
If	hotAlignment=false	is	set,	when	a	node	re-joins	the	cluster	(after	a	failure	or	simply	unreachability)	the	full	copy	of	database

Scaling

697



from	a	node	could	have	no	all	information	about	the	shards

Hot	change	of	distributed	configuration	not	available.	This	will	be	introduced	at	release	2.0	via	command	line	and	in	visual	way	in
the	Workbench	of	the	Enterprise	Edition	(commercial	licensed)
Not	complete	merging	of	results	for	all	the	projections	when	running	on	sharder	configuration.	Some	functions	like	AVG()	doesn’t
work	on	map/reduce

Scaling

698



Working	with	Distributed	Graphs
When	OrientDB	joins	a	distributed	cluster,	all	clients	connecting	to	the	server	node	are	constantly	notified	about	this	state.	This	ensures
that,	in	the	event	that	server	node	fails,	the	clients	can	switch	transparently	to	the	next	available	server.

You	can	check	this	through	the	console.	When	OrientDB	runs	in	a	distributed	configuration,t	he	current	cluster	shape	is	visible	through
the		INFO		command.

$	$ORIENTDB_HOME/bin/console.sh

OrientDB	console	v.1.6	www.orientechnologies.com

Type	'help'	to	display	all	the	commands	supported.

Installing	extensions	for	GREMLIN	language	v.2.5.0-SNAPSHOT

orientdb>	CONNECT	remote:localhost/GratefulDeadConcerts	admin	admin

Connecting	to	database	[remote:localhost/GratefulDeadConcerts]	with	user	'admin'...OK

orientdb>	INFO

Current	database:	GratefulDeadConcerts	(url=remote:localhost/GratefulDeadConcerts)

For	reference	purposes,	the	server	nodes	in	the	example	have	the	following	configurations.	As	you	can	see,	it	is	a	two	node	cluster
running	a	single	server	host.	The	first	node	listens	on	port		2481		while	the	second	on	port		2480	.

{

			"members":[

			{	"name":"node1384015873680",

				"listeners":	[

						{	"protocol":	"ONetworkProtocolBinary",

								"listen":	"192.168.1.179:2425"	},

						{	"protocol":	"ONetworkProtocolHttpDb",

								"listen":	"192.168.1.179:2481"}

				],

				"id":	"3bba4280-b285-40ab-b4a0-38788691c4e7",

				"startedOn":	"2013-11-09	17:51:13",

				"databases":	[]

			},

			{	"name":"node1383734730415",

					"listeners":	[

								{	"protocol":"ONetworkProtocolBinary",

										"listen":"192.168.1.179:2424"	},

								{	"protocol":"ONetworkProtocolHttpDb",

										"listen":"192.168.1.179:2480"}

						],

						"id":	"5cb7972e-ccb1-4ede-bfda-c835b0c2e5da",

						"startedOn":	"2013-11-09	17:30:56",

						"databases":	[]

				}

		],

		"localName":	"_hzInstance_1_orientdb",

		"localId":	"5cb7972e-ccb1-4ede-bfda-c835b0c2e5da"

}

Testing	Distributed	Architecture

Once	you	have	a	distributed	database	up	and	running,	you	can	begin	to	test	its	operations	on	a	running	environment.	For	example,	begin
by	creating	a	vertex,	setting	the		node		property	to		1	.

Working	with	Distributed	Graphs

699



orientdb>	CREATE	VERTEX	V	SET	node	=	1

Created	vertex	'V#9:815{node:1}	v1'	in	0,013000	sec(s).

From	another	console,	connect	to	the	second	node	and	execute	the	following	command:

orinetdb>	SELECT	FROM	V	WHERE	node	=	1

----+--------+-------+

	#		|	@RID			|	node		|

----+--------+-------+

	0		|	#9:815	|	1					|

----+--------+-------+

1	item(s)	found.	Query	executed	in	0.19	sec(s).

This	shows	that	the	vertex	created	on	the	first	node	has	successfully	replicated	to	the	second	node.

Logs	in	Distributed	Architecture
From	time	to	time	server	nodes	go	down.	This	does	not	necessarily	relate	to	problems	in	OrientDB,	(for	instance,	it	could	originate	from
limitations	in	system	resources).

To	test	this	out,	kill	the	first	node.	For	example,	assuming	the	first	node	has	a	process	identifier,	(that	is,	a	PID),	of		1254		on	your
system,	run	the	following	command:

$	kill	-9	1254

This	command	kills	the	process	on	PID		1254	.	Now,	check	the	log	messages	for	the	second	node:

$	less	orientdb.log

INFO	[192.168.1.179]:2435	[orientdb]	Removing	Member	[192.168.1.179]:2434

					[ClusterService]

INFO	[192.168.1.179]:2435	[orientdb]

Members	[1]	{

				Member	[192.168.1.179]:2435	this

}

	[ClusterService]

WARN	[node1384015873680]	node	removed	id=Member	[192.168.1.179]:2434

					name=node1384014656983	[OHazelcastPlugin]

INFO	[192.168.1.179]:2435	[orientdb]	Partition	balance	is	ok,	no	need	to

					re-partition	cluster	data...		[PartitionService]

What	the	logs	show	you	is	that	the	second	node	is	now	aware	that	it	cannot	reach	the	first	node.	You	can	further	test	this	by	running	the
console	connected	to	the	first	node..

Working	with	Distributed	Graphs

700



orientdb>	SELECT	FROM	V	LIMIT	2

WARN	Caught	I/O	errors	from	/192.168.1.179:2425	(local

					socket=0.0.0.0/0.0.0.0:51512),	trying	to	reconnect	(error:

					java.io.IOException:	Stream	closed)	[OStorageRemote]

WARN	Connection	re-acquired	transparently	after	30ms	and	1	retries:	no	errors

					will	be	thrown	at	application	level	[OStorageRemote]

---+------+----------------+--------+--------------+------+-----------------+-----

	#	|	@RID	|	name								|	song_type	|	performances	|	type	|	out_followed_by	|	...

---+------+----------------+--------+--------------+------+-----------------+-----

	1	|	#9:1	|	HEY	BO	DIDDLEY	|	cover		|	5												|	song	|	[5]													|	...

	2	|	#9:2	|	IM	A	MAN							|	cover		|	1												|	song	|	[2]													|	...

---+------+----------------+--------+--------------+------+-----------------+-----

This	shows	that	the	console	auto-switched	to	the	next	available	node.	That	is,	it	switched	to	the	second	node	upon	noticing	that	the	first
was	no	longer	functional.	The	warnings	reports	show	what	happened	in	a	transparent	way,	so	that	the	application	doesn't	need	to
manage	the	issue.

From	the	console	connected	to	the	second	node,	create	a	new	vertex.

orientdb>	CREATE	VERTEX	V	SET	node=2

Created	vertex	'V#9:816{node:2}	v1'	in	0,014000	sec(s).

Given	that	the	first	node	remains	nonfunctional,	OrientDB	journals	the	operation.	Once	the	first	node	comes	back	online,	the	second
node	synchronizes	the	changes	into	it.

Restart	the	first	node	and	check	that	it	successfully	auto-realigns.	Reconnect	the	console	to	the	first	node	and	run	the	following
command:

orientdb>	SELECT	FROM	V	WHERE	node=2

---+--------+-------+

	#	|	@RID			|	node		|

---+--------+-------+

	0	|	#9:816	|	2					|

---+--------+-------+

1	item(s)	found.	Query	executed	in	0.209	sec(s).

This	shows	that	the	first	node	has	realigned	itself	with	the	second	node.

This	process	is	repeatable	with	N	server	nodes,	where	every	server	is	a	master.	There	is	no	limit	to	the	number	of	running	servers.	With
many	servers	spread	across	a	slow	network,	you	can	tune	the	network	timeouts	to	be	more	permissive	and	let	a	large,	distributed	cluster
of	servers	work	properly.

For	more	information,	Distributed	Architecture.

Working	with	Distributed	Graphs

701



Distributed	Architecture	Lifecycle
In	OrientDB	Distributed	Architecture	all	the	nodes	are	masters	(Multi-Master),	while	in	most	DBMS	the	replication	works	in	Master-
Slave	mode	where	there	is	only	one	Master	node	and	N	Slaves	that	are	use	only	for	reads	or	when	the	Master	is	down.	Starting	from
OrientDB	v2.1,	you	can	also	assign	the	role	of	REPLICA	to	some	nodes.

When	start	a	OrientDB	server	in	distributed	mode	(	bin/dserver.sh	)	it	looks	for	an	existent	cluster.	If	exists	the	starting	node	joins	the
cluster,	otherwise	creates	a	new	one.	You	can	have	multiple	clusters	in	your	network,	each	cluster	with	a	different	"group	name".

Joining	a	cluster

Auto	discovering

At	startup	each	Server	Node	sends	an	IP	Multicast	message	in	broadcast	to	discover	if	an	existent	cluster	is	available	to	join	it.	If
available	the	Server	Node	will	connect	to	it,	otherwise	creates	a	new	cluster.

This	is	the	default	configuration	contained	in		config/hazelcast.xml		file.	Below	the	multicast	configuration	fragment:

<hazelcast>

		<network>

				<port	auto-increment="true">2434</port>

						<join>

								<multicast	enabled="true">

										<multicast-group>235.1.1.1</multicast-group>

										<multicast-port>2434</multicast-port>

							</multicast>

					</join>

		</network>

</hazelcast>

If	multicast	is	not	available	(typical	on	Cloud	environments),	you	can	use:

Direct	IPs
Amazon	EC2	Discovering

For	more	information	look	at	Hazelcast	documentation	about	configuring	network.

Security

To	join	a	cluster	the	Server	Node	has	to	configure	the	cluster	group	name	and	password	in	hazelcast.xml	file.	By	default	these
information	aren't	encrypted.	If	you	wan	to	encrypt	all	the	distributed	messages,	configure	it	in	hazelcast.xml	file:

Lifecycle

702

http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#configuring-tcpip-cluster
http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#ec2-auto-discovery
http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#network-configuration


<hazelcast>

				...

				<network>

								...

								<!--

												Make	sure	to	set	enabled=true

												Make	sure	this	configuration	is	exactly	the	same	on

												all	members

								-->

								<symmetric-encryption	enabled="true">

												<!--

															encryption	algorithm	such	as

															DES/ECB/PKCS5Padding,

															PBEWithMD5AndDES,

															Blowfish,

															DESede

												-->

												<algorithm>PBEWithMD5AndDES</algorithm>

												<!--	salt	value	to	use	when	generating	the	secret	key	-->

												<salt>thesalt</salt>

												<!--	pass	phrase	to	use	when	generating	the	secret	key	-->

												<password>thepass</password>

												<!--	iteration	count	to	use	when	generating	the	secret	key	-->

												<iteration-count>19</iteration-count>

								</symmetric-encryption>

				</network>

				...

</hazelcast>

All	the	nodes	in	the	distributed	cluster	must	have	the	same	settings.

For	more	information	look	at:	Hazelcast	Encryption.

Join	to	an	existent	cluster

You	can	have	multiple	OrientDB	clusters	in	the	same	network,	what	identifies	a	cluster	is	it’s	name	that	must	be	unique	in	the	network.
By	default	OrientDB	uses	"orientdb",	but	for	security	reasons	change	it	to	a	different	name	and	password.	All	the	nodes	in	the
distributed	cluster	must	have	the	same	settings.

<hazelcast>

		<group>

				<name>orientdb</name>

				<password>orientdb</password>

		</group>

</hazelcast>

Lifecycle

703

http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#encryption


In	this	case	Server	#2	joins	the	existent	cluster.

When	a	node	joins	an	existent	cluster,	the	most	updated	copy	of	the	database	is	downloaded	to	the	joining	node.	If	any	copy	of	database
was	already	present,	that	is	moved	under		backup/databases		folder.

Multiple	clusters

Multiple	clusters	can	coexist	in	the	same	network.	Clusters	can't	see	each	others	because	are	isolated	black	boxes.

Distribute	the	configuration	to	the	clients

Every	time	a	new	Server	Node	joins	or	leaves	the	Cluster,	the	new	Cluster	configuration	is	broadcasted	to	all	the	connected	clients.
Everybody	knows	the	cluster	layout	and	who	has	a	database!

Lifecycle

704



Fail	over	management

When	a	node	is	unreachable

When	a	Server	Node	becomes	unreachable	(because	it’s	crashed,	network	problems,	high	load,	etc.)	the	Cluster	treats	this	event	as	if	the
Server	Node	left	the	cluster.

Automatic	switch	of	servers

All	the	clients	connected	to	the	unreachable	node	will	switch	to	another	server	transparently	without	raising	errors	to	the	Application
User	Application	doesn’t	know	what	is	happening!

Lifecycle

705



Re-distribute	the	updated	configuration	again

After	the	Server	#2	left	the	Cluster	the	updated	configuration	is	sent	again	to	all	the	connected	clients.

Continue	with:

Distributed	Architecture
Replication
Tutorial	to	setup	a	distributed	database

Lifecycle

706



Distributed	Configuration
The	distributed	configuration	consists	of	3	files	under	the	config/	directory:

orientdb-server-config.xml
default-distributed-db-config.json
hazelcast.xml

Cloud	support

Main	topics:

Replication
Asynchronous	replication	mode
Return	distributed	configuration	at	run-time
Load	Balancing

orientdb-server-config.xml

To	enable	and	configure	the	clustering	between	nodes,	add	and	enable	the	OHazelcastPlugin	plugin.	It	is	configured	as	a	Server	handler.
The	default	configuration	is	reported	below.

File	orientdb-server-config.xml:

<handler	class="com.orientechnologies.orient.server.hazelcast.OHazelcastPlugin">

		<parameters>

				<!--	NODE-NAME.	IF	NOT	SET	IS	AUTO	GENERATED	THE	FIRST	TIME	THE	SERVER	RUN	-->

				<!--	<parameter	name="nodeName"	value="europe1"	/>	-->

				<parameter	name="enabled"	value="true"	/>

				<parameter	name="configuration.db.default"

															value="${ORIENTDB_HOME}/config/default-distributed-db-config.json"	/>

				<parameter	name="configuration.hazelcast"

															value="${ORIENTDB_HOME}/config/hazelcast.xml"	/>

		</parameters>

</handler>

Where:

Parameter Description

enabled To	enable	or	disable	the	plugin:		true		to	enable	it,		false		to	disable	it.	By	default	is		true	

nodeName
An	optional	alias	identifying	the	current	node	within	the	cluster.	When	omitted,	a	default	value	is
generated	as	node,	example:	"node239233932932".	By	default	is	commented,	so	it's	automatic
generated

configuration.db.default Path	of	default	distributed	database	configuration.	By	default	is		${ORIENTDB_HOME}/config/default-
distributed-db-config.json	

configuration.hazelcast Path	of	Hazelcast	configuration	file,	default	is		${ORIENTDB_HOME}/config/hazelcast.xml	

default-distributed-db-config.json
This	is	the	JSON	file	containing	the	default	configuration	for	distributed	databases.	The	first	time	a	database	run	in	distributed	version
this	file	is	copied	in	the	database's	folder	with	name		distributed-config.json	.	Every	time	the	cluster	shape	changes	the	database
specific	file	is	changed.	To	restore	distributed	database	settings,	remove	the	file		distributed-config.json		from	the	database	folder,	and
the		default-distributed-db-config.json		file	will	be	used.

Default	default-distributed-db-config.json	file	content:

Configuration

707

http://www.hazelcast.com/docs/3.1/manual/multi_html/ch14.html


{

				"autoDeploy":	true,

				"hotAlignment":	false,

				"executionMode":	"undefined",

				"readQuorum":	1,

				"writeQuorum":	2,

				"failureAvailableNodesLessQuorum":	false,

				"readYourWrites":	true,

				"servers":	{

								"*":	"master"

				},

				"clusters":	{

								"internal":	{

								},

								"index":	{

								},

								"*":	{

												"servers"	:	[	"<NEW_NODE>"	]

								}

				}

}

Where:

Parameter Description Default
value

autoDeploy Whether	to	deploy	the	database	to	any	joining	node	that	does	not
have	it.	It	can	be		true		or		false	

	true	

hotAlignment
Whether	the	synchronization	queue	is	left	or	not	for	a	node	leaving
the	cluster	for	hot	alignment	when	the	node	joins	the	cluster	again.	It
can	be		true		or		false	

	false	

executionMode

It	can	be		undefined		to	let	to	the	client	to	decide	per	call	execution
between	synchronous	(default)	or	asynchronous.		synchronous	
forces	synchronous	mode,	and		asynchronous		forces	asynchronous
mode

	undefined	

readQuorum
On	"read"	operation	(record	read,	query	and	traverse)	this	is	the
number	of	responses	to	be	coherent	before	sending	the	response	to
the	client.	Set	to	1	if	you	don't	want	this	check	at	read	time

	1	

writeQuorum

On	"write"	operation	(any	write	on	database)	this	is	the	number	of
responses	to	be	coherent	before	sending	the	response	to	the	client.
Set	to	1	if	you	don't	want	this	check	at	write	time.	Suggested	value	is
N/2+1	where	N	is	the	number	of	replicas.	In	this	way	the	quorum	is
reached	only	if	the	majority	of	nodes	are	coherent

	2	

failureAvailableNodesLessQuorum Whether	to	return	error	when	the	available	nodes	are	less	then
quorum.	Can	be		true		or		false	

	false	

readYourWrites

Whether	the	write	quorum	is	satisfied	only	when	also	the	local	node
responded.	This	assures	current	the	node	can	read	its	writes.	Disable
it	to	improve	replication	performance	if	such	consistency	is	not
important.	Can	be		true		or		false	

	true	

servers

(Since	v2.1)	Optional,	contains	the	map	of	server	roles	in	the	format
	server-name		:		role	.		*		means	any	server.	Available	roles	are
"MASTER"	(default)	and	"REPLICA".	For	more	information	look	at
Server	roles

-

clusters
if	the	object	containing	the	clusters'	configuration	as	map		cluster-
name		:		cluster-configuration	.		*		means	all	the	clusters	and	is	the
cluster's	default	configuration

-

The	cluster	configuration	inherits	database	configuration,	so	if	you	declare	"writeQuorum"	at	database	level,	all	the	clusters	will	inherit
that	setting	unless	they	define	your	own.	Settings	can	be:

Configuration

708



Parameter Description Default	value

readQuorum
On	"read"	operation	(record	read,	query	and	traverse)	is	the
number	of	responses	to	be	coherent	before	to	send	the	response
to	the	client.	Set	to	1	if	you	don't	want	this	check	at	read	time

	1	

writeQuorum

On	"write"	operation	(any	write	on	database)	is	the	number	of
responses	to	be	coherent	before	to	send	the	response	to	the
client.	Set	to	1	if	you	don't	want	this	check	at	write	time.
Suggested	value	is	N/2+1	where	N	is	the	number	of	replicas.	In
this	way	the	quorum	is	reached	only	if	the	majority	of	nodes	are
coherent

	2	

failureAvailableNodesLessQuorum Decide	to	return	error	when	the	available	nodes	are	less	then
quorum.	Can	be		true		or		false	

	false	

readYourWrites

The	write	quorum	is	satisfied	only	when	also	the	local	node
responded.	This	assure	current	the	node	can	read	its	writes.
Disable	it	to	improve	replication	performance	if	such
consistency	is	not	important.	Can	be		true		or		false	

	true	

servers Is	the	array	of	servers	where	to	store	the	records	of	cluster

empty	for
internal	and
index	clusters
and		[	"
<NEW_NODE>"	]	

for	cluster	*
representing	any
cluster

	"<NEW_NODE>"		is	a	special	tag	that	put	any	new	joining	node	name	in	the	array.

Default	configuration

In	the	default	configuration	all	the	record	clusters	are	replicated	but		internal	,		index	,	because	all	the	changes	remain	locally	to	each
node	(indexing	is	per	node).	Every	node	that	joins	the	cluster	shares	all	the	rest	of	the	clusters	("*"	settings).	Since	"readQuorum"	is	1	all
the	reads	are	executed	on	the	first	available	node	where	the	local	node	is	preferred	if	own	the	requested	record.	"writeQuorum"	to	2
means	that	all	the	changes	are	in	at	least	2	nodes.	If	available	nodes	are	less	then	2,	no	error	is	given	because
"failureAvailableNodesLessQuorum"	is	false.

100%	asynchronous	writes

By	default	writeQuorum	is	2.	This	means	that	it	waits	and	checks	the	answer	from	at	least	2	nodes	before	to	send	the	ACK	to	the	client.
If	you've	more	then	2	nodes	configured,	then	starting	from	the	3rd	node	the	response	will	be	managed	asynchronously.	You	could	also
set	this	to	1	to	have	all	the	writes	asynchronous.

hazelcast.xml

A	OrientDB	cluster	is	composed	by	two	or	more	servers	that	are	the	nodes	of	the	cluster.	All	the	server	nodes	that	want	to	be	part	of
the	same	cluster	must	to	define	the	same	Cluster	Group.	By	default	"orientdb"	is	the	group	name.	Look	at	the	default
config/hazelcast.xml	configuration	file	reported	below:

Configuration

709

http://docs.hazelcast.org/docs/3.5/manual/html/createclustergroups.html


<?xml	version="1.0"	encoding="UTF-8"?>

<hazelcast	xsi:schemaLocation="http://www.hazelcast.com/schema/config	hazelcast-config-3.0.xsd"

											xmlns="http://www.hazelcast.com/schema/config"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

		<group>

				<name>orientdb</name>

				<password>orientdb</password>

		</group>

		<network>

				<port	auto-increment="true">2434</port>

				<join>

						<multicast	enabled="true">

								<multicast-group>235.1.1.1</multicast-group>

								<multicast-port>2434</multicast-port>

						</multicast>

				</join>

		</network>

		<executor-service>

				<pool-size>16</pool-size>

		</executor-service>

</hazelcast>

NOTE:	Change	the	name	and	password	of	the	group	to	prevent	external	nodes	from	joining	it!

Network	configuration

Automatic	discovery	in	LAN	using	Multicast

OrientDB	by	default	uses	TCP	Multicast	to	discover	nodes.	This	is	contained	in	config/hazelcast.xml	file	under	the	network	tag.	This
is	the	default	configuration:

<hazelcast>

		...

		<network>

				<port	auto-increment="true">2434</port>

				<join>

						<multicast	enabled="true">

								<multicast-group>235.1.1.1</multicast-group>

								<multicast-port>2434</multicast-port>

						</multicast>

					</join>

		</network>

		...

</hazelcast>

Manual	IP

When	Multicast	is	disabled	or	you	prefer	to	assign	Hostnames/IP-addresses	manually	use	the	TCP/IP	tag	in	configuration.	Pay	attention
to	disable	the	multicast:

Configuration

710



<hazelcast>

		...

		<network>

				<port	auto-increment="true">2434</port>

				<join>

						<multicast	enabled="false">

								<multicast-group>235.1.1.1</multicast-group>

								<multicast-port>2434</multicast-port>

						</multicast>

						<tcp-ip	enabled="true">

								<member>europe0:2434</member>

								<member>europe1:2434</member>

								<member>usa0:2434</member>

								<member>asia0:2434</member>

								<member>192.168.1.0-7:2434</member>

						</tcp-ip>

					</join>

		</network>

		...

</hazelcast>

For	more	information	look	at:	Hazelcast	Config	TCP/IP.

Cloud	support

Since	multicast	is	disabled	on	most	of	the	Cloud	stacks,	you	have	to	change	the	config/hazelcast.xml	configuration	file	based	on	the
Cloud	used.

Amazon	EC2

OrientDB	supports	natively	Amazon	EC2	through	the	Hazelcast's	Amazon	discovery	plugin.	In	order	to	use	it	include	also	the
hazelcast-cloud.jar	library	under	the	lib/	directory.

<hazelcast>

		...

				<join>

						<multicast	enabled="false">

								<multicast-group>235.1.1.1</multicast-group>

								<multicast-port>2434</multicast-port>

						</multicast>

						<aws	enabled="true">

								<access-key>my-access-key</access-key>

								<secret-key>my-secret-key</secret-key>

								<region>us-west-1</region>																															<!--	optional,	default	is	us-east-1	-->

								<host-header>ec2.amazonaws.com</host-header>													<!--	optional,	default	is	ec2.amazonaws.com.	If	set	region

																																																																						shouldn't	be	set	as	it	will	override	this	property	-->

								<security-group-name>hazelcast-sg</security-group-name>		<!--	optional	-->

								<tag-key>type</tag-key>																																		<!--	optional	-->

								<tag-value>hz-nodes</tag-value>																										<!--	optional	-->

						</aws>

				</join>

		...

</hazelcast>

For	more	information	look	at	Hazelcast	Config	Amazon	EC2	Auto	Discovery.

Other	Cloud	providers

Uses	manual	IP	like	explained	in	Manual	IP.

Asynchronous	replication	mode

In	order	to	reduce	the	latency	in	WAN,	the	suggested	configuration	is	to	set		executionMode		to	"asynchronous".	In	asynchronous	mode
any	operation	is	executed	on	local	node	and	then	replicated.	In	this	mode	the	client	doesn't	wait	for	the	quorum	across	all	the	servers,	but
receives	the	response	immediately	after	the	local	node	answer.	Example:

Configuration

711

http://docs.hazelcast.org/docs/3.5/manual/html/tcp.html
http://aws.amazon.com/ec2/
http://docs.hazelcast.org/docs/3.5/manual/html/ec2.html


{

				"autoDeploy":	true,

				"hotAlignment":	false,

				"executionMode":	"asynchronous",

				"readQuorum":	1,

				"writeQuorum":	2,

				"failureAvailableNodesLessQuorum":	false,

				"readYourWrites":	true,

				"servers":	{

								"*":	"master"

				},

				"clusters":	{

								"internal":	{

								},

								"index":	{

								},

								"*":	{

												"servers"	:	[	"<NEW_NODE>"	]

								}

				}

}

Starting	from	v2.1.6	is	possible	to	catch	events	of	command	during	asynchronous	replication,	thanks	to	the	following	method	of
OCommandSQL:

	onAsyncReplicationOk()	,	to	catch	the	event	when	the	asynchronous	replication	succeed
	onAsyncReplicationError()	,	to	catch	the	event	when	the	asynchronous	replication	returns	error

Example	retrying	up	to	3	times	in	case	of	concurrent	modification	exception	on	creation	of	edges:

g.command(	new	OCommandSQL("create	edge	Own	from	(select	from	User)	to	(select	from	Post)")

	.onAsyncReplicationError(new	OAsyncReplicationError()	{

		@Override

		public	ACTION	onAsyncReplicationError(Throwable	iException,	int	iRetry)	{

				System.err.println("Error,	retrying...");

				return	iException	instanceof	ONeedRetryException	&&	iRetry<=3	?	ACTION.RETRY	:	ACTION.IGNORE;

		}

})

	.onAsyncReplicationError(new	OAsyncReplicationOk()	{

			System.out.println("OK");

	}

).execute();

Load	Balancing

(Since	v2.2)	OrientDB	allows	to	do	load	balancing	when	you	have	multiple	servers	connected	in	cluster.	Below	are	the	available
connection	strategies:

	STICKY	,	the	default,	where	the	client	remains	connected	to	a	server	until	the	close	of	database
	ROUND_ROBIN_CONNECT	,	at	each	connect,	the	client	connects	to	a	different	server	between	the	available	ones
	ROUND_ROBIN_REQUEST	,	at	each	request,	the	client	connects	to	a	different	server	between	the	available	ones.	Pay	attention	on	using
this	strategy	if	you're	looking	for	strong	consistency.	In	facts,	in	case	the	writeQuorum	is	minor	of	the	total	nodes	available,	a	client
could	have	executed	an	operation	against	another	server	and	current	operation	cannot	see	updates	because	wasn't	propagated	yet.

Once	a	client	is	connected	to	any	server	node,	it	retrieves	the	list	of	available	server	nodes.	In	case	the	connected	server	becomes
unreachable	(crash,	network	problem,	etc.),	the	client	automatically	connects	to	the	next	available	one.

To	setup	the	strategy	using	the	Java	Document	API:

final	ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("remote:localhost/demo");

db.setProperty(OStorageRemote.PARAM_CONNECTION_STRATEGY,	OStorageRemote.CONNECTION_STRATEGY.ROUND_ROBIN_CONNECT);

db.open(user,	password);

To	setup	the	strategy	using	the	Java	Graph	API:

Configuration

712



final	OrientGraphFactory	factory	=	new	OrientGraphFactory("remote:localhost/demo");

factory.setConnectionStrategy(OStorageRemote.CONNECTION_STRATEGY.ROUND_ROBIN_CONNECT);

OrientGraphNoTx	graph	=	factory.getNoTx();

Use	multiple	addresses

If	the	server	addresses	are	known,	it's	good	practice	to	connect	the	clients	to	a	set	of	URLs,	instead	of	just	one.	You	can	separate
hosts/addresses	by	using	a	semicolon	(;).	OrientDB	client	will	try	to	connect	to	the	addresses	in	order.	Example:
	remote:server1:2424;server2:8888;server3/mydb	.

Use	the	DNS

Before	v2.2,	the	simplest	and	most	powerful	way	to	achieve	load	balancing	seems	to	use	some	hidden	(to	some)	properties	of	DNS.	The
trick	is	to	create	a	TXT	record	listing	the	servers.

The	format	is:

v=opf<version>	(s=<hostname[:<port>]>	)*

Example	of	TXT	record	for	domain	dbservers.mydomain.com:

v=opf1	s=192.168.0.101:2424	s=192.168.0.133:2424

In	this	way	if	you	open	a	database	against	the	URL		remote:dbservers.mydomain.com/demo		the	OrientDB	client	library	will	try	to
connect	to	the	address	192.168.0.101	port	2424.	If	the	connection	fails,	then	the	next	address	192.168.0.133:	port	2424	is	tried.

To	enable	this	feature	in	Java	Client	driver	set		network.binary.loadBalancing.enabled=true	:

java	...	-Dnetwork.binary.loadBalancing.enabled=true

or	via	Java	code:

OGlobalConfiguration.NETWORK_BINARY_DNS_LOADBALANCING_ENABLED.setValue(true);

Troubleshooting

Users	reported	that	Hazelcast	Health	Monitoring	could	cause	problem	with	a	JVM	kill	(OrientDB	uses	Hazelcast	to	manage	replication
between	nodes).	By	default	this	setting	is	OFF,	so	if	you	are	experiencing	this	kind	of	problem	assure	this	is	set:
	hazelcast.health.monitoring.level=OFF	

History

v1.7

Simplified	configuration	by	moving.	Removed	some	flags	(replication:boolean,	now	it’s	deducted	by	the	presence	of	“servers”	field)	and
settings	now	are	global	(autoDeploy,	hotAlignment,	offlineMsgQueueSize,	readQuorum,	writeQuorum,
failureAvailableNodesLessQuorum,	readYourWrites),	but	you	can	overwrite	them	per-cluster.

For	more	information	look	at	News	in	1.7.

v2.2

Introduced	Load	balancing	at	client	level.	For	more	information	look	at	load	balancing.

Configuration

713

http://www.orientechnologies.com/distributed-architecture-sharding/


Distributed	runtime
NOTE:	available	only	in	Enteprise	Edition

Node	status

To	retrieve	the	distributed	configuration	of	a	OrientDB	server,	execute	a	HTTP	GET	operation	against	the	URL		http://<server>:
<port>/distributed/node	.	Example:

curl	-u	root:root	"http://localhost:2480/distributed/node"

Result:

{

				"localId":	"9e20f766-5f8c-4a5c-a6a2-7308019db702",

				"localName":	"_hzInstance_1_orientdb",

				"members":	[

								{

												"databases":	[],

												"id":	"b7888b58-2b26-4098-bb4d-8e23a5050b68",

												"listeners":	[

																{

																				"listen":	"10.0.1.8:2425",

																				"protocol":	"ONetworkProtocolBinary"

																},

																{

																				"listen":	"10.0.1.8:2481",

																				"protocol":	"ONetworkProtocolHttpDb"

																}

												],

												"name":	"node2",

												"startedOn":	"2015-09-28	13:19:09:267"

								},

								{

												"databases":	[],

												"id":	"9e20f766-5f8c-4a5c-a6a2-7308019db702",

												"listeners":	[

																{

																				"listen":	"10.0.1.8:2424",

																				"protocol":	"ONetworkProtocolBinary"

																},

																{

																				"listen":	"10.0.1.8:2480",

																				"protocol":	"ONetworkProtocolHttpDb"

																}

												],

												"name":	"node1",

												"startedOn":	"2015-09-28	12:58:11:819"

								}

				]

}

Database	configuration
To	retrieve	the	distributed	configuration	for	a	database,	execute	a	HTTP	GET	operation	against	the	URL		http://<server>:
<port>/distributed/database/<database-name>	.	Example:

curl	-u	root:root	"http://localhost:2480/distributed/database/GratefulDeadConcerts"

Result:

Runtime	Configuration

714



{

				"autoDeploy":	true,

				"clusters":	{

								"*":	{

												"servers":	[

																"node1",

																"node2",

																"<NEW_NODE>"

												]

								},

								"v":	{

												"servers":	[

																"node2",

																"node1",

																"<NEW_NODE>"

												]

								}

				},

				"executionMode":	"undefined",

				"failureAvailableNodesLessQuorum":	false,

				"hotAlignment":	false,

				"readQuorum":	1,

				"readYourWrites":	true,

				"servers":	{

								"*":	"master"

				},

				"version":	21,

				"writeQuorum":	2

}

Queues

OrientDB	uses	distributed	queues	to	exchange	messages	between	OrientDB	servers.	To	have	metrics	about	queues,	execute	a	HTTP
GET	operation	against	the	URL		http://<server>:<port>/distributed/queue/<queue-name>	.	Use		*		as	queue	name	to	return	stats	for	all
he	queues.	Example:

curl	-u	root:root	"http://localhost:2480/distributed/queue/*"

Result:

{

				"queues":	[

								{

												"avgAge":	0,

												"backupItemCount":	0,

												"emptyPollOperationCount":	0,

												"eventOperationCount":	0,

												"maxAge":	0,

												"minAge":	0,

												"name":	"orientdb.node.node1.benchmark.insert.request",

												"nextMessages":	[],

												"offerOperationCount":	0,

												"otherOperationsCount":	0,

												"ownedItemCount":	0,

												"partitionKey":	"orientdb.node.node1.benchmark.insert.request",

												"pollOperationCount":	0,

												"rejectedOfferOperationCount":	0,

												"serviceName":	"hz:impl:queueService",

												"size":	0

								},

								{

												"avgAge":	1,

												"backupItemCount":	0,

												"emptyPollOperationCount":	0,

												"eventOperationCount":	0,

												"maxAge":	1,

												"minAge":	1,

												"name":	"orientdb.node.node2.response",

												"nextMessages":	[],

												"offerOperationCount":	60,

												"otherOperationsCount":	12,

Runtime	Configuration

715



												"ownedItemCount":	0,

												"partitionKey":	"orientdb.node.node2.response",

												"pollOperationCount":	60,

												"rejectedOfferOperationCount":	0,

												"serviceName":	"hz:impl:queueService",

												"size":	0

								},

								{

												"avgAge":	0,

												"backupItemCount":	0,

												"emptyPollOperationCount":	0,

												"eventOperationCount":	0,

												"maxAge":	0,

												"minAge":	0,

												"name":	"orientdb.node.node2.benchmark.request",

												"nextMessages":	[],

												"offerOperationCount":	0,

												"otherOperationsCount":	0,

												"ownedItemCount":	0,

												"partitionKey":	"orientdb.node.node2.benchmark.request",

												"pollOperationCount":	0,

												"rejectedOfferOperationCount":	0,

												"serviceName":	"hz:impl:queueService",

												"size":	0

								},

								{

												"avgAge":	1,

												"backupItemCount":	0,

												"emptyPollOperationCount":	0,

												"eventOperationCount":	0,

												"maxAge":	1,

												"minAge":	1,

												"name":	"orientdb.node.node1.GratefulDeadConcerts.request",

												"nextMessages":	[],

												"offerOperationCount":	44,

												"otherOperationsCount":	53,

												"ownedItemCount":	0,

												"partitionKey":	"orientdb.node.node1.GratefulDeadConcerts.request",

												"pollOperationCount":	44,

												"rejectedOfferOperationCount":	0,

												"serviceName":	"hz:impl:queueService",

												"size":	0

								}

				]

}

Runtime	Configuration

716



Distributed	Architecture	Plugin
Java	class:		com.orientechnologies.orient.server.hazelcast.OHazelcastPlugin	

Introduction

This	is	part	of	Distributed	Architecture.	Configure	a	distributed	clustered	architecture.	This	task	is	configured	as	a	Server	handler.	The
task	can	be	configured	easily	by	changing	these	parameters:

enabled:	Enable	the	plugin:		true		to	enable,		false		to	disable	it.
configuration.hazelcast:	The	location	of	the	Hazelcast	configuration	file	(	hazelcast.xml	).
alias:	An	alias	for	the	current	node	within	the	cluster	name.	Default	value	is	the	IP	address	and	port	for	OrientDB	on	this	node.
configuration.db.default:	The	location	of	a	file	that	describes,	using	JSON	syntax,	the	synchronization	configuration	of	the
various	clusters	in	the	database.

Default	configuration	in	orientdb-dserver-config.xml:

			<handler	class="com.orientechnologies.orient.server.hazelcast.OHazelcastPlugin">

						<parameters>

									<!--	<parameter	name="alias"	value="europe1"	/>	-->

									<parameter	name="enabled"	value="true"	/>

									<parameter	name="configuration.db.default"	value="${ORIENTDB_HOME}/config/default-distributed-db-config.json"	/>

									<parameter	name="configuration.hazelcast"	value="${ORIENTDB_HOME}/config/hazelcast.xml"	/>

						</parameters>

			</handler>

Server	Manager

717



Replication
OrientDB	supports	the	Multi	Master	replication.	This	means	that	all	the	nodes	in	the	cluster	are	Master	and	are	able	to	read	and	write
to	the	database.	This	allows	to	scale	up	horizontally	without	bottlenecks	like	most	of	any	other	RDBMS	and	NoSQL	solution	do.

Replication	works	only	in	the	Distributed-Architecture.

Sharing	of	database

In	Distributed	Architecture	the	replicated	database	must	have	the	same	name.	When	an	OrientDB	Server	is	starting,	it	sends	the	list	of
current	databases	(all	the	databases	located	under		$ORIENTDB_HOME/databases		directory)	to	all	the	nodes	in	the	cluster.	If	other	nodes
have	databases	with	the	same	name,	a	replication	is	automatically	set.

NOTE:	In	Distributed	Architecture	assure	to	avoid	conflict	with	database	names,	otherwise	2	different	databases	could	start	replication
with	the	chance	to	get	corrupted.

If	the	database	configuration	has	the	setting		"autoDeploy"	:	true	,	then	the	databases	are	automatically	deployed	across	the	network	to
the	other	nodes	as	soon	as	they	join	the	cluster.

Replication

718

http://en.wikipedia.org/wiki/Multi-master_replication


Server	unreachable

In	case	a	server	becomes	unreachable,	the	node	is	removed	by	database	configuration	unless	the	setting		"hotAlignment"	:	true	.	In	this
case	all	the	new	synchronization	messages	are	kept	in	a	distributed	queue.

As	soon	as	the	Server	becomes	online	again,	it	starts	the	synchronization	phase	(status=SYNCHRONIZING)	by	polling	all	the
synchronization	messages	in	the	queue.

Replication

719



Once	the	alignment	is	finished,	the	node	becomes	online	(status=ONLINE)	and	the	replication	continues	like	at	the	beginning.

Further	readings
Continue	with:

Distributed	Architecture
Distributed	Sharding
Distributed	database	configuration

Replication

720



Sharding
NOTE:	Sharding	is	a	new	feature	with	some	limitations.	Please	read	them	before	using	it.

OrientDB	supports	sharding	of	data	at	class	level,	by	using	multiple	clusters	per	class,	where	each	cluster	has	own	list	of	server	where
data	is	replicated.	From	a	logical	point	of	view	all	the	records	stored	in	clusters	that	are	part	of	the	same	class,	are	records	of	that	class.

Follows	an	example	that	split	the	class	“Client”	in	3	clusters:

Class	Client	->	Clusters	[		client_usa	,		client_europe	,		client_china		]

This	means	that	OrientDB	will	consider	any	record/document/graph	element	in	any	of	such	clusters	as	“Clients”	(Client	class	relies	on
such	clusters).	In	Distributed-Architecture	each	cluster	can	be	assigned	to	one	or	multiple	server	nodes.

Shards,	based	on	clusters,	work	against	indexed	and	non-indexed	class/clusters.

Multiple	servers	per	cluster

You	can	assign	each	cluster	to	one	or	more	servers.	If	more	servers	are	enlisted	the	records	will	be	copied	in	all	the	servers.	This	is	similar
to	what	RAID	stands	for	Disks.	The	first	server	in	the	list	will	be	the	master	server	for	that	cluster.

This	is	an	example	of	configuration	where	the	Client	class	has	been	split	in	the	3	clusters	client_usa,	client_europe	and	client_china,	each
one	with	different	configuration:

	client_usa	,	will	be	managed	by	"usa"	and	"europe"	nodes
	client_europe	,	will	be	managed	only	by	"europe"	node
	client_china	,	will	be	managed	by	all	the	nodes	(it	would	be	equivalent	as	writing		“<NEW_NODE>”	,	see	cluster	"*",	the	default	one)

Sharding

721

http://en.wikipedia.org/wiki/RAID


Configuration

In	order	to	keep	things	simple,	the	entire	OrientDB	Distributed	Configuration	is	stored	on	a	single	JSON	file.	Example	of	distributed
database	configuration	for	(Multiple	servers	per	cluster)[Distributed-Sharding.md#Multiple-servers-per-cluster]	use	case:

{

		"autoDeploy":	true,

		"hotAlignment":	false,

		"readQuorum":	1,

		"writeQuorum":	2,

		"failureAvailableNodesLessQuorum":	false,

		"readYourWrites":	true,

		"clusters":	{

				"internal":	{

				},

				"index":	{

				},

				"client_usa":	{

						"servers"	:	[	"usa",	"europe"	]

				},

				"client_europe":	{

						"servers"	:	[	"europe"	]

				},

				"client_china":	{

						"servers"	:	[	"china",	"usa",	"europe"	]

				},

				"*":	{

						"servers"	:	[	"<NEW_NODE>"	]

				}

		}

}

Cluster	Locality

OrientDB	automatically	creates	a	new	cluster	per	each	class	as	soon	as	node	joins	the	distributed	cluster.	These	cluster	names	have	the
node	name	as	suffix:		<class>_<node>	.	Example:		client_usa	.	When	a	node	goes	down,	the	clusters	where	the	node	was	master	are
reassigned	to	other	servers.	As	soon	as	that	node	returns	up	and	running,	OrientDB	will	reassign	the	previous	clusters	where	it	was
master	to	the	same	node	again	following	the	convention		<class>_<node>	.

This	is	defined	as	"Cluster	Locality".	The	local	node	is	always	selected	when	a	new	record	is	created.	This	avoids	conflicts	and	allows	to
insert	record	in	parallel	on	multiple	nodes.	This	means	also	that	in	distributed	mode	you	can't	select	the	cluster	selection	strategy,
because	"local"	strategy	is	always	injected	to	all	the	cluster	automatically.

If	you	want	to	change	permanently	the	mastership	of	clusters,	rename	the	cluster	with	the	suffix	of	the	node	you	want	assign	as	master.

Sharding

722



CRUD	Operations

Create	new	records

In	the	configuration	above,	if	a	new	Client	record	is	created	on	node	USA,	then	the	selected	cluster	will	be		client_usa	,	because	it's	the
local	cluster	for	class	Client.	Now,		client_usa		is	managed	by	both	USA	and	EUROPE	nodes,	so	the	"create	record"	operation	is	sent
to	both	"usa"	(locally)	and	"europe"	nodes.

Update	and	Delete	of	records

Updating	and	Deleting	of	records	always	involves	all	the	nodes	where	the	record	is	stored.	No	matter	the	node	that	receives	the	update
operation.	If	we	update	record		#13:22		that	is	stored	on	cluster		13	,	namely		client_china		in	the	example	above,	then	the	update	is
sent	to	nodes:	"china",	"usa",	"europe".

Read	records

If	the	local	node	has	the	requested	record,	the	record	is	read	directly	from	the	storage.	If	it's	not	present	on	local	server,	a	forward	is
executed	to	any	of	the	nodes	that	have	the	requested	record.	This	means	a	network	call	to	between	nodes.

In	case	of	queries,	OrientDB	checks	where	the	query	target	are	located	and	send	the	query	to	all	the	involved	servers.	This	operation	is
equivalent	to	a	Map-Reduce.	If	the	query	target	is	100%	managed	on	local	node,	the	query	is	simply	executed	on	local	node	without
paying	the	cost	of	network	call.

All	the	query	works	by	aggregating	the	result	sets	from	all	the	involved	nodes.

Example	of	executing	this	query	on	node	"usa":

SELECT	FROM	Client

Since	local	node	(USA)	already	owns		client_usa		and		client_china	,	2/3	of	data	are	local.	The	missing	1/3	of	data	is	in
	client_europe		that	is	managed	only	by	node	"Europe".	So	the	query	will	be	executed	on	local	node	"usa"	and	"Europe"	providing	the
aggregated	result	back	to	the	client.

You	can	query	also	a	particular	cluster:

SELECT	FROM	CLUSTER:client_china

In	this	case	the	local	node	(USA)	is	used,	because		client_china		is	hosted	on	local	node.

Map-Reduce

OrientDB	supports	Map/Reduce	by	using	the	OrientDB	SQL.	The	Map/Reduce	operation	is	totally	transparent	to	the	developer.	When
a	query	involve	multiple	shards	(clusters),	OrientDB	executes	the	query	against	all	the	involved	server	nodes	(Map	operation)	and	then
merge	the	results	(Reduce	operation).	Example:

SELECT	MAX(amount),	COUNT(*),	SUM(amount)	FROM	Client

Sharding

723

http://en.wikipedia.org/wiki/MapReduce


In	this	case	the	query	is	executed	across	all	the	3	nodes	and	then	filtered	again	on	starting	node.

Define	the	target	cluster/shard
The	application	can	decide	where	to	insert	a	new	Client	by	passing	the	cluster	number	or	name.	Example:

INSERT	INTO	CLUSTER:client_usa	SET	@class	=	'Client',	name	=	'Jay'

If	the	node	that	executes	this	command	is	not	the	master	of	cluster		client_usa	,	an	exception	is	thrown.

Java	Graph	API

OrientVertex	v	=	graph.addVertex("class:Client,cluster:client_usa");

v.setProperty("name",	"Jay");

Java	Document	API

Sharding

724



ODocument	doc	=	new	ODocument("Client");

doc.field("name",	"Jay");

doc.save(	"client_usa"	);

Sharding	and	Split	brain	network	problem
OrientDB	guarantees	strong	consistency	if	it's	configured	to	have	a		writeQuorum		to	the	majority	of	the	nodes.	For	more	information
look	at	Split	Brain	network	problem.	In	case	of	Sharding	you	could	have	a	situation	where	you'd	need	a	relative		writeQuorum		to	a
certain	partition	of	your	data.	While		writeQuorum		setting	can	be	configured	at	database	and	cluster	level	too,	it's	not	suggested	to	set	a
value	minor	than	the	majority,	because	in	case	of	re-merge	of	the	2	split	networks,	you'd	have	both	network	partitions	with	updated	data
and	OrientDB	doesn't	support	(yet)	the	merging	of	2	non	read-only	networks.	So	the	suggestion	is	to	always	provide	a		writeQuorum		at
least	at	the	majority	of	nodes,	even	with	sharded	configuration.

Limitation

1.	 Auto-Sharding	is	not	supported	in	the	common	meaning	of	Distributed	Hash	Table	(DHT).	Selecting	the	right	shard	(cluster)	is	up
to	the	application.	This	will	be	addressed	by	next	releases

2.	 Sharded	Indexes	are	not	supported.
3.	 If		hotAlignment=false		is	set,	when	a	node	re-joins	the	cluster	(after	a	failure	or	simply	unreachability)	the	full	copy	of	database

from	a	node	could	have	no	all	information	about	the	shards.
4.	 Hot	change	of	distributed	configuration	not	available.	This	will	be	introduced	at	release	2.0	via	command	line	and	in	visual	way	in

the	Workbench	of	the	Enterprise	Edition	(commercial	licensed)
5.	 Not	complete	merging	of	results	for	all	the	projections.	Some	functions	like	AVG()	doesn’t	work	on	map/reduce
6.	 Backup	doesn't	work	on	distributed	nodes	yet,	so	doing	a	backup	of	all	the	nodes	to	get	all	the	shards	is	a	manual	operation	in

charge	to	the	user

Indexes
All	the	indexes	are	managed	locally	to	a	server.	This	means	that	if	a	class	is	spanned	across	3	clusters	on	3	different	servers,	each	server
will	have	own	local	indexes.	By	executing	a	distributed	query	(Map/Reduce	like)	each	server	will	use	own	indexes.

Hot	management	of	distributed	configuration
With	Community	Edition	the	distributed	configuration	cannot	be	changed	at	run-time	but	you	have	to	stop	and	restart	all	the	nodes.
Enterprise	Edition	allows	to	create	and	drop	new	shards	without	stopping	the	distributed	cluster.

By	using	Enterprise	Edition	and	the	Workbench,	you	can	deploy	the	database	to	the	new	server	and	defining	the	cluster	to	assign	to	it.
In	this	example	a	new	server	"usa2"	is	created	where	only	the	cluster		client_usa		will	be	copied.	After	the	deployment,	cluster
	client_usa		will	be	replicated	against	nodes	"usa"	and	"usa2".

Sharding

725

http://www.orientechnologies.com/orientdb-enterprise
http://www.orientechnologies.com/enterprise/last/clustermgmt.html


Sharding

726



Distributed	Cache
OrientDB	has	own	more	Cache	levels.	When	OrientDB	runs	in	Distributed-Architecture,	each	server	has	own	cache.	All	the	caches	in
each	server	are	independent.

Distributed	2nd	Level	cache

You	can	also	have	a	shared	cache	among	servers,	by	enabling	the	Hazelcast's	2nd	level	cache.	To	enable	it	set	the	cache.level2.impl
property	in	orientdb-dserver-config.xml	file	with	value	com.orientechnologies.orient.server.hazelcast.OHazelcastCache:

Note	that	this	will	slow	down	massive	insertion	but	will	improve	query	and	lookup	operations.

Example	in	orientdb-dserver-config.xml	file:

...

<properties>

		<!--	Uses	the	Hazelcast	distributed	cache	as	2nd	level	cache	-->

		<entry	name="cache.level2.impl"	value="com.orientechnologies.orient.server.hazelcast.OHazelcastCache"	/>

</properties>

Cache

727



Setting	up	a	Distributed	Graph	Database
In	addition	to	the	standard	deployment	architecture,	where	it	runs	as	a	single,	standalone	database	instance,	you	can	also	deploy
OrientDB	using	Distributed	Architecutre.	In	this	environment,	it	shares	the	database	across	multiple	server	instances.

Launching	Distributed	Server	Cluster

There	are	two	ways	to	share	a	database	across	multiple	server	nodes:

Prior	to	startup,	copy	the	specific	database	directory,	under		$ORIENTDB_HOME/database		to	all	servers.

Keep	the	database	on	the	first	running	server	node,	then	start	every	other	server	node.	Under	the	default	configurations,	OrientDB
automatically	shares	the	database	with	the	new	servers	that	join.

This	tutorial	assumes	that	you	want	to	start	a	distributed	database	using	the	second	method.

Starting	the	First	Server	Node

Unlike	the	standard	standalone	deployment	of	OrientDB,	there	is	a	different	script	that	you	need	to	use	when	launching	a	distributed
server	instance.	Instead	of		server.sh	,	you	use		dserver.sh	.	In	the	case	of	Windows,	use		dserver.bat	.	Whichever	you	need,	you	can
find	it	in	the		bin		of	your	installation	directory.

$	./bin/dserver.sh

Bear	in	mind	that	OrientDB	uses	the	same		orientdb-server-config.xml		configuration	file,	regardless	of	whether	it's	running	as	a	server
or	distributed	server.	For	more	information,	see	Distributed	Configuration.

The	first	time	you	start	OrientDB	as	a	distributed	server,	it	generates	the	following	output:

+---------------------------------------------------------------+

|									WARNING:	FIRST	DISTRIBUTED	RUN	CONFIGURATION										|

+---------------------------------------------------------------+

|	This	is	the	first	time	that	the	server	is	running	as										|

|	distributed.	Please	type	the	name	you	want	to	assign	to	the			|

|	current	server	node.																																										|

|																																																															|

|	To	avoid	this	message	set	the	environment	variable	or	JVM					|

|	setting	ORIENTDB_NODE_NAME	to	the	server	node	name	to	use.				|

+---------------------------------------------------------------+

Node	name	[BLANK=auto	generate	it]:

You	need	to	give	the	node	a	name	here.	OrientDB	stores	it	in	the		nodeName		parameter	of		OHazelcastPlugin	.	It	adds	the	variable	to
your		orientdb-server-config.xml		configuration	file.

Distributed	Startup	Process

When	OrientDB	starts	as	a	distributed	server	instance,	it	loads	all	databases	in	the		database		directory	and	configures	them	to	run	in
distributed	mode.	For	this	reason,	the	first	load,	OrientDB	copies	the	default	distributed	configuration,	(that	is,	the		default-
distributed-db-config.json		configuration	file),	into	each	database's	directory,	renaming	it		distributed-config.json	.	On	subsequent
starts,	each	database	uses	this	file	instead	of	the	default	configuration	file.	Since	the	shape	of	the	cluster	changes	every	time	nodes	join	or
leave,	the	configuration	is	kept	up	to	date	by	each	distributed	server	instance.

For	more	information	on	working	with	the		default-distributed-db-config.json		configuration	file,	see	Distributed	Configuration.

Starting	Additional	Server	Nodes

When	you	have	the	first	server	node	running,	you	can	begin	to	start	the	other	server	nodes.	Each	server	requires	the	same	Hazelcast
credentials	in	order	to	join	the	same	cluster.	You	can	define	these	in	the		hazelcast.xml		configuration	file.

Setup	a	Distributed	Database

728



The	fastest	way	to	initialize	multiple	server	nodes	is	to	copy	the	OrientDB	installation	directory	from	the	first	node	to	each	of	the
subsequent	nodes.	For	instance,

$	scp	user@ip_address	$ORIENTDB_HOME

This	copies	both	the	databases	and	their	configuration	files	onto	the	new	distributed	server	node.

Bear	in	mind,	if	you	run	multiple	server	instances	on	the	same	host,	such	as	when	testing,	you	need	to	change	the	port	entry	in
the		hazelcast.xml		configuration	file.

For	the	other	server	nodes	in	the	cluster,	use	the	same		dserver.sh		command	as	you	used	in	starting	the	first	node.	When	the	other
server	nodes	come	online,	they	begin	to	establish	network	connectivity	with	each	other.	Monitoring	the	logs,	you	can	see	where	they
establish	connections	from	messages	such	as	this:

WARN	[node1384014656983]	added	new	node	id=Member	[192.168.1.179]:2435	name=null

					[OHazelcastPlugin]

INFO	[192.168.1.179]:2434	[orientdb]	Re-partitioning	cluster	data...	Migration

					queue	size:	135	[PartitionService]

INFO	[192.168.1.179]:2434	[orientdb]	All	migration	tasks	has	been	completed,

					queues	are	empty.	[PartitionService]

INFO	[node1384014656983]	added	node	configuration	id=Member	[192.168.1.179]:2435

					name=node1384015873680,	now	2	nodes	are	configured	[OHazelcastPlugin]

INFO	[node1384014656983]	update	configuration	db=GratefulDeadConcerts

					from=node1384015873680	[OHazelcastPlugin]

INFO	updated	distributed	configuration	for	database:	GratefulDeadConcerts:

----------

{

			"replication":	true,

			"autoDeploy":	true,

			"hotAlignment":	true,

			"resyncEvery":	15,

			"clusters":	{

						"internal":	{

									"replication":	false

						},

						"index":	{

									"replication":	false

						},

						"*":	{

									"replication":	true,

									"readQuorum":	1,

									"writeQuorum":	2,

									"failureAvailableNodesLessQuorum":	false,

									"readYourWrites":	true,

									"partitioning":{

												"strategy":	"round-robin",

												"default":0,

												"partitions":	["","node1383734730415","node1384015873680"]("","node1383734730415","node1384015873680".md)

									}

						}

			},

			"version":	1

}

----------	[OHazelcastPlugin]

WARN	[node1383734730415]->[node1384015873680]	deploying	database

					GratefulDeadConcerts...[ODeployDatabaseTask]

WARN	[node1383734730415]->[node1384015873680]	sending	the	compressed	database

					GratefulDeadConcerts	over	the	network,	total	339,66Kb	[ODeployDatabaseTask]

In	the	example,	two	server	nodes	were	started	on	the	same	machine.	It	has	an	IP	address	of	10.37.129.2,	but	is	using	OrientDB	on	two
different	ports:	2434	and	2435,	where	the	current	is	called		this	.	The	remainder	of	the	log	is	relative	to	the	distribution	of	the	database
to	the	second	server.

On	the	second	server	node	output,	OrientDB	dumps	messages	like	this:

Setup	a	Distributed	Database

729



WARN	[node1384015873680]<-[node1383734730415]	installing	database

					GratefulDeadConcerts	in	databases/GratefulDeadConcerts...	[OHazelcastPlugin]

WARN	[node1384015873680]	installed	database	GratefulDeadConcerts	in

					databases/GratefulDeadConcerts,	setting	it	online...	[OHazelcastPlugin]

WARN	[node1384015873680]	database	GratefulDeadConcerts	is	online	[OHazelcastPlugin]

WARN	[node1384015873680]	updated	node	status	to	'ONLINE'	[OHazelcastPlugin]

INFO	OrientDB	Server	v1.6.1-SNAPSHOT	is	active.	[OServer]

What	these	messages	mean	is	that	the	database		GratefulDeadConcerts		was	correctly	installed	from	the	first	node,	that	is
	node1383734730415		through	the	network.

Migrating	from	standalone	server	to	a	cluster

If	you	have	a	standalone	instance	of	OrientDB	and	you	want	to	move	to	a	cluster	you	should	follow	these	steps:

Install	OrientDB	on	all	the	servers	of	the	cluster	and	configure	it	(according	to	the	sections	above)
Stop	the	standalone	server
Copy	the	specific	database	directories	under		$ORIENTDB_HOME/database		to	all	the	servers	of	the	cluster
Start	all	the	servers	in	the	cluster	using	the	script		dserver.sh		(or		dserver.bat		if	on	Windows)

If	the	standalone	server	will	be	part	of	the	cluster,	you	can	use	the	existing	installation	of	OrientDB;	you	don't	need	to	copy	the
database	directories	since	they're	already	in	place	and	you	just	have	to	start	it	before	all	the	other	servers	with		dserver.sh	.

Setup	a	Distributed	Database

730



Internals
This	section	contains	internal	technical	information.	Users	usually	are	not	interested	to	such	technical	details,	but	if	you	want	to	hack
OrientDB	or	become	a	contributor	this	information	could	be	useful.

Internals

731



Storages
Any	OrientDB	database	relies	on	a	Storage.	OrientDB	supports	4	storage	types:

plocal,	persistent	disk-based,	where	the	access	is	made	in	the	same	JVM	process
remote,	by	using	the	network	to	access	a	remote	storage
memory,	all	data	remains	in	memory
local,	deprecated,	it's	the	first	version	of	disk	based	storage,	but	has	been	replaced	by	plocal

A	Storage	is	composed	of	multiple	Clusters.

Storages

732



Storages
Any	OrientDB	database	relies	on	a	Storage.	OrientDB	supports	4	storage	types:

plocal,	persistent	disk-based,	where	the	access	is	made	in	the	same	JVM	process
remote,	by	using	the	network	to	access	a	remote	storage
memory,	all	data	remains	in	memory
local,	deprecated,	it's	the	first	version	of	disk	based	storage,	but	has	been	replaced	by	plocal

A	Storage	is	composed	of	multiple	Clusters.

Memory	storage

733



PLocal	Storage
The	Paginated	Local	Storage,	"plocal"	from	now,	is	a	disk	based	storage	which	works	with	data	using	page	model.

plocal	storage	consists	of	several	components	each	of	those	components	use	disk	data	through	disk	cache.

Below	is	list	of	plocal	storage	components	and	short	description	of	each	of	them:

1.	 Clusters	are	managed	by	2	kinds	of	files:
.pcl	files	contain	the	cluster	data
.cpm	files	contain	the	mapping	between	record's	cluster	position	and	real	physical	position

2.	Write	Ahead	(operation)	Log	(WAL)	are	managed	by	2	kinds	of	files:
.wal	to	store	the	log	content
.wmr	contains	timing	about	synchronization	operations	between	storage	cache	and	disk	system

3.	 SBTree	Index,	it	uses	files	with	extensions	.sbt.
4.	 Hash	Index,	it	uses	files	with	extensions	.hit,	.him	and	.hib.
5.	 Index	Containers	to	store	values	of	single	entries	of	not	unique	index	(Index	RID	Set).	It	uses	files	with	extension	.irs.
6.	 File	mapping,	maps	between	file	names	and	file	ids	(used	internally).	It's	a	single	file	with	name:	name_id_map.cm.

File	System

Since	PLOCAL	is	disk-based,	all	pages	are	flushed	to	physical	files.	You	can	specify	any	mounted	partitions	on	your	machine,	backed
by	Disks,	SSD,	Flash	Disks	or	DRAM.

Cluster

Cluster	is	logical	piece	of	disk	space	where	storage	stores	records	data.	Each	cluster	is	split	in	pages.	Page	is	a	single	atomic	unit,	which
is	used	by	cluster.

Each	page	contains	system	information	and	records	data.	System	information	includes	"magic	number"	and	a	crc32	check	sum	of	the
page	content.	This	information	is	used	to	check	storage	integrity	after	a	DB	crash.	To	start	an	integrity	check	run	command	"check
database"	from	console.

Each	cluster	has	2	sub	components:

data	file,	with	extension	.pcl
mapping	between	physical	position	of	record	in	the	data	file	and	cluster	position,	with	extension	.cpm

File	System

To	speed	up	access	to	the	most	requested	clusters	it's	recommended	to	use	the	cluster	files	to	a	SSD	or	any	faster	support	than	disk.	To
do	that,	move	the	files	to	the	mounted	partitions	and	create	symbolic	links	to	them	on	original	path.	OrientDB	will	follow	symbolic
links	and	will	open	cluster	files	everywhere	are	reachable.

Cluster	pointers

The	mapping	between	data	file	and	physical	position	is	managed	with	a	list.	Each	entry	in	this	list	is	a	fixed	size	element,	which	is	the
pointer	to	the	physical	position	of	the	record	in	the	data	file.

Because	the	data	file	is	paginated,	this	pointer	will	consist	of	2	items:	a	page	index	(long	value)	and	the	position	of	the	record	inside	the
page	(int	value).	Each	record	pointer	consumes	12	bytes.

Creation	of	new	records	in	cluster

When	a	new	record	is	inserted,	a	pointer	is	added	to	the	list.	The	index	of	this	pointer	is	the	cluster	position.	The	list	is	an	append	only
data	structure,	so	if	you	add	a	new	record	its	cluster	position	will	be	unique	and	will	not	be	reused.

PLocal	storage

734



Deletion	of	records	in	cluster

When	you	delete	a	record,	the	page	index	and	record	position	are	set	to	-1.	So	the	record	pointer	is	transformed	into	a	"tombstone".	You
can	think	of	a	record	id	like	a	uuid..	It	is	unique	and	never	reused.

Usually	when	you	delete	records	you	lose	very	small	amount	of	disk	space.	This	can	be	mitigated	with	a	periodic	"offline	compaction",
by	performing	a	database	export/import.	During	this	process,	cluster	positions	will	be	changed	(tombstones	will	be	ignored	during
export)	and	the	lost	space	will	be	recovered.	So	during	the	import	process,	the	cluster	positions	can	change.

Migration	of	RID

The	OrientDB	import	tool	uses	a	manual	hash	index	(by	default	the	name	is	'___exportImportRIDMap')	to	map	the	old	record	ids	to
new	record	ids.

Write	Ahead	(operation)	Log	(WAL)
The	Write	Ahead	Log	(or	WAL)	is	used	to	restore	storage	data	after	a	non-soft	shutdown:

Hard	kill	of	the	OrientDB	process
Crash/Failure	of	the	Java	Virtual	Machine	that	runs	OrientDB
Crash/Failure	of	the	Operating	System	that	is	hosting	OrientDB

All	the	operations	on	plocal	components	are	logged	in	WAL	before	they	are	performed.	WAL	is	an	append	only	data	structure.	You	can
think	of	it	as	a	list	of	records	which	contain	information	about	operations	performed	on	storage	components.

WAL	flush

WAL	content	is	flushed	to	the	disk	on	these	events:

every	1	second	in	background	thread	(flush	interval	can	be	changed	in	storage.wal.commitTimeout	configuration	property)
synchronously	if	the	amount	of	RAM	used	by	WAL	exceeds	65Mb	(can	be	changed	in	storage.wal.cacheSize	configuration
property).

As	result	if	OrientDB	crashes,	all	data	changes	done	during	<=1	second	interval	before	crash	will	be	lost.	This	is	a	trade	off	between
performance	and	durability.

Put	the	WAL	on	a	separate	disk

It's	strongly	recommended	that	WAL	records	are	stored	on	a	different	disk	than	the	disk	used	to	store	the	DB	content.	In	this	way	data
I/O	operations	will	not	be	interrupted	by	WAL	I/O	operations.	This	can	be	done	by	setting	the	storage.wal.path	property	to	the	folder
where	storage	WAL	files	will	be	placed.

How	Indexes	use	WAL?

Indexes	can	work	with	WAL	in	2	modes:

ROLLBACK_ONLY	(default	mode)	and
FULL

In	ROLLBACK_ONLY	mode	only	the	data	needed	to	rollback	transactions	is	stored.	This	means	that	WAL	records	can	not	be	used	to
restore	index	content	after	a	crash.	In	the	case	of	a	crash,	the	indexes	will	be	rebuilt	automatically.

In	FULL	mode,	indexes	can	be	restored	after	DB	crash	without	a	rebuild.	You	can	change	index	durability	mode	by	setting	the	property
index.txMode.

You	can	find	more	details	about	WAL	here.

File	types

PLocal	stores	data	on	the	file	system	using	different	files,	using	the	following	extensions:

PLocal	storage

735



.cpm,	contains	the	mapping	between	real	physical	positions	and	cluster	positions.	If	you	delete	a	record,	the	tombstone	is	placed
here.	Each	tombstone	consumes	about	12	bytes.
.pcl,	data	file
.sbt,	is	index	file
.wal	and	.wmr,	are	Journal	Write	Ahead	(operation)	Log	files
.cm,	is	the	mapping	between	file	id	and	real	file	name	(used	internally)
.irs,	is	the	RID	set	file	for	non-unique	indexes

How	it	works	(Internal)

Paginated	storage	is	a	2-level	disk	cache	that	works	together	with	the	write	ahead	log.

Every	file	is	spit	into	pages,	and	each	file	operation	is	atomic	at	a	page	level.	The	2-level	disk	cache	allows:

1.	 Cache	frequently	accessed	pages	in	memory.
2.	 Automatically	separate	pages	which	are	rarely	accessed	from	frequently	accessed	and	rid	off	the	first	from	cache	memory.
3.	 Minimize	amount	of	disk	head	seeks	during	data	writes.
4.	 In	case	of	low	or	middle	write	data	load	allows	to	mitigate	pauses	are	needed	to	write	data	to	the	disk	by	flushing	all	changed	or

newly	added	pages	to	the	disk	in	background	thread.
5.	 Works	together	with	WAL	to	make	any	set	changes	on	single	page	look	like	atomic	operation.

2-level	cache	itself	consist	of	a	Read	Cache	(implementation	is	based	on	2Q	cache	algorithm)	and	a	*Write	cache	(implementation	is
based	on	WOW	cache	algorithm).

Typical	set	of	operations	are	needed	to	work	with	any	file	looks	like	following:

1.	 Open	file	using	OReadWriteDiskCache#openFile	operation	and	get	id	of	open	file.	If	the	file	does	not	exist	it	will	be	automatically
created.	The	id	of	file	is	stored	in	a	special	meta	data	file	and	will	always	belong	to	the	given	file	till	it	will	be	deleted.

2.	 Allocate	new	page	OReadWriteDiskCache#allocateNewPage	or	load	existing	one	ORreadWriteDiskCache#load	into	off-heap
memory.

3.	 Retrieve	pointer	to	the	allocated	area	of	off-heap	memory	OCacheEntry#getCachePointer().
4.	 If	you	plan	to	change	page	data	acquire	a	write	lock,	or	a	read	lock	if	you	read	data	and	your	single	file	page	is	shared	across	several

data	structures.	Write	lock	must	be	acquired	whether	a	single	page	is	used	between	several	data	structures	or	not.	The	write	lock	is
needed	to	prevent	flushing	inconsistent	pages	to	the	disk	by	the	“data	flush”	thread	of	the	write	cache.
OCachePointer#acquireExclusiveLock.

5.	 Update/read	data	in	off	heap	memory.
6.	 Release	write	lock	if	needed.	OCachePointer#releaseExclusiveLock.
7.	 Mark	page	as	dirty	if	you	changed	page	data.	It	will	allow	write	cache	to	flush	pages	which	are	really	changed

OCacheEntry#markDirty.
8.	 Push	record	back	to	the	disk	cache:	indicate	to	the	cache	that	you	will	not	use	this	page	any	more	so	it	can	be	safely	evicted	from

the	memory	to	make	room	to	other	pages	OReadWriteDiskCache#release.

So	what	is	going	on	underneath	when	we	load	and	release	pages?

When	we	load	page	the	Read	Cache	looks	it	in	one	of	its	two	LRU	lists.	One	list	is	for	data	that	was	accessed	several	times	and	then	not
accessed	for	very	long	period	of	time.	It	consumes	25%	of	memory.	The	second	is	for	data	that	is	accessed	frequently	for	a	long	period
of	time.	It	consumes	75%	of	memory.

If	the	page	is	not	in	either	LRU	queue,	the	Read	Cache	asks	the	Write	Cache	to	load	page	from	the	disk.

If	we	are	lucky	and	the	page	is	queued	to	flush	but	is	still	in	the	Write	Queue	of	Write	Cache	it	will	be	retrieved	from	there.	Otherwise,
the	Write	Cache	will	load	the	page	from	disk.

When	data	will	be	read	from	file	by	Write	Cache,	it	will	be	put	in	LRU	queue	which	contains	“short	living”	pages.	Eventually,	if	this
pages	will	be	accessed	frequently	during	long	time	interval,	loaded	page	will	be	moved	to	the	LRU	of	“long	living”	pages.

When	we	release	a	page	and	the	page	is	marked	as	dirty,	it	is	put	into	the	Write	Cache	which	adds	it	to	the	Write	Queue.	The	Write
Queue	can	be	considered	as	ring	buffer	where	all	the	pages	are	sorted	by	their	position	on	the	disk.	This	trick	allows	to	minimize	disk
head	movements	during	pages	flush.	What	is	more	interesting	is	that	pages	are	always	flushed	in	the	background	in	the	“background

PLocal	storage

736



flush”	thread.	This	approach	allows	to	mitigate	I/O	bottleneck	if	we	have	enough	RAM	to	work	in	memory	only	and	flush	data	in

background.

So	it	was	about	how	disk	cache	works.	But	how	we	achieve	durability	of	changes	on	page	level	and	what	is	more	interesting	on	the	level
when	we	work	with	complex	data	structures	like	Trees	or	Hash	Maps	(these	data	structures	are	used	in	indexes).

If	we	look	back	on	set	of	operations	which	we	perform	to	manipulate	file	data	you	see	that	step	5	does	not	contains	any	references	to
OrientDB	API.	That	is	because	there	are	two	ways	to	work	with	off	heap	pages:	durable	and	not	durable.

The	simple	(not	durable	way)	is	to	work	with	methods	of	direct	memory	pointer
com.orientechnologies.common.directmemory.ODirectMemoryPointer(setLong/getLong,	setInt/getInt	and	so	on).	If	you	would	like	to
make	all	changes	in	your	data	structures	durable	you	should	not	work	with	direct	memory	pointer	but	should	create	a	component	that
will	present	part	of	your	data	structure	by	extending	com.orientechnologies.orient.core.storage.impl.local.paginated.ODurablePage	class.
This	class	has	similar	methods	for	manipulation	of	data	in	off	heap	pages,	but	it	also	tracks	all	changes	made	to	the	page.	It	can	return
the	diff	between	the	old/new	states	of	page	using	the
com.orientechnologies.orient.core.storage.impl.local.paginated.ODurablePage#getPageChanges	method.	Also	this	class	allows	to	apply
given	diff	to	the	old/new	snapshot	of	given	pages	to	repeat/revert	(restoreChanges()/revertChanges())	changes	are	done	for	this	page.

PLocal	storage

737



PLocal	Engine
Paginated	Local	storage	engine,	also	called	as	"plocal",	is	intended	to	be	used	as	durable	replacement	of	the	previous	local	storage.

plocal	storage	is	based	on	principle	that	using	disk	cache	which	contains	disk	data	that	are	split	by	fixed	size	portions	(pages)	and	write
ahead	logging	approach	(when	changes	in	page	are	logged	first	in	so	called	durable	storage)	we	can	achieve	following	characteristics:

1.	 Operations	on	single	page	are	atomic.
2.	 Changes	applied	to	the	page	can	be	restored	after	server	crash	even	if	they	were	not	flushed	to	the	disk.

Using	write	ahead	log	and	page	based	cache	we	can	achieve	durability/performance	trade	off.	We	do	not	need	to	flush	every	page	to	the
disk	so	we	will	avoid	costly	random	I/O	operations	as	much	as	possible	and	still	can	achieve	durability	using	much	cheaper	append	only
I/O	operations.

From	all	given	above	we	can	conclude	one	more	advantage	of	plocal	against	local	-	it	has	much	faster	transactions	implementation.	In
order	achieve	durability	on	local	storage	we	should	set	tx.commit.synch	property	to	true	(perform	synchronization	of	disk	cache	on	each
transaction	commit)	which	of	course	makes	create/update/delete	operations	inside	transaction	pretty	slow.

Lets	go	deeper	in	implementation	of	both	storages.

Local	storage	uses	MMAP	implementation	and	it	means	that	caching	of	read	and	write	operations	can	not	be	controlled,	plocal	from
other	side	uses	two	types	of	caches	read	cache	and	write	cache	(the	last	is	under	implementation	yet	and	not	included	in	current
implementation).

The	decision	to	split	responsibilities	between	2	caches	is	based	on	the	fact	that	characters	of	distribution	of	"read"	and	"write"	data	are
different	and	they	should	be	processed	separately.

We	replaced	MMAP	by	our	own	cache	solution	because	we	needed	low	level	integration	with	cache	life	cycle	to	provide	fast	and
durable	integration	between	WAL	and	disk	cache.	Also	we	expect	that	when	cache	implementation	will	be	finished	issues	like
https://github.com/orientechnologies/orientdb/issues/1202	and	https://github.com/orientechnologies/orientdb/issues/1339	will	be	fixed
automatically.

Despite	of	the	fact	that	write	cache	is	still	not	finished	it	does	not	mean	that	plocal	storage	is	not	fully	functional.	You	can	use	plocal
storage	and	can	notice	that	after	server	crash	it	will	restore	itself.

But	it	has	some	limitations	right	now,	mostly	related	to	WAL	implementation.	When	storage	is	crashed	it	finds	last	data	check	point	and
restores	data	from	this	checkpoint	by	reading	operations	log	from	WAL.

There	are	two	kind	of	check	points	full	check	point	and	fuzzy	check	point.	The	full	check	point	is	simple	disk	cache	flush	it	is
performed	when	cluster	is	added	to	storage	or	cluster	attributes	are	changed,	also	this	check	point	is	performed	during	storage	close.

Fuzzy	checkpoint	is	completely	different	(it	is	under	implementation	yet).	During	this	checkpoint	we	do	not	flush	disk	cache	we	just
store	the	position	of	last	operation	in	write	ahead	log	which	is	for	sure	flushed	to	the	disk.	When	we	restore	data	after	crash	we	find	this
position	in	WAL	and	restore	all	operations	from	it.	Fuzzy	check	points	are	much	faster	and	will	be	performed	each	hour.

To	achieve	this	trick	we	should	have	special	write	cache	which	will	guarantee	that	we	will	not	restore	data	from	the	begging	of	database
creation	during	restore	from	fuzzy	checkpoint	and	will	not	have	performance	degradation	during	write	operations.	This	cache	is	under
implementation.

So	right	now	when	we	restore	data	we	need	to	restore	data	since	last	DB	open	operation.	It	is	quite	long	procedure	and	require	quite
space	for	WAL.

When	fuzzy	check	points	will	be	implemented	we	will	cut	unneeded	part	of	WAL	during	fuzzy	check	point	which	will	allow	us	to	keep
WAL	quite	small.

We	plan	to	finish	fuzzy	checkpoints	during	a	month.

But	whether	we	use	fuzzy	checkpoints	or	not	we	can	not	append	to	the	WAL	forever.	WAL	is	split	by	segments,	when	WAL	size	is
exceed	maximum	allowed	size	the	oldest	WAL	segment	will	be	deleted	and	new	empty	one	will	be	created.

The	segments	size	are	controlled	by	storage.wal.maxSegmentSize	parameter	in	megabytes.	The	maximum	WAL	size	is	set	by	property
storage.wal.maxSize	parameter	in	megabytes.

PLocal	storage

738

https://github.com/orientechnologies/orientdb/issues/1202
https://github.com/orientechnologies/orientdb/issues/1339


Maximum	amount	of	size	which	is	consumed	by	disk	cache	currently	is	set	using	two	parameters:	storage.diskCache.bufferSize	-
Maximum	amount	of	memory	consumed	by	disk	cache	in	megabytes.	storage.diskCache.writeQueueLength	-	Currently	pages	are	nor
flushed	on	the	disk	at	the	same	time	when	disk	cache	size	exceeds,	they	placed	to	write	queue	and	when	write	queue	will	be	full	it	is
flushed.	This	approach	minimize	disk	head	movements	but	it	is	temporary	solution	and	will	be	removed	at	final	version	of	plocal
storage.	This	parameter	is	measured	in	megabytes.

During	update	the	previous	record	deleted	and	content	of	new	record	is	placed	instead	of	old	record	at	the	same	place.	If	content	of	new
record	does	not	fit	in	place	occupied	by	old	record,	record	is	split	on	two	parts	first	is	written	on	old	record's	place	and	the	second	is
placed	on	new	or	existing	page.	Placing	of	part	of	the	record	on	new	page	requires	to	log	in	WAL	not	only	new	but	previous	data	are
hold	in	both	pages	which	requires	much	more	space.	To	prevent	such	situation	cluster	in	plocal	storage	has	following	attributes:

1.	 RECORD_GROW_FACTOR	the	factor	which	shows	how	many	space	will	be	consumed	by	record	during	initial	creation.	If	record
size	is	100	bytes	and	RECORD_GROW_FACTOR	is	2	record	will	consume	200	bytes.	Additional	100	bytes	will	be	reused	when
record	will	grow.

2.	 RECORD_OVERFLOW_GROW_FACTOR	the	factor	shows	how	many	additional	space	will	be	added	to	the	record	when	record
size	will	exceed	initial	record	size.	If	record	consumed	200	bytes	and	additional	20	bytes	will	be	needed	and
RECORD_OVERFLOW_GROW_FACTOR	is	1.5	then	record	will	consume	300	bytes	after	update.	Additional	80	bytes	will	be
used	during	next	record	updates.

Default	value	for	both	parameters	are	1.2.

1.	 USE_WAL	if	you	prefer	that	some	clusters	will	be	faster	but	not	durable	you	can	set	this	parameter	to	false.

PLocal	storage

739



PLocal	Disk-Cache
OrientDB	Disk	cache	consists	of	two	separate	cache	components	that	work	together:

Read	Cache,	based	on	2Q	cache	algorithm
Write	Cache,	based	on	WOW	cache	algorithm

Starting	from	v2.1,	OrientDB	exposes	internal	metrics	through	JMX	Beans.	Use	this	information	to	track	and	profile	OrientDB.

Read	Cache
It	contains	the	following	queues:

a1,	as	FIFO	queue	for	pages	which	were	not	in	the	read	cache	and	accessed	for	the	first	time
am,	as	FIFO	queue	for	the	hot	pages	(pages	which	are	accessed	frequently	during	db	lifetime).	The	most	used	pages	stored	in	a1
becomes	"hot	pages"	and	are	moved	into	the	am	queue.

a1	Queue

a1	queue	is	split	in	two	queues:

a1in	that	contains	pointers	to	the	pages	are	cached	in	memory
a1out	that	contains	pointers	to	the	pages	which	were	in	a1in,	but	was	not	accessed	for	some	time	and	were	removed	from	RAM.
a1out	contains	pointers	to	the	pages	located	on	the	disk,	not	in	RAM.

Loading	a	page

When	a	page	is	read	for	the	first	time,	it's	loaded	from	the	disk	and	put	in	the	a1in	queue.	If	there	isn't	enough	space	in	RAM,	the	page
is	moved	to	a1out	queue.

If	the	same	page	is	accessed	again,	then:

1.	 if	it	is	in	a1in	queue,	nothing
2.	 if	it	is	in	a1out	queue,	the	page	is	supposed	to	be	a	"hot	page"	(that	is	page	which	is	accessed	several	times,	but	doesn't	follow	the

pattern	when	the	page	is	accessed	several	times	for	short	interval,	and	then	not	accessed	at	all)	we	put	it	in	am	queue
3.	 if	it	is	in	am	queue,	we	put	the	page	at	the	top	of	am	queue

Queue	sizes

By	default	this	is	the	configuration	of	queues:

a1in	queue	is	25%	of	Read	Cache	size
a1out	queue	is	50%	of	Read	Cache	size
am	is	75%	of	Read	Cache	size.

When	OrientDB	starts,	both	caches	are	empty,	so	all	the	accessed	pages	are	put	in	a1in	queue,	and	the	size	of	this	queue	is	100%	of	the
size	of	the	Read	Cache.

But	then,	when	there	is	no	more	room	for	new	pages	in	a1in,	the	old	pages	are	moved	from	a1in	to	a1out.	Eventually	when	a1out
contains	requested	pages	we	need	room	for	am	queue	pages,	so	once	again	we	move	pages	from	a1in	queue	to	a1out	queue,	a1in	queue
is	truncated	till	it	is	reached	25%	size	of	read	cache.

To	make	more	clear	how	RAM	and	pages	are	distributed	through	queues	lets	look	at	example.	Lets	suppose	we	have	cache	which	should
cache	in	RAM	4	pages,	and	we	have	8	pages	stored	on	disk	(which	have	indexes	from	0	till	7	accordingly).

When	we	start	database	server	all	queues	contain	0	pages:

am	-	[]
a1in	-	[]
a1out	-	[]

PLocal	storage

740

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.392
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.8729


Then	we	read	first	4	pages	from	the	disk.	So	we	have:

am	-	[]
a1in	-	[3,	2,	1,	0]
a1out	-	[]

Then	we	read	5-th	page	from	the	disk	and	then	6-th	,	because	only	4	pages	can	be	fit	into	RAM	we	remove	the	last	pages	with	indexes	0
and	1,	free	memory	which	is	consumed	by	those	pages	and	put	them	in	a1out.	So	we	have:

am	-	[]
a1in	-	[5,	4,	3,	2]
a1out	-	[1,	0]

lets	read	pages	with	indexes	from	6	till	7	(last	2	pages)	but	a1out	can	contain	only	2	pages	(50%	of	cache	size)	so	the	first	pages	will	be
removed	from	o1out.	We	have	here:

am	-	[]
a1in	-	[7,	6,	5,	4]
a1out	-	[3,	2]

Then	if	we	will	read	pages	2,	3	then	we	mark	them	(obviously)	as	hot	pages	and	we	put	them	in	am	queue	but	we	do	not	have	enough
memory	for	these	pages,	so	we	remove	pages	5	and	4	from	a1in	queue	and	free	memory	which	they	consumed.	Here	we	have:

am	-	[3,	2]
a1in	-	[7,	6]
a1out	-	[5,	4]

Then	we	read	page	4	because	we	read	it	several	times	during	long	time	interval	it	is	hot	page	and	we	put	it	in	am	queue.	So	we	have:

am	-	[4,	3,	5]
a1in	-	[7]
a1out	-	[6,	5]

We	reached	state	when	queues	can	not	grow	any	more	so	we	reached	stable,	from	point	of	view	of	memory	distribution,	state.

This	is	the	used	algorithm	in	pseudo	code:

PLocal	storage

741



On	accessing	a	page	X

begin:

	if	X	is	in	Am	then

			move	X	to	the	head	of	Am

else	if	(X	is	in	A1out)	then

	removeColdestPageIfNeeded

	add	X	to	the	head	of	Am

else	if	(X	is	in	A1in)

	//	do	nothing

else

	removeColdestPageIfNeeded

	add	X	to	the	head	of	A1in

end	if

end

removeColdestPageIfNeeded

begin

	if	there	is	enough	RAM	do	nothing

	else	if(	A1in.size	>	A1inMaxSize)

		free	page	out	the	tail	of	A1in,	call	it	Y

		add	identifier	of	Y	to	the	head	of	A1out

	if(A1out.size	>	A1OutMaxSize)

		remove	page	from	the	tail	of	Alout

	end	if

	else

		remove	page	out	the	tail	of	Am

		//	do	not	put	it	on	A1out;	it	hasn’t	been

		//	accessed	for	a	while

	end	if

end

Write	cache
The	main	target	of	the	write	cache	is	to	eliminate	disk	I/O	overhead,	by	using	the	following	approaches:

1.	 All	the	pages	are	grouped	by	4	adjacent	pages	(group	0	contains	pages	from	0	to	3,	group	1	contains	pages	from	4	to	7,	etc.	).
Groups	are	sorted	by	position	on	the	disk.	Groups	are	flushed	in	sorted	order,	in	such	way	we	reduce	the	random	I/O	disk	head
seek	overhead.	Group's	container	is	implemented	as	SortedMap:	when	we	reach	the	end	of	the	map	we	start	again	from	the
beginning.	You	can	think	about	this	data	structure	as	a	"ring	buffer"

2.	 All	the	groups	have	"recency	bit",	this	bit	is	set	when	group	is	changed.	It	is	needed	to	avoid	to	flush	pages	that	are	updated	too
often,	it	will	be	wasting	of	I/O	time

3.	 Groups	are	continuously	flushed	by	background	thread,	so	until	there	is	enough	free	memory,	all	data	operations	do	not	suffer	of
I/O	overhead	because	all	operations	are	performed	in	memory

Below	the	pseudo	code	for	write	cache	algorithms:

Add	changed	page	in	cache:

PLocal	storage

742



begin

	try	to	find	page	in	page	group.

	if	such	page	exist

		replace	page	in	page	group

		set	group's	"recency	bit"	to	true

	end	if

	else

		add	page	group

		set	group's	"recency	bit"	to	true

	end	if

end

On	periodical	background	flush

begin

	calculate	amount	of	groups	to	flush

	start	from	group	next	to	flushed	in	previous	flush	iteration

	set	"force	sync"	flag	to	false

	for	each	group

		if	"recency	bit"	set	to	true	and	"force	sync"	set	to	false

			set	"recency	bit"	to	false

		else

			flush	pages	in	group

			remove	group	from	ring	buffer

		end	if

	end	for

		if	we	need	to	flush	more	than	one	group	and	not	all	of	them	are	flushed	repeat	"flush	

loop"	with	"force	sync"	flag	set	to	true.

end

The	collection	of	groups	to	flush	is	calculated	in	following	way:

1.	 if	amount	of	RAM	consumed	by	pages	is	less	than	80%,	then	1	group	is	flushed.
2.	 if	amount	of	RAM	consumed	by	pages	is	more	than	80%,	then	20%	of	groups	is	flushed.
3.	 if	amount	of	RAM	consumed	by	pages	is	more	than	90%,	then	40%	of	groups	is	flushed.

Interaction	between	Read	and	Write	Caches

By	default	the	maximum	size	of	Read	Cache	is	70%	of	cache	RAM	and	30%	for	Write	Cache.

When	a	page	is	requested,	the	Read	Cache	looks	into	the	cached	pages.	If	it's	not	present,	the	Read	Cache	requests	page	from	the	Write
Cache.	Write	Cache	looks	for	the	page	inside	the	Ring	Buffer:	if	it	is	absent,	it	reads	the	page	from	the	disk	and	returns	it	directly	to	the
Read	Cache	without	caching	it	inside	of	Write	Cache	Ring	Buffer.

Implementation	details

Page	which	is	used	by	storage	data	structure	(such	as	cluster	or	index)	can	not	be	evicted	(removed	from	memory)	so	each	page	pointer
also	has	"usage	counter"	when	page	is	requested	by	cache	user,	"usage	counter"	is	incremented	and	decremented	when	page	is	released.
So	removeColdestPageIfNeeded()	method	does	not	remove	tail	page,	but	removes	page	closest	to	tail	which	usage	counter	is	0,	if	such
pages	do	not	exit	either	exception	is	thrown	or	cache	size	is	automatically	increased	and	warning	message	is	added	to	server	log	(default)
(it	is	controlled	by	properties	server.cache.2q.increaseOnDemand	and	server.cache.2q.increaseStep,	the	last	one	is	amount	of
percent	of	RAM	from	original	size	on	which	cache	size	will	be	increased).

PLocal	storage

743



When	a	page	is	changed,	the	cache	page	pointer	(data	structure	which	is	called	OCacheEntry)	is	marked	as	dirty	by	cache	user	before
release.	If	cache	page	is	dirty	it	is	put	in	write	cache	by	read	cache	during	call	of	OReadWriteDiskCache#release()	method.	Strictly
speaking	memory	content	of	page	is	not	copied,	it	will	be	too	slow,	but	pointer	to	the	page	is	passed.	This	pointer	(OCachePointer)
tracks	amount	of	referents	if	no	one	references	this	pointer,	it	frees	referenced	page.

Obviously	caches	work	in	multithreaded	environment,	so	to	prevent	data	inconsistencies	each	page	is	not	accessed	directly.	Read	cache
returns	data	structure	which	is	called	cache	pointer.	This	pointer	contains	pointer	to	the	page	and	lock	object.	Cache	user	should	acquire
read	or	write	lock	before	it	will	use	this	page.	The	same	read	lock	is	acquired	by	write	cache	for	each	page	in	group	before	flush,	so
inconsistent	data	will	not	be	flushed	to	the	disk.	There	is	interesting	nuance	here,	write	cache	tries	to	acquire	read	lock	and	if	it	is	used
by	cache	user	it	will	not	wait	but	will	try	to	flush	other	group.

PLocal	storage

744



PLocal	WAL	(Journal)
Write	Ahead	Log,	WAL	form	now,	is	operation	log	which	is	used	to	store	data	about	operations	which	were	performed	on	disk	cache
page.	WAL	is	enabled	by	default.

You	could	disable	the	journal	(WAL)	for	some	operations	where	reliability	is	not	necessary:

-Dstorage.useWAL=false

By	default,	the	WAL	files	are	written	in	the	database	folder.	Since	these	files	can	growth	very	fast,	it's	a	best	practice	to	store	in	a
dedicated	partition.	WAL	are	written	in	append-only	mode,	so	there	is	not	much	difference	on	using	a	SSD	or	a	normal	HDD.	If	you
have	a	SSD	we	suggest	to	use	for	database	files	only,	not	WAL.

To	setup	a	different	location	than	database	folder,	set	the		WAL_LOCATION	variable.

OGlobalConfiguration.WAL_LOCATION.setValue("/temp/wal")

or	at	JVM	level:

java	...	-Dstorage.wal.path=/temp/wal	...

This	log	is	not	an	high	level	log,	which	is	used	to	log	operations	on	record	level.	During	each	page	change	following	values	are	stored:

1.	 offset	and	length	of	chunk	of	bytes	which	was	changed.
2.	 previous	value	of	chunk	of	bytes.
3.	 replaced	(new)	value	of	chunk	of	bytes.

As	you	can	see	WAL	contains	not	logical	but	raw	(in	form	of	chunk	of	bytes)	presentation	of	data	which	was/is	contained	inside	of
page.	Such	format	of	record	of	write	ahead	log	allows	to	apply	the	same	changes	to	the	page	several	times	and	as	result	allows	do	not
flush	cache	content	after	each	TX	operation	but	do	such	flush	on	demand	and	flush	only	chosen	pages	instead	of	whole	cache.	The
second	advantage	is	following	if	storage	is	crashed	during	data	restore	operation	it	can	be	restored	again	,	again	and	again.

Lets	say	we	have	page	where	following	changes	are	done.

1.	 10	bytes	at	the	beginning	were	changed.
2.	 10	bytes	at	the	end	were	changed.

Storage	is	crashed	during	the	middle	of	page	flush,	which	does	not	mean	that	first	10	bytes	are	written,	so	lets	suppose	that	the	last	10
changed	byte	were	written,	but	first	10	bytes	were	not.

During	data	restore	we	apply	all	operations	stored	in	WAL	one	by	one,	which	means	that	we	set	first	10	bytes	of	changed	page	and	then
last	10	bytes	of	this	page.	So	the	changed	page	will	have	correct	state	does	not	matter	whether	it's	state	was	flushed	to	the	disk	or	not.

WAL	file	is	split	on	pages	and	segments,	each	page	contains	in	header	CRC32	code	of	page	content	and	"magic	number".	When
operation	records	are	logged	to	WAL	they	are	serialized	and	binary	content	appended	to	the	current	page,	if	it	is	not	enough	space	left	in
page	to	accommodate	binary	presentation	of	whole	record,	the	part	of	binary	content	(which	does	not	fit	inside	of	current	page)	will	be
put	inside	of	next	record.	It	is	important	to	avoid	gaps	(free	space)	inside	of	pages.	As	any	other	files	WAL	can	be	corrupted	because	of
power	failure	and	detection	of	gaps	inside	WAL	pages	is	one	of	the	approaches	how	database	separates	broken	and	"healthy"	WAL
pages.	More	about	this	later.

Any	operation	may	include	not	single	but	several	pages,	to	avoid	data	inconsistency	all	operations	on	several	records	inside	of	one
logical	operation	are	considered	as	single	atomic	operation.	To	achieve	this	functionality	following	types	of	WAL	records	were
introduced:

1.	 atomic	operation	start.
2.	 atomic	operation	end.
3.	 record	which	contains	changes	are	done	in	single	page	inside	of	atomic	operation.

These	records	contain	following	fields:

PLocal	storage

745



1.	 Atomic	operation	start	record	contains	following	fields:
i.	 Atomic	operation	id	(uuid).
ii.	 LSN	(log	sequence	number)	-	physical	position	of	log	record	inside	WAL.

2.	 Atomic	operation	end	record	contains	following	fields:
i.	 Atomic	operation	id	(uuid).
ii.	 LSN	(log	sequence	number)	-	physical	position	of	log	record	inside	WAL.
iii.	 rollback	flag	-	indicates	whether	given	atomic	operation	should	be	rolled	back.

3.	 Record	which	contains	page	changes	contains	following	fields:
i.	 LSN	(log	sequence	number)	-	physical	position	of	log	record	inside	WAL.
ii.	 page	index	and	file	id	of	changed	page.
iii.	 Page	changes	itself.
iv.	 LSN	of	change	which	was	applied	to	the	current	page	before	given	one	-	prevLSN.

The	last	record's	type	(page	changes	container)	contains	field	(d.	item)	which	deserves	additional	explanation.	Each	cache	page	contains
following	"system"	fields:

1.	 CRC32	code	of	the	rest	of	content.
2.	 magic	number
3.	 LSN	of	last	change	applied	to	the	page	-	page	LSN.

Every	time	we	perform	changes	on	the	page	before	we	release	it	back	to	the	cache	we	log	page	changes	to	the	WAL,	assign	LSN	of	WAL
record	as	the	"page	LSN"	and	only	after	that	release	page	back	to	the	cache.

When	WAL	flushes	it's	pages	it	does	not	do	it	at	once	when	current	page	is	filled	it	is	put	in	cache	and	is	flushed	in	background	along
with	other	cached	pages.	Flush	is	performed	every	second	in	background	thread	(it	is	trade	off	between	performance	and	durability).	But
there	are	two	exceptions	when	flush	is	performed	in	thread	which	put	record	in	WAL:

1.	 If	WAL	page's	cache	is	exhausted.
2.	 If	cache	page	is	flushed,	page	LSN	is	compared	with	LSN	of	last	flushed	WAL	record	and	if	page	LSN	is	more	than	LSN	of	flushed

WAL	record	then	flush	of	WAL	pages	is	triggered.	LSN	is	physical	position	of	WAL	record,	because	of	WAL	is	append	only	log	so
if	"page	LSN"	is	more	than	LSN	of	flushed	record	it	means	that	changes	for	given	page	were	logged	but	not	flushed,	but	we	can
restore	state	of	page	only	and	only	if	all	page	changes	will	be	contained	in	WAL	too.

Given	all	of	this	data	restore	process	looks	like	following:

begin

go	trough	all	WAL	records	one	by	one

gather	together	all	atomic	operation	records	in	one	batch

when	"atomic	operation	end"	record	was	found

		if	commit	should	be	performed

				go	through	all	atomic	operation	records	from	first	to	last,	apply	all	page	changes,	

set	page	LSN	to	the	LSN	of	applied	WAL	record.

		else

				go	through	all	atomic	operation	records	from	last	to	first,	set	old	page's	content,	

set	page	LSN	to	the	WALRecord.prevLSN	value.

		endif

end

As	it	is	written	before	WAL	files	are	usual	files	and	they	can	be	flushed	only	partially	if	power	is	switched	off	during	WAL	cache	flush.
There	are	two	cases	how	WAL	pages	can	be	broken:

1.	 Pages	are	flushed	partially.
2.	 Some	of	pages	are	completely	flushed,	some	are	not	flushed.

First	case	is	very	easy	to	detect	and	resolve:

1.	 When	we	open	WAL	during	DB	start	we	verify	that	size	of	WAL	multiplies	of	WAL	page	size	if	it	is	not	WAL	size	is	truncated	to
page	size.

2.	 When	we	read	pages	one	by	one	we	verify	CR32	and	magic	number	of	each	page.	If	page	is	broken	we	stop	data	restore	procedure
here.

PLocal	storage

746



Second	case	a	bit	more	tricky.	Because	WAL	is	append	only	log,	there	is	two	possible	sub-cases,	lets	suppose	we	have	3	pages	after	2-
nd	(broken)	flush.	First	and	first	half	of	second	page	were	flushed	during	first	flush	and	second	half	of	second	page	and	third	page	were
flushed	during	second	flush.	Because	second	flush	was	interrupted	by	power	failure	we	can	have	two	possible	states:

1.	 Second	half	of	page	was	flushed	but	third	was	not.	It	is	easy	to	detect	by	checking	CRC	and	magic	number	values.
2.	 Second	half	of	page	is	not	flushed	but	third	page	is	flushed.	In	such	case	CRC	and	magic	number	values	will	be	correct	and	we	can

not	use	them	instead	of	this	when	we	read	WAL	page	we	check	if	this	page	has	free	space	if	it	has	then	we	check	if	this	is	last	page
if	it	is	not	we	mark	this	WAL	page	as	broken.

PLocal	storage

747



Local	Storage	(Not	more	available	since	2.0)
Local	storage	is	the	first	version	of	disk-based	storage	engine,	but	has	been	replaced	by	plocal.	Don't	create	new	databases	using	local,
but	rather	plocal.	Local	storage	has	been	kept	only	for	compatibility	purpose.

A	local	storage	is	composed	of	multiple	Cluster	and	Data	Segments.

Local	Physical	Cluster
The	cluster	is	mapped	1-by-2	to	files	in	the	underlying	File	System.	The	local	physical	cluster	uses	two	or	more	files:	One	or	more	files
with	extension	"ocl"	(OrientDB	Cluster)	and	only	one	file	with	the	extension	"och"	(OrientDB	Cluster	Holes).

For	example,	if	you	create	the	"Person"	cluster,	the	following	files	will	be	created	in	the	folder	that	contains	your	database:

person.0.ocl
person.och

The	first	file	contains	the	pointers	to	the	record	content	in	ODA	(OrientDB	Data	Segment).	The	'0'	in	the	name	indicates	that	more
successive	data	files	can	be	created	for	this	cluster.	You	can	split	a	physical	cluster	into	multiple	real	files.	This	behavior	depends	on
your	configuration.	When	a	cluster	file	is	full,	a	new	file	will	be	used.

The	second	file	is	the	"Hole"	file	that	stores	the	holes	in	the	cluster	caused	by	deleted	data.

NOTE	(again,	but	very	important):	You	can	move	real	files	in	your	file	system	only	by	using	the	OrientDB	APIs.

Data	Segment

Local	storage	(deprecated)

748



OrientDB	uses	data	segments	to	store	the	record	content.	The	data	segment	behaves	similar	to	the	physical	cluster	files:	it	uses	two	or
more	files.	One	or	multiple	files	with	the	extension	"oda"	(OrientDB	Data)	and	only	one	file	with	the	extension	"odh"	(OrientDB	Data
Holes).

By	default	OrientDB	creates	the	first	data	segment	named	"default".	In	the	folder	that	contains	your	database	you	will	find	the	following
files:

default.0.oda
default.odh

The	first	file	is	the	one	that	contains	the	real	data.	The	'0'	in	the	name	indicates	that	more	successive	data	files	can	be	created	for	this
cluster.	You	can	split	a	data	segment	into	multiple	real	files.	This	behavior	depends	on	your	configuration.	When	a	data	segment	file	is
full,	a	new	file	will	be	used.

NOTE	(again,	but	it	can't	be	said	too	many	times):	You	can	move	real	files	in	your	file	system	only	by	using	the	OrientDB
APIs.

Interaction	between	components:	load	record	use	case:

Local	storage	(deprecated)

749



Clusters
OrientDB	uses	clusters	to	store	links	to	the	data.	A	cluster	is	a	generic	way	to	group	records.	It	is	a	concept	that	does	not	exist	in	the
Relational	world,	so	it	is	something	that	readers	from	the	relational	world	should	pay	particular	attention	to.

You	can	use	a	cluster	to	group	all	the	records	of	a	certain	type,	or	by	a	specific	value.	Here	are	some	examples	of	how	clusters	may	be
used:

Use	the	cluster	"Person"	to	group	all	the	records	of	type	"Person".	This	may	at	first	look	very	similar	to	the	RDBMS	tables,	but
be	aware	that	the	concept	is	quite	different.
Use	the	cluster	"Cache"	to	group	all	the	records	most	accessed.
Use	the	cluster	"Today"	to	group	all	the	records	created	today.
Use	the	cluster	"CityCar"	to	group	all	the	city	cars.

If	you	have	a	background	from	the	RDBMS	world,	you	may	benefit	to	think	of	a	cluster	as	a	table	(at	least	in	the	beginning).	OrientDB
uses	a	cluster	per	"class"	by	default,	so	the	similarities	may	be	striking	at	first.	However,	as	you	get	more	advanced,	we	strongly
recommend	that	you	spend	some	time	understanding	clustering	and	how	it	differs	from	RDBMS	tables.

A	cluster	can	be	local	(physical)	or	in-memory.

Note:	If	you	used	an	earlier	version	of	OrientDB.	The	concept	of	"Logical	Clusters"	are	not	supported	after	the	introduction
of	version	1.0.

Persistent	Cluster

Also	called	Physical	cluster,	it	stores	data	on	disk.

In-Memory	cluster

The	information	stored	in	"In-Member	clusters"	is	volatile	(that	is,	it	is	never	stored	to	disk).	Use	this	cluster	only	to	work	with
temporary	data.	If	you	need	an	In-Memory	database,	create	it	as	an	In-memory	Database.	In-memory	databases	have	only	In-memory
clusters.

Clusters

750



Limits
Below	are	the	limitations	of	the	OrientDB	engine:

Databases:	There	is	no	limit	to	the	number	of	databases	per	server	or	embedded.	Users	reported	no	problem	with	1000	databases
open
Clusters:	each	database	can	have	a	maximum	of	32,767	clusters	(2^15-1)
Records	per	cluster	(Documents,	Vertices	and	Edges	are	stored	as	records):	can	be	up	to	9,223,372,036,854,780,000	(2^63-1),
namely	9,223,372	Trillion	records
Records	per	database	(Documents,	Vertices	and	Edges	are	stored	as	records):	can	be	up	to	302,231,454,903,000,000,000,000
(2^78-1),	namely	302,231,454,903	Trillion	records
Record	size:	up	to	2GB	each,	even	if	we	suggest	avoiding	the	creation	of	records	larger	than	10MB.	They	can	be	split	into	smaller
records,	take	a	look	at	Binary	Data
Document	Properties	can	be:

up	to	2	Billion	per	database	for	schema-full	properties
there	is	no	limitation	regarding	the	number	of	properties	in	schema-less	mode.	The	only	concrete	limit	is	the	size	of	the
Document	where	they	can	be	stored.	Users	have	reported	no	problems	working	with	documents	made	of	15,000	properties

Indexes	can	be	up	to	2	Billion	per	database.	There	are	no	limitations	regarding	the	number	of	indexes	per	class
Queries	can	return	a	maximum	of	2	Billion	rows,	no	matter	the	number	of	the	properties	per	record
Concurrency	level:	in	order	to	guarantee	atomicity	and	consistency,	OrientDB	acquire	an	exclusive	lock	on	the	storage	during
transaction	commit.	This	means	transactions	are	serialized.	Giving	this	limitation,	the	OrientDB	team	is	already	working	on
improving	parallelism	to	achieve	better	scalability	on	multi-core	machines	by	optimizing	internal	structure	to	avoid	exclusive
locking.

Limitations	running	distributed

OrientDB	has	some	limitations	you	should	notice	when	you	work	in	Distributed	Mode:

	hotAlignment:true		could	bring	the	database	status	as	inconsistent.	Please	set	it	always	to	'false`,	the	default
creation	of	a	database	on	multiple	nodes	could	cause	synchronization	problems	when	clusters	are	automatically	created.	Please
create	the	databases	before	to	run	in	distributed	mode
split	network	case:	this	is	not	well	managed	and	in	case	you	setup	4	nodes	and	the	network	is	split	between	2	nodes	on	the	left,	and
2	nodes	on	the	right,	each	partition	will	think	to	be	the	only	survived	and	on	rejoin	database	could	be	inconsistent.	Please	always
setup	an	odd	number	of	nodes,	so	there	will	always	be	a	majority	in	quorum
Constraints	with	distributed	databases	could	cause	problems	because	some	operations	are	executed	at	2	steps:	create	+	update.	For
example	in	some	circumstance	edges	could	be	first	created,	then	updated,	but	constraints	like	MANDATORY	and	NOTNULL
against	fields	would	fail	at	the	first	step	making	the	creation	of	edges	not	possible	on	distributed	mode.

Limits

751



RidBag
RidBag	is	a	data	structure	that	manages	multiple	RIDs.	It	is	a	collection	without	an	order	that	could	contain	duplication.	Actually	the
bag	(or	multi-set)	is	similar	to	set,	but	could	hold	several	instances	of	the	same	object.

RidBag	is	designed	to	efficiently	manage	edges	in	graph	database,	however	it	could	be	used	directly	in	document	level.

Why	it	doesn't	implement	java	java.util.Collection

The	first	goal	of	RidBag	is	to	be	able	efficiently	manage	billions	of	entries.	In	the	same	time	it	should	be	possible	to	use	such	collection
in	the	remote.	The	main	restriction	of	such	case	is	amount	of	data	that	should	be	sent	over	the	network.

Some	of	the	methods	of		java.util.Collection		is	really	hard	to	efficiently	implement	for	such	case,	when	most	of	them	are	not	required
for	relationship	management.

How	it	works
RidBag	has	2	modes:

Embedded	-	has	list-like	representation	and	serialize	its	content	right	in	document
Tree-based	-	uses	external	tree-based	data	structure	to	manages	its	content.	Has	some	overhead	over	embedded	one,	but	much	more
efficient	for	many	records.

By	default	newly	created	RidBags	are	embedded	and	they	are	automatically	converted	to	tree-based	after	reaching	a	threshold.	The
automatic	conversion	in	opposite	direction	is	disabled	by	default	due	to	an	issues	in	remote	mode.	However	you	can	use	it	if	you	are
using	OrientDB	embedded	and	don't	use	remote	connections.

The	conversion	is	always	done	on	server	and	never	on	client.	Firstly	it	allows	to	avoid	a	lot	of	issues	related	to	simultaneous
conversions.	Secondly	it	allows	to	simplify	the	clients.

Configuration
RidBag	could	be	configured	with	OGlobalConfiguration.

	RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD		(	ridBag.embeddedToSbtreeBonsaiThreshold	)	-	The	threshold	of	LINKBAG
conversion	to	sbtree-based	implementation.	Default	value:	40.
	RID_BAG_SBTREEBONSAI_TO_EMBEDDED_THRESHOLD		(	ridBag.sbtreeBonsaiToEmbeddedToThreshold	)	-	The	threshold	of	LINKBAG
conversion	to	embedded	implementation.	Disabled	by	default.

Setting		RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD		to		-1		forces	using	of	sbtree-based	RidBag.	Look	at	Concurrency	on	adding
edges	to	know	more	about	impact	on	graphs	of	this	setting.

NOTE:	While	running	in	distributed	mode	SBTrees	are	not	supported.	If	using	a	distributed	database	then	you
must	set		ridBag.embeddedToSbtreeBonsaiThreshold=Integer.MAX\_VALUE		to	avoid	replication	errors.

Interaction	with	remote	clients
NOTE:	This	topic	is	rather	for	contributors	or	driver	developers.	OrientDB	users	don't	have	to	care	about	bag	internals.

As	been	said	rid	bag	could	be	represented	in	two	ways:	embedded	and	tree-based.	The	first	implementation	serializes	its	entries	right
into	stream	of	its	owner.	The	second	one	serializes	only	a	special	pointer	to	an	external	data	structure.

RidBag

752



In	the	same	time	the	server	could	automatically	convert	the	bag	from	embedded	to	tree-based	during	save/commit.	So	client	should	be
aware	of	such	conversion	because	it	can	hold	an	instance	of	rid	bag.

To	"listen"	for	such	changes	client	should	assign	a	temporary	collection	id	to	bag.

The	flow	of	save/commit	commands:

	Client																																																									Server

			|																																																														|

			V																																																														|

		/---------\						Record	content	[that	contain	bag	with	uuid]								|

	|											|------------------------------------------------------->|

	|			Send				|																																																								|	Convert	to	tree

	|		command		|																																																								|	and	save	to	disk

	|	to	server	|			Response	with	changes	(A	new	collection	pointer)					|

	|											|<-------------------------------------------------------/

		\---------/								the	target	of	new	identity	assignment

			|																		identified	by	temporary	id

			|

			V

	/-----------------------------\

	|	Update	a	collection	pointer	|

	|	to	be	able	perform	actions		|

	|	with	remote	tree												|

	\-----------------------------/

Serialization.
NOTE:	This	topic	is	rather	for	contributors	or	driver	developers.	OrietnDB	users	don't	have	to	care	about	bag	serialization

Save	and	load	operations	are	performed	during	save/load	of	owner	of	RidBag.	Other	operations	are	performed	separately	and	have	its
own	commands	in	binary	protocol.

To	get	definitive	syntax	of	each	network	command	see	Network	Binary	Protocol

Serialization	during	save	and	load
The	bag	is	serialized	in	a	binary	format.	If	it	is	serialized	into	document	by	CSV	serializer	it's	encoded	with	base64.

The	format	is	following:

(config:byte)[(temp_id:uuid:optional)](content.md)

The	first	byte	is	reserved	for	configuration.	The	bits	of	config	byte	define	the	further	structure	of	binary	stream:

1.	 1st:	1	if	bag	is	embedded.	0	if	tree-based.
2.	 2nd:	1	if	uuid	is	assigned,	0	otherwise.	Used	to	prevent	storing	of	UUID	to	disk.

If	bag	is	embedded	content	has	following

(size:int)(link:rid)*

If	bag	is	tree	based	it	doesn't	serialize	the	content	it	serialize	just	a	collection	pointer	that	points	where	the	tree	structure	is	saved:

(collectionPointer)(size:int)(changes)

See	also	serialization	of	collection	pointer	and	rid	bag	changes

The	cached	size	value	is	also	saved	to	stream.	It	don't	have	to	be	recalculated	in	most	cases.

The	changes	part	is	used	by	client	to	send	changes	to	server.	In	all	other	cases	size	of	cahnges	is	0

RidBag

753



Size	of	rid	bag

Calculation	of	size	for	embedded	rid	bag	is	straight	forward.	But	what	about	tree-based	bag.

The	issue	there	that	we	probably	have	some	changes	on	client	that	have	not	been	send	to	the	server.	On	the	other	hand	we	probably
have	billions	of	records	in	bag	on	server.	So	we	can't	just	calculate	size	on	server	because	we	don't	know	how	to	apply	changes	readjust
that	size	regarding	to	changes	on	client.	And	in	the	same	time	calculation	of	size	on	client	is	inefficient	because	we	had	to	iterate	over	big
amount	of	records	over	the	network.

That's	why	following	approach	is	used:

Client	ask	server	for	RidBag	size	and	provide	client	changes
Server	apply	changes	in	memory	to	calculate	size,	but	doesn't	save	them	to	bag.
New	entries	(documents	that	have	never	been	saved)	are	not	sent	to	server	for	recalculation,	and	the	size	is	adjusted	on	client.	New
entries	doesn't	have	an	identity	yet,	but	rid	bag	works	only	with	identities.	So	to	prevent	miscalculation	it	is	easier	to	add	the	count
of	not	saved	entries	to	calculated	bag	size	on	client.

REQUEST_RIDBAG_GET_SIZE	network	command

Request:

(treePointer:collectionPointer)(changes)

See	also	serialization	of	collection	pointer	and	rid	bag	changes

Response:

(size:int)

Iteration	over	tree-based	RidBag
Iteration	over	tree-based	RidBag	could	be	implemented	with	REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR	and
REQUEST_SBTREE_BONSAI_FIRST_KEY.

Server	doesn't	know	anything	about	client	changes.	So	iterator	implementation	should	apply	changes	to	the	result	before	returning	result
to	the	user.

The	algorithm	of	fetching	records	from	server	is	following:

1.	 Get	the	first	key	from	SB-tree.
2.	 Fetch	portion	of	data	with	getEtriesMajor	operation.
3.	 Repeat	step	2	while	getEtriesMajor	returns	any	result.

Serialization	of	rid	bag	changes

(changesSize:int)[(link:rid)(changeType:byte)(value:int)]*

changes	could	be	2	types:

Diff	-	value	defines	how	the	number	of	entries	is	changed	for	specific	link.
Absolute	-	sets	the	number	of	entries	of	specified	link.	The	number	defined	by	value	field.

Serialization	of	collection	pointer

(fileId:long)(pageIndex:long)(pageOffset:int)

RidBag

754



SQL	parser	syntax
BNF	token	specification

DOCUMENT	START

TOKENS

<DEFAULT>	SKIP	:	{

"	"

|	"\t"

|	"\n"

|	"\r"

}

/**	reserved	words	**/<DEFAULT>	TOKEN	:	{

<SELECT:	("s"	|	"S")	("e"	|	"E")	("l"	|	"L")	("e"	|	"E")	("c"	|	"C")	("t"	|	"T")>

|	<INSERT:	("i"	|	"I")	("n"	|	"N")	("s"	|	"S")	("e"	|	"E")	("r"	|	"R")	("t"	|	"T")>

|	<UPDATE:	("u"	|	"U")	("p"	|	"P")	("d"	|	"D")	("a"	|	"A")	("t"	|	"T")	("e"	|	"E")>

|	<DELETE:	("d"	|	"D")	("e"	|	"E")	("l"	|	"L")	("e"	|	"E")	("t"	|	"T")	("e"	|	"E")>

|	<FROM:	("f"	|	"F")	("r"	|	"R")	("o"	|	"O")	("m"	|	"M")>

|	<WHERE:	("w"	|	"W")	("h"	|	"H")	("e"	|	"E")	("r"	|	"R")	("e"	|	"E")>

|	<INTO:	("i"	|	"I")	("n"	|	"N")	("t"	|	"T")	("o"	|	"O")>

|	<VALUES:	("v"	|	"V")	("a"	|	"A")	("l"	|	"L")	("u"	|	"U")	("e"	|	"E")	("s"	|	"S")>

|	<SET:	("s"	|	"S")	("e"	|	"E")	("t"	|	"T")>

|	<ADD:	("a"	|	"A")	("d"	|	"D")	("d"	|	"D")>

|	<REMOVE:	("r"	|	"R")	("e"	|	"E")	("m"	|	"M")	("o"	|	"O")	("v"	|	"V")	("e"	|	"E")>

|	<AND:	("a"	|	"A")	("n"	|	"N")	("d"	|	"D")>

|	<OR:	("o"	|	"O")	("r"	|	"R")>

|	<NULL:	("N"	|	"n")	("U"	|	"u")	("L"	|	"l")	("L"	|	"l")>

|	<ORDER:	("o"	|	"O")	("r"	|	"R")	("d"	|	"D")	("e"	|	"E")	("r"	|	"R")>

|	<BY:	("b"	|	"B")	("y"	|	"Y")>

|	<LIMIT:	("l"	|	"L")	("i"	|	"I")	("m"	|	"M")	("i"	|	"I")	("t"	|	"T")>

|	<RANGE:	("r"	|	"R")	("a"	|	"A")	("n"	|	"N")	("g"	|	"G")	("e"	|	"E")>

|	<ASC:	("a"	|	"A")	("s"	|	"S")	("c"	|	"C")>

|	<AS:	("a"	|	"A")	("s"	|	"S")>

|	<DESC:	("d"	|	"D")	("e"	|	"E")	("s"	|	"S")	("c"	|	"C")>

|	<THIS:	"@this">

|	<RECORD_ATTRIBUTE:	<RID_ATTR>	|	<CLASS_ATTR>	|	<VERSION_ATTR>	|	<SIZE_ATTR>	|	<TYPE_ATTR>>

|	<#RID_ATTR:	"@rid">

|	<#CLASS_ATTR:	"@class">

|	<#VERSION_ATTR:	"@version">

|	<#SIZE_ATTR:	"@size">

|	<#TYPE_ATTR:	"@type">

}

/**	LITERALS	**/<DEFAULT>	TOKEN	:	{

<INTEGER_LITERAL:	<DECIMAL_LITERAL>	([|	<HEX_LITERAL>	(["l","L"]("l","L"].md)?))?	|	<OCTAL_LITERAL>	([|	<#DECIMAL_LITERAL:	["1

"-"9"]("l","L"].md)?>)	([|	<#HEX_LITERAL:	"0"	["x","X"]("0"-"9"].md)*>)	([|	<#OCTAL_LITERAL:	"0"	(["0"-"7"]("0"-"9","a"-"f","A

"-"F"].md)+>))**>

|	<FLOATING_POINT_LITERAL:	<DECIMAL_FLOATING_POINT_LITERAL>	|	<HEXADECIMAL_FLOATING_POINT_LITERAL>>

|	<#DECIMAL_FLOATING_POINT_LITERAL:	(["."	(["0"-"9"]("0"-"9"].md)+))**	(<DECIMAL_EXPONENT>)?	([|	"."	(["0"-"9"]("f","F","d","D

"].md)?))+	(<DECIMAL_EXPONENT>)?	([|	(["0"-"9"]("f","F","d","D"].md)?))+	<DECIMAL_EXPONENT>	([|	(["0"-"9"]("f","F","d","D"].md

)?))+	(<DECIMAL_EXPONENT>)?	[|	<#DECIMAL_EXPONENT:	["e","E"]("f","F","d","D"]>.md)	([(["0"-"9"]("+","-"].md)?))+>

|	<#HEXADECIMAL_FLOATING_POINT_LITERAL:	"0"	[(["0"-"9","a"-"f","A"-"F"]("x","X"].md))+	(".")?	<HEXADECIMAL_EXPONENT>	([|	"0"	[

"x","X"]("f","F","d","D"].md)?)	(["."	(["0"-"9","a"-"f","A"-"F"]("0"-"9","a"-"f","A"-"F"].md)*))+	<HEXADECIMAL_EXPONENT>	([|	<

#HEXADECIMAL_EXPONENT:	["p","P"]("f","F","d","D"].md)?>)	([(["0"-"9"]("+","-"].md)?))+>

|	<CHARACTER_LITERAL:	"\'"	(~[|	"\\"	(["n","t","b","r","f","\\","\'","\""]("\'","\\","\n","\r"].md)	|	[(["0"-"7"]("0"-"7"].md)

)?	|	["0"-"7"]("0"-"7".md)"0"-"3"])	["\'">

|	<STRING_LITERAL:	"\""	(~["\"","\\","\n","\r"]("0"-"7"].md)))	|	"\\"	([|	["0"-"7"]("n","t","b","r","f","\\","\'","\""].md)	([

|	["0"-"3"]("0"-"7"].md)?)	["0"-"7"]("0"-"7".md)"0"-"7"])))**	"\""	|	"\'"	(~[|	"\\"	(["n","t","b","r","f","\\","\'","\""]("\'"

,"\\","\n","\r"].md)	|	[(["0"-"7"]("0"-"7"].md))?	|	["0"-"7"]("0"-"7".md)"0"-"3"])	["\'">

}

/*	SEPARATORS	*/<DEFAULT>	TOKEN	:	{

<LPAREN:	"(">

|	<RPAREN:	")">

|	<LBRACE:	"{">

|	<RBRACE:	"}">

|	<LBRACKET:	"[">

|	<RBRACKET:	"]("0"-"7"].md))*)">

|	<SEMICOLON:	";">

|	<COMMA:	",">

|	<DOT:	".">

SQL	Syntax

755

https://en.wikipedia.org/wiki/Backus-Naur_Form


|	<AT:	"@">

}

/**	OPERATORS	**/<DEFAULT>	TOKEN	:	{

<EQ:	"=">

|	<LT:	"<">

|	<GT:	">">

|	<BANG:	"!">

|	<TILDE:	"~">

|	<HOOK:	"?">

|	<COLON:	":">

|	<LE:	"<=">

|	<GE:	">=">

|	<NE:	"!=">

|	<NEQ:	"<>">

|	<SC_OR:	"||">

|	<SC_AND:	"&&">

|	<INCR:	"++">

|	<DECR:	"--">

|	<PLUS:	"+">

|	<MINUS:	"-">

|	<STAR:	"**">

|	<SLASH:	"/">

|	<BIT_AND:	"&">

|	<BIT_OR:	"|">

|	<XOR:	"^">

|	<REM:	"%">

|	<LSHIFT:	"<<">

|	<PLUSASSIGN:	"+=">

|	<MINUSASSIGN:	"-=">

|	<STARASSIGN:	"**=">

|	<SLASHASSIGN:	"/=">

|	<ANDASSIGN:	"&=">

|	<ORASSIGN:	"|=">

|	<XORASSIGN:	"^=">

|	<REMASSIGN:	"%=">

|	<LSHIFTASSIGN:	"<<=">

|	<RSIGNEDSHIFTASSIGN:	">>=">

|	<RUNSIGNEDSHIFTASSIGN:	">>>=">

|	<ELLIPSIS:	"...">

|	<NOT:	("N"	|	"n")	("O"	|	"o")	("T"	|	"t")>

|	<LIKE:	("L"	|	"l")	("I"	|	"i")	("K"	|	"k")	("E"	|	"e")>

|	<IS:	"is"	|	"IS"	|	"Is"	|	"iS">

|	<IN:	"in"	|	"IN"	|	"In"	|	"iN">

|	<BETWEEN:	("B"	|	"b")	("E"	|	"e")	("T"	|	"t")	("W"	|	"w")	("E"	|	"e")	("E"	|	"e")	("N"	|	"n")>

|	<CONTAINS:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	"n")	("S"	|	"s")>

|	<CONTAINSALL:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	"n")	("S"	|	"s")	("A"	|	"a")	("

L"	|	"l")	("L"	|	"l")>

|	<CONTAINSKEY:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	"n")	("S"	|	"s")	("K"	|	"k")	("

E"	|	"e")	("Y"	|	"y")>

|	<CONTAINSVALUE:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	"n")	("S"	|	"s")	("V"	|	"v")	

("A"	|	"a")	("L"	|	"l")	("U"	|	"u")	("E"	|	"e")>

|	<CONTAINSTEXT:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	"n")	("S"	|	"s")	("T"	|	"t")	(

"E"	|	"e")	("X"	|	"x")	("T"	|	"t")>

|	<MATCHES:	("M"	|	"m")	("A"	|	"a")	("T"	|	"t")	("C"	|	"c")	("H"	|	"h")	("E"	|	"e")	("S"	|	"s")>

|	<TRAVERSE:	("T"	|	"t")	("R"	|	"r")	("A"	|	"a")	("V"	|	"v")	("E"	|	"e")	("R"	|	"r")	("S"	|	"s")	("E"	|	"e")>

}

<DEFAULT>	TOKEN	:	{

<IDENTIFIER:	<LETTER>	(<PART_LETTER>)**>

|	<#LETTER:	[|	<#PART_LETTER:	["0"-"9","A"-"Z","_","a"-"z"]("A"-"Z","_","a"-"z"]>.md)>

}

NON-TERMINALS

				Rid				:=				"#"	<INTEGER_LITERAL>	<COLON>	<INTEGER_LITERAL>

								|				<INTEGER_LITERAL>	<COLON>	<INTEGER_LITERAL>

/**	Root	production.	**/				OrientGrammar				:=				Statement	<EOF>

				Statement				:=				(	SelectStatement	|	DeleteStatement	|	InsertStatement	|	UpdateStatement	)

				SelectStatement				:=				<SELECT>	(	Projection	)?	<FROM>	FromClause	(	<WHERE>	WhereClause	)?	(	OrderBy	)?	(	Limit	)?	(	Ran

ge	)?

				DeleteStatement				:=				<DELETE>	<FROM>	<IDENTIFIER>	(	<WHERE>	WhereClause	)?

				UpdateStatement				:=				<UPDATE>	(	<IDENTIFIER>	|	Cluster	|	IndexIdentifier	)	(	(	<SET>	UpdateItem	(	","	UpdateItem	)**	)

	)	(	<WHERE>	WhereClause	)?

				UpdateItem				:=				<IDENTIFIER>	<EQ>	(	<NULL>	|	<STRING_LITERAL>	|	Rid	|	<INTEGER_LITERAL>	|	<FLOATING_POINT_LITERAL>	|	<

CHARACTER_LITERAL>	|	<LBRACKET>	Rid	(	","	Rid	)**	<RBRACKET>	)

				UpdateAddItem				:=				<IDENTIFIER>	<EQ>	(	<STRING_LITERAL>	|	Rid	|	<INTEGER_LITERAL>	|	<FLOATING_POINT_LITERAL>	|	<CHARAC

SQL	Syntax

756



TER_LITERAL>	|	<LBRACKET>	Rid	(	","	Rid	)**	<RBRACKET>	)

				InsertStatement				:=				<INSERT>	<INTO>	(	<IDENTIFIER>	|	Cluster	)	<LPAREN>	<IDENTIFIER>	(	","	<IDENTIFIER>	)	<RPAREN>	<V

ALUES>	<LPAREN>	InsertExpression	(	","	InsertExpression	)	<RPAREN>

				InsertExpression				:=				<NULL>

								|				<STRING_LITERAL>

								|				<INTEGER_LITERAL>

								|				<FLOATING_POINT_LITERAL>

								|				Rid

								|				<CHARACTER_LITERAL>

								|				<LBRACKET>	Rid	(	","	Rid	)**	<RBRACKET>

				InputParameter				:=				"?"

				Projection				:=				ProjectionItem	(	","	ProjectionItem	)**

				ProjectionItem				:=				"**"

								|				(	(	<NULL>	|	<INTEGER_LITERAL>	|	<STRING_LITERAL>	|	<FLOATING_POINT_LITERAL>	|	<CHARACTER_LITERAL>	|	FunctionCall

	|	DottedIdentifier	|	RecordAttribute	|	ThisOperation	|	InputParameter	)	(	<AS>	Alias	)?	)

				FilterItem				:=				<NULL>

								|				Any

								|				All

								|				<INTEGER_LITERAL>

								|				<STRING_LITERAL>

								|				<FLOATING_POINT_LITERAL>

								|				<CHARACTER_LITERAL>

								|				FunctionCall

								|				DottedIdentifier

								|				RecordAttribute

								|				ThisOperation

								|				InputParameter

				Alias				:=				<IDENTIFIER>

				Any				:=				"any()"

				All				:=				"all()"

				RecordAttribute				:=				<RECORD_ATTRIBUTE>

				ThisOperation				:=				<THIS>	(	FieldOperator	)**

				FunctionCall				:=				<IDENTIFIER>	<LPAREN>	(	"**"	|	(	FilterItem	(	","	FilterItem	)**	)	)	<RPAREN>	(	FieldOperator	)**

				FieldOperator				:=				(	<DOT>	<IDENTIFIER>	<LPAREN>	(	FilterItem	(	","	FilterItem	)**	)?	<RPAREN>	)

								|				(	"[<STRING_LITERAL>	"](".md)"	)

				DottedIdentifier				:=				<IDENTIFIER>	(	"[WhereClause	"](".md)"	)+

								|				<IDENTIFIER>	(	FieldOperator	)+

								|				<IDENTIFIER>	(	<DOT>	DottedIdentifier	)?

				FromClause				:=				FromItem

				FromItem				:=				Rid

								|				<LBRACKET>	Rid	(	","	Rid	)**	<RBRACKET>

								|				Cluster

								|				IndexIdentifier

								|				<IDENTIFIER>

				Cluster				:=				"cluster:"	<IDENTIFIER>

				IndexIdentifier				:=				"index:"	<IDENTIFIER>

				WhereClause				:=				OrBlock

				OrBlock				:=				AndBlock	(	<OR>	AndBlock	)**

				AndBlock				:=				(	NotBlock	)	(	<AND>	(	NotBlock	)	)**

				NotBlock				:=				(	<NOT>	)?	(	ConditionBlock	|	ParenthesisBlock	)

				ParenthesisBlock				:=				<LPAREN>	OrBlock	<RPAREN>

				ConditionBlock				:=				TraverseCondition

								|				IsNotNullCondition

								|				IsNullCondition

								|				BinaryCondition

								|				BetweenCondition

								|				ContainsCondition

								|				ContainsTextCondition

								|				MatchesCondition

				CompareOperator				:=				EqualsCompareOperator

								|				LtOperator

								|				GtOperator

								|				NeOperator

								|				NeqOperator

								|				GeOperator

								|				LeOperator

								|				InOperator

								|				NotInOperator

								|				LikeOperator

								|				ContainsKeyOperator

								|				ContainsValueOperator

				LtOperator				:=				<LT>

				GtOperator				:=				<GT>

				NeOperator				:=				<NE>

				NeqOperator				:=				<NEQ>

				GeOperator				:=				<GE>

SQL	Syntax

757



				LeOperator				:=				<LE>

				InOperator				:=				<IN>

				NotInOperator				:=				<NOT>	<IN>

				LikeOperator				:=				<LIKE>

				ContainsKeyOperator				:=				<CONTAINSKEY>

				ContainsValueOperator				:=				<CONTAINSVALUE>

				EqualsCompareOperator				:=				<EQ>

				BinaryCondition				:=				FilterItem	CompareOperator	(	Rid	|	FilterItem	)

				BetweenCondition				:=				FilterItem	<BETWEEN>	FilterItem	<AND>	FilterItem

				IsNullCondition				:=				FilterItem	<IS>	<NULL>

				IsNotNullCondition				:=				FilterItem	<IS>	<NOT>	<NULL>

				ContainsCondition				:=				FilterItem	<CONTAINS>	<LPAREN>	OrBlock	<RPAREN>

				ContainsAllCondition				:=				FilterItem	<CONTAINSALL>	<LPAREN>	OrBlock	<RPAREN>

				ContainsTextCondition				:=				FilterItem	<CONTAINSTEXT>	(	<STRING_LITERAL>	|	DottedIdentifier	)

				MatchesCondition				:=				FilterItem	<MATCHES>	<STRING_LITERAL>

				TraverseCondition				:=				<TRAVERSE>	(	<LPAREN>	<INTEGER_LITERAL>	(	","	<INTEGER_LITERAL>	(	","	TraverseFields	)?	)?	<RPA

REN>	)?	<LPAREN>	OrBlock	<RPAREN>

				TraverseFields				:=				<STRING_LITERAL>

				OrderBy				:=				<ORDER>	<BY>	<IDENTIFIER>	(	","	<IDENTIFIER>	)**	(	<DESC>	|	<ASC>	)?

				Limit				:=				<LIMIT>	<INTEGER_LITERAL>

				Range				:=				<RANGE>	Rid	(	","	Rid	)?

DOCUMENT	END

SQL	Syntax

758



Entry	Points	Since	OrientDB	v	1.7
The	entry	points	for	creating	a	new	Index	Engine	are	two:

OIndexFactory
OIndexEngine

Implementing	OIndexFactory

Create	your	own	facory	that	implements	OIndexFactory.

In	your	factory	you	have	to	declare:

1.	 Which	types	of	index	you	support
2.	 Which	types	of	algorithms	you	support

and	you	have	to	implements	the	createIndex	method

Example	of	custom	factory	for	Lucene	Indexing

Custom	Index	Engine

759



package	com.orientechnologies.lucene;

import	java.util.Collections;

import	java.util.HashSet;

import	java.util.Set;

import	com.orientechnologies.lucene.index.OLuceneFullTextIndex;

import	com.orientechnologies.lucene.index.OLuceneSpatialIndex;

import	com.orientechnologies.lucene.manager.*;

import	com.orientechnologies.lucene.shape.OShapeFactoryImpl;

import	com.orientechnologies.orient.core.db.record.ODatabaseRecord;

import	com.orientechnologies.orient.core.db.record.OIdentifiable;

import	com.orientechnologies.orient.core.exception.OConfigurationException;

import	com.orientechnologies.orient.core.index.OIndexFactory;

import	com.orientechnologies.orient.core.index.OIndexInternal;

import	com.orientechnologies.orient.core.metadata.schema.OClass;

import	com.orientechnologies.orient.core.record.impl.ODocument;

/**

	*	Created	by	enricorisa	on	21/03/14.

	*/

public	class	OLuceneIndexFactory	implements	OIndexFactory	{

		private	static	final	Set<String>	TYPES;

		private	static	final	Set<String>	ALGORITHMS;

		public	static	final	String							LUCENE_ALGORITHM	=	"LUCENE";

		static	{

				final	Set<String>	types	=	new	HashSet<String>();

				types.add(OClass.INDEX_TYPE.UNIQUE.toString());

				types.add(OClass.INDEX_TYPE.NOTUNIQUE.toString());

				types.add(OClass.INDEX_TYPE.FULLTEXT.toString());

				types.add(OClass.INDEX_TYPE.DICTIONARY.toString());

				types.add(OClass.INDEX_TYPE.SPATIAL.toString());

				TYPES	=	Collections.unmodifiableSet(types);

		}

		static	{

				final	Set<String>	algorithms	=	new	HashSet<String>();

				algorithms.add(LUCENE_ALGORITHM);

				ALGORITHMS	=	Collections.unmodifiableSet(algorithms);

		}

		public	OLuceneIndexFactory()	{

		}

		@Override

		public	Set<String>	getTypes()	{

				return	TYPES;

		}

		@Override

		public	Set<String>	getAlgorithms()	{

				return	ALGORITHMS;

		}

		@Override

		public	OIndexInternal<?>	createIndex(ODatabaseRecord	oDatabaseRecord,	String	indexType,	String	algorithm,

						String	valueContainerAlgorithm,	ODocument	metadata)	throws	OConfigurationException	{

				return	createLuceneIndex(oDatabaseRecord,	indexType,	valueContainerAlgorithm,	metadata);

		}

		private	OIndexInternal<?>	createLuceneIndex(ODatabaseRecord	oDatabaseRecord,	String	indexType,	String	valueContainerAlgorith

m,

						ODocument	metadata)	{

				if	(OClass.INDEX_TYPE.FULLTEXT.toString().equals(indexType))	{

						return	new	OLuceneFullTextIndex(indexType,	LUCENE_ALGORITHM,	new	OLuceneIndexEngine<Set<OIdentifiable>>(

										new	OLuceneFullTextIndexManager(),	indexType),	valueContainerAlgorithm,	metadata);

				}	else	if	(OClass.INDEX_TYPE.SPATIAL.toString().equals(indexType))	{

						return	new	OLuceneSpatialIndex(indexType,	LUCENE_ALGORITHM,	new	OLuceneIndexEngine<Set<OIdentifiable>>(

										new	OLuceneSpatialIndexManager(new	OShapeFactoryImpl()),	indexType),	valueContainerAlgorithm);

				}

				throw	new	OConfigurationException("Unsupported	type	:	"	+	indexType);

		}

}

Custom	Index	Engine

760



To	plug	your	factory	create	in	your	project	under	META-INF/services	a	text	file	called
	com.orientechnologies.orient.core.index.OIndexFactory		and	write	inside	your	factory

Example

com.orientechnologies.lucene.OLuceneIndexFactory

Implementing	OIndexEngine

To	write	a	new	Index	Engine	implements	the	OIndexEngine	interface.

The	main	methods	are:

get
put

get		V	get(Object	key);	

You	have	to	return	a	Set	of	OIdentifiable	or	OIdentifiable	if	your	index	is	unique,	associated	with	the	key.	The	key	could	be:

The	value	if	you	are	indexing	a	single	field	(Integer,String,Double..etc).
OCompositeKey	if	you	are	indexing	two	or	more	fields

put		void	put(Object	key,	V	value);	

The	key	is	the	value	to	be	indexed.	Could	be	as	written	before
The	value	is	a	Set	of	OIdentifiable	or	OIdentifiable	associated	with	the	key

Create	Index	from	SQL
You	can	create	an	index	with	your	Index	Engine	with	sql	with	this	syntax

CREATE	INDEX	Foo.bar	ON	Foo	(bar)	NOTUNIQUE	ENGINE	CUSTOM

where	CUSTOM	is	the	name	of	your	index	engine

Custom	Index	Engine

761



Caching
OrientDB	has	several	caching	mechanisms	that	act	at	different	levels.	Look	at	this	picture:

Local	cache	is	one	per	database	instance	(and	per	thread	in	multi-thread	environment)
Storage,	it	could	cache	depending	on	the	implementation.	This	is	the	case	for	the	Local	Storage	(disk-based)	that	caches	file	reads
to	reduce	I/O	requests
Command	Cache

How	cache	works?

Local	Mode	(embedded	database)

Caching

762



When	the	client	application	asks	for	a	record	OrientDB	checks:

if	a	transaction	has	begun	then	it	searches	inside	the	transaction	for	changed	records	and	returns	it	if	found
if	the	Local	cache	is	enabled	and	contains	the	requested	record	then	return	it
otherwise,	at	this	point	the	record	is	not	in	cache,	then	asks	for	it	to	the	Storage	(disk,	memory)

Client-Server	Mode	(remote	database)

When	the	client	application	asks	for	a	record	OrientDB	checks:

Caching

763



if	a	transaction	has	begun	then	it	searches	inside	the	transaction	for	changed	records	and	returns	it	if	found
if	the	Local	cache	is	enabled	and	contains	the	requested	record	then	return	it
otherwise,	at	this	point	the	record	is	not	in	cache,	then	asks	for	it	to	the	Server	through	a	TCP/IP	call
in	the	server,	if	the	Local	cache	is	enabled	and	contains	the	requested	record	then	return	it
otherwise,	at	this	point	the	record	is	also	not	cached	in	the	server,	then	asks	for	it	to	the	Storage	(disk,	memory)

Record	cache

Local	cache

Local	cache	acts	at	database	level.	Each	database	instance	has	a	Local	cache	enabled	by	default.	This	cache	keeps	the	used	records.
Records	will	be	removed	from	heap	if	two	conditions	will	be	satisfied:

1.	 There	are	no	links	to	these	records	from	outside	of	the	database
2.	 The	Java	Virtual	Machine	doesn't	have	enough	memory	to	allocate	new	data

Empty	Local	cache
To	remove	all	the	records	in	Local	cache	you	can	invoke	the		invalidate()		method:

db.getLocalCache().invalidate();

Disable	Local	cache

Disabling	of	local	cache	may	lead	to	situation	when	2	different	instances	of	the	same	record	will	be	loaded	and
	OConcurrentModificationException		may	be	thrown	during	record	update	even	in	single-thread	mode.

To	disable	it	use	the	system	property		cache.local.enabled		by	setting	it	at	startup:

java	...	-Dcache.local.enabled=false	...

or	via	code	before	to	open	the	database:

OGlobalConfiguration.CACHE_LOCAL_ENABLED.setValue(false);

Caching

764



Transactions
A	transaction	comprises	a	unit	of	work	performed	within	a	database	management	system	(or	similar	system)	against	a	database,	and
treated	in	a	coherent	and	reliable	way	independent	of	other	transactions.	Transactions	in	a	database	environment	have	two	main
purposes:

to	provide	reliable	units	of	work	that	allow	correct	recovery	from	failures	and	keep	a	database	consistent	even	in	cases	of	system
failure,	when	execution	stops	(completely	or	partially)	and	many	operations	upon	a	database	remain	uncompleted,	with	unclear
status
to	provide	isolation	between	programs	accessing	a	database	concurrently.	If	this	isolation	is	not	provided,	the	program's	outcome
are	possibly	erroneous.

A	database	transaction,	by	definition,	must	be	atomic,	consistent,	isolated	and	durable.	Database	practitioners	often	refer	to	these
properties	of	database	transactions	using	the	acronym	ACID.	---	Wikipedia

OrientDB	is	an	ACID	compliant	DBMS.

NOTE:	OrientDB	keeps	the	transaction	on	client	RAM,	so	the	transaction	size	is	affected	by	the	available	RAM	(Heap
memory)	on	JVM.	For	transactions	involving	many	records,	consider	to	split	it	in	multiple	transactions.

ACID	properties

Atomicity

"Atomicity	requires	that	each	transaction	is	'all	or	nothing':	if	one	part	of	the	transaction	fails,	the	entire	transaction	fails,	and	the
database	state	is	left	unchanged.	An	atomic	system	must	guarantee	atomicity	in	each	and	every	situation,	including	power	failures,
errors,	and	crashes.	To	the	outside	world,	a	committed	transaction	appears	(by	its	effects	on	the	database)	to	be	indivisible	("atomic"),
and	an	aborted	transaction	does	not	happen."	-	WikiPedia

Consistency

"The	consistency	property	ensures	that	any	transaction	will	bring	the	database	from	one	valid	state	to	another.	Any	data	written	to	the
database	must	be	valid	according	to	all	defined	rules,	including	but	not	limited	to	constraints,	cascades,	triggers,	and	any	combination
thereof.	This	does	not	guarantee	correctness	of	the	transaction	in	all	ways	the	application	programmer	might	have	wanted	(that	is	the
responsibility	of	application-level	code)	but	merely	that	any	programming	errors	do	not	violate	any	defined	rules."	-	WikiPedia

OrientDB	uses	the	MVCC	to	assure	consistency.	The	difference	between	the	management	of	MVCC	on	transactional	and	not-
transactional	cases	is	that	with	transactional,	the	exception	rollbacks	the	entire	transaction	before	to	be	caught	by	the	application.

Look	at	this	example:

Sequence Client/Thread	1 Client/Thread	2 Version	of	record	X

1 Begin	of	Transaction

2 read(x) 10

3 Begin	of	Transaction

4 read(x) 10

5 write(x) 10

6 commit 10	->	11

7 write(x) 10

8 commit 10	->	11	=	Error,	in	database	x	already	is	at	11

Isolation

Transaction

765

http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID


"The	isolation	property	ensures	that	the	concurrent	execution	of	transactions	results	in	a	system	state	that	would	be	obtained	if
transactions	were	executed	serially,	i.e.	one	after	the	other.	Providing	isolation	is	the	main	goal	of	concurrency	control.	Depending	on
concurrency	control	method,	the	effects	of	an	incomplete	transaction	might	not	even	be	visible	to	another	transaction."	-	WikiPedia

OrientDB	has	different	levels	of	isolation	based	on	settings	and	configuration:

	READ	COMMITTED	,	the	default	and	the	only	one	available	with		remote		protocol
	REPEATABLE	READS	,	allowed	only	with		plocal		and		memory		protocols.	This	mode	consumes	more	memory	than		READ
COMMITTED	,	because	any	read,	query,	etc.	keep	the	records	in	memory	to	assure	the	same	copy	on	further	access

To	change	default	Isolation	Level,	use	the	Java	API:

db.begin()

db.getTransaction().setIsolationLevel(OTransaction.ISOLATION_LEVEL.REPEATABLE_READ);

Using		remote		access	all	the	commands	are	executed	on	the	server,	so	out	of	transaction	scope.	Look	below	for	more	information.

Look	at	this	examples:

Sequence Client/Thread	1 Client/Thread	2

1 Begin	of	Transaction

2 read(x)

3 Begin	of	Transaction

4 read(x)

5 write(x)

6 commit

7 read(x)

8 commit

At	operation	7	the	client	1	continues	to	read	the	same	version	of	x	read	in	operation	2.

Sequence Client/Thread	1 Client/Thread	2

1 Begin	of	Transaction

2 read(x)

3 Begin	of	Transaction

4 read(y)

5 write(y)

6 commit

7 read(y)

8 commit

At	operation	7	the	client	1	reads	the	version	of	y	which	was	written	at	operation	6	by	client	2.	This	is	because	it	never	reads	y	before.

Breaking	of	ACID	properties	when	using	remote	protocol	and	Commands	(SQL,
Gremlin,	JS,	etc)

Transactions	are	client-side	only	until	the	commit.	This	means	that	if	you're	using	the	"remote"	protocol	the	server	can't	see	local
changes.

Transaction

766

http://en.wikipedia.org/wiki/ACID


In	this	scenario	you	can	have	different	isolation	levels	with	commands.

Durability

"Durability	means	that	once	a	transaction	has	been	committed,	it	will	remain	so,	even	in	the	event	of	power	loss,	crashes,	or	errors.	In	a
relational	database,	for	instance,	once	a	group	of	SQL	statements	execute,	the	results	need	to	be	stored	permanently	(even	if	the	database
crashes	immediately	thereafter).	To	defend	against	power	loss,	transactions	(or	their	effects)	must	be	recorded	in	a	non-volatile
memory."	-	WikiPedia

Fail-over

An	OrientDB	instance	can	fail	for	several	reasons:

HW	problems,	such	as	loss	of	power	or	disk	error
SW	problems,	such	as	a	Operating	System	crash
Application	problem,	such	as	a	bug	that	crashes	your	application	that	is	connected	to	the	Orient	engine.

You	can	use	the	OrientDB	engine	directly	in	the	same	process	of	your	application.	This	gives	superior	performance	due	to	the	lack	of
inter-process	communication.	In	this	case,	should	your	application	crash	(for	any	reason),	the	OrientDB	Engine	also	crashes.

If	you're	using	an	OrientDB	Server	connected	remotely,	if	your	application	crashes	the	engine	continue	to	work,	but	any	pending
transaction	owned	by	the	client	will	be	rolled	back.

Auto-recovery

At	start-up	the	OrientDB	Engine	checks	to	if	it	is	restarting	from	a	crash.	In	this	case,	the	auto-recovery	phase	starts	which	rolls	back	all
pending	transactions.

OrientDB	has	different	levels	of	durability	based	on	storage	type,	configuration	and	settings.

Transaction	types

No	Transaction

Default	mode.	Each	operation	is	executed	instantly.

Calls	to		begin()	,		commit()		and		rollback()		have	no	effect.

Optimistic	Transaction

Transaction

767

http://en.wikipedia.org/wiki/ACID


This	mode	uses	the	well	known	Multi	Version	Control	System	(MVCC)	by	allowing	multiple	reads	and	writes	on	the	same	records.	The
integrity	check	is	made	on	commit.	If	the	record	has	been	saved	by	another	transaction	in	the	interim,	then	an
OConcurrentModificationException	will	be	thrown.	The	application	can	choose	either	to	repeat	the	transaction	or	abort	it.

NOTE:	OrientDB	keeps	the	transaction	on	client	RAM,	so	the	transaction	size	is	affected	by	the	available	RAM	(Heap)
memory	on	JVM.	For	transactions	involving	many	records,	consider	to	split	it	in	multiple	transactions.

With	Graph	API	transaction	begins	automatically,	with	Document	API	is	explicit	by	using	the		begin()		method.	With	Graphs	you	can
change	the	consistency	level.

Example	with	Document	API:

db.open("remote:localhost:7777/petshop");

try{

		db.begin(TXTYPE.OPTIMISTIC);

		...

		//	WRITE	HERE	YOUR	TRANSACTION	LOGIC

		...

		db.commit();

}catch(	Exception	e	){

		db.rollback();

}	finally{

		db.close();

}

In	Optimistic	transaction	new	records	take	temporary	RecordIDs	to	avoid	to	ask	to	the	server	a	new	RecordID	every	time.	Temporary
RecordIDs	have	Cluster	Id	-1	and	Cluster	Position	<	-1.	When	a	new	transaction	begun	the	counter	is	reset	to	-1:-2.	So	if	you	create	3
new	records	you'll	have:

-1:-2
-1:-3
-1:-4

At	commit	time,	these	temporary	records	RecordIDs	will	be	converted	in	the	final	ones.

Pessimistic	Transaction

This	mode	is	not	yet	supported	by	the	engine.

Nested	transactions	and	propagation
OrientDB	doesn't	support	nested	transaction.	If	further		begin()		are	called	after	a	transaction	is	already	begun,	then	the	current
transaction	keeps	track	of	call	stack	to	let	to	the	final	commit()	call	to	effectively	commit	the	transaction.	Look	at	Transaction
Propagation	more	information.

Record	IDs
OrientDB	uses	temporary	RecordIDs	with	transaction	as	scope	that	will	be	transformed	to	finals	once	the	transactions	is	successfully
committed	to	the	database.	This	avoid	to	ask	for	a	free	slot	every	time	a	client	creates	a	record.

Tuning
In	some	situations	transactions	can	improve	performance,	typically	in	the	client/server	scenario.	If	you	use	an	Optimistic	Transaction,
the	OrientDB	engine	optimizes	the	network	transfer	between	the	client	and	server,	saving	both	CPU	and	bandwidth.

For	further	information	look	at	Transaction	tuning	to	know	more.

Distributed	environment

Transaction

768

http://en.wikipedia.org/wiki/Multiversion_concurrency_control


Transactions	can	be	committed	across	a	distributed	architecture.	Look	at	Distributed	Transactions	for	more	information.

Transaction

769



Hooks	(Triggers)
Hooks	work	like	triggers	and	enable	a	user's	application	to	intercept	internal	events	before	and	after	each	CRUD	operation	against
records.	You	can	use	them	to	write	custom	validation	rules,	to	enforce	security,	or	even	to	orchestrate	external	events	like	replicating
against	a	Relational	DBMS.

OrientDB	supports	two	kinds	of	Hooks:

Dynamic	Hooks,	defined	at	the	schema	and/or	document	level
Native	Java	Hooks,	defined	as	Java	classes

What	use?	Pros/Cons?

Depends	on	your	goal:	Java	Hooks	are	faster.	Write	a	Java	Hook	if	you	need	the	best	performance	on	execution.	Dynamic	Hooks	are
more	flexible,	can	be	changed	at	run-time,	and	can	run	per	document	if	needed,	but	are	slower	than	Java	Hooks.

Hooks	-	Triggers

770



Dynamic	Hooks
Dynamic	Hooks	are	more	flexible	than	Java	Hooks,	because	they	can	be	changed	at	run-time	and	can	run	per	document	if	needed,	but	are
slower	than	Java	Hooks.	Look	at	Hooks	for	more	information.

To	execute	hooks	against	your	documents,	let	your	classes	to	extend		OTriggered		base	class.	Then	define	a	custom	property	for	the
event	you're	interested	on.	The	available	events	are:

	onBeforeCreate	,	called	before	creating	a	new	document
	onAfterCreate	,	called	after	creating	a	new	document
	onBeforeRead	,	called	before	reading	a	document
	onAfterRead	,	called	after	reading	a	document
	onBeforeUpdate	,	called	before	updating	a	document
	onAfterUpdate	,	called	after	updating	a	document
	onBeforeDelete	,	called	before	deleting	a	document
	onAfterDelete	,	called	after	deleting	a	document

Dynamic	Hooks	can	call:

Functions,	written	in	SQL,	Javascript	or	any	language	supported	by	OrientDB	and	JVM
Java	static	methods

Class	level	hooks
Class	level	hooks	are	defined	for	all	the	documents	that	relate	to	a	class.	Below	is	an	example	to	setup	a	hook	that	acts	at	class	level
against	Invoice	documents.

CREATE	CLASS	Invoice	EXTENDS	OTriggered

ALTER	CLASS	Invoice	CUSTOM	onAfterCreate=invoiceCreated

Now	let's	create	the	function		invoiceCreated		in	Javascript	that	prints	in	the	server	console	the	invoice	number	created.

CREATE	FUNCTION	invoiceCreated	"print('\\nInvoice	created:	'	+	doc.field('number'));"	LANGUAGE	Javascript

Now	try	the	hook	by	creating	a	new		Invoice		document.

INSERT	INTO	Invoice	CONTENT	{	number:	100,	notes:	'This	is	a	test'	}

And	this	will	appear	in	the	server	console:

Invoice	created:	100

Document	level	hook
You	could	need	to	define	a	special	action	only	against	one	or	more	documents.	To	do	this,	let	your	class	to	extend		OTriggered		class.

Example	to	execute	a	trigger,	as	Javascript	function,	against	an	existent	Profile	class,	for	all	the	documents	with	property		account	=
'Premium'	.	The	trigger	will	be	called	to	prevent	deletion	of	documents:

ALTER	CLASS	Profile	SUPERCLASS	OTriggered

UPDATE	Profile	SET	onBeforeDelete	=	'preventDeletion'	WHERE	account	=	'Premium'

And	now	let's	create	the		preventDeletion()		Javascript	function.

Dynamic	Hooks

771



CREATE	FUNCTION	preventDeletion	"throw	new	java.lang.RuntimeException('Cannot	delete	Premium	profile	'	+	doc)"	LANGUAGE	Javasc

ript

And	now	test	the	hook	by	trying	to	delete	a		Premium		account.

DELETE	FROM	#12:1

java.lang.RuntimeException:	Cannot	delete	Premium	profile	profile#12:1{onBeforeDelete:preventDeletion,account:Premium,name:Jil

l}	v-1	(<Unknown	source>#2)	in	<Unknown	source>	at	line	number	2

Dynamic	Hooks

772



(Native)	Java	Hooks
Java	Hooks	are	the	fastest	hooks.	Write	a	Java	Hook	if	you	need	the	best	performance	on	execution.	Look	at	Hooks	for	more
information.

The	ORecordHook	interface

A	hook	is	an	implementation	of	the	interface	ORecordHook:

public	interface	ORecordHook	{

		public	enum	TYPE	{

				ANY,

				BEFORE_CREATE,	BEFORE_READ,	BEFORE_UPDATE,	BEFORE_DELETE,

				AFTER_CREATE,	AFTER_READ,	AFTER_UPDATE,	AFTER_DELETE

		};

		public	void	onTrigger(TYPE	iType,	ORecord<?>	iRecord);

}

The	ORecordHookAbstract	abstract	class

OrientDB	comes	with	an	abstract	implementation	of	the	ORecordHook	interface	called	ORecordHookAbstract.java.	It	switches	the
callback	event,	calling	separate	methods	for	each	one:

public	abstract	class	ORecordHookAbstract	implements	ORecordHook	{

		public	void	onRecordBeforeCreate(ORecord<?>	iRecord){}

		public	void	onRecordAfterCreate(ORecord<?>	iRecord){}

		public	void	onRecordBeforeRead(ORecord<?>	iRecord){}

		public	void	onRecordAfterRead(ORecord<?>	iRecord){}

		public	void	onRecordBeforeUpdate(ORecord<?>	iRecord){}

		public	void	onRecordAfterUpdate(ORecord<?>	iRecord){}

		public	void	onRecordBeforeDelete(ORecord<?>	iRecord){}

		public	void	onRecordAfterDelete(ORecord<?>	iRecord){}

		...

}

The	ODocumentHookAbstract	abstract	class

When	you	want	to	catch	an	event	from	a	Document	only,	the	best	way	to	create	a	hook	is	to	extend	the		ODocumentHookAbstract	
abstract	class.	You	can	specify	what	classes	you're	interested	in.	In	this	way	the	callbacks	will	be	called	only	on	documents	of	the
specified	classes.	Classes	are	polymorphic	so	filtering	works	against	specified	classes	and	all	sub-classes.

You	can	specify	only	the	class	you're	interested	or	the	classes	you	want	to	exclude.	Example	to	include	only	the		Client		and
	Provider		classes:

public	class	MyHook	extends	ODocumentHookAbstract	{

		public	MyHook()	{

				setIncludeClasses("Client",	"Provider");

		}

}

Example	to	get	called	for	all	the	changes	on	documents	of	any	class	but		Log	:

public	class	MyHook	extends	ODocumentHookAbstract	{

		public	MyHook()	{

				setExcludeClasses("Log");

		}

}

Access	to	the	modified	fields

Java	(Native)	Hooks

773

https://github.com/orientechnologies/orientdb/blob/develop/core/src/main/java/com/orientechnologies/orient/core/hook/ORecordHook.java
https://github.com/orientechnologies/orientdb/blob/develop/core/src/main/java/com/orientechnologies/orient/core/hook/ORecordHook.java
https://github.com/orientechnologies/orientdb/blob/develop/core/src/main/java/com/orientechnologies/orient/core/hook/ORecordHookAbstract.java


In	Hook	methods	you	can	access	dirty	fields	and	the	original	values.	Example:

for(	String	field	:	document.getDirtyFields()	)	{

		Object	originalValue	=	document.getOriginalValue(	field	);

		...

}

Self	registration

Hooks	can	be	installed	on	certain	database	instances,	but	in	most	cases	you'll	need	to	register	it	for	each	instance.	To	do	this
programmatically	you	can	intercept	the		onOpen()		and		onCreate()		callbacks	from	OrientDB	to	install	hooks.	All	you	need	is	to
implement	the		ODatabaseLifecycleListener		interface.	Example:

public	class	MyHook	extends	ODocumentHookAbstract	implements	ODatabaseLifecycleListener	{

		public	MyHook()	{

				//	REGISTER	MYSELF	AS	LISTENER	TO	THE	DATABASE	LIFECYCLE

				Orient.instance().addDbLifecycleListener(this);

		}

		...

		@Override

		public	void	onOpen(final	ODatabase	iDatabase)	{

				//	REGISTER	THE	HOOK

				((ODatabaseComplex<?>)iDatabase).registerHook(this);

		}

		@Override

		public	void	onCreate(final	ODatabase	iDatabase)	{

				//	REGISTER	THE	HOOK

				((ODatabaseComplex<?>)iDatabase).registerHook(this);

		}

		@Override

		public	void	onClose(final	ODatabase	iDatabase)	{

				//	REGISTER	THE	HOOK

				((ODatabaseComplex<?>)iDatabase).unregisterHook(this);

		}

		...

		public	RESULT	onRecordBeforeCreate(final	ODocument	iDocument)	{

				//	DO	SOMETHING	BEFORE	THE	DOCUMENT	IS	CREATED

				...

		}

		...

}

Hook	example

In	this	example	the	events		before-create		and		after-delete		are	called	during	the		save()		of	the		Profile		object	where:

	before-create		is	used	to	check	custom	validation	rules
	after-delete		is	used	to	maintain	the	references	valid

Java	(Native)	Hooks

774



public	class	HookTest	extends	ORecordHookAbstract	{

		public	saveProfile(){

				ODatabaseObjectTx	database	=	new	ODatabaseObjectTx("remote:localhost/demo");

				database.open("writer",	"writer");

				//	REGISTER	MYSELF	AS	HOOK

				database.registerHook(this);

				...

				p	=	new	Profile("Luca");

				p.setAge(10000);

				database.save(p);

				...

		}

		/**

			*	Custom	validation	rules

			*/

		@Override

		public	void	onRecordBeforeCreate(ORecord<?>	iRecord){

				if(	iRecord	instanceof	ODocument	){

						ODocument	doc	=	(ODocument)	iRecord;

						Integer	age	=	doc	.field(	"age"	);

						if(	age	!=	null	&&	age	>	130	)

								throw	new	OValidationException("Invalid	age");

				}

		}

		/**

			*	On	deletion	removes	the	reference	back.

			*/

		@Override

		public	void	onRecordAfterDelete(ORecord<?>	iRecord){

				if(	iRecord	instanceof	ODocument	){

						ODocument	doc	=	(ODocument)	iRecord;

						Set<OIdentifiable>	friends	=	doc.field(	"friends"	);

						if(	friends	!=	null	){

								for(	OIdentifiable	friend	:	friends	){

										Set<OIdentifiable>	otherFriends	=	((ODocument)friend.getRecord()).field("friends");

										if(	friends	!=	null	)

												friends.remove(	iRecord	);

								}

						}

				}

		}

}

For	more	information	take	a	look	to	the	HookTest.java	source	code.

Install	server-side	hooks

To	let	a	hook	be	executed	in	the	Server	space	you	have	to	register	it	in	the	server		orientdb-server-config.xml		configuration	file.

Write	your	hook

Example	of	a	hook	to	execute	custom	validation	rules:

Java	(Native)	Hooks

775

https://github.com/orientechnologies/orientdb/blob/develop/tests/src/test/java/com/orientechnologies/orient/test/database/auto/HookTest.java


public	class	CustomValidationRules	implements	ORecordHook{

		/**

			*	Apply	custom	validation	rules

			*/

		public	boolean	onTrigger(final	TYPE	iType,	final	ORecord<?>	iRecord)	{

				if(	iRecord	instanceof	ODocument	){

						ODocument	doc	=	(ODocument)	iRecord;

						switch(	iType	){

								case	BEFORE_CREATE:

								case	BEFORE_UPDATE:	{

										if(	doc.getClassName().equals("Customer")	){

												Integer	age	=	doc	.field(	"age"	);

												if(	age	!=	null	&&	age	>	130	)

														throw	new	OValidationException("Invalid	age");

										}

										break;

								}

								case	BEFORE_DELETE:	{

										if(	doc.getClassName().equals("Customer")	){

												final	ODatabaseRecord	db	=	ODatabaseRecordThreadLocal.INSTANCE.get();

												if(	!db.getUser().getName().equals(	"admin"	)	)

														throw	new	OSecurityException("Only	admin	can	delete	customers");

										}

										break;

								}

				}

		}

}

Deploy	the	hook

Once	implemented	create	a		.jar		file	containing	your	class	and	put	it	under	the		$ORIENTDB_HOME/lib		directory.

Register	it	in	the	server	configuration

Change	the		orientdb-server-config.xml		file	adding	your	hook	inside	the		<hooks>		tag.	The	position	can	be	one	of	following	values
	FIRST	,		EARLY	,		REGULAR	,		LATE	,		LAST	:

<hook	class="org.orientdb.test.MyHook"	position="REGULAR"/>

Configurable	hooks

If	your	hook	must	be	configurable	with	external	parameters	write	the	parameters	in	the		orientdb-server-config.xml		file:

<hook	class="org.orientdb.test.MyHook"	position="REGULAR">

				<parameters>

								<parameter	name="userCanDelete"	value="admin"	/>

				</parameters>

</hook>

And	in	your	Java	class	implement	the	config()	method	to	read	the	parameter:

private	String	userCanDelete;

...

public	void	config(OServer	oServer,	OServerParameterConfiguration[]	iParams)	{

		for	(OServerParameterConfiguration	param	:	iParams)	{

				if	(param.name.equalsIgnoreCase("userCanDelete"))	{

						userCanDelete	=	param.value;

				}

		}

}

...

Java	(Native)	Hooks

776



Java	Hook	Tutorial
One	common	use	case	for	OrientDB	Hooks	(a.k.a.	database	triggers)	is	to	manage	created	and	updated	dates	for	any	or	all	classes	(a.k.a.
database	tables).	For	example,	it	is	nice	to	be	able	to	set	a	CreatedDate	field	whenever	a	record	is	created	and	set	an	UpdatedDate	field
whenever	a	record	is	updated,	and	do	it	in	a	way	where	you	implement	the	logic	once	at	the	database	layer	and	never	have	to	worry
about	it	again	at	the	application	layer.

The	following	tutorial	will	walk	you	through	exactly	how	to	accomplish	this	use	case	using	an	OrientDB	Hook	and	we'll	do	it	from	the
perspective	of	a	novice	Java	programmer	working	on	a	Windows	machine.

Assumptions

It	is	assumed	that	you	have	already	downloaded	and	installed	a	Java	JDK.	In	my	case	I	downloaded	Java	JDK	version	8	for	Windows
64	bit	and	installed	it	to	folder	C:\Program	Files\Java\jdk1.8.0_40.

It	is	also	assumed	that	you	have	downloaded,	installed,	and	configured	a	working	OrientDB	Server.	In	my	case	I	installed	it	to	folder
C:\Program	Files\orientdb-community-2.0.5.

Exact	instructions	for	these	two	steps	are	outside	the	scope	of	this	tutorial.

Initial	Server	Configuration	File

My	OrientDB	server	configuration	file	is	located	at	C:\Program	Files\orientdb-community-2.0.5\config\orientdb-server-config.xml	and	is
configured	like	this:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<orient-server>

				<handlers>

								<handler	class="com.orientechnologies.orient.graph.handler.OGraphServerHandler">

												<parameters>

																<parameter	value="true"	name="enabled"/>

																<parameter	value="50"	name="graph.pool.max"/>

												</parameters>

								</handler>

								<handler	class="com.orientechnologies.orient.server.hazelcast.OHazelcastPlugin">

												<parameters>

																<parameter	value="false"	name="enabled"/>

																<parameter	value="${ORIENTDB_HOME}/config/default-distributed-db-config.json"	name="configuration.db.default"/>

																<parameter	value="${ORIENTDB_HOME}/config/hazelcast.xml"	name="configuration.hazelcast"/>

												</parameters>

								</handler>

								<handler	class="com.orientechnologies.orient.server.handler.OJMXPlugin">

												<parameters>

																<parameter	value="false"	name="enabled"/>

																<parameter	value="true"	name="profilerManaged"/>

												</parameters>

								</handler>

								<handler	class="com.orientechnologies.orient.server.handler.OAutomaticBackup">

												<parameters>

																<parameter	value="false"	name="enabled"/>

																<parameter	value="4h"	name="delay"/>

																<parameter	value="backup"	name="target.directory"/>

																<parameter	value="${DBNAME}-${DATE:yyyyMMddHHmmss}.zip"	name="target.fileName"/>

																<parameter	value="9"	name="compressionLevel"/>

																<parameter	value="1048576"	name="bufferSize"/>

																<parameter	value=""	name="db.include"/>

																<parameter	value=""	name="db.exclude"/>

												</parameters>

								</handler>

								<handler	class="com.orientechnologies.orient.server.handler.OServerSideScriptInterpreter">

												<parameters>

																<parameter	value="false"	name="enabled"/>

																<parameter	value="SQL,JAVASCRIPT"	name="allowedLanguages"/>

Java	Hook	Tutorial

777

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.orientechnologies.com/download/


												</parameters>

								</handler>

								<handler	class="com.orientechnologies.orient.server.token.OrientTokenHandler">

												<parameters>

																<parameter	value="true"	name="enabled"/>

																<parameter	value="INSERT	YOUR	OWN	HERE"	name="oAuth2Key"/>

																<parameter	value="60"	name="sessionLength"/>

																<parameter	value="HmacSHA256"	name="encryptionAlgorithm"/>

												</parameters>

								</handler>

				</handlers>

				<network>

								<sockets>

												<socket	implementation="com.orientechnologies.orient.server.network.OServerSSLSocketFactory"	name="ssl">

																<parameters>

																				<parameter	value="false"	name="network.ssl.clientAuth"/>

																				<parameter	value="config/cert/orientdb.ks"	name="network.ssl.keyStore"/>

																				<parameter	value="password"	name="network.ssl.keyStorePassword"/>

																				<parameter	value="config/cert/orientdb.ks"	name="network.ssl.trustStore"/>

																				<parameter	value="password"	name="network.ssl.trustStorePassword"/>

																</parameters>

												</socket>

												<socket	implementation="com.orientechnologies.orient.server.network.OServerSSLSocketFactory"	name="https">

																<parameters>

																				<parameter	value="false"	name="network.ssl.clientAuth"/>

																				<parameter	value="config/cert/orientdb.ks"	name="network.ssl.keyStore"/>

																				<parameter	value="password"	name="network.ssl.keyStorePassword"/>

																				<parameter	value="config/cert/orientdb.ks"	name="network.ssl.trustStore"/>

																				<parameter	value="password"	name="network.ssl.trustStorePassword"/>

																</parameters>

												</socket>

								</sockets>

								<protocols>

												<protocol	implementation="com.orientechnologies.orient.server.network.protocol.binary.ONetworkProtocolBinary"	name=

"binary"/>

												<protocol	implementation="com.orientechnologies.orient.server.network.protocol.http.ONetworkProtocolHttpDb"	name="

http"/>

								</protocols>

								<listeners>

												<listener	protocol="binary"	socket="default"	port-range="2424-2430"	ip-address="0.0.0.0"/>

												<listener	protocol="http"	socket="default"	port-range="2480-2490"	ip-address="0.0.0.0">

																<commands>

																				<command	implementation="com.orientechnologies.orient.server.network.protocol.http.command.get.OServerComm

andGetStaticContent"	pattern="GET|www	GET|studio/	GET|	GET|*.htm	GET|*.html	GET|*.xml	GET|*.jpeg	GET|*.jpg	GET|*.png	GET|*.gif

	GET|*.js	GET|*.css	GET|*.swf	GET|*.ico	GET|*.txt	GET|*.otf	GET|*.pjs	GET|*.svg	GET|*.json	GET|*.woff	GET|*.ttf	GET|*.svgz"	st

ateful="false">

																								<parameters>

																												<entry	value="Cache-Control:	no-cache,	no-store,	max-age=0,	must-revalidate\r\nPragma:	no-cache"	n

ame="http.cache:*.htm	*.html"/>

																												<entry	value="Cache-Control:	max-age=120"	name="http.cache:default"/>

																								</parameters>

																				</command>

																				<command	implementation="com.orientechnologies.orient.graph.server.command.OServerCommandGetGephi"	pattern=

"GET|gephi/*"	stateful="false"/>

																</commands>

																<parameters>

																				<parameter	value="utf-8"	name="network.http.charset"/>

																</parameters>

												</listener>

								</listeners>

				</network>

				<storages/>

				<users>

								<user	resources="*"	password="INSERT	YOUR	OWN	HERE"	name="root"/>

								<user	resources="connect,server.listDatabases,server.dblist"	password="guest"	name="guest"/>

				</users>

				<properties>

								<entry	value="1"	name="db.pool.min"/>

								<entry	value="50"	name="db.pool.max"/>

								<entry	value="true"	name="profiler.enabled"/>

								<entry	value="info"	name="log.console.level"/>

								<entry	value="fine"	name="log.file.level"/>

								<entry	name="server.database.path"	value="/data/orientdb"	/>

				</properties>	[

</orient-server>

Java	Hook	Tutorial

778



Step	1	-	Install	Apache	Maven
Apache	Maven	is	a	useful	tool	for	people	wishing	to	write	and	compile	Java	programs,	which	you	will	need	to	do	in	order	to	create	an
OrientDB	Java	Hook.

You	can	download	Apache	Maven	from	https://maven.apache.org/download.cgi.	Follow	the	installation	instructions	until	you	can	open	a
command	prompt	and	successfully	run	the	command

$	mvn	--help

Step	2	-	Create	a	new	Maven	project

Open	a	command	prompt	and	change	directory	to	some	root	folder	where	you	like	to	code.	Feel	free	to	use	a	directory	inside	the	a
repository	you	already	have.

Before	you	create	a	Maven	project,	it	is	useful	to	think	about	how	to	you	want	to	name	your	code	package.	Package	organization	is
usually	a	heated	discussion	but	I	just	like	to	keep	it	unique	but	simple.	I	choose	to	put	all	of	my	OrientDB	java	hooks	in	a	package
called	river.hooks.	Therefore,	I	might	call	my	first	hook	river.hooks.hook1	and	my	next	hook	river.hooks.hook2.

Now	create	a	new	Maven	project	in	the	folder	location	you	have	selected	by	running	the	following	command:

$	mvn	-B	archetype:generate	-DarchetypeGroupId=org.apache.maven.archetypes	\

						-DgroupId=river.hooks	-DartifactId=hooks

You'll	notice	that	the	result	of	this	command	is	a	brand	new	directory	structure	created	underneath	the	folder	in	which	you	ran	the
command.	Take	special	note	that	Maven	has	created	a	file	called	.\hooks\pom.xml	and	a	folder	called	.\hooks\src\main\java\river\hooks.

Edit	pom.xml

The	thing	you	need	to	pay	attention	to	in	this	file	is	the	section	called	dependencies.	As	your	OrientDB	Java	Hook	will	leverage
OrientDB	code,	you	need	to	tell	Maven	to	download	and	cache	the	OrientDB	code	libraries	that	your	hook	needs.	Do	this	by	adding	the
following	to	your	pom.xml	file:

		<dependencies>

				...

				<dependency>

						<groupId>com.orientechnologies</groupId>

						<artifactId>orientdb-core</artifactId>

						<version>2.0.5</version>

				</dependency>

		</dependencies>

Create	hook	file(s)

Now	that	Maven	knows	that	your	code	will	build	upon	the	oriendb-core	code	libraries,	you	can	start	writing	your	Hook	file(s).	Go	to
folder	.\hooks\src\main\java\river\hooks.	This	is	the	folder	where	you	will	put	your	.java	hook	files.	Go	ahead	and	delete	the	placeholder
App.java	file	that	Maven	created	and	which	you	don't	need.

Let's	start	out	by	adding	a		HookTest.java		file	as	follows:

Java	Hook	Tutorial

779

https://maven.apache.org/download.cgi


package	river.hooks;

import	java.io.BufferedReader;

import	java.io.FileNotFoundException;

import	java.io.InputStream;

import	java.io.InputStreamReader;

import	java.io.StringReader;

import	java.util.ArrayList;

import	java.util.List;

import	java.util.concurrent.locks.ReentrantLock;

import	com.orientechnologies.orient.core.hook.ODocumentHookAbstract;

import	com.orientechnologies.orient.core.hook.ORecordHook;

import	com.orientechnologies.orient.core.hook.ORecordHookAbstract;

import	com.orientechnologies.orient.core.db.ODatabaseLifecycleListener;

import	com.orientechnologies.orient.core.db.ODatabase;

import	com.orientechnologies.orient.core.record.ORecord;

import	com.orientechnologies.orient.core.record.impl.ODocument;

public	class	HookTest	extends	ODocumentHookAbstract	implements	ORecordHook	{

		public	HookTest()	{

				setExcludeClasses("Log");	//if	comment	out	this	one	line	or	leave	off	the	constructor	entirely	then	OrientDB	fails	on	ever

y	command

		}

		@Override

		public	DISTRIBUTED_EXECUTION_MODE	getDistributedExecutionMode()	{

				return	DISTRIBUTED_EXECUTION_MODE.BOTH;

		}

		public	RESULT	onRecordBeforeCreate(	ODocument	iDocument	)	{

				System.out.println("Ran	create	hook");

				return	ORecordHook.RESULT.RECORD_NOT_CHANGED;

		}

		public	RESULT	onRecordBeforeUpdate(	ODocument	iDocument	)	{

				System.out.println("Ran	update	hook");

				return	ORecordHook.RESULT.RECORD_NOT_CHANGED;

		}

}

What	this	sample	code	does	is	print	out	the	appropriate	comment	every	time	you	create	or	update	a	record	of	that	class.

Let's	add	one	more	hook	file		setCreatedUpdatedDates.java		as	follows:

Java	Hook	Tutorial

780



package	river.hooks;

import	java.io.BufferedReader;

import	java.io.FileNotFoundException;

import	java.io.InputStream;

import	java.io.InputStreamReader;

import	java.io.StringReader;

import	java.util.ArrayList;

import	java.util.List;

import	java.util.concurrent.locks.ReentrantLock;

import	com.orientechnologies.orient.core.hook.ODocumentHookAbstract;

import	com.orientechnologies.orient.core.hook.ORecordHook;

import	com.orientechnologies.orient.core.hook.ORecordHookAbstract;

import	com.orientechnologies.orient.core.db.ODatabaseLifecycleListener;

import	com.orientechnologies.orient.core.db.ODatabase;

import	com.orientechnologies.orient.core.record.ORecord;

import	com.orientechnologies.orient.core.record.impl.ODocument;

public	class	setCreatedUpdatedDates	extends	ODocumentHookAbstract	implements	ORecordHook	{

		public	setCreatedUpdatedDates()	{

				setExcludeClasses("Log");	//if	comment	out	this	one	line	or	leave	off	the	constructor	entirely	then	OrientDB	fails	on	ever

y	command

		}

		@Override

		public	DISTRIBUTED_EXECUTION_MODE	getDistributedExecutionMode()	{

				return	DISTRIBUTED_EXECUTION_MODE.BOTH;

		}

		public	RESULT	onRecordBeforeCreate(	ODocument	iDocument	)	{

				if	((iDocument.getClassName().charAt(0)	==	't')	||	(iDocument.getClassName().charAt(0)=='r'))	{

						iDocument.field("CreatedDate",	System.currentTimeMillis()	/	1000l);

						iDocument.field("UpdatedDate",	System.currentTimeMillis()	/	1000l);

						return	ORecordHook.RESULT.RECORD_CHANGED;

				}	else	{

						return	ORecordHook.RESULT.RECORD_NOT_CHANGED;

				}

		}

		public	RESULT	onRecordBeforeUpdate(	ODocument	iDocument	)	{

				if	((iDocument.getClassName().charAt(0)	==	't')	||	(iDocument.getClassName().charAt(0)=='r'))	{

						iDocument.field("UpdatedDate",	System.currentTimeMillis()	/	1000l);

						return	ORecordHook.RESULT.RECORD_CHANGED;

				}	else	{

						return	ORecordHook.RESULT.RECORD_NOT_CHANGED;

				}

		}

}

What	this	code	does	is	look	for	any	class	that	starts	with	the	letters	r	or	t	and	sets	CreatedDate	and	UpdatedDate	when	the	record	gets
created	and	sets	just	UpdatedDate	every	time	the	record	gets	updated.

Step	3	-	Compile	your	Java	hooks

In	a	command	prompt,	go	to	your	.\hooks	file	and	run	the	following	commands:

$	mvn	compile

This	compiles	your	hook	source	code	into	java	.class	files.

$	mvn	package

This	zips	up	your	compile	code	files	with	the	needed	directory	structure	into	a	file	called	.\target\hooks-1.0-SNAPSHOT.jar.

Step	4	-	Move	your	compiled	code	to	where	OrientDB	Server	can	find
it

Java	Hook	Tutorial

781



Finally,	you	need	to	copy	your	finished	.jar	file	to	the	directory	where	your	OrientDB	server	will	look	for	them.	This	means	the	.\lib
folder	under	your	OrientDB	Server	root	directory	like	this:

$	copy	/Y	.\target\hooks-1.0-SNAPSHOT.jar	"\Program	Files\orientdb-community-2.0.5\lib"

Step	5	-	Enable	your	test	hook	in	the	OrientDB	Server	configuration
file

Edit	C:\Program	Files\orientdb-community-2.0.5\config\orientdb-server-config.xml	and	add	the	following	section	near	the	end	of	the	file:

				<hooks>

								<hook	class="river.hooks.HookTest"	position="REGULAR"/>

				</hooks>

				...

</orient-server>

Step	6	-	Restart	your	OrientDB	Server

Once	you	restart	your	OrientDB	Server,	the	hook	you	defined	in	orientdb-server-config.xml	is	now	active.	Launch	an	OrientDB	console,
connect	it	to	your	database,	and	run	the	following	command:

INSERT	INTO	V	SET	ID	=	1;

If	you	review	your	server	output/log	you	should	see	the	message

Ran	create	hook

Now	run	command:

UPDATE	V	SET	ID	=	2	WHERE	ID	=	1;

Now	your	server	output	should	say

Ran	update	hook

Step	7	-	Enable	your	real	hook	in	the	OrientDB	Server	configuration
file

Edit	C:\Program	Files\orientdb-community-2.0.5\config\orientdb-server-config.xml	and	change	the	hooks	section	as	follows:

				<hooks>

								<hook	class="river.hooks.setCreatedUpdatedDates"	position="REGULAR"/>

				</hooks>

				...

</orient-server>

Step	8	-	Restart	your	OrientDB	Server

Now	create	a	new	class	that	starts	with	the	letter		r		or		t	:

CREATE	CLASS	tTest	EXTENDS	V;

Now	insert	a	record:

Java	Hook	Tutorial

782



INSERT	INTO	tTest	SET	ID	=	1

SELECT	FROM	tTest

----+-----+------+----+-----------+-----------

#			|@RID	|@CLASS|ID		|CreatedDate|UpdatedDate

----+-----+------+----+-----------+-----------

0			|#19:0|tTest	|1			|1427597275	|1427597275

----+-----+------+----+-----------+-----------

Even	though	you	did	not	specify	values	to	set	for		CreatedDate		and		UpdatedDate	,	OrientDB	has	set	these	fields	automatically	for	you.

Now	update	the	record:

UPDATE	tTest	SET	ID	=	2	WHERE	ID	=	1;

SELECT	FROM	tTest;

----+-----+------+----+-----------+-----------

#			|@RID	|@CLASS|ID		|CreatedDate|UpdatedDate

----+-----+------+----+-----------+-----------

0			|#19:0|tTest	|2			|1427597275	|1427597306

----+-----+------+----+-----------+-----------

You	can	see	that	OrientDB	has	changed	the		UpdatedDate		but	let	the		CreatedDate		unchanged.

Conclusion

OrientDB	Java	Hooks	can	be	an	extremely	valuable	tool	to	help	automate	work	you	would	otherwise	have	to	do	in	application	code.	As
many	DBAs	are	not	always	Java	experts,	hopefully	the	information	contained	in	this	tutorial	will	give	you	a	head	start	in	feeling
comfortable	with	the	technology	and	empower	you	to	successfully	create	database	triggers	as	the	need	arises.

Good	luck!

Java	Hook	Tutorial

783



OrientDB	Server
OrientDB	Server	(DB-Server	from	now)	is	a	multi-threaded	Java	application	that	listens	to	remote	commands	and	executes	them	against
the	Orient	databases.	OrientDB	Server	supports	both	binary	and	HTTP	protocols.	The	first	one	is	used	by	the	Orient	native	client	and
the	Orient	Console.	The	second	one	can	be	used	by	any	languages	since	it's	based	on	HTTP	RESTful	API.	The	HTTP	protocol	is	used
also	by	the	OrientDB	Studio	application.

Starting	from	v1.7	OrientDB	support	protected	SSL	connections.

Even	thought	OrientDB	Server	is	a	regular	Web	Server,	it	is	not	recommended	to	expose	it	directly	on	the
Internet	or	public	networks.	We	suggest	to	always	hide	OrientDB	server	in	a	private	network.

Install	as	a	service
OrientDB	Server	is	part	of	Community	and	Enterprise	distributions.	To	install	OrientDB	as	service	follow	the	following	guides

Unix,	Linux	and	MacOSX
Windows

Start	the	server

To	start	the	server,	execute	bin/server.sh	(or	bin/server.bat	on	Microsoft	Windows	systems).	By	default	both	the	binary	and	http
interfaces	are	active.	If	you	want	to	disable	one	of	these	change	the	Server	configuration.

Upon	startup,	the	server	runs	on	port	2424	for	the	binary	protocol	and	2480	for	the	http	one.	If	a	port	is	busy	the	next	free	one	will	be
used.	The	default	range	is	2424-2430	(binary)	and	2480-2490	(http).	These	default	ranges	can	be	changed	in	in	Server	configuration.

Stop	the	server
To	stop	a	running	server,	press	CTRL+C	in	the	open	shell	that	runs	the	Server	instance	or	soft	kill	the	process	to	be	sure	that	the
opened	databases	close	softly.	Soft	killing	on	Windows	can	be	done	by	closing	the	window.	On	Unix-like	systems,	a	simple	kill	is
enough	(Do	not	use	kill	-9	unless	you	want	to	force	a	hard	shutdown).

Connect	to	the	server

By	Console

The	OrientDB	distribution	provides	the	Orient	Console	tool	as	a	console	Java	application	that	uses	the	binary	protocol	to	work	with
the	database.

By	OrientDB	Studio

Starting	from	the	release	0.9.13	Orient	comes	with	the	OrientDB	Studio	application,	a	client-side	web	app	that	uses	the	HTTP	protocol
to	work	with	the	database.

By	your	application

Consider	the	native	APIs	if	you	use	Java.	For	all	the	other	languages	you	can	use	the	HTTP	RESTful	protocol.

Distributed	servers

Server

784



To	setup	a	distributed	configuration	look	at:	Distributed-Architecture.

Change	the	Server's	database	directory

By	default	OrientDB	server	manages	the	database	under	the	directory	"$ORIENTDB_HOME/databases"	where	$ORIENTDB_HOME
is	the	OrientDB	installation	directory.	By	setting	the	configuration	parameter		"server.database.path"		in	server	orientdb-server-
config.xml	you	can	specify	a	custom	path.	Example:

<orient-server>

		...

		<properties>

				<entry	value="C:/temp/databases"	name="server.database.path"	/>

		</properties>

</orient-server>

Configuration

Plugins

Plug-ins	(old	name	"Handler")	are	the	way	the	OrientDB	Server	can	be	extended.

To	write	your	own	plug-in	read	below	Extend	the	server.

Available	plugins:

Automatic-Backup
EMail	Plugin
JMX	Plugin
Distributed-Server-Manager
Server-side	script	interpreter
Write	your	own

Protocols

Contains	the	list	of	protocols	used	by	the	listeners	section.	The	protocols	supported	today	are:

binary:	the	Raw	binary	protocol	used	by	OrientDB	clients	and	console	application.
http:	the	HTTP	RESTful	protocol	used	by	OrientDB	Studio	and	direct	raw	access	from	any	language	and	browsers.

Listeners

You	can	configure	multiple	listeners	by	adding	items	under	the		<listeners>		tag	and	selecting	the	ip-address	and	TCP/IP	port	to	bind.
The	protocol	used	must	be	listed	in	the	protocols	section.	Listeners	can	be	configured	with	single	port	or	port	range.	If	a	range	of	ports
is	specified,	then	it	will	try	to	acquire	the	first	port	available.	If	no	such	port	is	available,	then	an	error	is	thrown.	By	default	the	Server
configuration	activates	connections	from	both	the	protocols:

binary:	by	default	the	binary	connections	are	listened	to	the	port	range	2424-2430.
http:	by	default	the	HTTP	connections	are	listened	to	the	port	range	2480-2490.

Storages

Contains	the	list	of	the	static	configured	storages.	When	the	server	starts	for	each	storages	static	configured	storage	enlisted	check	if
exists.	If	exists	opens	it,	otherwise	creates	it	transparently.

By	convention	all	the	storages	contained	in	the	$ORIENT_HOME/databases	are	visible	from	the	OrientDB	Server	instance	without	the
need	of	configure	them.	So	configure	storages	if:

are	located	outside	the	default	folder.	You	can	use	any	environment	variable	in	the	path	such	the	ORIENT_HOME	that	points	to
the	Orient	installation	path	if	defined	otherwise	to	the	root	directory	where	the	Orient	Server	starts.
want	to	create/open	automatically	a	database	when	the	server	start	ups

Server

785



By	default	the	"temp"	database	is	always	configured	as	in-memory	storage	useful	to	store	volatile	information.

Example	of	configuration:

<storage	name="mydb"	path="local:C:/temp/databases/mydb"

									userName="admin"	userPassword="admin"

									loaded-at-startup="true"	/>

To	create	a	new	database	use	the	CREATE	DATABASE	console	command	or	create	it	dinamically	using	the	Java-API.

Users

Starting	from	v.0.9.15	OrientDB	supports	per-server	users	in	order	to	protect	sensible	operations	to	the	users.	In	facts	the	creation	of	a
new	database	is	a	server	operation	as	much	as	the	retrieving	of	server	statistics.

Automatic	password	generation

When	an	OrientDB	server	starts	for	the	first	time,	a	new	user	called	"root"	will	be	generated	and	saved	in	the	server	configuration.	This
avoid	security	problems	when,	very	often,	the	passwords	remain	the	default	ones.

Resources

User	based	authentication	checks	if	the	logged	user	has	the	permission	to	access	to	the	requested	resource.	"*"	means	access	to	all	the
resource.	This	is	the	typical	setting	for	the	user	"root".	Multiple	resources	must	be	separated	by	comma.

Example	to	let	to	the	"root"	user	to	access	to	all	the	server	commands:

<user	name="root"	resources="*"	password="095F17F6488FF5416ED24E"/>

Example	to	let	to	the	"guest"	user	to	access	only	to	the	"info-server"	command:

<user	name="guest"	resources="info-server"	password="3489438DKJDK4343UDH76"/>

Supported	resources	are:

	info-server	,	to	obtain	statistics	about	the	server
	database.create	,	to	create	a	new	database
	database.exists	,	to	check	if	a	database	exists
	database.delete	,	to	delete	an	existent	database
	database.share	,	to	share	a	database	to	another	OrientDB	Server	node
	database.passthrough	,	to	access	to	the	hosted	databases	without	database's	authentication
	server.config.get	,	to	retrieve	a	configuration	setting	value
	server.config.set	,	to	set	a	configuration	setting	value

Create	new	user	with	some	privileges

To	configure	a	new	user	open	the	config/orientdb-server-config.xml	file	and	add	a	new	XML	tag	under	the	tag		<users>	:

<users>

				<user	name="MyUser"	password="MyPassword"	resources="database.exists"/>

</users>

Extend	the	server

To	extend	the	server's	features	look	at	Extends	the	server.

Debug	the	server

Server

786

http://code.google.com/p/orient/wiki/ConsoleCommandCreateDb


To	debug	the	server	configure	your	IDE	to	execute	the	class	OServerMain:

com.orientechnologies.orient.server.OServerMain

Passing	these	parameters:

-server

-Dorientdb.config.file=config/orientdb-server-config.xml

-Dorientdb.www.path=src/site

-DORIENTDB_HOME=url/local/orientdb/releases/orientdb-1.2.0-SNAPSHOT

-Djava.util.logging.config.file=config/orientdb-server-log.properties

-Dcache.level1.enabled=false

-Dprofiler.enabled=true

Changing	the	ORIENTDB_HOME	according	to	your	path.

Server

787



Embed	the	Server
Embedding	an	OrientDB	Server	inside	a	Java	application	has	several	advantages	and	interesting	features:

Java	application	that	runs	embedded	with	the	server	can	bypass	the	remote	connection	and	use	the	database	directly	with	local
mode.	local	and	remote	connections	against	the	same	database	can	work	in	concurrency:	OrientDB	will	synchronize	the	access.
You	can	use	the	Console	to	control	it
You	can	use	the	OrientDB	Studio
You	can	replicate	the	database	across	distributed	standalone	or	embedded	servers

To	embed	an	OrientDB	Server	inside	a	Java	application	you	have	to	create	the		OServer		object	and	use	a	valid	configuration	for	it.

Requirements
In	order	to	embed	the	server	you	need	to	include	the	following	jar	files	in	the	classpath:

	orientdb-enterprise-**.jar	

	orientdb-server-**.jar	

Include	the	commands	you	need

Even	if	most	of	the	HTTP	commands	are	auto	registered	assure	to	have	all	the	commands	you	need.	For	example	the	static	content	must
be	registered.	This	is	fundamental	if	you	want	to	use	OrientDB	as	Web	Server	providing	static	content	like	the	Studio	app:

<listener	protocol="http"	port-range="2480-2490"	ip-address="0.0.0.0">

		<commands>

				<command	implementation="com.orientechnologies.orient.server.network.protocol.http.command.get.OServerCommandGetStaticCont

ent"	pattern="GET|www	GET|studio/	GET|	GET|*.htm	GET|*.html	GET|*.xml	GET|*.jpeg	GET|*.jpg	GET|*.png	GET|*.gif	GET|*.js	GET|*.

css	GET|*.swf	GET|*.ico	GET|*.txt	GET|*.otf	GET|*.pjs	GET|*.svg">

						<parameters>

								<entry	value="Cache-Control:	no-cache,	no-store,	max-age=0,	must-revalidate\r\nPragma:	no-cache"	name="http.cache:*.ht

m	*.html"/>

								<entry	value="Cache-Control:	max-age=120"	name="http.cache:default"/>

						</parameters>

				</command>

		</commands>

</listener>

Use	an	embedded	configuration

Embed	the	Server

788



import	com.orientechnologies.orient.server.OServerMain;

public	class	OrientDBEmbeddable	{

	public	static	void	main(String[]	args)	throws	Exception	{

		OServer	server	=	OServerMain.create();

		server.startup(

			"<?xml	version=\"1.0\"	encoding=\"UTF-8\"	standalone=\"yes\"?>"

			+	"<orient-server>"

			+	"<network>"

			+	"<protocols>"

			+	"<protocol	name=\"binary\"	implementation=\"com.orientechnologies.orient.server.network.protocol.binary.ONetworkProtocolB

inary\"/>"

			+	"<protocol	name=\"http\"	implementation=\"com.orientechnologies.orient.server.network.protocol.http.ONetworkProtocolHttpD

b\"/>"

			+	"</protocols>"

			+	"<listeners>"

			+	"<listener	ip-address=\"0.0.0.0\"	port-range=\"2424-2430\"	protocol=\"binary\"/>"

			+	"<listener	ip-address=\"0.0.0.0\"	port-range=\"2480-2490\"	protocol=\"http\"/>"

			+	"</listeners>"

			+	"</network>"

			+	"<users>"

			+	"<user	name=\"root\"	password=\"ThisIsA_TEST\"	resources=\"*\"/>"

			+	"</users>"

			+	"<properties>"

			+	"<entry	name=\"orientdb.www.path\"	value=\"C:/work/dev/orientechnologies/orientdb/releases/1.0rc1-SNAPSHOT/www/\"/>"

			+	"<entry	name=\"orientdb.config.file\"	value=\"C:/work/dev/orientechnologies/orientdb/releases/1.0rc1-SNAPSHOT/config/orie

ntdb-server-config.xml\"/>"

			+	"<entry	name=\"server.cache.staticResources\"	value=\"false\"/>"

			+	"<entry	name=\"log.console.level\"	value=\"info\"/>"

			+	"<entry	name=\"log.file.level\"	value=\"fine\"/>"

			//The	following	is	required	to	eliminate	an	error	or	warning	"Error	on	resolving	property:	ORIENTDB_HOME"

			+	"<entry	name=\"plugin.dynamic\"	value=\"false\"/>"

			+	"</properties>"	+	"</orient-server>");

		server.activate();

		}

}

Once	the	embedded	server	is	running,	clients	can	connect	using	the	remote	connection	method.	For	example	in	the	console,	you	can
connect	with:

connect	remote:localhost:{port}/{db}	{user}	{password}

where:

		port					:	the	port	that	the	binary	server	listens	on

													(first	free	port	from	2424-2430	according	to	the	configuration	above)

		db							:	the	database	name	to	connect	to	(defaults	to	"db"	and	can	be	set	using	<entry	name="server.database.path"	value="

db"/>	in	the	configuration

		user					:	the	user	to	connect	with	(this	is	NOT	the	same	as	root	user	in	the	configuration)

		password	:	the	user	to	connect	with	(this	is	NOT	the	same	as	root	password	in	the	configuration)

Use	custom	file	for	configuration

Use	a	regular		File	:

public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{

						OServer	server	=	OServerMain.create();

						server.startup(new	File("/usr/local/temp/db.config"));

						server.activate();

		}

}

Use	a	stream	for	configuration

Use	an		InputStream		from	the	class	loader:

Embed	the	Server

789



public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{

						OServer	server	=	OServerMain.create();

						server.startup(getClass().getResourceAsStream("db.config"));

						server.activate();

		}

}

Use	a	OServerConfiguration	object	for	configuration
Or	an		InputStream		from	the	class	loader:

public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{

						OServer	server	=	OServerMain.create();

						OServerConfiguration	cfg	=	new	OServerConfiguration();

						//	FILL	THE	OServerConfiguration	OBJECT

						server.startup(cfg);

						server.activate();

		}

}

Shutdown
OrientDB	Server	creates	some	threads	internally	as	non-daemon,	so	they	run	even	if	the	main	application	exits.	Use	the
	OServer.shutdown()		method	to	shutdown	the	server	in	soft	way:

import	com.orientechnologies.orient.server.OServerMain;

public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{

				OServer	server	=	OServerMain.create();

				server.startup(new	File("/usr/local/temp/db.config"));

				server.activate();

				...

				server.shutdown();

		}

}

Setting	ORIENTDB_HOME
Some	functionality	wil	not	work	properly	if	the	system	property	'ORIENTDB_HOME'	is	not	set.	You	can	set	it	programmatically	like
this:

import	com.orientechnologies.orient.server.OServerMain;

public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{

				String	orientdbHome	=	new	File("").getAbsolutePath();	//Set	OrientDB	home	to	current	directory

				System.setProperty("ORIENTDB_HOME",	orientdbHome);

				OServer	server	=	OServerMain.create();

				server.startup(cfg);

				server.activate();

		}

}

Embed	the	Server

790



Web	Server

Even	thought	OrientDB	Server	is	a	regular	Web	Server,	it	is	not	recommended	to	expose	it	directly	on	the
Internet	or	public	networks.	We	suggest	to	always	hide	OrientDB	server	in	a	private	network.

Global	settings	can	be	set	at	JVM	startup	(	java	...	-D<setting>="<value>"	)	or	in		orientdb-server-config.xml		file	under	"properties"
XML	tag.

Maximum	content	length

OrientDB	by	default	allow	request	content	of	maximum	1MB.	To	change	this	limitation	set	the	global	configuration
	network.http.maxLength		to	the	needed	value.

Charset

OrientDB	uses	UTF-8	as	default	charset.	To	change	it	set	the	global	configuration		network.http.charset	.

JSONP

JSONP	is	supported	by	OrientDB	Web	Server,	but	disabled	by	default.	To	enable	it	set	the	coniguration		network.http.jsonp=true	

This	is	a	global	setting,	so	you	can	set	it	at	JVM	startup	(	java	...	-Dnetwork.http.jsonp=true	)	or	by	setting	it	as	property	in
	orientdb-server-config.xml		file	under	"properties"	XML	tag.

Cross	site
Cross	site	requests	are	disabled	by	default.

To	enable	it,	set	a	couple	of	additional	headers	in		orientdb-server-config.xml		under	the	HTTP	listener	XML	tag:

<listener	protocol="http"	ip-address="0.0.0.0"	port-range="2480-2490"	socket="default">

		<parameters>

				<parameter	name="network.http.additionalResponseHeaders"	value="Access-Control-Allow-Origin:	*;Access-Control-Allow-Creden

tials:	true"	/>

		</parameters>

</listener>

This	setting	is	also	global,	so	you	can	set	it	at	JVM	startup	(	java	...	-Dnetwork.http.additionalResponseHeaders="Access-Control-
Allow-Origin:	*;Access-Control-Allow-Credentials:	true"	)	or	by	setting	it	as	property	in		orientdb-server-config.xml		file	under
"properties"	XML	tag.

Clickjacking

Look	also:	Clickjacking	on	WikiPedia	and	Clickjacking	on	OWASP

OrientDB	allows	to	disable	Clickjacking	by	setting	the	additional	header		X-FRAME-OPTIONS		to		DENY		in	all	the	HTTP	response.

To	enable	it,	set	a	couple	of	additional	headers	in		orientdb-server-config.xml		under	the	HTTP	listener	XML	tag:

Web	Server

791

https://en.wikipedia.org/wiki/Clickjacking
https://www.owasp.org/index.php/Clickjacking


<listener	protocol="http"	ip-address="0.0.0.0"	port-range="2480-2490"	socket="default">

		<parameters>

				<parameter	name="network.http.additionalResponseHeaders"	value="X-FRAME-OPTIONS:	DENY"	/>

		</parameters>

</listener>

This	setting	is	also	global,	so	you	can	set	it	at	JVM	startup	(	java	...	-Dnetwork.http.additionalResponseHeaders="X-FRAME-OPTIONS:
DENY"	)	or	by	setting	it	as	property	in		orientdb-server-config.xml		file	under	"properties"	XML	tag.

Web	Server

792



OrientDB	Plugins
The	OrientDB	Server	is	a	customizable	platform	to	build	powerful	server	component	and	applications.

Since	the	OrientDB	server	contains	an	integrated	Web	Server	what	about	creating	server	side	applications	without	the	need	to	have	a
J2EE	and	Servlet	container?	By	extending	the	server	you	can	benefit	of	the	best	performance	because	you	don't	have	many	layers	but
the	database	and	the	application	reside	on	the	same	JVM	without	the	cost	of	the	network	and	serialization	of	requests.

Furthermore	you	can	package	your	application	together	with	the	OrientDB	server	to	distribute	just	a	ZIP	file	containing	the	entire
Application,	Web	server	and	Database.

To	customize	the	OrientDB	server	you	have	two	powerful	tools:

Handlers
Custom	commands

To	debug	the	server	while	you	develop	new	feature	follow	Debug	the	server.

Handlers	(Server	Plugins)
Handlers	are	plug-ins	and	starts	when	OrientDB	starts.

To	create	a	new	handler	create	the	class	and	register	it	in	the	OrientDB	server	configuration.

Create	the	Handler	class

A	Handler	must	implements	the	OServerPlugin	interface	or	extends	the	OServerPluginAbstract	abstract	class.

Below	an	example	of	a	handler	that	print	every	5	seconds	a	message	if	the	"log"	parameters	has	been	configured	to	be	"true":

package	orientdb.test;

public	class	PrinterHandler	extends	OServerPluginAbstract	{

		private	boolean				log	=	false;

		@Override

		public	void	config(OServer	oServer,	OServerParameterConfiguration[]	iParams)	{

				for	(OServerParameterConfiguration	p	:	iParams)	{

						if	(p.name.equalsIgnoreCase("log"))

								log	=	true;

				}

				Orient.getTimer().schedule(	new	TimerTask()	{

						@Override

						public	void	run()	{

								if(	log	)

										System.out.println("It's	the	PrinterHandler!");

						}

				},	5000,	5000);

		}

		@Override

		public	String	getName()	{

				return	"PrinterHandler";

		}

}

Register	the	handler

Once	created,	register	it	to	the	server	configuration	in	orientdb-server-config.xml	file:

Plugins

793



<orient-server>

		<handlers>

				<handler	class="orientdb.test.PrinterHandler">

						<parameters>

								<parameter	name="log"	value="true"/>

						</parameters>

				</handler>

		</handlers>

		...

Note	that	you	can	specify	arbitrary	parameters	in	form	of	name	and	value.	Those	parameters	can	be	read	by	the	config()	method.	In	this
example	a	parameter	"log"	is	read.	Look	upon	to	the	example	of	handler	to	know	how	to	read	parameters	specified	in	configuration.

Steps	to	register	a	function	as	a	Plugin	in	OrientDB

In	this	case	we'll	create	a	plugin	that	only	registers	one	function	in	OrientDB:	pow	(returns	the	value	of	the	first	argument	raised	to	the
power	of	the	second	argument).	We'll	also	support	Modular	exponentiation.

The	syntax	will	be		pow(<base>,	<power>	[,	<mod>])	.

you	should	have	a	directory	structure	like	this

		.

		├─	src

		|			└─	main

		|							├─	assembly

		|							|			└─	assembly.xml	

		|							├─	java

		|							|			└─	com

		|							|							└─	app

		|							|											└─	OPowPlugin.java

		|							└─	resources

		|											└─	plugin.json	

		|

		└─	pom.xml

OPowPlugin.java

package	com.app;

import	com.orientechnologies.common.log.OLogManager;

import	com.orientechnologies.orient.core.command.OCommandContext;

import	com.orientechnologies.orient.core.db.record.OIdentifiable;

import	com.orientechnologies.orient.core.sql.OSQLEngine;

import	com.orientechnologies.orient.core.sql.functions.OSQLFunctionAbstract;

import	com.orientechnologies.orient.server.OServer;

import	com.orientechnologies.orient.server.config.OServerParameterConfiguration;

import	com.orientechnologies.orient.server.plugin.OServerPluginAbstract;

import	java.util.ArrayList;

import	java.util.List;

public	class	OPowPlugin	extends	OServerPluginAbstract	{

				public	OPowPlugin()	{

				}

				@Override

				public	String	getName()	{

								return	"pow-plugin";

				}

				@Override

				public	void	startup()	{

								super.startup();

								OSQLEngine.getInstance().registerFunction("pow",	new	OSQLFunctionAbstract("pow",	2,	3)	{

												@Override

												public	String	getSyntax()	{

																return	"pow(<base>,	<power>	[,	<mod>])";

												}

Plugins

794

http://en.wikipedia.org/wiki/Modular_exponentiation


												@Override

												public	Object	execute(Object	iThis,	OIdentifiable	iCurrentRecord,	Object	iCurrentResult,	final	Object[]	iParams,	O

CommandContext	iContext)	{

																if	(iParams[0]	==	null	||	iParams[1]	==	null)	{

																				return	null;

																}

																if	(!(iParams[0]	instanceof	Number)	||	!(iParams[1]	instanceof	Number))	{

																				return	null;

																}

																final	long	base	=	((Number)	iParams[0]).longValue();

																final	long	power	=	((Number)	iParams[1]).longValue();

																if	(iParams.length	==	3)	{	//	modular	exponentiation

																				if	(iParams[2]	==	null)	{

																								return	null;

																				}

																				if	(!(iParams[2]	instanceof	Number))	{

																								return	null;

																				}

																				final	long	mod	=	((Number)	iParams[2]).longValue();

																				if	(power	<	0)	{

																								OLogManager.instance().warn(this,	"negative	numbers	as	exponent	are	not	supported");

																				}

																				return	modPow(base,	power,	mod);

																}

																return	power	>	0	?	pow(base,	power)	:	1D	/	pow(base,	-power);

												}

								});

								OLogManager.instance().info(this,	"pow	function	registered");

				}

				private	double	pow(long	base,	long	power)	{

								double	r	=	1;

								List<Boolean>	bits	=	bits(power);

								for	(int	i	=	bits.size()	-	1;	i	>=	0;	i--)	{

												r	*=	r;

												if	(bits.get(i))	{

																r	*=	base;

												}

								}

								return	r;

				}

				private	double	modPow(long	base,	long	power,	long	mod)	{

								double	r	=	1;

								List<Boolean>	bits	=	bits(power);

								for	(int	i	=	bits.size()	-	1;	i	>=	0;	i--)	{

												r	=	(r	*	r)	%	mod;

												if	(bits.get(i))	{

																r	=	(r	*	base)	%	mod;

												}

								}

								return	r;

				}

				private	List<Boolean>	bits(long	n)	{

								List<Boolean>	bits	=	new	ArrayList();

								while	(n	>	0)	{

												bits.add(n	%	2	==	1);

												n	/=	2;

								}

								return	bits;

				}

				@Override

				public	void	config(OServer	oServer,	OServerParameterConfiguration[]	iParams)	{

				}

				@Override

Plugins

795



				public	void	shutdown()	{

								super.shutdown();

				}

}

pom.xml

<?xml	version="1.0"	encoding="UTF-8"?>

<project	xmlns="http://maven.apache.org/POM/4.0.0"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

									xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	http://maven.apache.org/xsd/maven-4.0.0.xsd">

				<modelVersion>4.0.0</modelVersion>

				<groupId>com.app</groupId>

				<artifactId>pow-plugin</artifactId>

				<version>2.0.7</version>

				<packaging>jar</packaging>

				<name>pow-plugin</name>

				<properties>

								<orientdb.version>2.0.7</orientdb.version>

				</properties>

				<build>

								<plugins>

												<plugin>

																<artifactId>maven-assembly-plugin</artifactId>

																<version>2.4</version>

																<configuration>

																				<descriptors>

																								<descriptor>src/main/assembly/assembly.xml</descriptor>

																				</descriptors>

																</configuration>

																<executions>

																				<execution>

																								<id>make-assembly</id>

																								<!--	this	is	used	for	inheritance	merges	-->

																								<phase>package</phase>

																								<!--	bind	to	the	packaging	phase	-->

																								<goals>

																												<goal>single</goal>

																								</goals>

																								<configuration></configuration>

																				</execution>

																</executions>

												</plugin>

												<plugin>

																<groupId>org.apache.maven.plugins</groupId>

																<artifactId>maven-compiler-plugin</artifactId>

																<version>3.1</version>

																<configuration>

																</configuration>

												</plugin>

								</plugins>

				</build>

				<dependencies>

								<dependency>

												<groupId>com.orientechnologies</groupId>

												<artifactId>orientdb-core</artifactId>

												<version>${orientdb.version}</version>

												<scope>compile</scope>

								</dependency>

								<dependency>

												<groupId>com.orientechnologies</groupId>

												<artifactId>orientdb-server</artifactId>

												<version>${orientdb.version}</version>

												<scope>compile</scope>

								</dependency>

				</dependencies>

</project>

assembly.xml

Plugins

796



<assembly>

				<id>dist</id>

				<formats>

								<format>jar</format>

				</formats>

				<includeBaseDirectory>false</includeBaseDirectory>

				<dependencySets>

								<dependencySet>

												<outputDirectory/>

												<unpack>true</unpack>

												<includes>

																<include>${groupId}:${artifactId}</include>

												</includes>

								</dependencySet>

				</dependencySets>

</assembly>

plugin.json

{

				"name"	:	"pow-plugin",

				"version"	:	"2.0.7",

				"javaClass":	"com.app.OPowPlugin",

				"parameters"	:	{},

				"description"	:	"The	Pow	Plugin",

				"copyrights"	:	"No	copyrights"

}

Build	the	project	and	then:

cp	target/pow-plugin-2.0.7-dist.jar	$ORIENTDB_HOME/plugins/

You	should	see	the	following	in	OrientDB	server	log:

INFO		Installing	dynamic	plugin	'pow-plugin-2.0.7-dist.jar'...	[OServerPluginManager]

INFO		pow	function	registered	[OPowPlugin]

And	now	you	can:

orientdb	{db=Pow}>	select	pow(2,10)					

----+------+------

#			|@CLASS|pow			

----+------+------

0			|null		|1024.0

----+------+------

orientdb	{db=Pow}>	select	pow(2,10,5)

----+------+----

#			|@CLASS|pow	

----+------+----

0			|null		|4.0	

----+------+----

This	small	project	is	available	here.

Creating	a	distributed	change	manager
As	more	complete	example	let's	create	a	distributed	record	manager	by	installing	hooks	to	all	the	server's	databases	and	push	these
changes	to	the	remote	client	caches.

Plugins

797

https://www.dropbox.com/s/3o448vbyh5dwx38/pow-plugin.tar.gz?dl=0


public	class	DistributedRecordHook	extends	OServerHandlerAbstract	implements	ORecordHook	{

		private	boolean	log	=	false;

		@Override

		public	void	config(OServer	oServer,	OServerParameterConfiguration[]	iParams)	{

				for	(OServerParameterConfiguration	p	:	iParams)	{

						if	(p.name.equalsIgnoreCase("log"))

								log	=	true;

				}

		}

		@Override

		public	void	onAfterClientRequest(final	OClientConnection	iConnection,	final	byte	iRequestType)	{

				if	(iRequestType	==	OChannelBinaryProtocol.REQUEST_DB_OPEN)

						iConnection.database.registerHook(this);

				else	if	(iRequestType	==	OChannelBinaryProtocol.REQUEST_DB_CLOSE)

						iConnection.database.unregisterHook(this);

		}

		@Override

		public	boolean	onTrigger(TYPE	iType,	ORecord<?>	iRecord)	{

				try	{

						if	(log)

								System.out.println("Broadcasting	record:	"	+	iRecord	+	"...");

						OClientConnectionManager.instance().broadcastRecord2Clients((ORecordInternal<?>)	iRecord,	null);

				}	catch	(Exception	e)	{

						e.printStackTrace();

				}

				return	false;

		}

		@Override

		public	String	getName()	{

				return	"DistributedRecordHook";

		}

}

Custom	commands
Custom	commands	are	useful	when	you	want	to	add	behavior	or	business	logic	at	the	server	side.

A	Server	command	is	a	class	that	implements	the	OServerCommand	interface	or	extends	one	of	the	following	abstract	classes:

OServerCommandAuthenticatedDbAbstract	if	the	command	requires	an	authentication	at	the	database
OServerCommandAuthenticatedServerAbstract	if	the	command	requires	an	authentication	at	the	server

The	Hello	World	Web

To	learn	how	to	create	a	custom	command,	let's	begin	with	a	command	that	just	returns	"Hello	world!".

OrientDB	follows	the	convention	that	the	command	name	is:

	OServerCommand<method><name>		Where:

method	is	the	HTTP	method	and	can	be:	GET,	POST,	PUT,	DELETE
name	is	the	command	name

In	our	case	the	class	name	will	be	"OServerCommandGetHello".	We	want	that	the	use	must	be	authenticated	against	the	database	to
execute	it	as	any	user.

Furthermore	we'd	like	to	receive	via	configuration	if	we	must	display	the	text	in	Italic	or	not,	so	for	this	purpose	we'll	declare	a
parameter	named	"italic"	of	type	boolean	(true	or	false).

Plugins

798

http://code.google.com/p/orient/source/browse/trunk/server/src/main/java/com/orientechnologies/orient/server/network/protocol/http/command/OServerCommand.java
http://code.google.com/p/orient/source/browse/trunk/server/src/main/java/com/orientechnologies/orient/server/network/protocol/http/command/OServerCommandAuthenticatedDbAbstract.java
http://code.google.com/p/orient/source/browse/trunk/server/src/main/java/com/orientechnologies/orient/server/network/protocol/http/command/OServerCommandAuthenticatedServerAbstract.java


package	org.example;

public	class	OServerCommandGetHello	extends	OServerCommandAuthenticatedDbAbstract	{

		//	DECLARE	THE	PARAMETERS

		private	boolean	italic	=	false;

		public	OServerCommandGetHello(final	OServerCommandConfiguration	iConfiguration)	{

				//	PARSE	PARAMETERS	ON	STARTUP

				for	(OServerEntryConfiguration	par	:	iConfiguration.parameters)	{

						if	(par.name.equals("italic"))	{

								italic	=	Boolean.parseBoolean(par.value);

						}

				}

		}

		@Override

		public	boolean	execute(final	OHttpRequest	iRequest,	OHttpResponse	iResponse)	throws	Exception	{

				//	CHECK	THE	SYNTAX.	3	IS	THE	NUMBER	OF	MANDATORY	PARAMETERS

				String[]	urlParts	=	checkSyntax(iRequest.url,	3,	"Syntax	error:	hello/<database>/<name>");

				//	TELLS	TO	THE	SERVER	WHAT	I'M	DOING	(IT'S	FOR	THE	PROFILER)

				iRequest.data.commandInfo	=	"Salutation";

				iRequest.data.commandDetail	=	"This	is	just	a	test";

				//	GET	THE	PARAMETERS

				String	name	=	urlParts[2];

				//	CREATE	THE	RESULT

				String	result	=	"Hello	"	+	name;

				if	(italic)	{

						result	=	"<i>"	+	result	+	"</i>";

				}

				//	SEND	BACK	THE	RESPONSE	AS	TEXT

				iResponse.send(OHttpUtils.STATUS_OK_CODE,	"OK",	null,	OHttpUtils.CONTENT_TEXT_PLAIN,	result);

				//	RETURN	ALWAYS	FALSE,	UNLESS	YOU	WANT	TO	EXECUTE	COMMANDS	IN	CHAIN

				return	false;

		}

		@Override

		public	String[]	getNames()	{

				return	new	String[]{"GET|hello/*	POST|hello/*"};

		}

}

Once	created	the	command	you	need	to	register	them	through	the	orientdb-server-config.xml	file.	Put	a	new	tag		<command>		under	the
tag		commands		of		<listener>		with	attribute		protocol="http"	:

		...

		<listener	protocol="http"	port-range="2480-2490"	ip-address="0.0.0.0">

				<commands>

						<command	implementation="org.example.OServerCommandGetHello"	pattern="GET|hello/*">

								<parameters>

										<entry	name="italic"	value="true"/>

								</parameters>

						</command>

				</commands>

		</listener>

Where:

implementation	is	the	full	class	name	of	the	command
pattern	is	how	the	command	is	called	in	the	format:		<HTTP-method>|<name>	.	In	this	case	it's	executed	on	HTTP	GET	with	the
URL:		/<name>	
parameters	specify	parameters	to	pass	to	the	command	on	startup
entry	is	the	parameter	pair	name/value

To	test	it	open	a	browser	at	this	address:

Plugins

799



http://localhost/hello/demo/Luca

You	will	see:

Hello	Luca

Complete	example

Below	a	more	complex	example	taken	by	official	distribution.	It	is	the	command	that	executes	queries	via	HTTP.	Note	how	to	get	a
database	instance	to	execute	operation	against	the	database:

public	class	OServerCommandGetQuery	extends	OServerCommandAuthenticatedDbAbstract	{

		private	static	final	String[]	NAMES	=	{	"GET|query/*"	};

		@Override

		public	boolean	execute(OHttpRequest	iRequest,	OHttpResponse	iResponse)	throws	Exception	{

				String[]	urlParts	=	checkSyntax(

								iRequest.url,

								4,

								"Syntax	error:	query/<database>/sql/<query-text>[/<limit>][/<fetchPlan>].<br/>Limit	is	optional	and	is	setted	to	20	by

	default.	Set	expressely	to	0	to	have	no	limits.");

				int	limit	=	urlParts.length	>	4	?	Integer.parseInt(urlParts[4])	:	20;

				String	fetchPlan	=	urlParts.length	>	5	?	urlParts[5]	:	null;

				String	text	=	urlParts[3];

				iRequest.data.commandInfo	=	"Query";

				iRequest.data.commandDetail	=	text;

				ODatabaseDocumentTx	db	=	null;

				List<OIdentifiable>	response;

				try	{

						db	=	getProfiledDatabaseInstance(iRequest);

						response	=	(List<OIdentifiable>)	db.command(new	OSQLSynchQuery<OIdentifiable>(text,	limit).setFetchPlan(fetchPlan)).exec

ute();

				}	finally	{

						if	(db	!=	null)	{

								db.close();

						}

				}

				iResponse.writeRecords(response,	fetchPlan);

				return	false;

		}

		@Override

		public	String[]	getNames()	{

				return	NAMES;

		}

}

Include	JARS	in	the	classpath
If	your	extensions	need	additional	libraries	put	the	additional	jar	files	under	the		/lib		folder	of	the	server	installation.

Debug	the	server
To	debug	your	plugin	you	can	start	your	server	in	debug	mode.

Plugins

800



Parameter Value

Main	class 	com.orientechnologies.orient.server.OServerMain	

JVM
parameters

	-server	-DORIENTDB_HOME=/opt/orientdb	-Dorientdb.www.path=src/site	-

Djava.util.logging.config.file=${ORIENTDB_HOME}/config/orientdb-server-log.properties	-

Dorientdb.config.file=${ORIENTDB_HOME}/config/orientdb-server-config.xml	

Plugins

801



Automatic	Backup	Server	Plugin
Using	this	server	plugin,	OrientDB	executes	regular	backups	on	the	databases.	It	implements	the	Java	class:

com.orientechnologies.orient.server.handler.OAutomaticBackup

Plugin	Configuration

Beginning	with	version	2.2,	OrientDB	manages	the	server	plugin	configuration	from	a	separate	JSON.	You	can	update	this	file	manually
or	through	OrientDB	Studio.

To	enable	automatic	backups,	use	the	following		<handler>		section	in	the		config/orientdb-server-config.xml		configuration	file:

<!--	AUTOMATIC	BACKUP,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->

<handler	class="com.orientechnologies.orient.server.handler.OAutomaticBackup">

				<parameters>

								<parameter	name="enabled"	value="false"/>

								<!--	LOCATION	OF	JSON	CONFIGURATION	FILE	-->

								<parameter	name="config"	value="${ORIENTDB_HOME}/config/automatic-backup.json"/>

				</parameters>

</handler>

This	section	tells	the	OrientDB	server	to	read	the	file	at		$ORIENTDB_HOME/config/automatic-backup.json		for	the	automatic	backup
configuration.

{

		"enabled":	true,

		"mode":	"FULL_BACKUP",

		"exportOptions":	"",

		"delay":	"4h",

		"firstTime":	"23:00:00",

		"targetDirectory":	"backup",

		"targetFileName":	"${DBNAME}-${DATE:yyyyMMddHHmmss}.zip",

		"compressionLevel":	9,

		"bufferSize":	1048576

}

	"enabled"		Defines	whether	it	uses	automatic	backups.	The	supported	values	are:
	true		Enables	automatic	backups.
	false		Disables	automatic	backups.	This	is	the	default	setting.

	"mode"		Defines	the	backup	mode.	The	supported	values	are:
	"FULL_BACKUP"		Executes	a	full	backup.	Prior	to	version	2.2,	this	was	the	only	mode	available.	This	operation	blocks	the
database.
	"INCREMENTAL_BACKUP"		Executes	an	incremental	backup.	Uses	one	directory	per	database.	This	operation	doesn't	block	the
database.
	"EXPORT"		Executes	an	database	export,	using	gziped	JSON	format.	This	operation	is	not	blocking.

	"exportOptions"		Defines	export	options	to	use	with	that	mode.	This	feature	was	introduced	in	version	2.2.
	"delay"		Defines	the	delay	time	for	each	backup.	Supports	the	following	suffixes:

	ms		Delay	measured	in	milliseconds.
	s		Delay	measured	in	seconds.
	m		Delay	measured	in	minutes.
	h		Delay	measured	in	hours.
	d		Delay	measured	in	days.

	"firstTime"		Defines	when	to	initiate	the	first	backup	in	the	schedule.	It	uses	the	format	of		HH:mm:ss		in	the	GMT	time	zone,	on
the	current	day.
	"targetDirectory"		Defines	the	target	directory	to	write	backups.	By	default,	it	is	set	to	the		backup/		directory.
	"targetFileName"		Defines	the	target	filename.	This	parameter	supports	the	use	of	the	following	variables,	(that	is,		"${DBNAME}-
backup.zip"		produces		mydatabase-backup.zip	):

Automatic	Backup

802



	${DBNAME}		Renders	the	database	name.
	${DATE}		Renders	the	current	date,	using	the	Java	DateTime	syntax	format.

	"dbInclude"		Defines	in	a	list	the	databases	to	include	in	the	automatic	backups.	If	empty,	it	backs	up	all	databases.
	"dbExclude"		Defines	in	a	list	the	databases	to	exclude	from	the	automatic	backups.
	"bufferSize"		Defines	the	in-memory	buffer	sizes	to	use	in	compression.	By	default,	it	is	set	to		1MB	.	Larger	buffers	mean	faster
backups,	but	they	in	turn	consume	more	RAM.
	"compressionLevel"		Defines	the	compression	level	for	the	resulting	ZIP	file.	By	default	it	is	set	to	the	maximum	level	of		9	.	Set
it	to	a	lower	value	if	you	find	that	the	backup	takes	too	much	time.

Legacy	Plugin	Configuration

In	versions	prior	to	2.2,	the	only	option	in	configuring	automatic	backups	is	to	use	the		config/orientdb-server-config.xml	
configuration	file.	Beginning	with	version	2.2	you	can	manage	automatic	backup	configuration	through	a	separate	JSON	file	or	use	the
legacy	approach.

The	example	below	configures	automatic	backups/exports	on	the	database	as	a	Server	Plugin.

<!--	AUTOMATIC	BACKUP,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->

<handler	class="com.orientechnologies.orient.server.handler.OAutomaticBackup">

		<parameters>

				<parameter	name="enabled"	value="false"	/>

					<!--	CAN	BE:	FULL_BACKUP,	INCREMENTAL_BACKUP,	EXPORT	-->

					<parameter	name="mode"	value="FULL_BACKUP"/>

					<!--	OPTION	FOR	EXPORT	-->

					<parameter	name="exportOptions"	value=""/>

				<parameter	name="delay"	value="4h"	/>

				<parameter	name="target.directory"	value="backup"	/>

				<!--	${DBNAME}	AND	${DATE:}	VARIABLES	ARE	SUPPORTED	-->

				<parameter	name="target.fileName"	value="${DBNAME}-${DATE:yyyyMMddHHmmss}.zip"	/>

				<!--	DEFAULT:	NO	ONE,	THAT	MEANS	ALL	DATABASES.	

									USE	COMMA	TO	SEPARATE	MULTIPLE	DATABASE	NAMES	-->

				<parameter	name="db.include"	value=""	/>

				<!--	DEFAULT:	NO	ONE,	THAT	MEANS	ALL	DATABASES.	

									USE	COMMA	TO	SEPARATE	MULTIPLE	DATABASE	NAMES	-->

				<parameter	name="db.exclude"	value=""	/>

				<parameter	name="compressionLevel"	value="9"/>

				<parameter	name="bufferSize"	value="1048576"/>

		</parameters>

</handler>

	enabled		Defines	whether	it	uses	automatic	backups.	Supported	values	are:
	true		Enables	automatic	backups.
	false		Disables	automatic	backups.	This	is	the	default	setting.

	mode/>		Defines	the	backup	mode.	Supported	values	are:
	FULL_BACKUP		Executes	a	full	backup.	For	versions	prior	to	2.2,	this	is	the	only	option	available.	This	operation	blocks	the
database.
	INCREMENTAL_BACKUP		Executes	an	incremental	backup.	Uses	one	directory	per	database.	This	operation	doesn't	block	the
database.
*	EXPORT		Executes	an	export	of	the	database	in	gzipped	JSON	format,	instead	of	a	backup.	This	operation	doesn't	block	the
database.

	exportOptions		Defines	export	options	to	use	with	that	mode.	This	feature	was	introduced	in	version	2.2.
	delay		Defines	the	delay	time.	Supports	the	following	suffixes:

	ms		Delay	measured	in	milliseconds.
	s		Delay	measured	in	seconds.
	m		Delay	measured	in	minutes.
	h		Delay	measured	in	hours.
	d		Delay	measured	in	days.

	firstTime		Defines	when	to	initiate	the	first	backup	in	the	schedule.	It	uses	the	format	of		HH:mm:ss		in	the	GMT	time	zone,	on
the	current	day.
	target.directory		Defines	the	target	directory	to	write	backups.	By	default,	it	is	set	to	the		backup/		directory.
	target.fileName		Defines	the	target	file	name.	The	parameter	supports	the	use	of	the	following	variables,	(that	is,		<parameter

Automatic	Backup

803

http://download.oracle.com/javase/1,5.0/docs/api/java/text/SimpleDateFormat.html


name="target.filename"	value="${DBNAME}-backup.zip"/>		produces	a		mydatabase-backup.zip		file).
	${DBNAME}		Renders	the	database	name.
	${DATE}		Renders	the	current	date,	using	the	Java	DateTime	syntax	format.

	db.include		Defines	in	a	list	the	databases	to	include	in	the	automatic	backups.	If	left	empty,	it	backs	up	all	databases.
	db.exclude		Defines	in	a	list	the	databases	to	exclude	from	automatic	backups.
	bufferSize		Defines	the	in-memory	buffer	sizes	to	use	in	compression.	By	default	it	is	set	to		1MB	.	Larger	buffers	mean	faster
backups,	but	use	more	RAM.	This	feature	was	introduced	in	version	1.7.
	compressionLevel		Defines	the	compression	level	for	the	resulting	ZIP	file.	By	default,	it	is	set	to	the	maximum	level	of		9	.	Set	it
to	a	lower	value	if	you	find	that	the	backup	takes	too	much	time.

Automatic	Backup

804

http://download.oracle.com/javase/1,5.0/docs/api/java/text/SimpleDateFormat.html


Mail	Plugin
Java	class	implementation:

com.orientechnologies.orient.server.plugin.mail.OMailPlugin

Available	since:	v.	1.2.0.

Introduction
Allows	to	send	(and	in	future	read)	emails.

Configuration
This	plugin	is	configured	as	a	Server	handler.	The	plugin	can	be	configured	in	easy	way	by	changing	parameters:

Name Description Type Example Since

enabled true	to	turn	on,	false	(default)	is	turned
off boolean true 1.2.0

	profile.<name>.mail.smtp.host	 The	SMTP	host	name	or	ip-address string smtp.gmail.com 1.2.0

	profile.<name>.mail.smtp.port	 The	SMTP	port number 587 1.2.0

	profile.<name>.mail.smtp.auth	 Authenticate	in	SMTP boolean true 1.2.0

	profile.

<name>.mail.smtp.starttls.enable	
Enable	the	starttls boolean true 1.2.0

	profile.<name>.mail.smtp.user	 The	SMTP	username string yoda@starwars.com 1.2.0

	profile.<name>.mail.from	 The	source's	email	address string yoda@starwars.com 1.7

	profile.

<name>.mail.smtp.password	
The	SMTP	password string UseTh3F0rc3 1.2.0

	profile.<name>.mail.date.format	
The	date	format	to	use,	default	is
"yyyy-MM-dd	HH:mm:ss" string yyyy-MM-dd

HH:mm:ss 1.2.0

Default	configuration	in	orientdb-server-config.xml.	Example:

<!--	MAIL,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->

<handler

class="com.orientechnologies.orient.server.plugin.mail.OMailPlugin">

		<parameters>

				<parameter	name="enabled"	value="true"	/>

				<!--	CREATE	MULTIPLE	PROFILES	WITH	profile.<name>...	-->

				<parameter	name="profile.default.mail.smtp.host"	value="smtp.gmail.com"/>

				<parameter	name="profile.default.mail.smtp.port"	value="587"	/>

				<parameter	name="profile.default.mail.smtp.auth"	value="true"	/>

				<parameter	name="profile.default.mail.smtp.starttls.enable"	value="true"	/>

				<parameter	name="profile.default.mail.from"	value="test@gmail.com"	/>

				<parameter	name="profile.default.mail.smtp.user"	value="test@gmail.com"	/>

				<parameter	name="profile.default.mail.smtp.password"	value="mypassword"	/>

				<parameter	name="profile.default.mail.date.format"	value="yyyy-MM-dd	HH:mm:ss"	/>

		</parameters>

</handler>

Usage
The	message	is	managed	as	a	map	of	properties	containing	all	the	fields	those	are	part	of	the	message.

Mail

805



Supported	message	properties:

Name Description Mandatory Example Since

from source	email	address No
to	:
"first@mail.com",
"second@mail.com"

1.7

to destination	addresses	separated	by	commas Yes
to	:
"first@mail.com",
"second@mail.com"

1.2.0

cc Carbon	copy	addresses	separated	by	commas No
cc:
"first@mail.com",
"second@mail.com"

1.2.0

bcc Blind	Carbon	Copy	addresses	separated	by	commas No
bcc	:
"first@mail.com",
"second@mail.com"

1.2.0

subject The	subject	of	the	message No
subject	:	"This
Email	plugin
rocks!"

1.2.0

message The	message's	content Yes message	:	"Hi,	how
are	you	mate?" 1.2.0

date

The	subject	of	the	message.	Pass	a	java.util.Date	object
or	a	string	formatted	following	the	rules	specified	in
"mail.date.format"	configuration	parameter	or	"yyyy-
MM-dd	HH:mm:ss"	is	taken

No,	if	not
specified
current	date
is	assumed

date	:	"2012-09-25
13:20:00" 1.2.0

attachments The	files	to	attach No 1.2.0

From	Server-Side	Functions

The	Email	plugin	install	a	new	variable	in	the	server-side	function's	context:	"mail".	"profile"	attribute	is	the	profile	name	in
configuration.

Example	to	send	an	email	writing	a	function	in	JS:

mail.send({

						profile	:	"default",

						to:	"orientdb@ruletheworld.com",

						cc:	"yoda@starwars.com",

						bcc:	"darthvader@starwars.com",

						subject:	"The	EMail	plugin	works",

						message	:	"Sending	email	from	OrientDB	Server	is	so	powerful	to	build	real	web	applications!"

				});

On	Nashorn	(>=	Java8)	the	mapping	of	JSON	to	Map	is	not	implicit.	Use	this:

mail.send(	new	java.util.HashMap{

						profile	:	"default",

						to:	"orientdb@ruletheworld.com",

						cc:	"yoda@starwars.com",

						bcc:	"darthvader@starwars.com",

						subject:	"The	EMail	plugin	works",

						message	:	"Sending	email	from	OrientDB	Server	is	so	powerful	to	build	real	web	applications!"

		});

From	Java

Mail

806



OMailPlugin	plugin	=	OServerMain.server().getPlugin("mail");

Map<String,	Object>	message	=	new	HashMap<String,	Object>();

message.put("profile",	"default");

message.put("to",						"orientdb@ruletheworld.com");

message.put("cc",						"yoda@starts.com,yoda-beach@starts.com");

message.put("bcc",					"darthvader@starwars.com");

message.put("subject",	"The	EMail	plugin	works");

message.put("message",	"Sending	email	from	OrientDB	Server	is	so	powerful	to	build	real	web	applications!");

plugin.send(message);

Mail

807



JMX	plugin
Java	class	implementation:

com.orientechnologies.orient.server.handler.OJMXPlugin

Available	since:	v.	1.2.0.

Introduction
Expose	the	OrientDB	server	configuration	through	JMX	protocol.	This	task	is	configured	as	a	Server	handler.	The	task	can	be
configured	in	easy	way	by	changing	parameters:

enabled:	true	to	turn	on,	false	(default)	is	turned	off
profilerManaged:	manage	the	Profiler	instance

Default	configuration	in	orientdb-server-config.xml

<!--	JMX	SERVER,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->

<handler	class="com.orientechnologies.orient.server.handler.OJMXPlugin">

		<parameters>

				<parameter	name="enabled"	value="false"	/>

				<parameter	name="profilerManaged"	value="true"	/>

		</parameters>

</handler>

JMX

808



Rexster
Rexster	provides	a	RESTful	shell	to	any	Blueprints-complaint	graph	database.	This	HTTP	web	service	provides:	a	set	of	standard	low-
level	GET,	POST,	and	DELETE	methods,	a	flexible	extension	model	which	allows	plug-in	like	development	for	external	services	(such	as
ad-hoc	graph	queries	through	Gremlin),	and	a	browser-based	interface	called	The	Dog	House.

A	graph	database	hosted	in	the	OrientDB	can	be	configured	in	Rexster	and	then	accessed	using	the	standard	RESTful	interface	powered
by	the	Rexster	web	server.

Installation

You	can	get	the	latest	stable	release	of	Rexster	from	its	Download	Page.	The	latest	stable	release	when	this	page	was	last	updated	was
2.5.0.

Or	you	can	build	a	snapshot	by	executing	the	following	Git	and	Maven	commands:

git	clone	https://github.com/tinkerpop/rexster.git

cd	rexster

mvn	clean	install

Rexster	is	distributed	as	a	zip	file	(also	the	building	process	creates	a	zip	file)	hence	the	installation	consist	of	unzipping	the	archive	in	a
directory	of	your	choice.	In	the	following	sections,	this	directory	is	referred	to	as	$REXSTER_HOME.

After	unzipping	the	archive,	you	should	copy	orient-client.jar	and	orient-enterprise.jar	in	$REXSTER_HOME/ext.	Make	sure	you	use
the	same	version	of	OrientDB	as	those	used	by	Rexster.	For	example	Rexster	2.5.0	uses	OrientDB	1.7.6.

You	can	find	more	details	about	Rexster	installation	at	the	Getting	Started	page.

Configuration

Refer	to	Rexster's	Configuration	page	and	OrientDB	specific	configuration	page	for	the	latest	details.

Synopsis

The	Rexster	configuration	file	rexster.xml	is	used	to	configure	parameters	such	as:	TCP	ports	used	by	Rexster	server	modules	to	listen
for	incoming	connections;	character	set	supported	by	the	Rexster	REST	requests	and	responses;	connection	parameters	of	graph
instances.

In	order	to	configure	Rexster	to	connect	to	your	OrientDB	graph,	locate	the	rexster.xml	in	the	Rexster	directory	and	add	the	following
snippet	of	code:

<rexster>

		...

		<graphs>

				...

				<graph>

						<graph-enabled>true</graph-enabled>

						<graph-name>my-orient-graph</graph-name>

						<graph-type>orientgraph</graph-type>

						<graph-file>url-to-your-db</graph-file>

						<properties>

								<username>user</username>

								<password>pwd</password>

						</properties>

				</graph>

		...

		</graphs>

</rexster>

Rexster

809

https://github.com/tinkerpop/rexster/wiki/
https://github.com/tinkerpop/rexster/downloads
http://git-scm.com/
http://maven.apache.org/
https://github.com/tinkerpop/rexster/wiki/Getting-Started
https://github.com/tinkerpop/rexster/wiki/Rexster-Configuration
https://github.com/tinkerpop/rexster/wiki/Specific-Graph-Configurations#orientdb


In	the	configuration	file,	there	could	be	a	sample		graph		element	for	an	OrientDB	instance	(	<graph-name>orientdbsample<graph-name>	):
you	might	edit	it	according	to	your	needs.

The		<graph-name>		element	must	be	unique	within	the	list	of	configured	graphs	and	reports	the	name	used	to	identify	your	graph.	The
	<graph-enabled>		element	states	whether	the	graph	should	be	loaded	and	managed	by	Rexster.	Setting	its	contents	to		false		will
prevent	that	graph	from	loading	to	Rexster;	setting	explicitly	to		true		the	graph	will	be	loaded.	The		<graph-type>		element	reports	the
type	of	graph	by	using	an	identifier	(	orientgraph		for	an	OrientDB	Graph	instance)	or	the	full	name	of	the	class	that	implements	the
GraphConfiguration	interface	(com.tinkerpop.rexster.OrientGraphConfiguration	for	an	OrientDB	Graph).

The		<graph-file>		element	reports	the	URL	to	the	OrientDB	database	Rexster	is	expected	to	connect	to:

	plocal:*path-to-db*	,	if	the	graph	can	be	accessed	over	the	file	system	(e.g.		plocal:/tmp/graph/db	)
	remote:*url-to-db*	,	if	the	graph	can	be	accessed	over	the	network	and/or	if	you	want	to	enable	multiple	accesses	to	the	graph
(e.g.		remote:localhost/mydb	)
	memory:*db-name*	,	if	the	graph	resides	in	memory	only.	Updates	to	this	kind	of	graph	are	never	persistent	and	when	the	OrientDB
server	ends	the	graph	is	lost

The		<username>		and		<password>		elements	reports	the	credentials	to	access	the	graph	(e.g.		admin			admin	).

Run
Note:	only	Rexster	0.5-SNAPSHOT	and	further	releases	work	with	OrientDB	GraphEd
In	this	section	we	present	a	step-by-step	guide	to	Rexster-ify	an	OrientDB	graph.
We	assume	that:

you	created	a	Blueprints	enabled	graph	called	orientGraph	using	the	class
	com.tinkerpop.blueprints.pgm.impls.orientdb.OrientGraph	

you	inserted	in	the	Rexster	configuration	file	a		<graph>		element	with	the		<graph-name>		element	set	to		my-orient-graph		and	the
	graph-file		element	set	to		remote:orienthost/orientGraph		(if	you	do	not	remember	how	to	do	this,	go	back	to	the	Configuration
section).
Be	sure	that	the	OrientDB	server	is	running	and	you	have	properly	configured	the		<graph-file>		location	and	the	access
credentials	of	your	graph.
Execute	the	startup	script	($REXSTER_HOME/bin/rexster.bat	or	$REXSTER_HOME/bin/rexster.sh)
The	shell	console	appears	and	you	should	see	the	following	log	message	(line	10	states	that	the	OrientDB	graph	instance	has	been
loaded):

[INFO]	WebServer	-	.:Welcome	to	Rexster:.

[INFO]	GraphConfigurationContainer	-	Graph	emptygraph	-	tinkergraph[vertices:0	edges:0]	loaded

[INFO]	RexsterApplicationGraph	-	Graph	[tinkergraph]	-	configured	with	allowable	namespace	[tp:gremlin]

[INFO]	GraphConfigurationContainer	-	Graph	tinkergraph	-	tinkergraph[vertices:6	edges:6]	loaded

[INFO]	RexsterApplicationGraph	-	Graph	[tinkergraph-readonly]	-	configured	with	allowable	namespace	[tp:gremlin]

[INFO]	GraphConfigurationContainer	-	Graph	tinkergraph-readonly	-	(readonly)tinkergraph[vertices:6	edges:6]	loaded

[INFO]	RexsterApplicationGraph	-	Graph	[gratefulgraph]	-	configured	with	allowable	namespace	[tp:gremlin]

[INFO]	GraphConfigurationContainer	-	Graph	gratefulgraph	-	tinkergraph[vertices:809	edges:8049]	loaded

[INFO]	GraphConfigurationContainer	-	Graph	sailgraph	-	sailgraph[memorystore]	loaded

[INFO]	GraphConfigurationContainer	-	Graph	my-orient-graph	-	orientgraph[remote:orienthost/orientGraph]	loaded

[INFO]	GraphConfigurationContainer	-	Graph	neo4jsample	-		not	enabled	and	not	loaded.

[INFO]	GraphConfigurationContainer	-	Graph	dexsample	-		not	enabled	and	not	loaded.

[INFO]	MapResultObjectCache	-	Cache	constructed	with	a	maximum	size	of	1000

[INFO]	WebServer	-	Web	Server	configured	with	com..sun..jersey..config..property..packages:	com.tinkerpop.rexster

[INFO]	WebServer	-	No	servlet	initialization	parameters	passed	for	configuration:	admin-server-configuration

[INFO]	WebServer	-	Rexster	Server	running	on:	[http://localhost:8182]

[INFO]	WebServer	-	Dog	House	Server	running	on:	[http://localhost:8183]

[INFO]	ShutdownManager$ShutdownSocketListener	-	Bound	shutdown	socket	to	/127.0.0.1:8184.	Starting	listener	thread	for	sh

utdown	requests.

Now	you	can	use	Rexster	REST	API	and	The	Dog	House	web	application	to	retrieve	and	modify	the	data	stored	in	the	OrientDB
graph.

Rexster

810

https://github.com/tinkerpop/rexster/blob/master/rexster-core/src/main/java/com/tinkerpop/rexster/config/GraphConfiguration.java
https://github.com/orientechnologies/orientdb/blob/master/graphdb/src/main/java/com/tinkerpop/rexster/OrientGraphConfiguration.java
https://github.com/tinkerpop/rexster/wiki/Basic-REST-API
https://github.com/tinkerpop/rexster/wiki/The-Dog-House


Gephi	Visual	Tool

Introduction
Gephi	is	a	visual	tool	to	manipulate	and	analyze	graphs.	Gephi	is	an	Open	Source	project.	Take	a	look	at	the	amazing	features.

Gephi	can	be	used	to	analyze	graphs	extracted	from	OrientDB.	There	are	2	level	of	integration:

the	Streaming	plugin	that	calls	OrientDB	server	via	HTTP.	OrientDB	exposes	the	new	"/gephi"	command	in	HTTP	GET	method
that	executes	a	query	and	returns	the	result	set	in	"gephi"	format.
Gephi	importer	for	Blueprints

In	this	mini	guide	we	will	take	a	look	at	the	first	one:	the	streaming	plugin.

For	more	information:

Gephi	Graph	Streaming	format
Graph	Streaming	plugin
Tutorial	video

Getting	started
Before	to	start	assure	you've	OrientDB	1.1.0-SNAPSHOT	or	greater.

Download	and	install

1.	 To	download	Gephi	goto:	http://gephi.org/users/download/
2.	 Install	it,	depends	on	your	OS
3.	 Run	Gephi
4.	 Click	on	the	menu	Tools	->	Plugins

Gephi	Graph	Render

811

http://gephi.org
http://gephi.org
http://gephi.org/features/
http://gephi.org
https://gephi.org/plugins/graph-streaming/
https://github.com/datablend/gephi-blueprints-plugin/wiki
https://github.com/gephi/gephi/wiki
https://gephi.org/plugins/graph-streaming/
http://www.youtube.com/watch?v=7SW_FDiY0sg
https://oss.sonatype.org/content/groups/public/com/orientechnologies/orientdb/1.1.0-SNAPSHOT/
http://gephi.org/users/download/


5.	 Click	on	the	tab	Available	Plugins
6.	 Select	the	plugin	Graph	Streaming,	click	on	the	Install	button	and	wait	the	plugin	is	installed

Import	a	graph	in	Gephi

Before	to	import	a	graph	assure	a	OrientDB	server	instance	is	running	somewhere.	For	more	information	watch	this	video.

1.	 Go	to	the	Overview	view	(click	on	Overview	top	left	button)
2.	 Click	on	the	Streaming	tab	on	the	left
3.	 Click	on	the	big	+	green	button
4.	 Insert	as	Source	URL	the	query	you	want	to	execute.	Example:		http://localhost:2480/gephi/demo/sql/select%20from%20v/100	

(below	more	information	about	the	syntax	of	query)
5.	 Select	as	Stream	type	the	JSON	format	(OrientDB	talks	in	JSON)
6.	 Enable	the	Use	Basic	Authentication	and	insert	the	user	and	password	of	OrientDB	database	you	want	to	access.	The	default

user	is	"admin"	as	user	and	password
7.	 Click	on	OK	button

Executing	a	query
The	OrientDB's	"/gephi"	HTTP	command	allow	to	execute	any	query.	The	format	is:

http://<host>:<port>/gephi/<database>/<language>/<query>[/<limit>]

Where:

	host		is	the	host	name	or	the	ip	address	where	the	OrientDB	server	is	running.	If	you're	executing	OrientDB	on	the	same	machine
where	Gephi	is	running	use	"localhost"
	port		is	the	port	number	where	the	OrientDB	server	is	running.	By	default	is	2480.
	database		is	the	database	name
	language	

	query	,	the	query	text	following	the	URL	encoding	rules.	For	example	to	use	the	spaces	use		%20	,	so	the	query		select	from	v	
becomes		select%20from%20v	
	limit	,	optional,	set	the	limit	of	the	result	set.	If	not	defined	20	is	taken	by	default.		-1		means	no	limits

SQL	Graph	language

To	use	the	OrientDB's	SQL	language	use		sql		as	language.	For	more	information	look	at	the	SQL-Syntax.

For	example,	to	return	the	first	1,000	vertices	(class	V)	with	outgoing	connections	the	query	would	be:

SELECT	FROM	V	WHERE	out.size()	>	0

Executed	on	"localhost"	against	the	"demo"	database	+	encoding	becomes:

http://localhost:2480/gephi/demo/sql/select%20from%20V%20where%20out.size()%20%3E%200/1000

GREMLIN	language
To	use	the	powerful	GREMLIN	language	to	retrieve	the	graph	or	a	portion	of	it	use		gremlin		as	language.	For	more	information	look	at
the	GREMLIN	syntax.

For	example,	to	return	the	first	100	vertices:

g.V[0..99]

Gephi	Graph	Render

812

http://www.youtube.com/watch?v=7SW_FDiY0sg
http://www.w3schools.com/tags/ref_urlencode.asp


Executed	on	"localhost"	against	the	"demo"	database	+	encoding	becomes:

http://localhost:2480/gephi/demo/gremlin/g.V%5B0..99%5D/-1

For	more	information	about	using	Gephi	look	at	Learn	how	to	use	Gephi

Gephi	Graph	Render

813

http://gephi.org/users/


spider-box
spider-box	is	not	really	a	"plug-in",	but	more	a	quick	way	to	set	up	an	environment	to	play	with	OrientDB	in	a	local	VM.	It	requires	a
virtualization	system	like	Virtualbox,	VMWare	Fusion	or	Parallels	and	the	provisioning	software	Vagrant.

Once	installed,	you	can	very	quickly	start	playing	with	the	newest	version	of	OrientDB	Studio	or	the	console.	Or	even	start	developing
software	with	OrientDB	as	the	database.

spider-box	is	configured	mainly	to	build	a	PHP	development	environment.	But,	since	it	is	built	on	Puphpet,	you	can	easily	change	the
configuration,	so	Python	or	even	node.js	is	also	installed.	Ruby	is	installed	automatically.

If	you	have	questions	about	changing	configuration	or	using	spider-box,	please	do	ask	in	an	issue	in	the	spider-box	repo.

Have	fun	playing	with	OrientDB	and	spider-box!

Note:	Neo4j	and	Gremlin	Server	are	also	installed,	when	you		vagrant	up		spider-box.

spider-box

814

https://github.com/spider/spider-box
https://www.virtualbox.org/
https://www.vmware.com/de/products/fusion
http://www.parallels.com/
https://www.vagrantup.com/
https://puphpet.com/


Contribute	to	OrientDB
In	order	to	contribute	issues	and	pull	requests,	please	sign	OrientDB's	Contributor	License	Agreement.	The	purpose	of	this	agreement	is
to	protect	users	of	this	codebase	by	ensuring	that	all	code	is	free	to	use	under	the	stipulations	of	the	Apache2	license.

Pushing	into	main	repository

OrientDB	uses	different	branches	to	support	the	development	and	release	process.	The		develop		branch	contains	code	under
development	for	which	there's	not	a	stable	release	yet.	When	a	stable	version	is	released,	a	branch	for	the	hotfix	is	created.	Each	stable
release	is	merged	on	master	branch	and	tagged	there.	As	the	time	of	writing	this	notes,	the	state	of	branches	is:

develop:	work	in	progress	for	next	2.2.x	release	(2.2.0-SNAPSHOT)
2.1.x:	hot	fix	for	next	2.1.x	stable	release	(2.1.10-SNAPSHOT)
2.0.x:	hot	fix	for	next	2.0.x	stable	release	(2.0.17-SNAPSHOT)
last	tag	on	master	is	2.1.9

If	you'd	like	to	contribute	to	OrientDB	with	a	patch	follow	the	following	steps:

fork	the	repository	interested	in	your	change.	The	main	one	is	https://github.com/orientechnologies/orientdb,	while	some	other
components	reside	in	other	projects	under	Orient	Technologies	umbrella.
clone	the	forked	repository
select	the	branch,	e.g	the	develop	branch:

	git	checkout	develop	

apply	your	changes	with	your	favourite	editor	or	IDE
test	that	Test	Suite	hasn't	been	broken	by	running:

	mvn	clean	test	

if	all	the	tests	pass,	then	do	a	Pull	Request	(PR)	against	the	branch	(e.g.:	"develop")	on	GitHub	repository	and	write	a	comment
about	the	change.	Please	don't	send	PR	to	"master"	because	we	use	that	branch	only	for	releasing

Documentation

If	you	want	to	contribute	to	the	OrientDB	documentation,	the	right	repository	is:	https://github.com/orientechnologies/orientdb-docs.
Every	24-48	hours	all	the	contributions	are	reviewed	and	published	on	the	public	documentation.

Code	formatting

You	can	find	eclipse	java	formatter	config	file	here:	_base/ide/eclipse-formatter.xml.

If	you	use	IntelliJ	IDEA	you	can	install	this	plugin	and	use	formatter	profile	mentioned	above.

Debugging

Run	OrientDB	as	standalone	server

The	settings	to	run	OrientDB	Server	as	stand-alone	(where	the	OrientDB's	home	is		/repositories/orientdb/releases/orientdb-
community-2.2-SNAPSHOT	)	are:

Main	Class:		com.orientechnologies.orient.server.OServerMain		VM	parameters:

-server

-DORIENTDB_HOME=/repositories/orientdb/releases/orientdb-community-2.2-SNAPSHOT

-Dorientdb.www.path=src/site

-Djava.util.logging.config.file=${ORIENTDB_HOME}/config/orientdb-server-log.properties

-Dorientdb.config.file=${ORIENTDB_HOME}/config/orientdb-server-config.xml

-Drhino.opt.level=9

Contribute	to	OrientDB

815

https://www.clahub.com/agreements/orientechnologies/orientdb
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/orientechnologies/orientdb
https://github.com/orientechnologies/
https://github.com/orientechnologies/orientdb-docs
http://orientdb.com/docs/last/
https://github.com/orientechnologies/orientdb/blob/master/_base/ide/eclipse-formatter.xml
http://plugins.jetbrains.com/plugin/?id=6546


Use	classpath	of	module:		orientdb-graphdb	

Run	OrientDB	distributed

The	settings	to	run	OrientDB	Server	as	distributed	(where	the	OrientDB's	home	is		/repositories/orientdb/releases/orientdb-
community-2.2-SNAPSHOT	)	are:

Main	Class:		com.orientechnologies.orient.server.OServerMain		VM	parameters:

-server

-DORIENTDB_HOME=/repositories/orientdb/releases/orientdb-community-2.2-SNAPSHOT

-Dorientdb.www.path=src/site

-Djava.util.logging.config.file=${ORIENTDB_HOME}/config/orientdb-server-log.properties

-Dorientdb.config.file=${ORIENTDB_HOME}/config/orientdb-server-config.xml

-Drhino.opt.level=9

-Ddistributed=true

Use	classpath	of	module:		orientdb-distributed	

In	order	to	debug	OrientDB	in	distributed	mode,	changed	the	scope	to	"runtime"	in	file	distributed/pom.xml:

<groupId>com.orientechnologies</groupId>

<artifactId>orientdb-graphdb</artifactId>

<version>${project.version}</version>

<scope>runtime</scope>

In	this	way	IDE	like	IntelliJ	can	start	the	server	correctly	that	requires	graphdb	dependency.

Contribute	to	OrientDB

816



The	Team
If	you	want	to	contribute	to	the	project,	follow	the	Contributor	rules.

Committers
Committers	have	reached	the	Joda	Level	OrientDB	certification.	They	coordinates	updates,	patches,	new	tasks	and	answer	actively	to
the	Google	Group.	They	talk	in	a	private	Mailing	List	to	take	decision	all	together.	All	the	committers	refer	to	the	Committer's	guide.

Luca	Garulli

	Description	Luca	is	the	original	author	of	OrientDB	product	and	the	main	committer.	In
order	to	handle	indexes	in	efficient	way	Luca	has	created	the	new	MVRB-Tree	algorithm	(it	was	called	RB+Tree	but	another	different
algorithm	already	exists	with	this	name)	as	mix	of	Red-Black	Tree	and	B+Tree.	MVRB	stands	for	Multi	Value	Red	Black	because	stores
multiple	values	in	each	tree	node	instead	of	just	one	as	RB-Tree	does.	MVRB-Tree	consumes	less	than	half	memory	of	the	RB-Tree
implementation	mantaining	the	original	speed	while	it	balances	the	tree	on	insertion/update.	Furthermore	the	MVRB-Tree	allows	fast
retrieving	and	storing	of	nodes	in	persistent	way.	He	is	member	of	the	Sun	Microsystems	JDO	1.0	Expert	Group	(JSR#12)	and	JDO	2.0
Expert	Group	(JSR#243)	for	the	writing	of	JDO	standard.
Company	OrientDB	Ltd
Links	Twitter	-	Google+	-	VisualizeMe	-	LinkedIn	-	Blog	-	Ohloh
Since	2009

Artem	Orobets

	Description	Committer	since	2012	and	contributor	since	2011.	He	started	diving	into	indexes,	composite	indexes	and	many	other
was	introduced.
He	have	deep	knowledge	about	the	MVRB-Tree	algorithm,	the	optimization	of	the	indexes	on	queries,	Transactions	and	Binary	storage.
Links	Twitter	LinkedIn
Since	2012

Andrey	Lomakin

	Description	Committer	since	2012	and	contributor	since	2011.	He	started	diving	into	indexes,	composite	indexes	and	many	other
was	introduced.
He	is:

1.	 Author	of	disk	based	storage	system	in	OrientDB	(plocal)	which	provides	such	features	as	durability	and	thread	safety.	Durability
is	achieved	using	write-ahead	logging	approach.

2.	 Author	of	"direct	memory"	disk	cache	(it	is	replacement	of	MMAP	which	is	used	underneath	of	all	plocal	components)	which	is
based	on	2Q	and	WOW	cache	algorithms.

3.	 Author	of	index	system.	Both	hash	and	sbtree	indexes.
4.	 Co-author	(together	with	Artem	Orobets)	modern	implementation	of	graph	relationships.	

The	Team

817

https://github.com/orientechnologies/orientdb/wiki/Contribute-to-OrientDB
http://orientechnologies.com/certification.htm
http://groups.google.com/group/orient-database
http://www.jcp.org/en/jsr/detail?id=12
http://orientdb.com
http://twitter.com/lgarulli
https://plus.google.com/u/0/111607061083712272202/posts
http://vizualize.me/luca.garulli
http://www.linkedin.com/in/garulli
http://zion-city.blogspot.it
http://www.ohloh.net/accounts/lvca
https://twitter.com/#!/Dr_EniSh
http://ua.linkedin.com/in/artemorobets


Company	OrientDB	Ltd
Links	Twitter	LinkedIn
Since	2012

Luigi	Dell'Aquila

	Description	10	years	experience	as	an	ICT	consultant,	passionate	software	developer	and	Open
Source	enthusiast.	Luigi	managed	OrientDB	Academy	since	2013,	and	since	2014	he	manages	Orient	Technologies	consulting	services.
He	is	also	one	of	the	main	OrientDB	core	committers,	mainly	focused	on	OrientSQL,	query	execution	and	optimization.
Company	OrientDB	Ltd
Links	Twitter	-	LinkedIn	
Since	2013

Luca	Molino</h1>

	Description	Contributor	since	2010	and	committer	since	2012	Luca	is	author	of	various	Http	commands	and	the	network	protocol
multipart	management;	author	of	the	v1.0	ObjectDatabase	implementation;	author	of	the	centralized	Fetching	strategy;	author	of	the
FIND	REFERENCES	SQL	command;	author	of	the	ttl	bash	orient	console;	worked	on	SQL	commands,	Storage	creation\deleting	and
more.
Company	Asset	Data
Links	Twitter	GitHub
Since	2012

Contributors
Contributors	are	all	the	people	that	contribute	in	any	way	to	the	OrientDB	development	as	code,	tests,	documentation	or	other.	They
talk	in	a	private	Mailing	List	with	all	the	other	committers	and	contributors	and	are	updated	on	changes	in	internal	stuff	like	binary
protocol.	One	time	patch	doesn't	make	you	a	contributor,	but	if	you're	developing	a	driver	or	you	sent	more	patches	then	you	are	a
candidate	to	figure	in	this	list.

Contributors	(in	alphabetic	order):

Anton	Terekhov

	Description	Web	developer	since	2001,	PHP	developer	since	2002.	Developer	and	maintainer	of	OrientDB-PHP	driver	for	binary
protocol	(https://github.com/AntonTerekhov/OrientDB-PHP),	bug	hunter,	binary	protocol	tester	:-)	.	Speaker	on	two	Russian	IT-
conferences.	Founder,	CEO	and	Lead	Developer	of	own	company.	Now	specialized	at	high	load,	distributed	web	systems.
Company	NetMonsters
Links	Facebook
Since	2011

Artyom	Loginov

The	Team

818

http://orientdb.com
https://twitter.com/#!/Andrey_Lomakin
http://ua.linkedin.com/in/andreylomakin
http://orientdb.com
http://twitter.com/ldellaquila
https://it.linkedin.com/in/luigidellaquila
http://www.assetdata.it
http://twitter.com/MaDaPHaKa
http://github.com/MaDaPHaKa
https://github.com/AntonTerekhov/OrientDB-PHP
http://netmonsters.ru
http://www.facebook.com/anton.terekhov


Description	Artem	took	part	in	MMAP	file	improvement
Since	2011

Dino	Ciuffetti

Description	Dino	is	responsable	of	the	Cloud	infrastructure	of	NuvolaBase,	providing	OrientDB	databases	as	service.	He	develop	in
PHP	but	his	main	skill	is	System	Administrator	and	hacking	on	Linux	platforms.
Since	2012

Federico	Fissore

	Description	Federico	references	to	himself	in	the	third	person	and	develops	the	node.js	driver,	which	powers	its	baby
creature,	http://presentz.org
Links	GitHub	Twitter	LinkedIn	Google+
Since

Gabriel	Petrovay

	Description	Gabriel	has	been	started	the	node.js	OrientDB	driver	that	implements	the	binary	protocol.	This	helped
discovering	some	problems	in	the	binary	protocol.	Also	helped	a	little	with	the	corresponding	documentation	pages.
Links	Twitter	LinkedIn
Since	2012

Johann	Sorel

Description	Java	Developer	specialized	in	Geographic	Information	Systems	(GIS).	Core	developer	on	Geotoolkit	project
(http://www.geotoolkit.org)	and	related	projects	:	GeoAPI,	Mapfaces,	Constellation,	MDWeb,	Puzzle-GIS.	Member	at	the	Open
Geospatial	Consortium	(OGC)	for	elaboration	of	geographic	specifications.	Contributions	on	OrientDB	are	related	to	modularisation
and	performances.
Company	Geomatys
Links	Web	Site	Ohloh
Since	2013,	contributors	since	2012

Rus	V.	Brushkoff

	Description	Contributed	C++	binding	(https://github.com/Sfinx/orientpp)
Company	SfinxSoft
Links	LinkedIn
Since	2012

Tomas	Bosak

The	Team

819

http://www.nuvolabase.com
http://presentz.org
https://github.com/ffissore
https://twitter.com/fridrik
https://www.linkedin.com/in/fissore
https://plus.google.com/114091868176609494289
http://twitter.com/gabipetrovay
http://ch.linkedin.com/in/gabrielpetrovay
http://www.geotoolkit.org
http://www.geomatys.com
http://jsorel.developpez.com
http://www.ohloh.net/accounts/Eclesia
https://github.com/Sfinx/orientpp
http://sfinxsoft.com/
http://ua.linkedin.com/in/sfinx


Description	Tomas	is	developing	and	maintaining	C#	binary	protocol	driver	for	OrientDB.
Company	ONXPO
Links	Home	Page	GitHub	Twitter	LinkedIn
Since	2012

The	Team

820

https://github.com/yojimbo87/OrientDB-NET.binary
http://www.onxpo.com/
http://yojimbo87.github.com/
https://github.com/yojimbo87
https://twitter.com/yojimbo87
http://www.linkedin.com/in/tomasbosak


Hackaton
Hackatons	are	the	appointement	where	OrientDB	old	and	new	committers	and	contributors	work	together	in	few	hours,	on	the	same
spot,	or	connected	online.

The	draft	rules	are	(please	contribute	to	improve	it):

1.	 Committers	will	support	contributors	and	new	users	on	Hackaton
2.	 A	new	Google	Hangout	will	be	created,	so	if	you	want	to	attendee	please	send	me	your	gmail/gtalk	account
3.	 We'll	use	the	hangout	to	report	to	the	committer	issues	to	close,	or	any	questions	about	issues
4.	 We'll	start	from	current	release	(1.7)	and	then	go	further	(2.0,	2.1,	no-release-tag)
5.	 If	the	issue	is	pretty	old	(>4	months),	comment	it	about	trying	the	last	1.7-rc2.	We	could	have	some	chance	the	issue	has	already

been	fixed
6.	 If	the	problem	is	with	a	SQL	query,	you	could	try	to	reproduce	against	the	GratefulDeadConcerts	database	or	even	an	empty

database.	If	you	succeed	on	reproduce	it,	please	comment	with	additional	information	about	the	issue

Contribution	from	Java	Developers

1.	 If	you're	a	Java	developer	and	you	can	debug	inside	OrientDB	code	(that's	would	be	great)	you	could	include	more	useful
information	about	the	issue	or	even	fix	it

2.	 If	you	think	the	issue	has	been	fixed	with	your	patch,	please	run	all	the	test	cases	with:
ant	clean	test
mvn	clean	test

3.	 If	all	tests	pass,	send	us	a	Pull	Request	(see	below)

Contribution	to	the	Documentation

1.	 We're	aware	to	have	not	the	best	documentation	of	the	planet,	so	if	you	can	improve	on	this	would	be	awesome
2.	 JavaDoc,	open	a	Java	class,	and:

i.	 add	the	JavaDoc	at	the	top	of	the	class.	This	is	the	most	important	documentation	in	code	we	can	have.	if	it's	pertinent
ii.	 add	the	JavaDoc	for	the	public	methods.	It't	better	having	a	description	about	the	method	than	the	detail	of	all	the	parameters,

exceptions,	etc

Send	a	Pull	Request!

We	use	GitHub	and	it's	fantastic	to	work	in	a	team.	In	order	to	make	our	life	easier,	the	best	way	to	contribute	is	with	a	Pull	Request:

1.	 Goto	your	GitHub	account.	if	you	don't	have	it,	create	it	in	2	minutes:	www.github.com
2.	 Fork	this	project:	https://github.com/orientechnologies/orientdb,	or	any	other	projects	you	want	to	contribute
3.	 Commit	locally	against	the	"develop"	branch
4.	 Push	your	changes	to	your	forked	repository	on	GitHub
5.	 Send	us	a	Pull	Request	and	wait	for	the	merging

Hackaton

821

https://github.com/orientechnologies/orientdb


Report	an	Issue
Very	often	when	a	new	issue	is	open	it	lacks	some	fundamental	information.	This	slows	down	the	entire	process	because	the	first
question	from	the	OrientDB	team	is	always	"What	release	of	OrientDB	are	you	using?"	and	every	time	a	Ferret	dies	in	the	world.

So	please	add	more	information	about	your	issue:

1.	 OrientDB	release?	(If	you're	using	a	SNAPSHOT	please	attach	also	the	build	number	found	in	"build.number"	file)
2.	 What	steps	will	reproduce	the	problem?	1.	2.	3.
3.	 Settings.	If	you're	using	custom	settings	please	provide	them	below	(to	dump	all	the	settings	run	the	application	using	the	JVM

argument	-Denvironment.dumpCfgAtStartup=true)
4.	 What	is	the	expected	behavior	or	output?	What	do	you	get	or	see	instead?
5.	 If	you're	describing	a	performance	or	memory	problem	the	profiler	dump	can	be	very	useful	(to	dump	it	run	the	application	using

the	JVM	arguments	-Dprofiler.autoDump.reset=true	-Dprofiler.autoDump.interval=10	-Dprofiler.enabled=true)

Now	you're	ready	to	create	a	new	one:	https://github.com/orientechnologies/orientdb/issues/new

Report	an	issue

822

https://github.com/orientechnologies/orientdb/issues/new


Get	in	touch
We	want	to	make	it	super-easy	for	OrientDB	users	and	contributors	to	talk	to	us	and	connect	with	each	other,	to	share	ideas,	solve
problems	and	help	make	OrientDB	awesome.	Here	are	the	main	channels	we're	running	currently,	we'd	love	to	hear	from	you	on	one	of
them:

Google	Group

OrientDB	Google	Group

The	OrientDB	Google	Group	(aka	Community	Group)	is	a	good	first	stop	for	a	general	inquiry	about	OrientDB	or	a	specific	support
issue	(e.g.	trouble	setting	OrientDB	up).	It's	also	a	good	forum	for	discussions	about	the	roadmap	or	potential	new	functionality.

StackOverflow

StackOverflow	OrientDB	tag

Feel	free	to	ask	your	questions	on	StackOverflow	under	"orientdb"	and	"orient-db"	tags.

Gitter.io

The	best	Web	Chat,	where	we	have	an	open	channel.	Use	this	is	you	have	a	question	about	OrientDB.

IRC
	#orientdb	

We're	big	fans	of	IRC	here	at	OrientDB.	We	have	a	#orientdb	channel	on	Freenode	-	stop	by	and	say	hi,	you	can	even	use	Freenode's
webchat	service	so	don't	need	to	install	anything	to	access	it.

Twitter
@orientdb

Follow	and	chat	to	us	on	Twitter.

GitHub

OrientDB	issues

If	you	spot	a	bug,	then	please	raise	an	issue	in	our	main	GitHub	project	orientechnologies/orientdb.	Likewise	if	you	have	developed	a
cool	new	feature	or	improvement	in	your	OrientDB	fork,	then	send	us	a	pull	request	against	the	"develop"	branch!

If	you	want	to	brainstorm	a	potential	new	feature,	then	the	OrientDB	Google	Group	(see	above)	is	probably	a	better	place	to	start.

Email

info@orientdb.com

If	you	want	more	information	about	Commercial	Support,	Consultancy	or	Training,	email	us.

Get	in	touch

823

https://groups.google.com/forum/#!forum/orient-database
https://groups.google.com/forum/#!forum/orient-database
http://stackoverflow.com/questions/tagged/orientdb
https://gitter.im/orientechnologies/orientdb
http://webchat.freenode.net/
https://twitter.com/orientdb
https://github.com/orientechnologies/orientdb/issues?state=open
mailto:info@orientdb.com
http://www.orientechnologies.com/support/
http://www.orientechnologies.com/consulting/
http://www.orientechnologies.com/training/


More	on	Tutorials

We	decided	to	provide	a	Getting	Started	video	course	for	FREE!	This	course
is	designed	to	help	developers	become	productive	and	familiar	with
OrientDB	and	related	tools	in	the	fastest	way	possible.	For	our	initial
launch,	we	have	decided	to	use	the	Udemy.com	platform	to	provide	the
most	immersive,	wide	reaching	platform	possible.

This	is	a	collection	of	tutorials	about	OrientDB.

External	tutorials

Miscellaneous

Getting	Started	with	OrientDB|Video	course	by	Petter	Graff|
Graph	databases	OrientDB	to	the	rescue
Graph	in	PHP	through	OrientDB
GraphDB	with	flexible	model

Italian

Step-by-step	tutorial	about	the	usage	of	OrientDB:

Guida	all'uso	di	OrientDB:	introduzione	al	mondo	NoSQL
Guida	all'uso	di	OrientDB:	primo	utilizzo
Guida	all'uso	di	OrientDB:	i	concetti	di	RecordID	e	Cluster
Guida	all'uso	di	OrientDB:	Query	SQL	su	un	database	NoSQL
Guida	all'uso	di	OrientDB:	Comandi	SQL
Guida	all'uso	di	OrientDB:	Java	API

HTML.it	guide	to	OrientDB:

Introduzione	ad	OrientDB

Tecnicume	blog	by	Marco	Berri:

OrientDB	-	primi	passi	di	Embedding	in	java
Metodi	di	scrittura:	ODocument	e	Pojo	(Embedding	in	java)
Import	da	csv	relazionali,	relazioni,	archiviare	file	e	query

Japanese

Try	to	manipulate	the	OrientDB	from	java	(Part	RawGraphDatabase):

javaOrientDB(RawGraphDatabase)

Make	GraphDB	OrientDB	app	deployment	experience:

1.	 Part	1

Step-by-step	tutorial	by	Junji	Takakura:

Part	1
Part	2
Part	3

More	Tutorials

824

http://orientdb.com/getting-started/
http://pettergraff.blogspot.it/2014/01/getting-started-with-orientdb.html
http://www.odino.org/327/graph-databases-orientdb-to-the-rescue
http://www.odino.org/328/graph-in-php-through-orientdb
http://www.odino.org/346/orientdb-the-graph-db-for-the-web
http://www.programmazione.it/index.php?entity=eitem&idItem=46035
http://www.programmazione.it/index.php?entity=eitem&idItem=46036
http://www.programmazione.it/index.php?entity=eitem&idItem=46310
http://www.programmazione.it/index.php?entity=eitem&idItem=46790
http://www.programmazione.it/index.php?entity=eitem&idItem=47075
http://www.programmazione.it/index.php?entity=eitem&idItem=47585
http://java.html.it/articoli/leggi/4039/nosql-in-java-introduzione-ad-orientdb/
http://tecnicume.blogspot.com/2011/04/orientdb-primi-passi-di-embedding-in.html
http://tecnicume.blogspot.com/2011/05/orientdb-metodi-di-scrittura-odocument.html
http://tecnicume.blogspot.com/2011/05/orientdb-import-da-csv-relazionali.html
http://d.hatena.ne.jp/tm8r/20120416/1334581009
http://fungoing.jp/2011/08/379
http://snakemanshow.blogspot.com/2010/09/nosql-orientdb-1.html
http://snakemanshow.blogspot.com/2010/09/nosql-orientdb-2.html
http://snakemanshow.blogspot.com/2011/04/nosql-orientdb-3.html


Presentations

Videos	and	Presentations	in	English

Video	Switching	from	relational	to	the	graph	model	by	Luca	Garulli	at	All	Your	Base	conference	on	November,	23rd	2012

Slides
Video	Graph	databases	and	PHP:	time	for	serious	stuff	by	Alessandro	Nadalin	and	David	Funaro	at	PHPcon	Poland	on	October
21,	2011

Slides
Video:	Internet	Apps	powered	by	NoSQL	and	JavaScript	by	Luca	Garulli	at	JS	Everywhere	in	Paris	(France)	on	November	17th
2012

Slides
Video	:	Switching	from	the	relational	to	the	graph	model	by	Luca	Garulli	at	NoSQL	Matters	in	Barcelona	(Spain)	on	October

Presentations

825

http://allyourbaseconf.com
http://vimeo.com/56630862
http://www.slideshare.net/lvca/switching-from-relational-to-the-graph-model
http://www.phpcon.pl/2011/en/agenda
http://vimeo.com/53451968
http://www.slideshare.net/ingdavidino/graph-db-inphpphpconpl
http://jseverywhere.eu/
http://www.youtube.com/watch?v=o_7NCiTLVis
http://www.slideshare.net/lvca/a-new-collaborative-way-to-develop-internet-apps-powered-by-nosql-and-javascript
http://2012.nosql-matters.org/bcn/


6th	2012

Slides</td></tr>
Video	:	NoSQL	adoption:	what's	the	next	step?	by	Luca	Garulli	at	NoSQL	Matters	in	Cologne	(Germany)	on	May	30th	2012

Slides
Video	:	Design	your	applications	using	persistent	Graphs	and	OrientDB	by	Luca	Garulli	at	NoSQL	Matters	in	Cologne
(Germany)	on	May	30th	2012

Slides	(English)
Video	(English):	Works	with	persistent	graphs	using	OrientDB	by	Luca	Molino	at	FOSDEM	on	February	2012	in	Bruxelles
(Belgium)	on	Video

Slides	(English)
Video	(pseudo-English):	Interview	to	Luca	Garulli	about	OrientDB	by	Tim	Anglade	on	2010

Presentations

826

https://vimeo.com/52228068
http://www.slideshare.net/lvca/switching-from-relational-to-graph-model
http://2012.nosql-matters.org/cgn/
https://vimeo.com/46186167
http://2012.nosql-matters.org/cgn/wp-content/uploads/2012/06/KeyNote-Luca-Garulli.pdf
http://2012.nosql-matters.org/cgn/
http://vimeo.com/47671574
http://www.slideshare.net/lvca/design-your-application-using-persistent-graphs-and-orientdb
http://www.youtube.com/watch?v=EDiIS0PH2uY
http://www.slideshare.net/graphdevroom/works-with-persistent-graphs-using-orientdb
http://vimeo.com/47056001


Presentations	in	English

Slides	(English):	OrientDB	distributed	architecture	1.1
Slides	(English):	OrientDB	the	database	for	the	Web	1.1
What	to	select	between	the	Document	database	and	the	Graph	one?
A	walk	in	Graph	Databases

Videos	in	Italian,	Presentations	in	English

Video	(Italian):	Graph	databases:	time	for	the	serious	stuff	by	Alessandro	Nadalin	and	David	Funaro	at	Codemotion	in	Rome	on
March	2012

Video
Slides	(English)

Video	(Italian):	Dal	modello	Relazionale	al	Grafo:	cosa	cambia?	by	Alfonso	Focareta	at	Codemotion	in	Rome	on	March	2012
Video
Slides	(English)

Video	(Italian):	Perché	potresti	avere	bisogno	di	un	database	NOSQL	anche	se	non	sei	Google	o	Facebook	(Italian	only)	by
Luca	Garulli	at	Codemotion	in	Rome	(Italy)	on	March	2011

http://www.orientdb.org/images/video-2011-codemotion-roma.png
Slides	(English)

Video	(Italian):	OrientDB	e	lo	sviluppo	di	WebApp	(Italian	only)	by	Luca	Garulli	at	NoSQL	Day	in	Brescia	on	2011

Slides	(English)

Presentations

827

http://www.slideshare.net/lvca/orientdb-distributed-architecture-11
http://www.slideshare.net/lvca/orientdb-the-database-for-the-web-11
http://www.slideshare.net/lvca/orientdb-document-or-graph-select-the-right-model
http://www.slideshare.net/pierredewilde/a-walk-in-graph-databases-v10
http://www.codemotion.it
http://www.youtube.com/watch?v=za8RNDuctNI
http://www.slideshare.net/ingdavidino/graph-db-inphp
http://www.codemotion.it
http://www.youtube.com/watch?v=DAT4_GSt9Bc
http://www.slideshare.net/Codemotion/dal-modello-relazionale-al-grafo-cosa-cambia-by-alfonso-focareta
http://www.orientdb.org/images/video-2011-codemotion-roma.png
http://www.slideshare.net/Codemotion/perch-potresti-aver-bisogno-di-un-database-nosql-anche-se-non-sei-google-o-facebook
https://vimeo.com/21595812
http://www.slideshare.net/lvca/orientdb-nosqlday


Roadmap
This	page	contains	the	roadmap	with	the	main	enhancement	for	OrientDB	product.

Terms

RC:	Release	Candidate,	is	a	beta	version	with	potential	to	be	a	final	product,	which	is	ready	to	release	unless	significant	bugs
emerge.	In	this	stage	of	product	stabilization,	all	product	features	have	been	designed,	coded	and	tested	through	one	or	more	beta
cycles	with	no	known	showstopper-class	bug.	A	release	is	called	code	complete	when	the	development	team	agrees	that	no	entirely
new	source	code	will	be	added	to	this	release.	There	could	still	be	source	code	changes	to	fix	defects,	changes	to	documentation	and
data	files,	and	peripheral	code	for	test	cases	or	utilities.	Beta	testers,	if	privately	selected,	will	often	be	credited	for	using	the	release
candidate	as	though	it	were	a	finished	product.	Beta	testing	is	conducted	in	a	client's	or	customer's	location	and	to	test	the	software
from	a	user's	perspective.
GA:	General	Availability,	is	the	stage	where	the	software	has	"gone	live"	for	usage	in	production.	Users	in	production	are	suggested
to	plan	a	migration	for	the	current	GA	evaluating	pros	and	cons	of	the	upgrade.

Release	2.2

-	Development	started	on.:	June	25th	2015

-	Expected	BETA..........:	February	2016

-	Expected	first	RC......:	March	2016

-	Planned	final	GA......:	April	2016

Status

Last	update:	January	12,	2016

Roadmap

828

https://en.wikipedia.org/wiki/Software_release_life_cycle#Release_candidate
https://en.wikipedia.org/wiki/Software_release_life_cycle#General_availability_.28GA.29


Module Feature Status

OrientJS Native	unmarshaling	of	requests	by	using	C++	code 100%

Core Dirty	Manager 100%

Core Incremental	Backup 100%

Core Automatic	minimum	clusters 100%

Core AES	and	DES	enchryption 100%

Core Support	SALT	in	passwords 100%

Distributed Fast	synchronization	by	using	Incremental	Backup 100%

Distributed Faster	replication	by	using	remote	binary	protocol	instead	of	hazelcast	queues 100%

Distributed Support	for		majority		(default)	and		all		in	quorum 100%

Distributed	/	Remote
protocol Load	balancing	on	client 100%

Remote Support	for	IPV6 100%

SQL Pattern	matching 100%

SQL Command	Cache 100%

SQL Automatic	parallel	queries 100%

SQL Prefetching	of	disk	pages 100%

SQL Live	Query	->	Stable 100%

SQL Update	Edge 100%

SQL Sequences,	PR 100%

SQL 'Move	cluster'	command 100%

SQL Command	to	manage	users 100%

Java	API ODocument.eval() 100%

Studio New	P2P	architecture,	new	Enterprise	modules	(it	replaces	the	Enterprise
Workbench) 100%

Lucene Spatial	Module	New	module	for	indexing	of	shapes,	not	only	points 100%

Release	3.0

-	Development	started	on.:	September	2015

-	Expected	first	RC......:	June	2016

-	Expected	final	GA......:	August	2016

Status

Last	update:	December	8,	2015

Roadmap

829

https://github.com/orientechnologies/orientdb/issues/2620
https://github.com/orientechnologies/orientdb/issues/4518
https://github.com/orientechnologies/orientdb/issues/1229
https://github.com/orientechnologies/orientdb/issues/3165
https://github.com/orientechnologies/orientdb/issues/1114
https://github.com/orientechnologies/orientdb/issues/367
https://github.com/orientechnologies/orientdb/pull/3744
https://github.com/orientechnologies/orientdb/issues/4248
https://github.com/orientechnologies/orientdb/pull/4000
https://github.com/orientechnologies/orientdb/issues/4505
https://github.com/orientechnologies/orientdb-spatial


Module Feature Status

Core Multi-Threads	WAL 0%

Core WAL	Compaction 0%

Core Index	rebuild	avoid	using	WAL 0%

Core Compression	of	used	space	on	serialization 0%

Core Increase	cluster-id	from	short	to	int 15%

Core Indexing	of	embedded	properties 0%

Core Index	per	cluster 0%

SQL Distributed	SQL	Executor 0%

SQL Multi-line	queries	in	batch	scripts 0%

Java	API Support	fot	TinkerPop	3 30%

Distributed Replication	of	in-memory	databases 0%

Distributed Auto-Sharding 0%

Scheduler Improve	scheduler 0%

Console Display	distributed	information	about	sharding	and	nodes 50%

Release	3.1

-	Development	started	on.:	-

-	Expected	first	RC......:	June	2016

-	Expected	final	GA......:	August	2016

Status

Last	update:	December	8,	2015

Module Feature Status

Core Parallel	Transactions 0%

Core Override	of	properties 0%

Core Auto	close	storages 0%

Core Enhance	isolation	level	also	for	remote	commands 0%

Distributed Optimized	replication	for	cross	Data	Center 0%

Lucene Faceted	search 20%

Java	API ODocument.update() 0%

Java	API Improve	SQL	UPDATE	syntax 100%

Remote	protocol Push	messages	on	schema	change 0%

Remote	protocol Push	messages	on	record	change 0%

SQL shortestPaths()	function 0%

SQL New	functions	(strings,	maths) 40%

Roadmap

830

https://github.com/orientechnologies/orientdb/issues/2989
https://github.com/orientechnologies/orientdb/issues/5277
https://github.com/orientechnologies/orientdb/issues/4568
https://github.com/orientechnologies/orientdb/issues/3742
https://github.com/orientechnologies/orientdb/issues/1930
https://github.com/orientechnologies/orientdb/issues/2441
https://github.com/orientechnologies/orientdb/issues/2613
https://github.com/orientechnologies/orientdb/issues/3968
https://github.com/orientechnologies/orientdb/issues/3967
https://github.com/orientechnologies/orientdb/issues/1677
https://github.com/orientechnologies/orientdb/issues/3055
https://github.com/orientechnologies/orientdb/issues/4813
https://github.com/orientechnologies/orientdb/issues/4814
https://github.com/orientechnologies/orientdb/issues/3496
https://github.com/orientechnologies/orientdb/issues/3496
https://github.com/orientechnologies/orientdb/issues/4474


Enterprise	Edition

This	documentation	is	referring	to	v2.1.	In	v2.2	the	Enterprise	Edition	has	been
completely	revisited.

This	is	the	main	guide	on	using	OrientDB	Enterprise	Edition.	For	more	information	look	at	OrientDB	Enterprise	Edition.

To	try	Enterprise	Edition	ask	for	a	Trial	by	writing	to:	info@orientdb.com.

OrientDB	Enterprise	Edition	is	composed	by	2	modules:

Enterprise	Agent
Enterprise	Workbench

OrientDB	Enterprise	Agent

The	Agent	contains	the	license	generated	by	Orient	Technologies.	If	you're	a	client	you	already	own	Agent	jar	files	to	install.	If	you
don't	have	them	or	you	want	to	try	Enterprise	Edition	write	to:	info@orientdb.com.

The	Agent	contains	the	Profiler	component	to	get	monitored	by	Workbench.

Installation

In	order	to	enable	Enterprise	feature,	copy	the	provided	agent-*.jar	file	under	the	OrientDB	Server	"plugins"	directory	of	each	server.
The	plugin	will	be	hot	loaded	by	the	server	after	few	seconds	(look	at	the	server's	output).	In	case	the	plugin	is	not	loaded	restart	the
OrientDB	Server.

Once	installed,	the	Agent	Plugin	displays	the	license	information.	Example:

2013-12-18	16:52:43:206	INFO	Installing	dynamic	plugin	'agent-1.6.2.jar'...

************************************************

*							ORIENTDB		-		ENTERPRISE	EDITION								*

*																																														*

*	Copyrights	(c)	2015	Orient	Technologies	LTD		*

************************************************

NOTE:	OrientDB	Enterprise	Plugin	and	OrientDB	Server	must	be	of	the	same	main	version.	Workbench	1.7.x	works	against	all	Agents
2.0.x.	If	you	don't	have	the	right	version	please	write	to	the	Orient	Technologies:	info@orientdb.com.

OrientDB	Enterprise	Workbench

NOTE:	OrientDB	Workbench	runs	as	separate	application.	In	order	to	avoid	slow	down	of	OrientDB	Servers,	it's	a	best	practice	to	run
Workbench	on	a	separate	server.

Download

Download	the	right	OrientDB	Workbench	distribution,	using	the	same	Agent	version:

Workbench	Web	Application	v.	2.1.0:
Windows	users:	TAR.GZ
MacOSX:	TAR.GZ
Linux,	Any	Unix	like	OSs:	TAR.GZ
Help

Workbench	Web	Application	v.	1.7.4:
Windows	users:	TAR.GZ
MacOSX:	TAR.GZ
Linux,	Any	Unix	like	OSs:	TAR.GZ

Enterprise	Edition

831

http://orientdb.com/docs/2.2/Enterprise-Edition.html
http://orientdb.com/enterprise.htm
http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-workbench-2.1.0.tar.gz&os=win
http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-workbench-2.1.0.tar.gz&os=mac
http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-workbench-2.1.0.tar.gz&os=multi
http://orientdb.com/enterprise/last/introduction.html
http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-workbench-1.7.4.tar.gz&os=multi
http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-workbench-1.7.4.tar.gz&os=mac
http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-workbench-1.7.4.tar.gz&os=multi


Help

Install

Uncompress	the	Workbench	distribution	to	a	local	directory.	For	Windows	user	it's	a	ZIP	file,	for	all	the	others	is	a	TAR.GZ	archive.

Start	and	Use	Workbench

To	start	the	Workbench	go	into	the	"bin"	directory	and	double	click	on:

start-workbench.sh	for	MacOSX,	Linux	and	Unix	users
start-workbench.bat,	for	Windows	users

Once	started	the	Workbench	ends	with	these	messages:

************************************************

*			ORIENTDB	WORKBENCH	-		ENTERPRISE	EDITION			*

*																																														*

*	Copyrights	(c)	2013	Orient	Technologies	LTD		*

************************************************

*	Version...:	1.6.2																												*

************************************************

To	open	the	Web	Console	open	your	browser	to	the	URL:	http://localhost:2491	and	use	'admin'	as	user	and	password	to	log	in,	un

less	you	already	changed	it.

Now	point	your	browser	to	the	local	server's	IP	address,	port	2491,	example:	http://localhost:2491.	This	is	the	login	page.	Use	the
default	credentials	as	user	"admin"	and	password	"admin"	(you	can	change	it	once	logged	in).

For	the	complete	guide	goto	Workbench	Guide.

Enterprise	Edition

832

http://orientdb.com/enterprise/1.7.4/introduction.html
http://localhost:2491
http://orientdb.com/enterprise/last/userguide.html


Auditing
Starting	from	OrientDB	2.1,	the	Auditing	component	is	part	of	the	Enterprise	Edition.	This	page	refers	to	the	Auditing	feature	and	how
to	work	with	it.	Studio	web	tool	provides	a	GUI	on	Auditing	that	makes	configuration	easier.	Look	at	Auditing	page	in	Studio.

By	default	all	the	auditing	logs	are	saved	as	documents	of	class		AuditingLog	.	If	your	account	has	enough	privileges,	you	can	directly
query	the	auditing	log.	Example	on	retrieving	the	last	20	logs:		select	from	AuditingLog	order	by	@rid	desc	limit	20	.

Security	first

For	security	reasons,	no	roles	should	be	able	to	access	the		AuditingLog		records.	For	this	reason	before	using	Auditing	assure	to	revoke
any	privilege	on	the		AuditingLog		cluster.	You	can	do	that	from	Studio,	security	panel,	or	via	SQL	by	using	the	SQL	REVOKE
command.	Here's	an	example	of	revoking	any	access	to	the	writer	and	reader	roles:

REVOKE	ALL	ON	database.cluster.auditinglog	TO	writer

REVOKE	ALL	ON	database.cluster.auditinglog	TO	reader

Polymorphism

OrientDB	schema	is	polymorphic	(taken	from	the	Object-Oriented	paradigm).	This	means	that	if	you	have	the	class	"Person"	and	the
two	classes	"Employee"	and	"Provider"	that	extend	"Person",	all	the	auditing	settings	on	"Person"	will	be	inherited	by	"Employee"	and
"Provider"	(if	the	checkbox	"polymorphic"	is	enabled	on	class	"Person").

This	makes	your	life	easier	when	you	want	to	profile	only	certain	classes.	For	example,	you	could	create	an	abstract	class	"Profiled"	and
let	all	the	classes	you	want	to	profile	extend	it.	Starting	from	v2.1,	OrientDB	supports	multiple	inheritance,	so	it's	not	a	problem
extending	more	classes.

Configuration
To	turn	on	auditing,	create	the	JSON	configuration	file	with	name		auditing-config.json		under	the	database	folder.	This	is	the	syntax
for	configuration:

{

		"auditClassName":	"<audit-class-name>",

		"classes":	{

				"<class-name>"	:	{

						"polymorphic":	<true|false>,

						"onCreateEnabled":	<true|false>,	"onCreateMessage":	"<message>",

						"onReadEnabled":	<true|false>,	"onReadMessage":	"<message>",

						"onUpdateEnabled":	<true|false>,	"onUpdateMessage":	"<message>",	"onUpdateChanges":	<true|false>,

						"onDeleteEnabled":	<true|false>,	"onDeleteMessage":	"<message>"

				}

		},

		"commands":	[

				{

						"regex":	"<regexp	to	match>",

						"message":	"<message>"

				}

		]

}

Where:

	auditClassName	:	document	class	used	for	auditing	records.	By	default	is	"AuditingLog"
	classes	:	contains	the	mapping	per	class.	Wildcard		*		represents	any	class
	class-name	:	class	name	to	configure
	polymorphic	:	uses	this	class	definition	also	for	all	sub	classes.	By	default	class	definition	is	polymorphic
	onCreateEnabled	:	enable	auditing	for	creation	of	records.	Default	is		false	

Auditing

833

http://www.orientechnologies.com/orientdb-enterprise/


	onCreateMessage	:	custom	message	to	write	in	the	auditing	record	on	create	record.	It	supports	dynamic	binding	of	values,	look	at
Customize	the	message
	onReadEnabled	:	enable	auditing	on	reading	of	records.	Default	is		false	
	onReadMessage	:	custom	message	to	write	in	the	auditing	record	on	read	record.	It	supports	dynamic	binding	of	values,	look	at
Customize	the	message
	onUpdateEnabled	:	enable	auditing	on	updating	of	records.	Default	is		false	
	onUpdateMessage	:	custom	message	to	write	in	the	auditing	record	on	update	record.	It	supports	dynamic	binding	of	values,	look	at
Customize	the	message
	onUpdateChanges	:	write	all	the	previous	values	per	field.	Default	is		true		if		onUpdateEnabled		is	true
	onDeleteEnabled	:	enable	auditing	on	deletion	creation	of	records.	Default	is		false	
	onDeleteMessage	:	custom	message	to	write	in	the	auditing	record	on	delete	record.	It	supports	dynamic	binding	of	values,	look	at
Customize	the	message
	regexp	:	is	the	regular	expression	to	match	in	order	to	log	the	command	execution
	message	:	is	the	optional	message	to	log	when	the	command	is	logged.	It	supports	dynamic	binding	of	values,	look	at	Customize
the	message

Example	to	log	all	the	delete	operations	(	class="*"	),	and	log	all	the	CRUD	operation	on	any	vertex	(	class="V"	and
polymorphic:true	):

{

		"classes":	{

				"*"	:	{

						"onDeleteEnabled":	true,	"onDeleteMessage":	"Deleted	record	of	class	${field.@class}"

				},

				"V"	:	{

						"polymorphic":	true,

						"onCreateEnabled":	true,	"onCreateMessage":	"Created	vertex	of	class	${field.@class}",

						"onReadEnabled":	true,	"onReadMessage":	"Read	vertex	of	class	${field.@class}",

						"onUpdateEnabled":	true,	"onUpdateMessage":	"Updated	vertex	of	class	${field.@class}",

						"onDeleteEnabled":	true,	"onDeleteMessage":	"Deleted	vertex	of	class	${field.@class}"

				}

		}

}

Log	record	structure

Auditing	Log	records	have	the	following	structure:

Field Type Description Values

	date	 DATE Date	of	execution -

	user	 LINK User	that	executed	the	command.	Can	be		null		if	internal
user	has	been	used -

	operation	 BYTE Type	of	operation
0=READ,	1=UPDATE,
2=DELETE,	3=CREATE,
4=COMMAND

	record	 LINK Link	to	the	record	subject	of	the	log -

	note	 STRING Optional	message -

	changes	 MAP Only	for	UDPATE	operation,	contains	the	map	of	changed
fields	in	the	form		{"from":<old-value>,	"to":<new-value>}	 -

Customize	the	message
Messages	can	be	customized,	adding	a	placeholder	for	variables	resolved	at	run-time.	Below	is	a	list	of	supported	variables:

	${command}	,	is	the	executed	command	as	text
	${field.<field-name>}	,	to	use	the	field	value.	Example:		${field.surname}		to	get	the	field	"surname"	from	the	current	record

Auditing

834


	Introduction
	Getting Started
	Installation
	Install as Service on Unix
	Install as Service on Windows
	Install with Docker

	Run the server
	Run the console
	Run the Studio

	Data Modeling
	Graph or Document API?
	Basic Concepts
	Supported Types
	Inheritance
	Concurrency
	Schema
	Cluster Selection
	Managing Dates

	Classes
	Clusters
	Record ID
	Relationships
	Working with Graphs
	Using Schema with Graphs
	Graph Consistency
	Fetching Strategies
	Use Cases
	Time Series
	Chat
	Key Value
	Queue system


	Administration
	Console Command Reference
	Backup
	Begin
	Browse Class
	Browse Cluster
	List Classes
	Cluster Status
	List Clusters
	List Servers
	List Server Users
	Commit
	Config
	Config Get
	Config Set
	Connect
	Create Cluster
	Create Database
	Create Index
	Create Link
	Create Property
	Declare Intent
	Delete
	Dictionary Get
	Dictionary Keys
	Dictionary Put
	Dictionary Remove
	Disconnect
	Display Record
	Display Raw Record
	Drop Cluster
	Drop Database
	Drop Server User
	Export Database
	Export Record
	Freeze DB
	Get
	GREMLIN
	Import Database
	Indexes
	Info
	Info Class
	Info Property
	Insert
	List Databases
	List Connections
	Load Record
	Profiler
	Properties
	Release DB
	Reload Record
	Restore
	Rollback
	Set
	Set Server User
	Sleep

	Upgrading
	Backward compatibility
	From 2.1.x to 2.2.x
	From 2.0.x to 2.1.x
	From 1.7.x to 2.0.x
	From 1.6.x to 1.7.x
	From 1.5.x to 1.6.x
	From 1.4.x to 1.5.x
	From 1.3.x to 1.4.x

	Backup and Restore
	Export and Import
	Export format
	Import From RDBMS
	Import From Neo4j

	ETL
	Configuration
	Blocks
	Sources
	Extractors
	Transformers
	Loaders
	Import the database of Beers
	Import from CSV to a Graph
	Import a tree structure
	Import from JSON
	Import from RDBMS
	Import from DB-Pedia
	Import from Parse (Facebook)

	Logging
	Studio
	Query
	Edit Document
	Edit Vertex
	Schema
	Class
	Graph Editor
	Functions
	Security
	Database Management
	Server Management
	Auditing

	Troubleshooting
	Java
	Query Examples

	Performance Tuning
	Setting Configuration
	Graph API
	Document API
	Object API
	Profiler
	Distributed tuning

	Security
	Database security
	Server security
	Database encryption
	Secure SSL connections

	Server Management

	APIs and Drivers
	Functions
	Available Plugins and Tools
	Java API
	Java API Introduction
	Graph API
	Document API
	Object API
	Traverse
	Live Query
	Multi-Threading
	Transactions
	Binary Data
	Web Apps
	JDBC Driver
	JPA

	JMX
	Gremlin API
	Javascript
	Javascript API

	Scala API
	HTTP API
	Binary Protocol
	CSV Serialization
	Schemaless Serialization
	Commands


	SQL Reference
	CRUD Operations
	Select
	Insert
	Update
	Delete
	Match

	Commands
	Alter Class
	Alter Cluster
	Alter Database
	Alter Property
	Alter Sequence
	Create Class
	Create Cluster
	Create Edge
	Create Function
	Create Index
	Create Link
	Create Property
	Create Sequence
	Create User
	Create Vertex
	Move Vertex
	Update edge
	Delete Edge
	Delete Vertex
	Drop Class
	Drop Cluster
	Drop Index
	Drop Property
	Drop Sequence
	Drop User
	Explain
	Find References
	Grant
	Optimize Database
	Rebuild Index
	Revoke
	Traverse
	Truncate Class
	Truncate Cluster
	Truncate Record

	Filtering
	Functions
	Methods
	Batch
	Pagination
	Sequences and auto increment
	Pivoting with Query
	Command Cache

	Indexing
	SB-Tree
	Hash
	Full Text
	Lucene Full Text
	Lucene Spatial Index
	Lucene Spatial Module


	Scaling
	Working with Distributed Graphs
	Lifecycle
	Configuration
	Runtime Configuration

	Server Manager
	Replication
	Sharding
	Cache
	Setup a Distributed Database

	Internals
	Storages
	Memory storage
	PLocal storage
	Local storage (deprecated)

	Clusters
	Limits
	RidBag
	SQL Syntax
	Custom Index Engine
	Caching
	Transaction
	Hooks - Triggers
	Dynamic Hooks
	Java (Native) Hooks
	Java Hook Tutorial

	Server
	Embed the Server
	Web Server

	Plugins
	Automatic Backup
	Mail
	JMX
	Rexster
	Gephi Graph Render
	spider-box


	Contribute to OrientDB
	The Team
	Hackaton
	Report an issue

	Get in touch
	More Tutorials
	Presentations

	Roadmap

	Enterprise Edition
	Auditing


