Table of Contents

Introduction 1.1
Getting Started 1.2
Installation 1.2.1
Install as Service on Unix 1.2.1.1

Install as Service on Windows 1.2.1.2

Install with Docker 1.2.1.3

Run the server 1.2.2

Run the console 1.2.3

Run the Studio 1.24
Data M odeling 1.3
Graph or Document API? 1.3.1
Basic Concepts 1.3.2
Supported Types 1.3.2.1
Inheritance 1.3.2.2
Concurrency 1.3.2.3

Schema 1.3.24

Cluster Selection 1.3.2.5

M anaging Dates 1.3.2.6

Classes 1.3.3
Clusters 1.3.4
Record ID 1.3.5
Relationships 1.3.6
Working with Graphs 1.3.7
Using Schema with Graphs 1.3.8
Graph Consistency 1.3.9
Fetching Strategies 1.3.10

Use Cases 1.3.11
Time Series 1.3.11.1

Chat 1.3.11.2

Key Value 1.3.11.3

Queue system 1.3.114
Administration 1.4
Console Command Reference 1.4.1
Backup 1.4.1.1

Begin 1.4.1.2

Browse Class 1.4.1.3

Browse Cluster 1.4.1.4

List Classes 1.4.1.5

Cluster Status 1.4.1.6

List Clusters 1.4.1.7

List Servers 1.4.1.8

List Server Users
Commit

Config

Config Get
Config Set
Connect

Create Cluster
Create Database
Create Index
Create Link
Create Property
Declare Intent
Delete
Dictionary Get
Dictionary Keys

Dictionary Put

Dictionary Remove

Disconnect

Display Record

Display Raw Record

Drop Cluster
Drop Database
Drop Server User
Export Database
Export Record
Freeze DB

Get

GREMLIN
Import Database
Indexes

Info

Info Class

Info Property
Insert

List Databases
List Connections
Load Record
Profiler
Properties
Release DB
Reload Record
Restore
Rollback

Set

1.4.1.9
1.4.1.10
1.4.1.11
1.4.1.12
1.4.1.13
1.4.1.14
1.4.1.15
1.4.1.16
1.4.1.17
1.4.1.18
1.4.1.19
1.4.1.20
1.4.1.21
1.4.1.22
1.4.1.23
1.4.1.24
1.4.1.25
1.4.1.26
1.4.1.27
1.4.1.28
1.4.1.29
1.4.1.30
1.4.1.31
1.4.1.32
1.4.1.33
1.4.1.34
1.4.1.35
1.4.1.36
1.4.1.37
1.4.1.38
1.4.1.39
1.4.1.40
1.4.1.41
1.4.1.42
1.4.1.43
1.4.1.44
1.4.1.45
1.4.1.46
1.4.1.47
1.4.1.48
1.4.1.49
1.4.1.50
1.4.1.51

1.4.1.52

N

Set Server User
Sleep

Upgrading
Backward compatibility
From 2.1.xto 2.2.x
From 2.0.xto 2.1.x
From 1.7.xto 2.0.x
From 1.6.xto 1.7.x
From 1.5.xto 1.6.x
From 1.4.xto 1.5.x
From 1.3.xto 1.4.x

Backup and Restore

Export and Import
Export format

Import From RDBM S

To Document M odel

To Graph Model

Import From Neo4j
ETL

Configuration

Blocks

Sources

Extractors

Transformers

Loaders

Import the database of Beers

Import from CSV to a Graph

Import a tree structure
Import from JSON
Import from RDBM S

Import from DB-Pedia

Import from Parse (Facebook)

Logging

Studio
Query
Edit Document
Edit Vertex
Schema
Class
Graph Editor
Functions
Security
Database M anagement

Server M anagement

1.4.1.53
1.4.1.54
1.4.2
1.4.2.1
1.4.2.2
1.4.2.3
1.4.2.4
1.4.2.5
1.4.2.6
1.4.2.7
1.4.2.8
1.4.3
1.4.4
1.4.4.1
1.4.4.2
14421
14422
1443
1.4.5
1451
1.4.5.2
1.4.5.3
1454
1.4.5.5
1.4.5.6
1.4.5.7
1.4.5.8
1.4.5.9
1.4.5.10
1.4.5.11
1.4.5.12
1.4.5.13
1.4.6
1.4.7
1.4.7.1
1.4.7.2
1.4.7.3
1.4.7.4
1.4.7.5
1.4.7.6
1.4.7.7
1.4.7.8
1.4.7.9

1.4.7.10

Auditing
Troubleshooting
Java
Query Examples
Performance Tuning
Setting Configuration
Graph API
Document API
Object API
Profiler
Distributed tuning
Security
Database security
Server security
Database encryption
Secure SSL connections
Server M anagement
APIs and Drivers
Functions
Available Plugins and Tools
Java API
Java API Introduction
Graph API
Factory
Schema
Partitioned
Comparison
Lightweight Edges
Document API
Schema
Field Part
Comparison
Object API
Binding
Traverse
Live Query
Multi-Threading
Transactions
Binary Data
Web Apps
JDBC Driver
JPA
IMX
Gremlin API

1.4.7.11
1.4.8
1.4.8.1
1.4.8.2
1.4.9
1.49.1
1.49.2
1.4.9.3
1.49.4
1.4.9.5
1.4.9.6
1.4.10
1.4.10.1
1.4.10.2
1.4.10.3
1.4.10.4
1.4.11
1.5

1.5.1
1.5.2
1.5.3
1.5.3.1
1.5.3.2
1.5.3.2.1
1.5.3.2.2
1.5.3.2.3
1.5.3.2.4
1.5.3.2.5
1.5.3.3
1.5.3.3.1
1.5.3.3.2
1.5.3.3.3
1.5.3.4
1.5.3.4.1
1.5.3.5
1.5.3.6
1.5.3.7
1.5.3.8
1.5.3.9
1.5.3.10
1.5.3.11
1.5.3.12
1.5.4
1.5.5

Javascript 1.5.6

Javascript API 1.5.6.1
Scala API 1.5.7
HTTP API 1.5.8
Binary Protocol 1.5.9

CSV Serialization 1.59.1

Schemaless Serialization 1.5.9.2

Commands 1.5.9.3

SQL Reference 1.6
CRUD Operations 1.6.1

Select 1.6.1.1

Insert 1.6.1.2

Update 1.6.1.3

Delete 1.6.14

Match 1.6.1.5
Commands 1.6.2

Alter Class 1.6.2.1

Alter Cluster 1.6.2.2

Alter Database 1.6.2.3

Alter Property 1.6.24

Alter Sequence 1.6.2.5

Create Class 1.6.2.6

Create Cluster 1.6.2.7

Create Edge 1.6.2.8

Create Function 1.6.2.9

Create Index 1.6.2.10

Create Link 1.6.2.11

Create Property 1.6.2.12

Create Sequence 1.6.2.13

Create User 1.6.2.14

Create Vertex 1.6.2.15

Move Vertex 1.6.2.16

Update edge 1.6.2.17

Delete Edge 1.6.2.18

Delete Vertex 1.6.2.19

Drop Class 1.6.2.20

Drop Cluster 1.6.2.21

Drop Index 1.6.2.22

Drop Property 1.6.2.23

Drop Sequence 1.6.2.24

Drop User 1.6.2.25

Explain 1.6.2.26

Find References 1.6.2.27

Grant 1.6.2.28

wu

Optimize Database
Rebuild Index
Revoke
Traverse
Truncate Class
Truncate Cluster
Truncate Record

Filtering

Functions

Methods

Batch

Pagination

Sequences and auto increment

Pivoting with Query

Command Cache

Indexing

SB-Tree

Hash

Full Text

Lucene Full Text

Lucene Spatial Index
Lucene Spatial M odule

Scaling

Working with Distributed Graphs

Lifecycle
Configuration
Runtime Configuration
Server M anager
Replication
Sharding
Cache
Setup a Distributed Database
Internals
Storages
Memory storage
PLocal storage
Engine
Disk-Cache
WAL (Journal)
Local storage (deprecated)
Clusters
Limits
RidBag
SQL Syntax

1.6.2.29
1.6.2.30
1.6.2.31
1.6.2.32
1.6.2.33
1.6.2.34
1.6.2.35
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.6.9
1.6.10
1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.5.1
1.8
1.8.1
1.8.2
1.8.3
1.8.3.1
1.8.4
1.8.5
1.8.6
1.8.7
1.8.8
1.9
1.9.1
1.9.1.1
1.9.1.2
19.1.2.1
1.9.1.2.2
1.9.1.2.3
1.9.1.3
1.9.2
1.9.3
1.9.4

1.9.5

Custom Index Engine
Caching
Transaction
Hooks - Triggers
Dynamic Hooks
Java (Native) Hooks
Java Hook Tutorial
Server
Embed the Server
Web Server
Plugins
Automatic Backup
Mail
JMX
Rexster
Gephi Graph Render

spider-box

Contribute to OrientDB

The Team
Hackaton
Report an issue

Get in touch

M ore Tutorials
Presentations

Roadmap

Enterprise Edition

Auditing

1.9.6
1.9.7
1.9.8
1.9.9
1.9.10
1.9.10.1
1.9.10.2
1.9.11
1.9.11.1
1.9.11.2
1.9.12
1.9.12.1
1.9.12.2
1.9.12.3
1.9.12.4
1.9.12.5
1.9.12.6
1.10
1.10.1
1.10.1.1
1.10.1.2
1.10.2
1.10.3
1.10.3.1
1.10.4
111

1.11.1

OrientDB Manual - version 2.1.x

~ Qrien

Quick Navigation

Getting Started
Introduction to OrientDB
Installation
First Steps
Troubleshooting

Enterprise Edition

Operations

e Installation
e 3rd party Plugins
e Upgrade

e Configuration

Main Topics
Basic Concepts
Supported Data Types
Inheritance
Security
Indexes
ACID Transactions
Functions
Caching Levels

Common Use Cases

e Distributed Architecture (replication, sharding and high-availability)

e Performance Tuning

e ETL to Import any kind of data into OrientDB

e Import from Relational DB
e Backup and Restore

e Export and Import

Quick References

Developers
SQL
Gremlin
HTTP API
Java API
NodeJS
PHP
Python
.NET
Other Drivers
Network Binary Protocol

Javadocs

https://github.com/orientechnologies/PhpOrient
https://github.com/orientechnologies/pyorient
https://github.com/orientechnologies/OrientDB-NET.binary
http://www.orientechnologies.com/javadoc/latest/

e Console

e Studio web tool

e Workbench (Enterprise Edition)

e OrientDB Server

e Network-Binary-Protocol

e Gephi Graph Analysis Visual tool
e Rexster Support and configuration

e Continuous integration

Resources

e User Group - Have question, troubles, problems?
e f#orientdb IRC channel on freenode

e Professional Support

e Training - Training and classes.

e Events - Follow OrientDB at the next event!

e Team - Meet the team behind OrientDB

e Contribute - Contribute to the project.

e Who is using OrientDB? - Clients using OrientDB in production.

Questions or Need Help?

Check out our Get in Touch page for different ways of getting in touch with us.

PDF

This documentation is also available in PDF format.

Past releases

e v1.7.8

e v2.0.x

Welcome to OrientDB - the first M ulti-M odel Open Source NoSQL DBMSS that brings together the power of graphs and the flexibility

of documents into one scalable high-performance operational database.

Every effort has been made to ensure the accuracy of this manual. However, Orient Technologies, LTD. makes no warranties
with respect to this documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose.

The information in this document is subject to change without notice.

http://orientdb.com/enterprise/last/introduction.html
http://helios.orientechnologies.com/
http://orientdb.com/active-user-community
http://webchat.freenode.net/?channels=orientdb
http://orientdb.com/support
http://orientdb.com/training
http://orientdb.com/event
http://orientdb.com/customers
http://orientdb.com/docs/1.7.8/
http://orientdb.com/docs/2.0/

Getting Started

Over the past few years, there has been an explosion of many NoSQL database solutions and products. The meaning of the word
"NoSQL" is not a campaign against the SQL language. In fact, OrientDB allows for SQL syntax! NoSQL is probably best described by
the following:

NoSQL, meaning "not only SQL", is a movement encouraging developers and business people to open their minds and consider

new possibilities beyond the classic relational approach to data persistence.

Alternatives to relational database management systems have existed for many years, but they have been relegated primarily to niche use
cases such as telecommunications, medicine, CAD and others. Interest in NoSQL alternatives like OrientDB is increasing dramatically.
Not surprisingly, many of the largest web companies like Google, Amazon, Facebook, Foursquare and Twitter are using NoSQL based

solutions in their production environments.

What motivates companies to leave the comfort of a well established relational database world? It is basically the great need to better

solve today's data problems. Specifically, there are a few key areas:

e Performance

e Scalability (often huge)

e Smaller footprint

e Developer productivity and friendliness

e Schema flexibility

Most of these areas also happen to be the requirements of modern web applications. A few years ago, developers designed systems that
could handle hundreds of concurrent users. Today it is not uncommon to have a potential target of thousands or millions of users
connected and served at the same time.

Changing technology requirements have been taken into account on the application front by creating frameworks, introducing standards
and leveraging best practices. However, in the database world, the situation has remained more or less the same for over 30 years. From
the 1970s until recently, relational DBM Ss have played the dominant role. Programming languages and methodologies have evolved, but

the concept of data persistence and the DBM S have remained unchanged for the most part: it is all still tables, records and joins.

NoSQL Models

NoSQL-based solutions in general provide a powerful, scalable, and flexible way to solve data needs and use cases, which have
previously been managed by relational databases. To summarize the NoSQL options, we'll examine the most common models or

categories:

e Key/ Value databases: where the data model is reduced to a simple hash table, which consists of key / value pairs. It is often

easily distributed across multiple servers. The most recognized products of this group include Redis, Dynamo, and Riak.

e Column-oriented databases: where the data is stored in sections of columns offering more flexibility and easy aggregation.

Facebook's Cassandra, Google's BigTable, and Amazon's SimpleDB are some examples of column-oriented databases.

o Document databases: where the data model consists of document collections, in which each individual document can have

multiple fields without necessarily having a defined schema. The best known products of this group are MongoDB and CouchDB.

e Graph databases: where the domain model consists of vertices interconnected by edges creating rich graph structures. The best

known products of this group are OrientDB, Neo4j and Titan.

OrientDB is a document-graph database, meaning it has full native graph capabilities coupled with features normally only found

in document databases.

Each of these categories or models has its own peculiarities, strengths and limitations. There is no single category or model, which is
better than the others. However, certain types of databases are better at solving specific problems. This leads to the motto of NoSQL:

choose the best tool for your specific use case.

The goal of Orient Technologies in building OrientDB was to create a robust, highly scalable database that can perform optimally in the
widest possible set of use cases. Our product is designed to be a fantastic "go to" solution for practically all of y our data persistence

needs. In the following parts of this tutorial, we will look closely at OrientDB, one of the best open-source, multi-model, next

generation NoSQL products on the market today.

Installation

OrientDB is available in two editions:

e Community Edition This edition is released as an open source project under the Apache 2 license. This license allows unrestricted

free usage for both open source and commercial projects.

e Enterprise Edition OrientDB Enterprise Edition is commercial software built on top of the Community Edition. Enterprise is
developed by the same team that developed the OrientDB engine. It serves as an extension of the Community Edition, providing
Enterprise features, such as:

o Query Profiler
o Distributed Clustering configuration
o Metrics Recording

o Live Monitoring with configurable Alerts

The Community Edition is available as a binary package for download or as source code on GitHub. The Enterprise Edition license is

included with Support purchases.
Prerequisites
Both editions of OrientDB run on any operating system that implements the Java Virtual machine (JVM). Examples of these include:

e Linux, all distributions, including ARM (Raspberry Pi, etc.)
e MacOSX

o Microsoft Windows, from 95/NT and later

e Solaris

e HP-UX

e IBM AIX

OrientDB requires Java, version 1.7 or higher.

Note: In OSGi containers, OrientDB uses a ConcurrentLinkedHashMap implementation provided by concurrentlinkedhashmap to
create the LRU based cache. This library actively uses the sun.misc package which is usually not exposed as a system package.
To overcome this limitation you should add property org.osgi.framework.system.packages.extra with value sun.misc to your

list of framework properties.

It may be as simple as passing an argument to the VM starting the platform:

$ java -Dorg.osgi.framework.system.packages.extra=sun.misc

Installing OrientDB

There are two methods available to install OrientDB, with some variations on each depending on your operating system. The first

method is to download a binary package from OrientDB. The other method is to compile the package from the source code.

Binary Installation

OrientDB provides a pre-compiled binary package to install the database on your system. Depending on your operating system, this is
a tarred or zipped package that contains all the relevant files you need to run OrientDB. For desktop installations, go to OrientDB

Downloads and select the package that best suits your system.

On server installations, you can use the wget utility:

$ wget https://orientdb.com/download.php?file=orientdb-community-2.1.2.tar.gz

http://www.orientechnologies.com/orientdb/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/support/
http://www.java.com/en/download
https://code.google.com/p/concurrentlinkedhashmap/
http://www.orientechnologies.com/download/

Whether you use your web browser or wget , unzip or extract the downloaded file into a directory convenient for your use, (for
example, /opt/orientdb/ on Linux). This creates a directory called orientdb-community-2.1.2 with relevant files and scripts, which

you will need to run OrientDB on your system.

Source Code Installation

In addition to downloading the binary packages, you also have the option of compiling OrientDB from the Community Edition source

code, available on GitHub. This process requires that you install Git and Apache Maven on your system.

To compile OrientDB from source code, clone the Community Edition repository, then run Maven (mvn) in the newly created
directory:

$ git https://github.com/orientechnologies/orientdb
$ git checkout develop

$ orientdb

$ mvn clean install

It is possible to skip tests:

$ mvn clean install -DskipTests

The develop branch contains code for the next version of OrientDB. Stable versions are tagged on master branch. For each maintained

version OrientDB has its own hotfix branch. As the time of writing this notes, the state of branches is:

develop: work in progress for next 2.2.x release (2.2.0-SNAPSHOT)
2.1.x: hot fix for next 2.1.x stable release (2.1.10-SNAPSHOT)
2.0.x: hot fix for next 2.0.x stable release (2.0.17-SNAPSHOT)

e last tag on master is 2.1.9

The build process installs all jars in the local maven repository and creates archives under the distribution module inside the target
directory. At the time of writing, building from branch 2.1.x gave:

$1ls -1 distribution/target/
total 199920

1088 26 Jan 09:57 archive-tmp

102 26 Jan 09:57 databases

102 26 Jan 09:57 orientdb-community-2.1.10-SNAPSHOT.dir
48814386 26 Jan 09:57 orientdb-community-2.1.10-SNAPSHOT.tar.gz
53542231 26 Jan 09:58 orientdb-community-2.1.10-SNAPSHOT.zip
$

The directory orientdb-community-2.1.10-SNAPSHOT.dir contains the OrientDB distribution uncompressed. Take a look to Contribute

to OrientDB if you want to be involved.

Update Permissions

For Linux, Mac OS X and UNIX-based operating sy stem, you need to change the permissions on some of the files after compiling from

source.

$ chmod 755 bin/*.sh
$ chmod -R 777 config

These commands update the execute permissions on files in the config/ directory and shell scripts in bin/ , ensuring that you can

run the scripts or programs that you've compiled.

Post-installation Tasks

For desktop users installing the binary, OrientDB is now installed and can be run through shell scripts found in the package bin
directory of the installation. For servers, there are some additional steps that you need to take in order to manage the database server for

OrientDB as a service. The procedure for this varies, depending on your operating sy stem.

http://www.git-scm.com/
https://maven.apache.org/

e Install as Service on Unix, Linux and Mac OS X

e Install as Service on Microsoft Windows

Upgrading

When the time comes to upgrade to a newer version of OrientDB, the methods vary depending on how you chose to install it in the first
place. If you installed from binary downloads, repeat the download process above and update any symbolic links or shortcuts to point

to the new directory.

For systems where OrientDB was built from source, pull down the latest source code and compile from source.

$ git pull origin master
$ mvn clean install

Bear in mind that when you build from source, you can switch branches to build different versions of OrientDB using Git. For example,

$ git checkout 2.1.x
$ mvn clean install

builds the 2.1.x branch, instead of master .

Other Resources

To learn more about how to install OrientDB on specific environments, please refer to the guides below:

e Install with Docker

e Install on Linux Ubuntu

e Install on JBoss AS

e Install on GlassFish

e Install on Ubuntu 12.04 VPS (DigitalOcean)

e Install on Vagrant

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps
https://bitbucket.org/nuspy/vagrant-orientdb-with-tinkerpop/overview

Install as Service on Unix/Linux

Following the installation guide above, whether you chose to download binaries or build from source, does not install OrientDB at a

system-level. There are a few additional steps you need to take in order to manage the database system as a service.

OrientDB ships with a script, which allows you to manage the database server as a system-level daemon. You can find it in the bin/

path of your installation directory, (that is, at $ORIENTDB_HOME/bin/orientdb.sh .

The script supports three parameters:

® start
® stop
® status

Configuring the Script

In order to use the script on your system, you need to edit the file to define two variables: the path to the installation directory and the

user you want to run the database server.
$ vi $ORIENTDB_HOME/bin/orientdb.sh

#!/bin/sh

OrientDB service script

#

Copyright (c) Orient Technologies LTD (http://www.orientechnologies.com)

chkconfig: 2345 20 80
description: OrientDb init script
processname: orientdb.sh

You have to SET the OrientDB installation directory here
ORIENTDB_DIR="YOUR_ORIENTDB_INSTALLATION_PATH"
ORIENTDB_USER="USER_YOU_WANT_ORIENTDB_RUN_WITH"

Edit the orIENTDB_DIR variable to indicate the installation directory. Edit the oRIENTDB_USER variable to indicate the user you want to

run the database server, (for instance, orientdb).

Installing the Script

Different operating systems and Linux distributions have different procedures when it comes to managing sy stem daemons, as well as
the procedure for starting and stopping them during boot up and shutdown. Below are generic guides for init and systemd based unix

systems as well Mac OS X. For more information, check the documentation for your particular system.

Installing for init

Many Unix-like operating sy stems such as FreeBSD, most older distributions of Linux as well as current releases of Debian, Ubuntu
and their derivatives use variations on SysV-style init for these processes. These are typically the systems that manage such processes

using the service command.

To install OrientDB as a service on an init-based unix or Linux system, copy the modified orientdb.sh file from $ORIENTDB HOME/bin

into /etc/init.d/ :

cp $ORIENTDB_HOME/bin/orientdb.sh /etc/init.d/orientdb

Once this is done, you can start and stop OrientDB using the service command:

service orientdb start

Starting OrientDB server daemon...

Installing for systemd

Most newer releases of Linux, especially among the RPM -based distributions like Red Hat, Fedora and CentOS, as well as future
releases of Debian and Ubuntu use systemd for these processes. These are the systems that manage such processes using the

systemctl command.

Installing OrientDB on a systemd-based Linux distribution requires that you write a service file set to use the orientdb.sh script in

launching the database server. Place this file in the systemd configuration directory, (for instance, /etc/systemd/ :
vi /etc/systemd/system/orientdb.service

[Unit]

Description=0rientDB Server
After=network.target
After=syslog.target

[Install]
WantedBy=multi-user.target

[Service]

Type=forking
ExecStart=$0RIENTDB_HOME/bin/orientdb.sh start
ExecStop=$0ORIENTDB_HOME/bin/orientdb.sh stop
ExecStatus=$0RIENTDB_HOME/bin/orientdb.sh status

You may want to use the absolute path instead of the environmental variable $orRIENTDB_HOME . Once this file is saved, you can start and

stop the OrientDB server using the systemctl command:

systemctl start orientdb.service

Additionally, with the orientdb.service file saved, you can set systemd to start the database server automatically during boot by

issuing the enable command:

systemctl orientdb.service

Synchronizing state of orientdb.service with SysV init with /usr/lib/systemd/systemd-sysv-
install...

Executing /usr/lib/systemd/systemd-sysv-install enable orientdb

Created symlink from /etc/systemd/system/multi-user.target.wants/orientdb.service to
/etc/systemd/system/orientdb.service.

Installing for Mac OS X

For Mac OS X, create an alias to OrientDB system daemon script and the console.

$ orientdb-server=/path/to/$ORIENTDB_HOME/bin/orientdb.sh
$ orientdb-console=/path/to/$0RIENTDB_HOME/bin/console.sh

You can now start the OrientDB database server using the following command:

$ orientdb-server start

Once the database starts, it is accessible through the console script.
$ orientdb-console

OrientDB console v.1.6 www.orientechnologies.com
Type 'HELP' to display all the commands supported.

orientdb>

Other resources

To learn more about how to install OrientDB on specific environment please follow the guide below:

e Install on Linux Ubuntu

e Install on JBoss AS

e Install on GlassFish

e Install on Ubuntu 12.04 VPS (DigitalOcean)

e Install as service on Unix, Linux and M acOSX

e Install as service on Windows

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps

Install as a Service on Windows

OrientDB is a Java server application. As most server applications, they have to perform several tasks, before being able to shut down
the Virtual M achine process, hence they need a portable way to be notified of the imminent Virtual M achine shutdown. At the moment,
the only way to properly shut down an OrientDB server instance (not embedded) is to execute the shutdown.bat (or shutdown.sh)
script shipped with the OrientDB distribution, but it's up to the user to take care of this. This implies that the server instance isn't

stopped correctly, when the computer on which it is deployed, is shut down without executing the above script.

Apache Commons Daemon

Apache Commons Daemon is a set of applications and API enabling Java server application to run as native non interactive server
applications under Unix and Windows. In Unix, server applications running in the background are called daemons and are controlled by
the operating system with a set of specified signals. Under Windows, such programs are called services and are controlled by
appropriate calls to specific functions defined in the application binary. Although the ways of dealing with running daemons or services
are different, in both cases the operating system can notify a server application of its imminent shutdown, and the underlying
application has the ability to perform certain tasks, before its process of execution is destroyed. Wrapping OrientDB as a Unix daemon
or as a Windows service enables the management of this server application lifecy cle through the mechanisms provided natively by both

Unix and Windows operating sy stems.

Installation

This tutorial is focused on Windows, so you have to download procrun. Procrun is a set of applications, which allow Windows users to
wrap (mostly) Java applications (e.g. Tomcat) as a Windows service. The service can be set to automatically start, when the machine

boots and will continue to run with no user logged onto the machine.

1. Point you browser to the Apache Commons Daemon download page.

2. Click on Browse native binaries download area...: you will see the index commons/daemon/binaries/ (even if the title in the
page reports Index of dist/commons).

3. Click on windows. Now you can see the index of commons/daemon/binaries/windows.

4. Click on commons-daemon-1.0.7-bin-windows.zip. The download starts.

5. Unzip the file in a directory of your choice. The content of the archive is depicted below:

commons-daemon-1.0.7-bin-windows

|
\---amd64

\---prunsrv.exe

|
\---ia64

\---prunsrv.exe

|
\---LICENCE. txt

|
\---NOTICE. txt

\---prunmgr.exe

\---prunsrv.exe

I
\- - -RELEASE-NOTES.. txt

prunmgr is a GUI application for monitoring and configuring Windows services wrapped with procrun. prunsrv is a service application
for running applications as services. It can convert any application (not just Java applications) to run as a service. The directory amd64

contains a version of prunsrv for x86-64 machines while the directory ia64 contains a version of prunsrv for Itanium 64 machines.
Once you downloaded the applications, you have to put them in a folder under the OrientDB installation folder.

1. Go to the OrientDB folder, in the following referred as % ORIENTDB_HOME%

http://commons.apache.org/daemon/
http://commons.apache.org/daemon/procrun.html
http://commons.apache.org/daemon/download_daemon.cgi

2. Create a new directory and name it service

3. Copy there the appropriate versions of prunsrv and prunmgr according to the architecture of your machine.

Configuration

In this section, we will show how to wrap OrientDB as a Windows Service. In order to wrap OrientDB as a service, you have to execute

a short script that uses the prunsrv application to configure a Windows Service.

Before defining the Windows Service, you have to rename prunsrv and prunmgr according to the name of the service. Both applications
require the name of the service to manage and monitor as parameter but you can avoid it by naming them with the name of the service. In
this case, rename them respectively OrientDBGraph and OrientDBGraphw as OrientDBGraph is the name of the service that you
are going to configure with the script below. If you want to use a difference service name, you have to rename both application
respectively myservicename and myservicenamew (for example, if you are wrapping OrientDB and the name of the service is
OrientDB, you could rename prunsrv as OrientDB and prunmgr as OrientDBw). After that, create the file
%ORIENTDB_HOME%\service\installS ervice.bat with the content depicted below:

11 OrientDB Windows Service Installation

@echo off

rem Remove surrounding quotes from the first parameter
set str=%~1

rem Check JVM DLL location parameter

if "%str%" == "" goto missingJVM

set JVM_DLL=%str%

rem Remove surrounding quotes from the second parameter

set str=%~2
rem Check OrientDB Home location parameter
if "%str%" == "" goto missingOrientDBHome

set ORIENTDB_HOME=%str%

set CONFIG_FILE=%ORIENTDB_HOME%/config/orientdb-server-config.xml

set LOG_FILE=%ORIENTDB_HOME%/config/orientdb-server-log.properties

set LOG_CONSOLE_LEVEL=info

set LOG_FILE_LEVEL=fine

set WwWW_PATH=%0RIENTDB_HOME%/www

set ORIENTDB_ENCODING=UTF8

set ORIENTDB_SETTINGS=-Dprofiler.enabled=true -Dcache.levell.enabled=false -Dcache.level2.strategy=1
set JAVA_OPTS_SCRIPT=-XX:+HeapDumpOnOutOfMemoryError

rem Install service

OrientDBGraphX.X.X.exe //IS --DisplayName="OrientDB GraphEd X.X.X" A

--Description="0rientDB Graph Edition, aka GraphEd, contains OrientDB server integrated with the latest release of the TinkerP
op Open Source technology stack supporting property graph data model." A
--StartClass=com.orientechnologies.orient.server.0ServerMain --StopClass=com.orientechnologies.orient.server.0ServerShutdownMa
in A

--Classpath="%0RIENTDB_HOME%\1ib*" --JvmOptions "-Dfile.Encoding=%ORIENTDB_ENCODING%;-Djava.util.logging.config.file="%LOG_FI
LE%"; -Dorientdb.config.file="%CONFIG_FILE%"; -Dorientdb.www.path="%sWW_PATH%" ; -Dlog.console.level=%L0OG_CONSOLE_LEVEL%; -Dlog.fil
e.level=%LOG_FILE_LEVEL%; -Dorientdb.build.number="@BUILD@" ; -DORIENTDB_HOME=%ORIENTDB_HOME%" A

--StartMode=jvm --StartPath="%0RIENTDB_HOME%\bin" --StopMode=jvm --StopPath="%ORIENTDB_HOME%\bin" --Jvm="%JVM_DLL%" --LogPath=
"%ORIENTDB_HOME%\log" --Startup=auto

EXIT /B

:missingJvM
echo Insert the JVM DLL location
goto printUsage

:missingOrientDBHome
echo Insert the OrientDB Home
goto printUsage

:printUsage

echo usage:

echo installService JVM_DLL_location OrientDB_Home
EXIT /B

The script requires two input parameters:

1. The location of jvm.dll, for example C:\Program Files\Java\jdk1.6.0_26\jre\bin\server\jvm.dll

2. The location of the OrientDB installation folder, for example D:\orientdb-graphed-1.0rc5

The service is actually installed when executing OrientDBGraph.exe (originally prunsrv) with the appropriate set of command line

arguments and parameters. The command line argument /IS states that the execution of that application will result in a service

installation. Below there is the table with the command line parameters used in the above script.

Parameter Description Source
name
-- The name displayed in the Windows Services Custom
DisplayName M anagement Console
—-Description The Qescrlptlon displayed in the Windows Custom
Services M anagement Console
Class that contains the startup method (= the
method to be called to start the application). . . e .
--StartClass The default method to be called is the main The class invoked in the */bin/server.bat* script
method
Class that will be used when receiving a Stop
--StopClass service signal. The default method to be called The class invoked in the */bin/shutdown.bat* script
is the main method
The value of the -cp parameter specified in the
~CEsapedh 81 ER JEvE ERpEiT _%ORIENTDB_HOM E%\bin\server.bat_ script
. . The list of options in the form of -D or -X specified in the
3-\7rn Options ?;Sta?:tgg t&gil;s t;t?:! rp ; i:refictl?aEZStiZM _%ORIENTDB_HOM E%\bin\server.bat_ script and the
P P & ; definition of the ORIENTDB_HOME system property
Specify how to start the process. In this case,
--StartM ode it will start Java in-process and not as a Based on Apache Tomcat configuration
separate image
--StartPath Working path for the StartClass _%ORIENTDB_HOM E%\bin_
--StopMode The same as --StartM ode Based on Apache Tomcat configuration
--StopPath Working path for the Stop Class _%ORIENTDB_HOM E%\bin_
The first input parameter of this script. Ensure that you
—Jvm Which *jvm.dll* to use: the default one or the insert the location of the Java HotSpot Server VM as a
one located in the specified full path full path. We will use the server version for both start and
stop.
--LogPath Path used by prunsrv for logging The default location of the Apache Commons Daemon log
States if the service should start at machine
--Startup auto

start up or manually

For a comp lete reference to all available parameters and arguments for prunsrv and prunmgr, visit the Procrun p age.

In order to install the service:

1. Open the Windows command shell

2. Goto %ORIENTDB_HOME% \service, for example typing in the shell > cd D:\orientdb-graphed-1.0rc5\service

3. Execute the installService.bat specify ing the jvm.dIl location and the OrientDB Home as full paths, for example typing in the shell
> installService.bat "C:\Program Files\Java\jdk1l.6.0_26\jre\bin\server\jvm.d11l" D:\orientdb-graphed-1.0rc5
4. Open the Windows Services M anagement Console - from the taskbar, click on Start, Control Panel, Administrative Tools and then
Service - and check the existance of a service with the same name specified as value of the --pisplayName parameter (in this case
OrientDB GraphEd 1.0rc5). You can also use % ORIENTDB_HOME% \service\OrientDBGraphw.exe to manage and monitor the
OrientDBGraph service.

Other resources

To learn more about how to install OrientDB on specific environment please follow the guide below:

e Install on Linux Ubuntu
e Install on JBoss AS

e Install on GlassFish

http://commons.apache.org/daemon/procrun.html
http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish

Install as Service on Windows

e Install on Ubuntu 12.04 VPS (DigitalOcean)
e Install as service on Unix, Linux and M acOSX

e Install as service on Windows

21

https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps

Installing in a Docker Container

OrientDB is the first M ulti-M odel Open Source NoSQL DBM S that combines the power of graphs and the flexibility of documents
into one scalable, high-p erformance operational database.

This repository is a dockerfile for creating an orientdb image with :

e explicit orientdb version (orientdb-2.0) for image cache stability
e init by supervisord

e config, databases and backup folders expected to be mounted as volumes

And lots of information from my orientdb+docker explorations. Read on!

Building the image on your own

1. Clone this project to a local folder:

git clone https://github.com/orientechnologies/orientdb-docker.git

2. Build the image:

docker build -t <YOUR_DOCKER_HUB_USER>/orientdb-2.0 .

3. Push it to your Docker Hub repository (it will ask for your login credentials):

docker push <YOUR_DOCKER_HUB_USER>/orientdb-2.0

All examples below are using an image from nesrait/orientdb-2.0. If you build your own image please find/replace "nesrait" with your
Docker Hub user.

Running Orientdb

To run the image, run:

docker run --name orientdb -d -v <config_path>:/opt/orientdb/config -v <databases_path>:/opt/orientdb/databases -v <backup_pat
h>:/opt/orientdb/backup -p 2424 -p 2480 nesrait/orientdb-2.0

The docker image contains a unconfigured Orientdb installation and for running it, y ou need to provide your own config folder from

which OrientDB will read its startup settings.
The same applies for the databases folder which if local to the running container would go away as soon as it died/you killed it.

The backup folder only needs to be mapped if you activate that setting on your OrientDB configuration file.

Persistent distributed storage using BT Sync
If you're not running OrientDB in a distributed configuration you need to take special care to backup your database (in case your host
goes down).

Below is a simple, yet hackish, way to do this: using BT Sync data containers to propagate the OrientDB config, LIVE databases and
backup folders to remote location(s). Note: don't trust the remote copy of the LIVE database folder unless the server is down and it has

correctly flushed changes to disk.
1. Create BT Sync shared folders on any remote location for the various folder you want to replicate

1.1. config: orientdb configuration inside the config folder

http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org

1.2. databases: the LIVE databases folder
1.3. backup: the place where OrientDB will store the zipped backups (if you activate the backup in the configuration file)

2. Take note of the BT Sync folder secrets CONFIG_FOLDER_SECRET, DATABASES_FOLDER_SECRET,
BACKUP_FOLDER_SECRET

3. Launch BT Sync data containers for each of the synched folder you created giving them proper names:

docker run -d --name orientdb_config -v /opt/orientdb/config nesrait/btsync /opt/orientdb/config CONFIG_FOLDER_SECRET
docker run -d --name orientdb_databases -v /opt/orientdb/databases nesrait/btsync /opt/orientdb/databases DATABASES_FOLDE

R_SECRET
docker run -d --name orientdb_backup -v /opt/orientdb/backup nesrait/btsync /opt/orientdb/backup BACKUP_FOLDER_SECRET

4. Wait until all files have magically appeared inside your BT Sync data volumes: **“bash docker run --rm -i -t --volumes-from
orientdb_config --volumes-from orientdb_databases --volumes-from orientdb_backup ubuntu du -h /opt/orientdb/config

/opt/orientdb/databases /opt/orientdb/backup

5. Finally you're ready to start your OrientDB server
" “bash

docker run --name orientdb -d \
--volumes-from orientdb_config \
--volumes-from orientdb_databases \
--volumes-from orientdb_backup \
-p 2424 -p 2480 \
nesrait/orientdb-2.0

OrientDB distributed

If you're running OrientDB distributed* you won't have the problem of losing the contents of your databases folder since they are
already replicated to the other OrientDB nodes. From the setup above simply leave out the "--volumes-from orientdb_databases"

argument and OrientDB will use the container storage to hold your databases' files.

*note: some extra work might be needed to correctly setup hazelcast running inside docker containers (see this discussion).

Ad-hoc backups

With OrientDB 2.0 we can now create ad-hoc backups by taking advantage of the new backup.sh script:

e Using the orientdb_backup data container that was created above:

docker run -i -t --volumes-from orientdb_config --volumes-from orientdb_backup nesrait/orientdb-2.0 ./backup.sh <dburl> <
user> <password> /opt/orientdb/backup/<backup_file> [< >]

e Or using a host folder:

docker run -i -t --volumes-from orientdb_config -v <host_backup_path>:/backup nesrait/orientdb-2.0 ./backup.sh <dburl> <user>
<password> /backup/<backup_file> [<type>]

Either way, when the backup completes you will have the backup file located outside of the OrientDB container and read for

safekeeping.

Note: I haven't tried the non-blocking backup (type=lvm) yet but found this discussion about a docker LVM dependency issue.

Running the Orientdb console

http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org
https://groups.google.com/forum/#!topic/vertx/MvKcz_aTaWM
http://www.orientdb.org
https://github.com/orientechnologies/orientdb/wiki/Backup-and-Restore#backup-database
http://www.orientdb.org
https://groups.google.com/forum/#!topic/docker-user/n4Xtvsb4RAw

docker run --rm -it \
--volumes-from orientdb_config \
--volumes-from orientdb_databases \
--volumes-from orientdb_backup \
nesrait/orientdb-2.0 \
/opt/orientdb/bin/console.sh

Running the OrientDB Server

When you finish installing OrientDB, whether you build it from source or download the binary package, you are ready to launch the
database server. You can either start it through the system daemon or through the provided server script. This article only covers the

latter.

Note: If you would like to run OrientDB as a service on your system, there are some additional steps that you need to take. This
provides alternate methods for starting the server and allows you to launch it as a daemon when your system boots. For more

information on this process see:

e Install OrientDB as a Service on Unix, Linux and Mac OS X

e Install OrientDB as a Service on Microsoft Windows

Starting the Database Server

While you can run the database server as system daemon, you also have the option of starting it directly. In the OrientDB installation
directory, (that is $ORIENTDB_HOME), under bin , there is a file named server.sh on Unix-based systems and server.bat on

Windows. Executing this file starts the server.

To launch the OrientDB database server, run the following commands:

$ $ORIENTDB_HOME/bin

$./server.sh

’ -::rrrr::-rrrrrr\;;
r Srrrrrrr g
Pr i trrrrrry s
rrcrrrrrrrrg ‘::I rr HHP b apoo
Prrrrrrrrrrr iyt rr
Srrrrrrrrrr iy rr
Srrrrrrrrrr iy TR EEEEEEE
Precrrtrrrrrrrrr s o cire groag
rrrrcirrrrrrr "8 rorr
op8Bppppoooa 5 0pp 8 p
1o ‘rr-

rrr I

e Y, SERVER

2012-12-28 01:25:46:319 INFO Loading configuration from: config/orientdb-server-
config.xml... [0ServerConfigurationLoaderXml]

2012-12-28 01:25:46:625 INFO OrientDB Server v1.6 is starting up... [OServer]
2012-12-28 01:25:47:142 INFO -> Loaded memory database 'temp' [OServer]
2012-12-28 01:25:47:289 INFO Listening binary connections on 0.0.0.0:2424
[0ServerNetworkListener]

2012-12-28 01:25:47:290 INFO Listening http connections on 0.0.0.0:2480
[0ServerNetworkListener]

2012-12-28 01:25:47:317 INFO OrientDB Server v1.6 is active. [0Server]

The database server is now running, It is accessible on your system through ports 2424 and 248e . At the first startup the server will

ask for the root user password. The password is stored in the config file.

Stop the Server

On the console where the server is running a simple CTRL+c will shutdown the server.

The shutdown.sh (shutdown.bat) script could be used to stop the server:

$ $ORIENTDB_HOME/bin

$./shutdown.sh -p ROOT_PASSWORD

On *nix systems a simple call to shutdown.sh will stop the server running on localhost:

$ $ORIENTDB_HOME/bin

$./shutdown.sh

It is possible to stop servers running on remote hosts or even on different ports on localhost:

$ $ORIENTDB_HOME/bin

$./shutdown.sh -h odbl.mydomain.com -P 2424-2430 -u root -p ROOT_PASSWORD

List of params

e -h|--host HOSTNAME or IP ADDRESS : the host or ip where OrientDB is running, default to localhost
e -P|--ports PORT or PORT RANGE : single port value or range of ports; default to 2424-2430

e -u|--user ROOT USERNAME : root's username; deafult to root

e -p |--password ROOT PASSWORD : root's user password; mandatory

NOTE On Windows systems password is always mandatory because the script isn't able to discover the pid of the OrientDB's

process.

Server Log Messages

Following the masthead, the database server begins to print log messages to standard output. This provides you with a guide to what

OrientDB does as it starts up on your system.
1. The database server loads its configuration file from the file $ORIENTDB_HOME/config/orientdb-server-config.xml .
For more information on this step, see OrientDB Server.
2. The database server loads the temp database into memory. You can use this database in storing temporary data.
3. The database server begins listening for binary connections on port 2424 for all configured networks, (©.0.0.0).

4. The database server begins listening for HTTP connections on port 248e for all configured networks, (©.0.0.0).

Accessing the Database Server

By default, OrientDB listens on two different ports for external connections.

e Binary: OrientDB listens on port 2424 for binary connections from the console and for clients and drivers that support the

Network Binary Protocol.

e HTTP: OrientDB listens on port 2480 for HTTP connections from OrientDB Studio Web Tool and clients and drivers that
support the HTTP/REST protocol, or similar tools, such as cURL.

If you would like the database server to listen at different ports or IP address, you can define these values in the configuration file

config/orientdb-server-config.xml .

http://www.orientechnologies.com/docs/last/orientdb-studio.wiki/Home-page.html
http://en.wikipedia.org/wiki/cURL

Running the OrientDB Console

There are various methods you can use to connect to your database server and the individual databases, once the server is running, such
as the Network Binary and HTTP/REST protocols. In addition to these, OrientDB provides a command-line interface for connecting to
and working with the database server.

Starting the OrientDB Console

In the OrientDB installation directory, (that is, $ORIENTDB_HOME , where you installed the database), under bin , there is a file called

console.sh on Unix-based systems and on Windows console.bat .

To launch the OrientDB console, run the following command after you start the database server:

$ $ORTENTDB_HOME/bin

$./console.sh
OrientDB console v.X.X.X (build ©) www.orientdb.com
Type 'HELP' to display all the commands supported.

Installing extensions for GREMLIN language v.X.X.X

orientdb>

The OrientDB console is now running. From this prompt you can connect to and manage any remote or local databases available to you.

Using the HELP Command

In the event that you are unfamiliar with OrientDB and the available commands, or if you need help at any time, you can use the HELP
command, or type ? into the console prompt.

orientdb> HeLP

AVAILABLE COMMANDS:
* alter class <command-text> Alter a class in the database schema
* alter cluster <command-text> Alter class in the database schema

* help Print this help
* exit Close the console

For each console command available to you, HeLP documents its basic use and what it does. If you know the particular command and

need details on its use, you can provide arguments to HeLP for further clarification.
orientdb> HeLp SELECT

COMMAND: SELECT

- Execute a query against the database and display the results.
SYNTAX: select <query-text>

WHERE :

- <query-text>: The query to execute

Connecting to Server Instances

There are some console commands, such as LIST DATABASES Or CREATE DATABASE , which you can run while only connected to the

server instance. For other commands, however, you must also connect to a database, before they run without error.

Before you can connect to a fresh server instance and fully control it, you need to know the root password for the database. The
root password is located in the configuration file at config/orientdb-server-config.xml . You can find it by searching for the

<users> element. If you want to change it, edit the configuration file and restart the server.

<users>
<user resources="*"
password="my_root_password"
name="root"/>
<user resources='"connect, server.listDatabases, server.dblist"
password="my_guest_password"
name="guest"/>
</users>

With the required credentials, you can connect to the database server instance on your system, or establish a remote connection to one

running on a different machine.

orientdb> CONNECT remote:localhost root my_root_password

Connecting to remote Server instance [remote:localhost] with user 'root'...OK

Once you have established a connection to the database server, you can begin to execute commands on that server, such as LIST

DATABASES and CREATE DATABASE .

orientdb> LIST DATABASES

Found 1 databases:
* GratefulDeadConcerts (plocal)

To connect to this database or to a different one, use the conNecT command from the console and specify the server URL, username,

and password. By default, each database has an admin user with a password of admin .

Warning: Always change the default password on production databases.
The above LIST DATABASES command shows a GratefulbDeadConcerts installed on the local server. To connect to this database, run the
following command:

orientdb> CONNECT remote:localhost/GratefulDeadConcerts admin admin

Connecting to database [remote:localhost/GratefulDeadConcerts] with user 'admin'...OK

The connecT command takes a specific syntax for its URL. That is, remote:localhost/GratefulDeadConcerts in the example. It has

three parts:

e Protocol: The first part of the database address is the protocol the console should use in the connection. In the example, this is

remote , indicating that it should use the TCP/IP protocol.

e Address: The second part of the database address is hostname or IP address of the database server that you want the console to

connect to. In the example, this is localhost , since the connection is made to a server instance running on the local file system.

e Database: The third part of the address is the name of the database that you want to use. In the case of the example, this is

GratefulDeadConcerts .

For more detailed information about the commands, see Console Commands.

Run the console

Note: The OrientDB distribution comes with the bundled database Gratefulbeadconcerts which represents the Graph of the

Grateful Dead's concerts. This database can be used by anyone to start exploring the features and characteristics of OrientDB.

30

http://en.wikipedia.org/wiki/Grateful_Dead

Run the Studio

Run the Studio

In the event that you're more comfortable interacting with database systems through a graphical interface, you can accomplish most

common database tasks with the web interface OrientDB Studio.

Connecting to Studio

By default, there are no additional steps that you need to take to start OrientDB Studio. When you launch the Server, whether through

the start-up script server.sh or as a system daemon, the Studio web interface opens automatically with it.

$ firefox http://localhost:2480

A\
)()r ient «ha Server Management

Database | GratefulDeadConcerts :

User

Password

From here you can create a new database, connect to or drop an existing database, import a public database and navigate to the Server

management interface.

For more information on the OrientDB Studio, see Studio.

31

Multi-Model

The OrientDB engine supports Graph, Document, Key/Value, and Object models, so you can use OrientDB as a replacement for a
product in any of these categories. However, the main reason why users choose OrientDB is because of its true Multi-Model DBM S
abilities, which combine all the features of the four models into the core. These abilities are not just interfaces to the database engine, but
rather the engine itself was built to support all four models. This is also the main difference to other multi-model DBM Ss, as they
implement an additional layer with an API, which mimics additional models. However, under the hood, they're truly only one model,

therefore they are limited in speed and scalability.

The Document Model

The data in this model is stored inside documents. A document is a set of key/value pairs (also referred to as fields or properties), where
the key allows access to its value. Values can hold primitive data types, embedded documents, or arrays of other values. Documents are
not typically forced to have a schema, which can be advantageous, because they remain flexible and easy to modify. Documents are
stored in collections, enabling developers to group data as they decide. OrientDB uses the concepts of "classes" and "clusters" as its
form of "collections" for grouping documents. This provides several benefits, which we will discuss in further sections of the

documentation.

OrientDB's Document model also adds the concept of a "LLINK" as a relationship between documents. With OrientDB, you can decide
whether to embed documents or link to them directly. When you fetch a document, all the links are automatically resolved by OrientDB.
This is a major difference to other Document Databases, like M ongoDB or CouchDB, where the developer must handle any and all

relationships between the documents herself.

The table below illustrates the comparison between the relational model, the document model, and the OrientDB document model:

Relational Model Document Model OrientDB Document Model
Table Collection Class or Cluster
Row Document Document
Column Key/value pair Document field
Relationship not available Link

The Graph Model

A graph represents a network-like structure consisting of Vertices (also known as Nodes) interconnected by Edges (also known as Arcs).

OrientDB's graph model is represented by the concept of a property graph, which defines the following:
e Vertex - an entity that can be linked with other Vertices and has the following mandatory properties:

o unique identifier
o set of incoming Edges
o set of outgoing Edges

e Edge - an entity that links two Vertices and has the following mandatory properties:

o unique identifier

[e]

link to an incoming Vertex (also known as head)

[e]

link to an outgoing Vertex (also known as tail)

[e]

label that defines the type of connection/relationship between head and tail vertex

In addition to mandatory properties, each vertex or edge can also hold a set of custom properties. These properties can be defined by
users, which can make vertices and edges appear similar to documents. In the table below, you can find a comparison between the graph

model, the relational data model, and the OrientDB graph model:

Relational Model Graph Model OrientDB Graph Model

Table Vertex and Edge Class Class that extends "V" (for Vertex) and "E" (for Edges)
Row Vertex Vertex

Column Vertex and Edge property Vertex and Edge property

Relationship Edge Edge

The Key/Value Model

This is the simplest model of the three. Everything in the database can be reached by a key, where the values can be simple and complex
types. OrientDB supports Documents and Graph Elements as values allowing for a richer model, than what you would normally find in
the classic Key/Value model. The classic Key/Value model provides "buckets" to group key/value pairs in different containers. The most

classic use cases of the Key/Value M odel are:

e POST the value as payload of the HTTP call -> /<bucket>/<key>
e GET the value as payload from the HTTP call -> /<bucket>/<key>
e DELETE the value by Key, by calling the HTTP call -> /<bucket>/<key>

The table below illustrates the comparison between the relational model, the Key/Value model, and the OrientDB Key/Value model:

Relational Model Key/Value Model OrientDB Key/Value Model
Table Bucket Class or Cluster
Row Key/Value pair Document
Column not available Document field or Vertex/Edge property
Relationship not available Link

The Object Model

This model has been inherited by Object Oriented programming and supports Inheritance between types (sub-types extends the

super-types), Polymorphism when you refer to a base class and Direct binding from/to Objects used in programming languages.

The table below illustrates the comparison between the relational model, the Object model, and the OrientDB Object model:

Relational Model Object Model OrientDB Object Model
Table Class Class or Cluster
Row Object Document or Vertex
Column Object property Document field or Vertex/Edge property

Relationship Pointer Link

http://en.wikipedia.org/wiki/Object-oriented_programming

Graph or Document API?

In OrientDB, we created 2 different APIs: the Document API and the Graph API. The Graph API works on top of the Document API.
The Document API contains the Document, Key/Value and Object Oriented models. The Graph APT handles the Vertex and Edge

relationships.

YOU, THE USER

\ 7/ |

\/ =
Sooooooooooooo + \ /
| Graph API | \/
fooooooooooooo Pooooooosoooooooo0 +
| Document API |
T +

Graph API

With OrientDB 2.0, we improved our Graph API to support all models in just one Multi-M odel API. This API will probably cover

80% of your database use cases, so it should be your "go to" API, if you're starting with OrientDB.
Using the Graph API:

e Your Data (‘records' in the RDBM S world) will be modeled as Vertices and Edges. You can store properties in both.

e You can still work in Schema-Less, Schema-Full or Hybrid modes.

e Relationships are modeled as Bidirectional Edges. If the Lightweight edge setting is active, OrientDB uses Lightweight Edges in
cases where edges have no properties, so it has the same impact on speed and space as with Document LINKs, but with the
additional bonus of having bidirectional connections. This means you can use the Move VERTEX command to refactor your graph

with no broken LINKs. For more information how Edges are managed, please refer to Lightweight Edges.

Document API

What about the remaining 20% of your database use cases? Should you need a Document Database (while retaining the additional

OrientDB features, like LINKs) or you come from the Document Database world, using the Document API could be the right choice.
These are the Pros and Cons of using the Document API:

o The Document API is simpler than the Graph API in general.

e Relationships are only mono-directional. If you need bidirectional relationships, it is your responsibility to maintain both LINKs.

e A Document is an atomic unit, while with Graphs, the relationships are modeled through In and Out properties. For this reason,
Graph operations must be done within transactions. In contrast, when you create a relationship between documents with a LINK,
the targeted linked document is not involved in this operation. This results in better M ulti-Threaded support, especially with

insert, delete and update operations.

Basic Concepts

The Record

The smallest unit that you can load from and store in the database. Records come in four types:

e Document
e RecordBytes
o Vertex

e FEdge

A Record is the smallest unit that can be loaded from and stored into the database. A record can be a Document, a RecordBytes record

(BLOB) a Vertex or even an Edge.

Documents

The Document is the most flexible record type available in OrientDB. Documents are softly typed and are defined by schema classes

with defined constraints, but you can also use them in a schema-less mode too.

Documents handle fields in a flexible manner. You can easily import and export them in JSON format. For example,

{
"name" : "Jay",
"surname" : "Miner",
"job" : "Developer",
"creations" : [
{
"name" : "Amiga 1000",
"company" : "Commodore Inc."
Ao
"name" : "Amiga 500",
"company" : "Commodore Inc."
}
]
}

For Documents, OrientDB also supports complex relationships. From the perspective of developers, this can be understood as a

persistent Map<String,Object> .

RecordBytes

In addition to the Document record type, OrientDB can also load and store binary data. The RecordBytes record type is similar to the

BLOB data type in Relational databases.

Vertex

In Graph databases, the most basic unit of data is the node, which in OrientDB is called a vertex. The Vertex stores information for the

database. There is a separate record type called the Edge that connects one vertex to another.

Vertices are also documents. This means they can contain embedded records and arbitrary properties.

Edge

In Graph databases, an arc is the connection between two nodes, which in OrientDB is called an edge. Edges are bidirectional and can

only connect two vertices.

Edges can be regular or lightweight. The Regular Edge saves as a Document, while the Lightweight Edge does not. For an understanding

of the differences between these, see Lightweight Edges.

For more information on connecting vertices in general, see Relationships, below.

Record ID

When OrientDB generates a record, it auto-assigns a unique unit identifier, called a Record ID, or RID. The syntax for the Record ID is

the pound sign with the cluster identifier and the position. The format is like this:
#<cluster>:<position> .

e Cluster Identifier: This number indicates the cluster to which the record belongs. Positive numbers in the cluster identifier
indicate persistent records. Negative numbers indicate temp orary records, such as those that appear in result-sets for queries that

use projections.
e Position: This number defines the absolute position of the record in the cluster.
NOTE: The prefix character # is mandatory to recognize a Record ID.

Records never lose their identifiers unless they are deleted. When deleted, OrientDB never recycles identifiers, except with local
storage. Additionally, you can access records directly through their Record ID's. For this reason, you don't need to create a field to serve

as the primary key, as you do in Relational databases.

Record Version

Records maintain their own version number, which increments on each update. In optimistic transactions, OrientDB checks the version

in order to avoid conflicts at commit time.

Class

The concept of the Class is taken from the Object Oriented Programming paradigm. In OrientDB, classes define records. It is closest to

the concept of a table in Relational databases.

Classes can be schema-less, schema-full or a mix. They can inherit from other classes, creating a tree of classes. Inheritance, in this

context, means that a sub-class extends a parent class, inheriting all of its attributes.

Each class has its own cluster. A class must have at least one cluster defined, which functions as its default cluster. But, a class can
support multiple clusters. When you execute a query against a class, it automatically propagates to all clusters that are part of the class.

When you create a new record, OrientDB selects the cluster to store it in using a configurable strategy.

When you create a new class, by default, OrientDB creates a new persistent cluster with the same name as the class, in lowercase.

Abstract Class

The concept of an Abstract Class is one familiar to Object-Oriented programming, In OrientDB, this feature has been available since
version 1.2.0. Abstract classes are classes used as the foundation for defining other classes. They are also classes that cannot have

instances. For more information on how to create an abstract class, see CREATE CLASS.
This concept is essential to Object Orientation, without the typical spamming of the database with always empty, auto-created clusters.

For more information on Abstract Class as a concept, see Abstract Type and Abstract M ethods and Classes

Class vs. Cluster in Queries

The combination of classes and clusters is very powerful and has a number of use cases. Consider an examp le where you create a class

Invoice , with two clusters invoice2015 and invoice2016 . You can query all invoices using the class as a target with SeLECT .

orientdb> SELECT FrROM Invoice

In addition to this, you can filter the result-set by year. The class Invoice includes a year field, you can filter it through the wHere

clause.

orientdb> SELECT FROM Invoice WHERE year =

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Inheritance_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Abstract_type
http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

You can also query specific objects from a single cluster. By splitting the class Invoice across multiple clusters, (that is, one per year),

you can optimize the query by narrowing the potential result-set.

orientdb> SELECT FROM CLUSTER:invoice2012

Due to the optimization, this query runs significantly faster, because OrientDB can narrow the search to the targeted cluster.

Relationships

OrientDB supports two kinds of relationships: referenced and embedded. It can manage relationships in a schema-full or schema-less

scenario.

Referenced Relationships

In Relational databases, tables are linked through J0IN commands, which can prove costly on computing resources. OrientDB manges
relationships natively without computing JoIn 's. Instead, it stores direct links to the target objects of the relationship. This boosts the

load speed for the entire graph of connected objects, such as in Graph and Object database sy stems.

For example
customer
Record A ------------- > Record B
CLASS=Invoice CLASS=Customer
RID=5:23 RID=10:2

Here, record A contains the reference to record B in the property customer . Note that both records are reachable by other records,
given that they have a Record 1D.

With the Graph API, Edges are represented with two links stored on both vertices to handle the bidirectional relationship.

1:1 and 1:n Referenced Relationships

OrientDB expresses relationships of these kinds using links of the LINnk type.

1:n and n:n Referenced Relationships

OrientDB expresses relationships of these kinds using a collection of links, such as:

e LINKLIST An ordered list of links.
e LINKSET An unordered set of links, which does not accept duplicates.

e LINkMAP An ordered map of links, with string as the key type. Duplicates keys are not accepted.

With the Graph API, Edges connect only two vertices. This means that 1:n relationships are not allowed. To specify a 1:n relationship

with graphs, create multiple edges.

Embedded Relationships

When using Embedded relationships, OrientDB stores the relationship within the record that embeds it. These relationships are stronger

than Reference relationships. You can represent it as a UM L Composition relationship.

Embedded records do not have thier own Record ID, given that you can't directly reference it through other records. It is only accessible

through the container record.

In the event that you delete the container record, the embedded record is also deleted. For example,

address
Record A S R LT > Record B
CLASS=Account CLASS=Address
RID=5:23 NO RID!

http://en.wikipedia.org/wiki/Class_diagram#Composition

Here, record A contains the entirety of record B inthe property address . You can reachrecord B only by traversing the container

record. For example,

orientdb> SELECT FROM Account WHERE address.city = 'Rome’

1:1 and n:1 Embedded Relationships

OrientDB expresses relationships of these kinds using the EMBEDDED type.

1:n and n:n Embedded Relationships

OrientDB expresses relationships of these kinds using a collection of links, such as:

e EMBEDDEDLIST An ordered list of records.
e EMBEDDEDSET An unordered set of records, that doesn't accept duplicates.

e EMBEDDEDMAP An ordered map of records as the value and a string as the key, it doesn't accept duplicate keys.

Inverse Relationships

In OrientDB, all Edges in the Graph model are bidirectional. This differs from the Document model, where relationships are always
unidirectional, requiring the developer to maintain data integrity. In addition, OrientDB automatically maintains the consistency of all

bidirectional relationships.

Database

The database is an interface to access the real Storage. IT understands high-level concepts such as queries, schemas, metadata, indices

and so on. OrientDB also provides multiple database types. For more information on these types, see Database Types.

Each server or Java VM can handle multiple database instances, but the database name must be unique. You can't manage two databases
at the same time, even if they are in different directories. To handle this case, use the $ dollar character as a separator instead of the
/ slash character. OrientDB binds the entire name, so it becomes unique, but at the file system level it converts $ with / , allowing

multiple databases with the same name in different paths. For example,

test$customers -> test/customers
production$customers = production/customers

To open the database, use the following code:

test = new ODatabaseDocumentTx('remote:localhost/test$customers");
production = new ODatabaseDocumentTx('"remote:localhost/production$customers");

Database URL

OrientDB uses its own URL format, of engine and database name as <engine>:<db-name> .

Engine Description Example

plocal This engine writes to the file sysFern to store data. There is a LOG plocal:/temp/databases/petshop/petshop
of changes to restore the storage in case of a crash.

memory Open a database completely in memory memory : petshop
The storage will be opened via a remote network connection. It

remote requires an OrientDB Server up and running. In this mode, the remote: localhost/petshop

database is shared among multiple clients. Syntax: remote:<server>:
[<port>]/db-name . The port is optional and defaults to 2424.

Database Usage

http://en.wikipedia.org/wiki/Uniform_Resource_Locator

Basic Concepts

You must always close the database once you finish working on it.

NOTE: OrientDB automatically closes all opened databases, when the process dies gracefully (not by killing it by force). This is

assured if the Operating System allows a graceful shutdown.

39

Supported Types

OrientDB supports several types natively. Below is the complete table.

#id

10

11

12

13

14

Type

Boolean

Integer

Short

Long

Float

Double

Datetime

String

Binary

Embedded

Embedded
list

Embedded
set

Embedded
map

Link

Link list

Description

Handles only the values True or
False

32-bit signed Integers

Small 16-bit signed integers

Big 64-bit signed integers

Decimal numbers

Decimal numbers with high
precision

Any date with the precision up to
milliseconds. To know more about
it, look at M anaging Dates

Any string as alphanumeric
sequence of chars

Can contain any value as byte array

The Record is contained inside the
owner. The contained Record has
no RecordId

The Records are contained inside
the owner. The contained records
have no Recordlds and are
reachable only by navigating the
owner record

The Records are contained inside
the owner. The contained Records
have no Recordld and are reachable
only by navigating the owner
record

The Records are contained inside
the owner as values of the entries,
while the keys can only be Strings.
The contained ords e no RecordIds
and are reachable only by
navigating the owner Record

Link to another Record. It's a
common one-to-one relationship

Links to other Records. It's a
common one-to-many relationship
where only the Recordlds are
stored

Java type

java.lang.Boolean Or
boolean

java.lang.Integer Or
int

java.lang.Short oOr
short

java.lang.Long Or
long

java.lang.Float oOr
float

java.lang.Double oOr
double

java.util.Date

java.lang.String

byte[]

ORecord

List<Object>

Set<Object>

Map<String, ORecord>

ORID , <? extends
ORecord>

List<? extends
ORecord

Minimum
Maximum

-2,147,483,648
+2,147,483,647

-32,768
32,767

63
-2
+263-1

-149

2
234,127

(2-2

-1074
(2275241023

1002020303

0
2,147,483,647

0
41,000,000
items

0
41,000,000
items

0
41,000,000
items

1:-1
32767:2A63-1

0
41,000,000
items

Auto-
conversion
from/to

String

Any
Number,
String

Any
Number,
String
Any
Number,
String
Any
Number,
String
Any

Number,
String

Date, Long,
String

String

ORecord

String

String

Collection<?
extends

ORecord<?>> |
String

String

String

Collection<?

15

16

17

18

19

20

21

22

23

Link set

Link map

Byte

Transient

Date

Custom

Decimal

LinkBag

Any

Links to other Records. It's a
common one-to-many relationship

Links to other Records as value of
the entries, while keys can only be
Strings. It's a common One-to-
Many Relationship. Only the
RecordIds are stored

Single byte. Useful to store small 8-
bit signed integers

Any value not stored on database

Any date as year, month and day.
To know more about it, look at
M anaging Dates

used to store a custom type

providing the marshall and
unmarshall methods

Decimal numbers without rounding

List of RecordIds as spec RidBag

Not determinated type, used to
specify Collections of mixed type,
and null

Set<? extends
ORecord>

Map<String, ?
extends Record>

java.lang.Byte oOr
byte

java.util.Date

OSerializableStream

java.math.BigDecimal

ORidBag

41,000,000
items

0
41,000,000
items

-128
+127

o

extends

ORecord> ,
String

String

Any
Number,
String

Date, Long,
String

Any
Number,
String

Inheritance

Unlike many Object-relational mapping tools, OrientDB does not split documents between different classes. Each document resides in
one or a number of clusters associated with its specific class. When you execute a query against a class that has subclasses, OrientDB

searches the clusters of the target class and all subclasses.

Declaring Inheritance in Schema

In developing your application, bear in mind that OrientDB needs to know the class inheritance relationship. This is an abstract concept
that applies to both POJO's and Documents.

For example,

OClass account = database.getMetadata().getSchema().createClass("Account");
OClass company = database.getMetadata().getSchema().createClass("Company").setSuperClass(account);

Using Polymorphic Queries
By default, OrientDB treats all queries as polymorphic. Using the example above, you can run the following query from the console:

orientdb> SELECT FROM Account WHERE name.toUpperCase() = 'GOOGLE'

This query returns all instances of the classes Account and company that have a property name that matches Google .

How Inheritance Works

Consider an example, where you have three classes, listed here with the cluster identifier in the parentheses.

Account(10) <|--- Company (13) <|--- OrientTechnologiesGroup (27)

By default, OrientDB creates a separate cluster for each class. It indicates this cluster by the defaultclusterid property in the class
oclass and indicates the cluster used by default when not specified. However, the class oclass has a property clusterids , (as
int[]), that contains all the clusters able to contain the records of that class. clusterids and defaultClusterId are the same by

default.

When you execute a query against a class, OrientDB limits the result-sets to only the records of the clusters contained in the

clusterIds property. For example,

orientdb> SELECT FROM Account WHERE name.toUpperCase() = 'GOOGLE'

This query returns all the records with the name property set to GoocLE from all three classes, given that the base class Account was
specified. For the class Account , OrientDB searches inside the clusters 10 , 13 and 17 , following the inheritance specified in the

schema.

Concurrency

OrientDB uses an optimistic approach to concurrency. Optimistic Concurrency Control, or OCC assumes that multiple transactions can

compete frequently without interfering with each other.

Optimistic Concurrency in OrientDB

Optimistic concurrency control is used in environments with low data contention. That is, where conflicts are rare and transactions can
complete without the expense of managing locks and without having transactions wait for locks to clear. This means a reduced

throughput over other concurrency control methods.

OrientDB uses OCC for both Atomic Operations and Transactions.

Atomic Operations

OrientDB supports Multi-Version Concurrency Control, or M VCC, with atomic operations. This allows it to avoid locking server side
resources. At the same time, it checks the version in the database. If the version is equal to the record version contained in the operation,
the operation is successful. If the version found is higher than the record version contained in the operation, then another thread or user

has already updated the same record. In this case, OrientDB generates an o0ConcurrentModificationException exception.

Given that behavior of this kind is normal on systems that use optimistic concurrency control, developers need to write concurrency-
proof code. Under this design, the application retries transactions x times before reporting the error. It does this by catching the

exception, reloading the affected records and attempting to update them again. For example, consider the code for saving a document,

int maxRetries = 10;
List<ODocument> result = db.query("SELECT FROM Client WHERE id = '39w39D32d2d'");
ODocument address = result.get(0);

for (int retry = 0; retry < maxRetries; ++retry) {
try {
// LOOKUP FOR THE INVOICE VERTEX
address.field("street", street);
address.field("zip", zip);

address.field("city", cityName);

address.field("country", countryName);

address.save();

// EXIT FROM RETRY LOOP
break;

}

catch(ONeedRetryException e) {
// IF SOMEONE UPDATES THE ADDRESS DOCUMENT
// AT THE SAME TIME, RETRY IT.

Transactions

OrientDB supports optimistic transactions. The database does not use locks when transactions are running, but when the transaction
commits, each record (document or graph element) version is checked to see if there have been updates from another client. For this

reason, you need to code your applications to be concurrency-proof.

Optimistic concurrency requires that you retire the transaction in the event of conflicts. For example, consider a case where you want to

connect a new vertex to an existing vertex:

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

int maxRetries = 2
for (int retry = 0; retry < maxRetries; ++retry) {
try {
// LOOKUP FOR THE INVOICE VERTEX
Vertex invoice = graph.getVertices("invoiceId",);
// CREATE A NEW ITEM
Vertex invoiceItem = graph.addVertex('class:InvoiceItem");

invoiceItem.field("price",)i

// ADD IT TO THE INVOICE
invoice.addEdge(invoiceItem);

graph.commit();
// EXIT FROM RETRY LOOP

break;

}

catch(OConcurrentModificationException e) {
// SOMEONE HAS UPDATED THE INVOICE VERTEX
// AT THE SAME TIME, RETRY IT

Concurrency Level

In order to guarantee atomicity and consistency, OrientDB uses an exclusive lock on the storage during transaction commits. This means

that transactions are serialized.

Given this limitation, developers with OrientDB are working on improving parallelism to achieve better scalability on multi-core

machines, by optimizing internal structure to avoid exclusive locking,

Concurrency when Adding Edges
Consider the case where multiple clients attempt to add edges on the same vertex. OrientDB could throw the
oConcurrentModificationException exception. This occurs because collections of edges are kept on vertices, meaning that, every time

OrientDB adds or removes an edge, both vertices update and their versions increment. You can avoid this issue by using RIDBAG

Bonsai structure, which are never embedded, so the edge never updates the vertices.

To use this configuration at run-time, before launching OrientDB, use this code:

0GlobalConfiguration.RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD.setValue(-1);

Alternatively, you can set a parameter for the Java virtual-machine on startup, or even at run-time, before OrientDB is used:

$ java -DridBag.embeddedToSbtreeBonsaiThreshold=-1

While running in distributed mode SBTrees are not supported. If using a distributed database
then you must set

ridBag.embeddedToSbtreeBonsaiThreshold = Integer.MAX_VALUE

to avoid replication errors.

Troubleshooting

Reduce Transaction Size

On occasion, OrientDB throws the oconcurrentModificationException exception even when you concurrently update the first element.
In particularly large transactions, where you have thousands of records involved in a transaction, one changed record is enough to roll the

entire process back with an oconcurrentModificationException exception.

To avoid issues of this kind, if you plan to update many elements in the same transaction with high-concurrency on the same vertices, a

best practice is to reduce the transaction size.

Schema
While OrientDb can work in a schema-less mode, you may find it necessary at times to enforce a schema on your data model. OrientDB
supports both schema-full and schema-hybrid solutions.

In the case of schema-hybrid mode, you only set constraints for certain fields and leave the user to add custom fields to the record. This
mode occurs at a class level, meaning that you can have an Employee class as schema-full and an EmployeeInformation class as schema-

less.

e Schema-full Enables strict-mode at a class-level and sets all fields as mandatory.
e Schema-less Enables classes with no properties. Default is non-strict-mode, meaning that records can have arbitrary fields.
e Schema-hybrid Enables classes with some fields, but allows records to define custom fields. This is also sometimes called schema-

mixed.
NOTE Changes to the schema are not transactional. You must execute these commands outside of a transaction.

You can access the schema through SQL or through the Java API. Examples here use the latter. To access the schema API in Java, you

need the Schema instance of the database you want to use. For example,

0Schema schema = database.getMetadata().getSchema();

Class

OrientDB draws from the Object Oriented programming paradigm in the concept of the Class. A class is a type of record. In comparison

to Relational database systems, it is most similar in conception to the table.

Classes can be schema-less, schema-full or schema-hybrid. They can inherit from other classes, shaping a tree of classes. In other words,

a sub-class extends the parent class, inheriting all attributes.

Each class has its own clusters. By default, these clusters are logical, but they can also be physical. A given class must have at least one
cluster defined as its default, but it can support multiple clusters. OrientDB writes new records into the default cluster, but always

reads from all defined clusters.

When you create a new class, OrientDB creates a default physical cluster that uses the same name as the class, but in lowercase.

Creating Persistent Classes

Classes contain one or more properties. This mode is similar to the classical model of the Relational database, where you must define

tables before you can begin to store records.

To create a persistent class in Java, use the createclass() method:

OClass account = database.getMetadata().getSchema().createClass("Account");

This method creates the class Account on the database. It simultaneously creates the physical cluster account , to provide storage for

records in the class Account .

Getting Persistent Classes

With the new persistent class created, you may also need to get its contents.

To retrieve a persistent class in Java, use the getclass() method:

OClass account = database.getMetadata().getSchema().getClass("Account");

This method retrieves from the database the persistent class Account . If the query finds that the Account class does not exist, it

returns NULL .

Dropping Persistent Classes

In the event that you no longer want the class, you can drop, or delete, it from the database.

To drop a persistent class in Java, use the o0Sschema.dropclass() method:

database.getMetadata().getSchema().dropClass("Account");

This method drops the class Account from your database. It does not delete records that belong to this class unless you explicitly ask
it to do so:

database.command(new OCommandSQL("DELETE FROM Account")).execute();
database.getMetadata().getSchema().dropClass("Account");

Constraints

Working in schema-full mode requires that you set the strict mode at the class-level, by defining the setstrictMode() method to

TRUE . In this case, records of that class cannot have undefined properties.

Properties

In OrientDB, a property is a field assigned to a class. For the purposes of this tutorial, consider Property and Field as synonymous.
Creating Class Properties

After you create a class, you can define fields for that class. To define a field, use the createProperty() method.

OClass account = database.getMetadata().getSchema().createClass("Account");
account.createProperty("id", OType.Integer);
account.createProperty("birthbDate", OType.Date);

These lines create a class Account , then defines two properties id and birthbate . Bear in mind that each field must belong to one

of the supported types. Here these are the integer and date types.

Dropping Class Properties

In the event that you would like to remove properties from a class you can do so using the dropProperty() method under oclass .

database.getMetadata().getSchema().getClass("Account").dropProperty('"name");

When you drop a property from a class, it does not remove records from that class unless you explicitly ask for it, using the uUPDATE. . .

REMOVE statements. For instance,

database.getMetadata().getSchema().getClass("Account").dropProperty('"name");
database.command(new OCommandSQL("UPDATE Account REMOVE name')).execute();

The first method drops the property from the class. The second updates the database to remove the property.

Relationships

OrientDB supports two types of relationships: referenced and embedded.

Referenced Relationships

In the case of referenced relationships, OrientDB uses a direct link to the referenced record or records. This allows the database to avoid

the costly J0IN operations used by Relational databases.

customer

Record A ------------- > Record B
CLASS=Invoice CLASS=Customer
RID=5:23 RID=10:2

In the example, Record A contains the reference to Record B in the property customer . Both records are accessible by any other
records since each has a Record ID.

1:1 and n:1 Reference Relationships
In one to one and many to one relationships, the reference relationship is expressed usingteh Link type. For instance.

OClass customer= database.getMetadata().getSchema().createClass("Customer");
customer.createProperty('"name", OType.STRING);

OClass invoice = database.getMetadata().getSchema().createClass("Invoice");
invoice.createProperty("id", OType.INTEGER);

invoice.createProperty('date", OType.DATE);
invoice.createProperty('customer", OType.LINK, customer);

Here, records of the class 1Invoice link to arecord of the class customer , through the field customer .

1:n and n:n Reference Relationships.

In one to many and many to many relationships, OrientDB expresses the referenced relationship using collections of links.

e LINKLIST An ordered list of links.
e LINKSET An unordered set of links, that does not accept duplicates.

e LINkMAP An ordered map of links, with a string key. It does not accept duplicate keys.

For example,

OClass orderItem = db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id", OType.INTEGER);
orderItem.createProperty("animal", OType.LINK, animal);

OClass order = db.getMetadata().getSchema().createClass("Order");
order.createProperty("id", OType.INTEGER);
order.createProperty('"date", OType.DATE);
order.createProperty("items", OType.LINKLIST, orderItem);

Here, you have two classes: order and orderItem and a 1:n referenced relationship is created between them.

Embedded Relationships

In the case of embedded relationships, OrientDB contains the relationship within the record. Embedded relationships are stronger than
referenced relationships, but the embedded record does not have its own Record ID. Because of this, you cannot reference them directly
through other records. The relationship is only accessible through the container record. If the container record is deleted, then the

embedded record is also deleted.

address
Record A e > Record B
CLASS=Account CLASS=Address
RID=5:23 NO RID!

Here, Record A contains the entirety of Record B in the property address . You can only reach Record B by traversing the container,
Record A.

orientdb> SELECT FROM Account WHERE Address.city = 'Rome’

1:1 and n:1 Embedded Relationships

For one to one and many to one embedded relationships, OrientDB uses links of the emeppED type. For example,

OClass address = database.getMetadata().getSchema().createClass("Address");

OClass account = database.getMetadata().getSchema().createClass("Account");
account.createProperty("id", OType.INTEGER);
account.createProperty("birthDate", OType.DATE);
account.createProperty("address", OType.EMBEDDED, address);

Here, records of the class Account embed records for the class Address .

1:n and n:n Embedded Relationships
In the case of one to many and many to many relationships, OrientDB sues a collection embedded link types:

e EMBEDDEDLIST An ordered list of records.
e EMBEDDEDSET An unordered set of records. It doesn't accept duplicates.

e EMBEDDEDMAP An ordered map of records as key-value pairs. It doesn't accept duplicate keys.

For example,

OClass orderItem = db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id", OType.INTEGER);
orderItem.createProperty("animal", OType.LINK, animal);

OClass order = db.getMetadata().getSchema().createClass("Order");
order.createProperty("id", OType.INTEGER);
order.createProperty("date", OType.DATE);
order.createProperty("items", OType.EMBEDDEDLIST, orderItem);

This establishes a one to many relationship between the classes order and orderItem .

Constraints

OrientDB supports a number of constraints for each field. For more information on setting constraints, see the ALTER PROPERTY
command.

e Minimum Value: setmin() The field accepts a string, because it works also for date ranges.
e Maximum Value: setMax() The field accepts a string, because it works also for date rangers.
e Mandatory: setMandatory() This field is required.

e Read Only: setReadonly() This field cannot update after being created.

e Not Null: setNotNull() This field cannot be null.

e Unique: This field doesn't allow duplicates or speedup searches.

e Regex: This field must satisfy Regular Expressions

For example,

profile.createProperty("nick", OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);
profile.createIndex('nickIdx", OClass.INDEX_TYPE.UNIQUE, '"nick"); // Creates unique constraint

profile.createProperty("name", OType.STRING).setMin("3").setMax("30");
profile.createProperty("surname", OType.STRING).setMin("3").setMax("30");
profile.createProperty("registeredon", OType.DATE).setMin("2010-01-01 00:00:00");
profile.createProperty("lastAccessOn", OType.DATE).setMin("2010-01-01 00:00:00");

Indices as Constraints

To define a property value as unique, use the UNIQUE index constraint. For example,

profile.createIndex("EmployeeId", OClass.INDEX_TYPE.UNIQUE, "id");

You can also constrain a group of properties as unique by creating a comp osite index made from multiple fields. For instance,

http://en.wikipedia.org/wiki/Regular_expression

profile.createIndex('"compositeIdx", OClass.INDEX_TYPE.NOTUNIQUE, "name", "surname");

For more information about indexes look at Index guide.

Cluster Selection

When you create a new record and specify the class to which it belongs, OrientDB automatically selects a cluster, where it stores the
physical data of the record. There are a number of configuration strategies available for you to use in determining how OrientDB selects

the appropriate cluster for the new record.

e default It selects the cluster usingthe defaultclusterid property from the class. Prior to version 1.7, this was the default
method.

e round-robin It arranges the configured clusters for the class into sequence and assigns each new record to the next cluster in order.

e balanced It checks the number of records in the configured clusters for the class and assigns the new record to whichever is the

smallest at the time. To avoid latency issues on data insertions, OrientDB calculates cluster size every five seconds or longer.

local When the database is run in distributed mode, it selects the master cluster on the current node. This helps to avoid conflicts

and reduce network latency with remote calls between nodes.
Whichever cluster selection strategy works best for your application, you can assign it through the ALTER CLASS...CLUSTERSELECTION

command. For example,

orientdb> ALTER CLASS Account CLUSTERSELECTION round-robin

When you run this command, it updates the Account class to use the round-robin selection strategy. It cycles through available

clusters, adding new records to each in sequence.

Custom Cluster Selection Strategies

In addition to the cluster selection strategies listed above, you can also develop your own select strategies through the Java API. This

ensures that it the strategies that are available by default do not meet your particular needs, you can develop one that does.

1. Using your preferred text editor, create the implementation in Java. In order to use a custom strategy, the class must implement the

oClusterSelectionStrategy interface

package mypackage;
public class RandomSelectionStrategy implements OClusterSelectionStrategy {
public int getCluster(final final {
final int[] clusters = iClass.getClusterIds();

// RETURN A RANDOM CLUSTER ID IN THE LIST

return new Random().nextInt(clusters.length);

public String getName(){ return "random"; }

Bear in mind that the method getcluster() also receives the obocument cluster to insert. You may find this useful, if you want

to assign the clusterrd variable, based on the Document content.

2. Register the implementation as a service. You can do this by creating a new file under META-INF/service . Use the filename
com.orientechnologies.orient.core.metadata.schema.clusterselection.0ClusterSelectionStrategy . For its contents, code your

class with the full package. For instance,

mypackage .RandomSelectionStrategy

This adds to the default content in the OrientDB core:

com.orientechnologies.orient.core.metadata.schema.clusterselection.ORoundRobinClusterSelectionStrategy
com.orientechnologies.orient.core.metadata.schema.clusterselection.ODefaultClusterSelectionStrategy
com.orientechnologies.orient.core.metadata.schema.clusterselection.OBalancedClusterSelectionStrategy

3. From the database console, assign the new selection strategy to your class with the ALTER CLASS...CLUSTERSELECTION command.

orientdb> ALTER CLASS Employee CLUSTERSELECTION random

The class Employee now selects clusters using random , your custom strategy.

Managing Dates

OrientDB treats dates as first class citizens. Internally, it saves dates in the Unix time format. M eaning, it stores dates as a long

variable, which contains the count in milliseconds since the Unix Epoch, (that is, 1 January 1970).

Date and Datetime Formats

In order to make the internal count from the Unix Epoch into something human readable, OrientDB formats the count into date and

datetime formats. By default, these formats are:

e Date Format: yyyy-MM-dd

e Datetime Format: yyyy-MM-dd HH:mm:ss

In the event that these default formats are not sufficient for the needs of your application, you can customize them through ALTER

DATABASE . . .DATEFORMAT and DATETIMEFORMAT commands. For il'lStEll'lCE,

orientdb> ALTER DATABASE DATEFORMAT "dd MMMM yyyy'
This command updates the current database to use the English format for dates. That is, 14 Febr 2015.

SQL Functions and Methods

To simplify the management of dates, OrientDB SQL automatically parses dates to and from strings and longs. These functions and

methods provide you with more control to manage dates:

SQL Description
DATE() Function converts dates to and from strings and dates, also uses custom formats.
SYSDATE() Function returns the current date.
.format () Method returns the date in different formats.
.asDate() Method converts any type into a date.
-asbatetime() Method converts any type into datetime.
.aslLong() Method converts any date into long format, (that is, Unix time).

For example, consider a case where you need to extract only the years for date entries and to arrange them in order. You can use the

.format() method to extract dates into different formats.

orientdb> seLecT @RID, id, .format('yyyy') AS year FROM Order

In addition to this, you can also group the results. For instance, extracting the number of orders grouped by year.

https://en.wikipedia.org/wiki/Unix_time

orientdb> seLect .format('yyyy') AS Year, COUNT(*) AS Total

FROM Order ORDER BY Year

------ Pooacoooad
Year | Total |
------ Pooacoooad
2015 | 1]
2014 | 2 |
2013 | 1]
------ Pooacoooad

Dates before 1970

While you may find the default system for managing dates in OrientDB sufficient for your needs, there are some cases where it may not
prove so. For instance, consider a database of archaeological finds, a number of which date to periods not only before 1970 but possibly

even before the Common Era. You can manage this by defining an era or epoch variable in your dates.

For example, consider an instance where you want to add a record noting the date for the foundation of Rome, which is traditionally
referred to as April 21, 753 BC. To enter dates before the Common Era, first run the [ALTER DATABASE DATETIMEFORMAT] command to add

the &6 variable to use in referencing the epoch.

orientdb> ALTER DATABASE DATETIMEFORMAT "yyyy-MM-dd HH:mm:ss GG"

Once you've run this command, you can create a record that references date and datetime by epoch.

orientdb> CREATE VERTEX V SET city = "Rome", = ("0753-04-21 00:00:00 BC")
orientdb> seLECT @RID, city, FROM V

------- Pocoooodhoooocoooocoo000co0000oooqE

@RID | city | date

------- fPocoooodhoooocoo000oo0000o0000oooqE

#9:10 | Rome | 0753-04-21 00:00:00 BC |

------- fhocoooodboooocoo000oo0000o0000o0oqE

Using .format() onInsertion

In addition to the above method, instead of changing the date and datetime formats for the database, you can format the results as you

insert the date.

orientdb> CREATE VERTEX V SET city = "Rome", = ("yyyy-MM-dd HH:mm:ss GG")
orientdb> SELECT @RID, city, FROM V

------ S S S

@RID | city | date

------ S S S

#9:4 | Rome | 0753-04-21 00:00:00 BC |

------ S S S

Here, you again create a vertex for the traditional date of the foundation of Rome. However, instead of altering the database, you format

the date field in CREATE VERTEX command.

Viewing Unix Time

In addition to the formatted date and datetime, you can also view the underlying count from the Unix Epoch, using the astLong()

method for records. For example,

orientdb> SeLECT @RID, city, .asLong() FROM #

------ Pococooodbococccoooocoooocoooooooodr
@RID | city | date

------ Pococooodbococccoooocoooocoooocooods
#9:4 | Rome | -85889120400000

------ PocoocoodbococccoooocoooocoooocooodE

M eaning that, OrientDB represents the date of April 21, 753 BC, as -85889120400000 in Unix time. You can also work with dates

directly as longs.

orientdb> CREATE VERTEX V SET city = "Rome",

orientdb> SsELECT @RID, city, FROM V
------- SR,
@RID | city | date

------- SRR,
#9:11 | Rome | 0753-04-21 00:00:00 BC |
------- T S R,

Use ISO 8601 Dates
According to ISO 8601, Combined date and time in UTC: 2014-12-20T00:00:00. To use this standard change the datetimeformat in the

database:

ALTER DATABASE DATETIMEFORMAT yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

Classes

Multi-model support in the OrientDB engine provides a number of ways in ap proaching and understanding its basic concepts. These
concepts are clearest when viewed from the perspective of the Document Database API. Like many database management systems,
OrientDB uses the Record as an element of storage. There are many types of records, but with the Document Database API, records
always use the Document type. Documents are formed by a set of key/value pairs, referred to as fields and properties, and can belong to

a class.

The Class is a concept drawn from the Object-oriented programming paradigm. It is a type of data model that allows you to define
certain rules for records that belong to it. In the traditional Document database model, it is comparable to the collection, while in the

Relational database model it is comparable to the table.
For more information on classes in general, see Wikip edia.

To list all the configured classes on your system, use the cLAsses command in the console:

orientdb> cLassEs

CLASSES:
------------------- docoocoocoooooliooocooo00cIooooC o000 S oGP
NAME | SUPERCLASS |CLUSTERS | RECORDS |
------------------- e
AbstractPerson | | -1 | 0 |
Account | | 12 | 1126 |
Actor | | 91 | 3 |
Address | | 19 | 166 |
Animal | | 17 | 0 |
I I I I
Whiz | | 14 | 1001 |
------------------- T
TOTAL 22775 |
___ +

Working with Classes

In order to start using classes with your own applications, you need to understand how to create and configure them for use. As a
concept, the class in OrientDB has the closest relationship with the table in relational databases, but (unlike tables) classes can be
schema-less, schema-full or mixed. Classes can inherit from other classes, creating trees of classes. Each class has its own cluster or

clusters, (created by default, if none are defined).
For more information on classes in OrientDB, see Class.

To create a new class, use the CRrREATE cLASS command:
orientdb> CREATE CLASS Student

Class created successfully. Total classes in database now: 92

This creates a class called student . Given that no cluster was defined in the crReEATE cLAss command, OrientDB creates a default
cluster called student , to contain records assigned to this class. For the moment, the class has no records or properties tied to it. It is

now displayed in the crasses listings.

Adding Properties to a Class

http://en.wikipedia.org/wiki/Class_in_object-oriented_programming

As mentioned above, OrientDB does allow you to work in a schema-less mode. That is, it allows you to create classes without defining
their properties. However, in the event that you would like to define indexes or constraints for your class, properties are mandatory.

Following the comparison to relational databases, if classes in OrientDB are similar to tables, properties are the columns on those tables.

To create new properties on Student , use the CREATE PROPERTY command in the console:
orientdb> CREATE PROPERTY Student.name STRING

Property created successfully with id=1

orientdb> CREATE PROPERTY Student.surname STRING

Property created successfully with id=2

orientdb> CREATE PROPERTY Student.birthDate

Property created successfully with id=3

These commands create three new properties on the student class to provide you with areas to define the individual student's name,

surname and date of birth.

Displaying Class Information

On occasion, you may need to reference a particular class to see what clusters it belongs to and any properties configured for its use.

Using the 1InNFO cLAss command, you can display information on the current configuration and properties of a class.

To display information on the class sStudent , use the INFO cLASS command:

orientdb> 1INFO cLASS Student

Class................: Student

Default cluster......: student (id=96)

Supported cluster ids: [96]

Properties:

----------- T L J g pupupupp U Sy
NAME | TYPE | LINKED TYPE/ | MANDATORY | READONLY | NOT NULL | MIN | MAX |

I | CLASS I I I I I I

----------- T L Jppupupupp U S ———
birthDate | DATE | null | false | false | false | |

name | STRING | null | false | false | false | |
surname | STRING | null | false | false | false | |
----------- e =

Adding Constraints to Properties

Constraints create limits on the data values assigned to properties. For instance, the type, the minimum or maximum size of, whether or

not a value is mandatory or if null values are permitted to the property.

To add a constraint, use the ALTER PROPERTY command:
orientdb> ALTER PROPERTY Student.name MIN

Property updated successfully

This command adds a constraint to Student onthe name property. It sets it so that any value given to this class and property must

have a minimum of three characters.

Viewing Records in a Class

Classes contain and define records in OrientDB. You can view all records that belong to a class using the Browse cLAss command and

data belonging to a particular record with the bIspLAY RECORD command.

In the above examples, you created a student class and defined the schema for records that belong to that class, but you did not create
these records or add any data. As a result, running these commands on the student class returns no results. Instead, for the examples

below, consider the ouser class.
orientdb> 1INFO CLASS oOuser

CLASS 'Ouser'

Super classes........: [0Identity]
Default cluster......: ouser (id=5)
Supported cluster ids: [5]
Cluster selection....: round-robin
Oversize.............: 0.0
PROPERTIES
---------- T T
NAME | TYPE | LINKED TYPE/ | MANDATORY | READONLY | NOT NULL | MIN | MAX |
I | CLASS I I I I I I
---------- T T
password | STRING | null | true | false | true | |
roles | LINKSET | ORole | false | false | false | |
name | STRING | null | true | false | true | |
status | STRING | null | true | false | true | |
---------- T LT g gy
INDEXES (1 altogether)
------------------------------- e
NAME | PROPERTIES |
------------------------------- e
Ouser .name | name |
------------------------------- T

OrientDB ships with a number of default classes, which it uses in configuration and in managing data on your system, (the classes with

the o prefixshown in the cLasses command output). The ouser class defines the users on your database.

To see records assigned to the ouser class, run the BroOwSE cLASS command:

orientdb> BROWSE CLASS OUser

R +ommm - £ e mm e e mee e mee e mmmemmmmooomeooo--o +--mm - +ommam - +
| @RID | @Class| name | password | status | roles |
R Hommm - £ e mm e e mee e mee e mmmemmmmooomeooo--o +o-mm o S +
0 | #5:0 | OUser | admin | {SHA-256}8C6976E5B5410415BDE9G... | ACTIVE | [1] |
1 | #5:1 | OUser | reader | {SHA-256}3D0941964AA3EBDCBOGEF... | ACTIVE | [1] |
2 | #5:2 | OUser | writer | {SHA-256}B93006774CBDD4B299389... | ACTIVE | [1] |

In the example, you are listing all of the users of the database. While this is fine for your initial setup and as an
example, it is not particularly secure. To further improve security in production environments, see Security.

When you run BRrowsE cLASS , the first column in the output provides the identifier number, which you can use to display detailed

information on that particular record.

To show the first record browsed from the ouser class, run the DISPLAY RECORD command:

orientdb> DISPLAY RECORD ©

__ +
Document - @class: OUser @rid: #5:0 @version: 1 |
---------- o C OO P OC O OO CCE OO0 COE O COOO O CC OO0 SO0 CCO000Co0000C0000000000000000aqp
Name | Value [
---------- o C OO OCCCOCCCEO oo EE O o OO CC OO0 SO0 CCO000C00000C0000000000000000aqp
name | admin |
password | {SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873F8A81F6F2AB. .. |
status | ACTIVE |
roles | [#4:0=#4:0] |
---------- o C OO PO C OO OO0 CEO oo oo COOOOCCO000CO00CC0000C00000C0000000000000000agp

Bear in mind that this command references the last call of srowse cLAss . You can continue to display other records, but you cannot

display records from another class until you browse that particular class.

Clusters

The Cluster is a place where a group of records are stored. Like the Class, it is comparable with the collection in traditional document
databases, and in relational databases with the table. However, this is a loose comparison given that unlike a table, clusters allow you to

store the data of a class in different physical locations.

To list all the configured clusters on your system, use the cLusTErs command in the console:

orientdb> cLUSTERS

CLUSTERS:
------------- Pocoooodooococoooootiooooooo00 S oap
NAME | ID | TYPE | RECORDS |
------------- Pocoooodooococoooootiooooooo00 S odp
account | 11 | PHYSICAL | 1107 |
actor | 91 | PHYSICAL | 3 |
address | 19 | PHYSICAL | 166 |
animal | 17 | PHYSICAL | 0 |
animalrace | 16 | PHYSICAL | 2 |
I I I I
------------- PoocoooodPoooocoo0000to 000000000 oap
TOTAL 23481 |
__ +

Understanding Clusters

By default, OrientDB creates one cluster for each Class. Starting from v2.2, OrientDB automatically creates multiple clusters per each
class (the number of clusters created is equals to the number of CPU's cores available on the server) to improve using of parallelism. All

15 1) clusters

records of a class are stored in the same cluster, which has the same name as the class. You can create up to 32,767 (or, 2
in a database. Understanding the concepts of classes and clusters allows you to take advantage of the power of clusters in designing new

databases.

While the default strategy is that each class maps to one cluster, a class can rely on multiple clusters. For instance, you can spawn

records physically in multiple locations, thereby creating multiple clusters.

Customer

%

China_customers

USA_customers

Here, you have a class customer that relies on two clusters:
® USA_customers , which is a cluster that contains all customers in the United States.
® China_customers , which is a cluster that contains all customers in China.

In this deployment, the default cluster is usA_customers . Whenever commands are run on the customer class, such as INSERT

statements, OrientDB assigns this new data to the default cluster.

Clusters

The class’s default cluster
is always selected if no
explicit cluster is used

The new entry from the 1InsErT statement is added to the usA_customers cluster, given that it's the default. Inserting data into a non-

default cluster would require that you specify the cluster you want to insert the data into in your statement.

When you run a query on the customer class, such as SELECT queries, for instance:

The query involves all
the configured class's
clusters

OrientDB scans all clusters associated with the class in looking for matches.

In the event that you know the cluster in which the data is stored, you can query that cluster directly to avoid scanning all others and

optimize the query.

select * from cluster:China_customers

Customer

*

USA_customers China_customers

Here, OrientDB only scans the china_customers cluster of the customer class in looking for matches

Note: The method OrientDB uses to select the cluster, where it inserts new records, is configurable and extensible. For more

information, see Cluster Selection.

Working with Clusters

In OrientDB there are two types of clusters:

e Physical Cluster (known as local) which is persistent because it writes directly to the file system

e Memory Cluster where everything is volatile and will be lost on termination of the process or server if the database is remote
For most cases, physical clusters are preferred because databases must be persistent. OrientDB creates physical clusters by default.

You may also find it beneficial to locate different clusters on different servers, physically separating where you store records in your

database. The advantages of this include:

e Optimization Faster query execution against clusters, given that you need only search a subset of the clusters in a class.

Indexes With good partitioning, you can reduce or remove the use of indexes.

Parallel Queries: Queries can be run in parallel when made to data on multiple disks.

Sharding: You can shard large data-sets across multiple instances.

Adding Clusters

When you create a class, OrientDB creates a default cluster of the same name. In order for you to take advantage of the power of
clusters, you need to create additional clusters on the class. This is done with the ALTER cLAss statement in conjunction with the

ADDCLUSTER parameter.

To add a cluster to the customer class, use an ALTER CLASS statement in the console:
orientdb> ALTER CLASS Customer ADDCLUSTER UK_Customers

Class updated successfully
You now have a third cluster for the customer class, covering those customers located in the United Kingdom.

Viewing Records in a Cluster

Clusters store the records contained by a class in OrientDB. You can view all records that belong to a cluster using the BROWSE CLUSTER

command and the data belonging to a particular record with the DpISPLAY RECORD command.

In the above example, you added a cluster to a class for storing records customer information based on their locations around the world,
but you did not create these records or add any data. As a result, running these commands on the customer class returns no results.

Instead, for the examples below, consider the ouser cluster.

OrientDB ships with a number of default clusters to store data from its default classes. You can see these using the cLusTERS

command. Among these, there is the ouser cluster, which stores data of the users on your database.

To see records stored in the ouser cluster, run the BROWSE CLUSTER command:

orientdb> BROWSE CLUSTER OUser

ccodbocoooo Pococooooo docooooos focococooccoooococoooooooooocoooocoo0oo0 dbococooooo dbocooooo +
| @RID | @CLASS | name | password | status | roles |
cocodbocoooo Pocooooo dbococooooo fbocoooocooooocoooooccooooooo00oooo00 o0 dococooooo Pocooooo +
® | #5:0 | OUser | admin | {SHA-256}8C6976E5B5410415BDE90... | ACTIVE | [1] |
1 | #5:1 | OUser | reader | {SHA-256}3D0941964AA3EBDCBOOCC... | ACTIVE | [1] |
2 | #5:2 | OUser | writer | {SHA-256}B93006774CBDD4B299389... | ACTIVE | [1] |
coodbocoooo Pocoooooo Pbococooooo ocoooocoooooooo0oco000co000oo000 00 Pbocoooooo Pocooooo +

The results are identical to executing Browse cLAss on the ouser class, given that there is only one cluster for the ouser class in this

examp le.

In the example, you are listing all of the users of the database. While this is fine for your initial setup and as an
example, it is not particularly secure. To further improve security in production environments, see Security.

When you run BrROWSE CLUSTER , the first column in the output provides the identifier number, which you can use to display detailed

information on that particular record.

To show the first record browsed from the ouser cluster, run the DISPLAY RECORD command:

orientdb> DISPLAY RECORD ©

__ +
Document - @class: OUser @rid: #5:0 @version: 1 |
---------- B
Name | Value |
---------- B
name | admin |
password | {SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873F8A81F6F2AB. .. |
status | ACTIVE |
roles | [#4:0=#4:0] |
---------- g

Bear in mind that this command references the last call of Browse cLUSTER . You can continue to display other records, but you cannot

display records from another cluster until you browse that particular cluster.

Record ID

In OrientDB, each record has its own self-assigned unique ID within the database called Record ID or RID. It is composed of two parts:

#<cluster-id>:<cluster-position>

That is,

o <cluster-id> The cluster identifier.

e <cluster-position> The position of the data within the cluster.

5 63

Each database can have a maximum of 32,767 clusters, or 21 - 1. Each cluster can handle up to 9,223,372,036,780,000 records, or 2,

namely 9,223,372 trillion records.

The maximum size of a database is 2° - records, or 302,231,454,903 trillion records. Due to limitations in hardware resources,

OrientDB has not been tested at such high numbers, but there are users working with OrientDB in the billions of records range.

Loading Records

Each record has a Record ID, which notes the physical position of the record inside the database. What this means is that when you load

arecord by its RID, the load is significantly faster than it would be otherwise.

In document and relational databases, the more data that you have, the slower the database responds. OrientDB handles relationships as
physical links to the records. The relationship is assigned only once, when the edge is created o(1) . You can compare this to relational

databases, which compute the relationship every time the database is run 0(log N) . In OrientDB, the size of a database does not effect
the traverse speed. The speed remains constant, whether for one record or one hundred billion records. This is a critical feature in the age
of Big Data.

To directly load a record, use the LoApD Recoro command in the console.

orientdb> Loap #

Name | Value

_____________ e e e e
addresses | [NOT LOADED: #19:159]
salary | 0.0
employees | 100004
id | 4
name | Microsoft4
initialized | false
salary2 | 0.0
checkpoint | true
created | Sat Dec 29 23:13:49 CET 2012
_____________ S

The LoAD RECORD command returns some useful information about this record. It shows:
e that it is a document. OrientDB supports different types of records, but document is the only type covered in this chapter.
e that it belongs to the company class.

e that its current version is 8 . OrientDB uses an M VCC system. Every time you update a record, its version increments by one.

that we have different field types: floats in salary and salary2 , integers for employees and id , stringfor name , booleans

for initialized and checkpoint , and date-time for created .

that the field addresses has been NoT LOADED . It is also a LINK to another record, #19:159 . This is a relationship. For more

information on this concept, see Relationships.

Relationships

One of the most important features of Graph databases lies in how they manage relationships. Many users come to OrientDB from

MongoDB due to OrientDB having more efficient support for relationships.

Relations in Relational Databases

Most database developers are familiar with the Relational model of databases and with relational database management systems, such as
MySQL and M S-SQL. Given its more than thirty years of dominance, this has long been thought the best way to handle relationships.

By contrast, Graph databases suggest a more modern approach to this concept.

Consider, as an example, a database where you need to establish relationships between customer and Address tables.

1-to-1 Relationship

Relational databases store the value of the target record in the address row of the customer table. This is the Foreign Key. The

foreign key points to the Primary Key of the related record in the Address table.

Relational World: 1-1 Relationships

Primary key Primary key
Address
Address : Location
o Foreign key g
a4 Lendan
54 Oxfard
(15 Mew Mexico
B8 Palo Alto

Customer.Address -> Address.|d

caGaruli [(OPRONS |

Consider a case where you want to view the address of a customer named Luca. In a Relational database, like My SQL, this is how you

would query the table:

mysql> SELECT B.location FROM Customer A, Address B

WHERE A.name='Luca' AND A.address=B.id;

What happens here is a JoIn . That is, the contents of two tables are joined to form the results. The database executes the JOIN every

time y ou retrieve the relationship.

1-to-Many Relationship

Given that Relational databases have no concept of a collections, the customer table cannot have multiple foreign keys. The only way

to manage a 1-to-Many Relationship in databases of this kind is to move the Foreign Key to the Address table.

Relational World: 1-N Relationships

Address
Customer Location
| 10 Rome
London
44 Owford
66 Cologne
68 Palo Alto

Inverse Address.Customer -> Customer.|d

o) Loea Garuts QIO |icanse

For example, consider a case where you want to return all addresses connected to the customer Luca, this is how you would query the
table:

mysql> SELECT B.location FROM Customer A, Address B

WHERE A.name='Luca' AND B.customer=A.id;

Many-to-Many relationship

The most complicated case is the Many-to-M any relationship. To handle associations of this kind, Relational databases require a
separate, intermediary table that matches rows from both customer and Address tables in all required combinations. This results in a

double Join per record at runtime.

Relational World: N-M Relationships

Customer CustomerAddress Address
Id Address Location
= 10 ‘ > 24 Rome
10 : Landon
34 Oxford
Cologne

Palo Alto

Additional table with 2 s
(1) CustomerAddress.ld -> Customer.ld and
(2) CustomerAddress.Address -> Address.|d

o) Loea Garuts QIO |icanse

For example, consider a case where you want to return all address for the customer Luca, this is how you would query the table:

mysql> SELECT B.location FROM Customer A, CustomerAddress B, Address C

WHERE A.name='Luca' AND B.id=A.id AND B.address=C.1id;

Understanding JOIN

In document and relational database systems, the more data that you have, the slower the database responds and JoInN operations have

a heavy runtime cost.

For relational database systems, the database computes the relationship every time you query the server. That translates to 0(log N /
block_size) . OrientDB handles relationships as physical links to the records and assigns them only once, when the edge is created.

That is, o(1) .

In OrientDB, the speed of traversal is not affected by the size of the database. It is always constant regardless of whether it has one

record or one hundred billion records. This is a critical feature in the age of Big Data.

Searching for an identifier at runtime each time you execute a query, for every record will grow very expensive. The first optimization
with relational databases is the use of indexing. Indexes speed up searches, but they slow down 1INSERT , UPDATE , and DELETE

operations. Additionally, they occupy a substantial amount of space on the disk and in memory.

Consider also whether searching an index is actually fast.

Indexes and JOIN

In the database industry, there are a number of indexing algorithms available. The most common in both relational and NoSQL database

systems is the B+ Tree.

Balance trees all work in a similar manner. For example, consider a case where you're looking for an entry with the name Luca : after

only five hops, the record is found.

Index Lookup: how does it works?

|

o) Loea Garuts (EIEOON |iconsed under & Cro LU Page 32

While this is fine on a small database, consider what would happen if there were millions or billions of records. The database would have
to go through many, many more hops to find Luca . And, the database would execute this operation on every JoIN per record.

Picture: joining four tables with thousands of records. The number of JoIN operations could run in the millions.

Relations in OrientDB

There is no JoIn in OrientDB. Instead, it uses LINK . LINK is arelationship managed by storing the target Record ID in the source

record. It is similar to storing the pointer between two objects in memory.

When you have Invoice linked to customer , then you have a pointer to customer inside Invoice as an attribute. They are exactly

the same. In this way, it's as though your database was kept in memory: a memory of several exabytes.

Types of Relationships

In 1-to-N relationships, OrientDB handles the relationship as a collection of Record ID's, as y ou would when managing objects in

memory.

http://en.wikipedia.org/wiki/B%2B_tree

OrientDB supports several different kinds of relationships:

e LINK Relationship that points to one record only.

e LINKSET Relationship that points to several records. It is similar to Java sets, the same Record ID can only be included once. The
pointers have no order.

e LINKLIST Relationship that points to several records. It is similar to Java lists, they are ordered and can contain duplicates.

e LINkvAP Relationship that points to several records with a key stored in the source record. The Map values are the Record ID's.

It is similar to Java Map<?,Record> .

Working with Graphs

In graph databases, the database system graphs data into network-like structures consisting of vertices and edges. In the OrientDB
Graph model, the database represents data through the concept of a property graph, which defines a vertex as an entity linked with

other vertices and an edge, as an entity that links two vertices.

OrientDB ships with a generic vertex persistent class, called v , as well as a class for edges, called E . As an example, you can create a

new vertex using the InserT command with v .
orientdb> INSERT INTO V SET name='Jay'

Created record with RID #9:0

In effect, the Graph model database works on top of the underlying document model. But, in order to simplify this process, OrientDB

introduces a new set of commands for managing graphs from the console. Instead of INSERT , use CREATE VERTEX
orientdb> CREATE VERTEX V SET name='Jay'

Created vertex with RID #9:1

By using the graph commands over the standard SQL syntax, OrientDB ensures that your graphs remain consistent. For more

information on the particular commands, see the following pages:

e CREATE VERTEX
e DELETE VERTEX
e CREATE EDGE
e DELETE EDGE

Use Case: Social Network for Restaurant Patrons

While you have the option of working with vertexes and edges in your database as they are, you can also extend the standard v and

E classes to suit the particular needs of your application. The advantages of this approach are,

e It grants better understanding about the meaning of these entities.

It allows for optional constraints at the class level.

e It improves performance through better partitioning of entities.

It allows for object-oriented inheritance among the graph elements.

For example, consider a social network based on restaurants. You need to start with a class for individual customers and another for the

restaurants they patronize. Create these classes to extend the v class.

orientdb> CREATE CLASS Person EXTENDS V

orientdb> CREATE CLASS Restaurant EXTENDS V

Doing this creates the schema for your social network. Now that the schema is ready, populate the graph with data.

orientdb> CREATE VERTEX Person SET name='Luca'

Created record with RID #11:0

orientdb> CREATE VERTEX Person SET name='Bill'

Created record with RID #11:1

orientdb> CREATE VERTEX Person SET name='Jay'

Created record with RID #11:2

orientdb> CREATE VERTEX Restaurant SET name='Dante', type='Pizza'

Created record with RID #12:0

orientdb> CREATE VERTEX Restaurant SET name='Charlie', type='French'

Created record with RID #12:1

This adds three vertices to the person class, representing individual users in the social network. It also adds two vertices to the

Restaurant class, representing the restaurants that they patronize.

Creating Edges

For the moment, these vertices are independent of one another, tied together only by the classes to which they belong. That is, they are

not yet connected by edges. Before you can make these connections, you first need to create a class that extends E .

orientdb> CREATE CLASS Eat EXTENDS E

This creates the class Eat , which extends the class E . Eat represents the relationship between the vertex person and the vertex

Restaurant .

When you create the edge from this class, note that the orientation of the vertices is important, because it gives the relationship its
meaning. For instance, creating an edge in the opposite direction, (from Restaurant to Person), would call for a separate class, such

as Attendee .

The user Luca eats at the pizza joint Dante. Create an edge that represents this connection:

orientdb> CREATE EDGE Eat FROM (SELECT FROM Person WHERE name='Luca')

TO (SELECT FROM Restaurant WHERE name='Dante')

Creating Edges from Record ID

In the event that you know the Record ID of the vertices, you can connect them directly with a shorter and faster command. For
example, the person Bill also eats at the restaurant Dante and the person Jay eats at the restaurant Charlie. Create edges in the class
Eat to represent these connections.

orientdb> CREATE EDGE Eat FROM #11:1 TO #

orientdb> CREATE EDGE Eat FROM #11:2 TO #

Querying Graphs

In the above example you created and populated a small graph of a social network of individual users and the restaurants at which they
eat. You can now begin to experiment with queries on a graph database.

To cross edges, you can use special graph functions, such as:

e out() To retrieve the adjacent outgoing vertices
e 1IN() To retrieve the adjacent incoming vertices

e BoTH() To retrieve the adjacent incoming and outgoing vertices

For example, to know all of the people who eat in the restaurant Dante, which has a Record ID of #12:0 , you can access the record for

that restaurant and traverse the incoming edges to discover which entries in the Person class connect to it.

orientdb> SELECT IN() FROM Restaurant WHERE name='Dante’

------- Boccocsoscooasooods
@RID | in |
------- occooooocooaoooods
#-2:1 | [#11:0, #11:1] |
------- occocsoocooasooods

This query displays the record ID's from the Person class that connect to the restaurant Dante. In cases such as this, you can use the

EXPAND() special function to transform the vertex collection in the result-set by expanding it.

orientdb> SELECT EXPAND(IN()) FROM Restaurant WHERE name='Dante'

------- T T T g
@RID | @CLASS | Name | out_Eat |
------- T T g
#11:0 | Person | Luca | #12:0
#11:1 | Person | Bill | #12:0
------- B T T T T T g

Creating Edge to Connect Users

Your application at this point shows connections between individual users and the restaurants they patronize. While this is interesting,

it does not yet function as a social network. To do so, you need to establish edges that connect the users to one another.

To begin, as before, create a new class that extends E :

orientdb> CREATE CLASS Friend EXTENDS E

The users Luca and Jay are friends. They have Record ID's of #12:0 and #11:2 . Create an edge that connects them.

orientdb> CREATE EDGE Friend FROM #12:0 TO #

In the Friend relationship, orientation is not important. That is, if Luca is a friend of Jay's then Jay is a friend of Luca's. Therefore,

you should use the BoTH() function.

orientdb> SELECT EXPAND(BOTH('Friend')) FROM Person WHERE name = 'Luca’

------- Pocooosonoonsoioosoosonosooaioosonosoadsossooosonods
@RID | @CLASS | Name | out_Eat | in_Friend |
------- Poccoosoooonsoioasoosonosoooioossnosoadsossooosonods
#11:2 | Person | Jay | #12:1 | #12:0

------- Pocooosooooosoioasoosonosooadoosonosoadsossooosonods

Here, the BoTH() function takes the edge class Friend as an argument, crossing only relationships of the Friend kind, (that is, it skips

the Eat class, at this time). Note in the result-set that the relationship with Luca, with a Record ID of #12:e inthe in_ field.

You can also now view all the restaurants patronized by friends of Luca.

orientdb> SELECT EXPAND(BOTH('Friend').out('Eat')) FROM Person

WHERE name='Luca'

------- Hoccoosoooooactioasooscnosooaioosonssoonoooinosoooood
@RID | @CLASS | Name | Type | in_Eat |
------- Hoccooscooonactioasoosonosooalooscnsoosnoooioccooood
#12:1 | Restaurant | Charlie | French | #11:2

------- Hoccoosoooooaciioasooscnosooalooscnscosnoooioocoooood

Lightweight Edges

In version 1.4.x, OrientDB begins to manage some edges as Lightweight Edges. Lightweight Edges do not have Record ID's, but are
physically stored as links within vertices. Note that OrientDB only uses a Lightweight Edge only when the edge has no properties,

otherwise it uses the standard Edge.

From the logic point of view, Lightweight Edges are Edges in all effects, so that all graph functions work with them. This is to improve

performance and reduce disk space.

Because Lightweight Edges don't exist as separate records in the database, some queries won't work as expected. For instance,

orientdb> SELECT FroM E

For most cases, an edge is used connecting vertices, so this query would not cause any problems in particular. But, it would not return
Lightweight Edges in the result-set. In the event that you need to query edges directly, including those with no properties, disable the
Lightweight Edge feature.

To disable the Lightweight Edge feature, execute the following command.

orientdb> ALTER DATABASE CUSTOM useLightweightEdges=

You only need to execute this command once. Orient DB now generates new edges as the standard Edge, rather than the Lightweight

Edge. Note that this does not affect existing edges.

For troubleshooting information on Lightweight Edges, see Why I can't see all the edges. For more information in the Graph model in

OrientDB, see Graph API.

Using Schema with Graphs
OrientDB, through the Graph API, offers a number of features above and beyond the traditional Graph Databases given that it supports

concepts drawn from both the Document Database and the Object Oriented worlds. For instance, consider the power of graphs, when

used in conjunction with schemas and constraints.

Use Case: Car Database

For this example, consider a graph database that maps the relationship between individual users and their cars. First, create the graph

schema for the person and car vertex classes, as well as the owns edge class to connect the two:
orientdb> CREATE CLASS Person EXTENDS V
orientdb> CREATE CLASS Car EXTENDS V

orientdb> CREATE CLASS Owns EXTENDS E

These commands lay out the schema for your graph database. That is, they define two vertex classes and an edge class to indicate the

relationship between the two. With that, you can begin to populate the database with vertices and edges.
orientdb> CREATE VERTEX Person SET name = 'Luca'

Created vertex 'Person#11l:0{name:Luca} vl' in 0,012000 sec(s).

orientdb> CREATE VERTEX Car SET name = 'Ferrari Modena'

Created vertex 'Car#12:0{name:Ferrari Modena} v1' in 0,001000 sec(s).

orientdb> CREATE EDGE Owns FROM (SELECT FROM Person) TO (SELECT FROM Car)

Created edge '[e[#11:0->#12:0][#11:0-0Owns->#12:0]]' in 0,005000 sec(s).

Querying the Car Database

In the above section, you create a car database and populated it with vertices and edges to map out the relationship between drivers and
their cars. Now you can begin to query this database, showing what those connections are. For example, what is Luca's car? You can find

out by traversing from the vertex Luca to the outgoing vertices following the owns relationship.

orientdb> SELECT NAME FROM (SELECT EXPAND(OUT('Owns')) FROM Person

WHERE name='Luca')

S S Hommmememeaamaooo +
| @RID | name

P S Fommmemmmaaamao oo +
O | #-2:1 | Ferrari Modena |
P S mmmimemmmaaamao oo +

As you can see, the query returns that Luca owns a Ferrari M odena. Now consider expanding your database to track where each person

lives.

Adding a Location Vertex

Consider a situation, in which you might want to keep track of the countries in which each person lives. In practice, there are a number
of reasons why you might want to do this, for instance, for the purposes of promotional material or in a larger database to analyze the

connections to see how residence affects car ownership.

To begin, create a vertex class for the country, in which the person lives and an edge class that connects the individual to the place.
orientdb> CREATE CLASS Country EXTENDS V

orientdb> CREATE CLASS Lives EXTENDS E

This creates the schema for the feature you're adding to the cars database. The vertex class country recording countries in which

people live and the edge class Lives to connect individuals in the vertex class Person to entries in Country .

With the schema laid out, create a vertex for the United Kingdom and connect it to the person Luca.
orientdb> CREATE VERTEX Country SET name='UK'

Created vertex 'Country#14:0{name:UK} v1' in 0,004000 sec(s).

orientdb> CREATE EDGE Lives FROM (SELECT FROM Person) TO (SELECT FROM Country

Created edge '[e[#11:0->#14:0][#11:0-Lives->#14:0]]' in 0,006000 sec(s).

The second command creates an edge connecting the person Luca to the country United Kingdom. Now that your cars database is

defined and populated, you can query it, such as a search that shows the countries where there are users that own a Ferrari.

orientdb> SELECT name FROM (SELECT EXPAND(IN('Owns').OUT('Lives'))

FROM Car WHERE name LIKE '%Ferrari%')

[—— Fommmm oo - +
| @GRID | name |
[—— Fommmma oo +
0 | #-2:1 | UK |
[—— Fommmma oo +

Using in and out Constraints on Edges

In the above sections, you modeled the graph using a schema without any constraints, but you might find it useful to use some. For

instance, it would be good to require that an owns relationship only exist between the vertex person and the vertex car .
orientdb> CREATE PROPERTY Owns.out LINK Person

orientdb> CREATE PROPERTY Owns.in LINK Car

These commands link outgoing vertices of the person class to incoming vertices of the car class. That is, it configures your database

so that a user can own a Car, but a car cannot own a user.

Using MANDATORY Constraints on Edges

By default, when OrientDB creates an edge that lacks properties, it creates it as a Lightweight Edge. That is, it creates an edge that has
no physical record in the database. Using the MANDATORY setting, you can stop this behavior, forcing it to create the standard Edge,

without outright disabling Lightweight Edges.

orientdb> ALTER PROPERTY Owns.out MANDATORY=

orientdb> ALTER PROPERTY Owns.in MANDATORY=

Using UNIQUE with Edges

For the sake of simplicity, consider a case where you want to limit the way people are connected to cars to where the user can only
match to the car once. That is, if Luca owns a Ferrari M odena, y ou might prefer not to have a double entry for that car in the event that

he buys a new one a few years later. This is particularly important given that our database covers make and model, but not year.

To manage this, you need to define a unIQUE index against both the out and in properties.
orientdb> CREATE INDEX UniqueOwns ON Owns(out,in) UNIQUE

Created index successfully with 0 entries in 0,023000 sec(s).

The index returns tells us that no entries are indexed. You have already created the onws relationship between Luca and the Ferrari
Modena. In that case, however, OrientDB had created a Lightweight Edge before you set the rule to force the creation of documents for

owns instances. To fix this, you need to drop and recreate the edge.

orientdb> DELETE EDGE FROM #11:0 TO #
orientdb> CREATE EDGE Owns FROM (SELECT FROM Person) TO (SELECT FROM Car)

To confirm that this was successful, run a query to check that a record was created:

orientdb> SELECT FROM Owns

[—— Fommma oo Fommmmo oo +
| @GRID | out | in |
[— Fommma oo Fommmm oo +
0 | #13:0 | #11:0 | #12:0 |
[— L e, Fommmm oo +

This shows that a record was indeed created. To confirm that the constraints work, attempt to create an edge in owns that connects

Luca to the United Kingdom.
orientdb> CREATE EDGE Owns FROM (SELECT FROM Person) TO (SELECT FROM Country)

Error: com.orientechnologies.orient.core.exception.0CommandExecutionException:
Error on execution of command: sql.create edge Owns from (select from Person)...
Error: com.orientechnologies.orient.core.exception.0OValidationException: The
field 'Owns.in' has been declared as LINK of type 'Car' but the value is the
document #14:0 of class 'Country'

This shows that the constraints effectively blocked the creation, generating a set of errors to explain why it was blocked.

You now have a typed graph with constraints. For more information, see Graph Schema.

Graph Consistency

Before OrientDB v2.1.7, the graph consistency could be assured only by using transactions. The problems with using transactions for

simple operations like creation of edges are:

e speed, the transaction has a cost in comparison with non-transactional operations
e management of optimistic retry at application level. Furthermore, with 'remote' connections this means high latency

e low scalability on high concurrency (this will be resolved in OrientDB v3.0, where commits will not lock the database anymore)

As of v2.1.7, OrientDB provides a new mode to manage graphs without using transactions. It uses the Java class orientGraphNoTx or

via SQL by changing the global setting sqgl.graphConsistencyMode to one of the following values:

e tx , the default, uses transactions to maintain consistency. This was the only available setting before v2.1.7

e notx_sync_repair , avoids the use of transactions. Consistency, in case of a JVM crash, is guaranteed through a database repair
operation, which runs at startup in synchronous mode. The database cannot be used until the repair is finished.

e notx_async_repair , also avoids the use of transactions. Consistency, in case of JVM crash, is guaranteed through a database repair
operation, which runs at startup in asynchronous mode. The database can be used immediately, as the repair procedure will run in
the background.

Both the new modes notx_sync_repair and notx_async_repair will manage conflicts automatically, with a configurable RETRY
(default=50). In case changes to the graph occur concurrently, any conflicts are caught transparently by OrientDB and the operations are

repeated. The operations that support the auto-retry are:

® CREATE EDGE
® DELETE EDGE

® DELETE VERTEX

Usage

To use consistency modes that don't use transactions, set the sql.graphConsistencyMode global settingto notx_sync_repair or
notx_async_repair in OrientDB bin/server.sh script or in the config/orientdb-server-config.xml file under properties section.

Example:

<properties>
<entry name="sql.graphConsistencyMode" value="notx_sync_repair"/>
</properties>
The same could be set by code, before you open any Graph. Example:

0GlobalConfiguration.SQL_GRAPH_CONSISTENCY_MODE.setValue('"notx_sync_repair");

To make this setting persistent, set the txRequiredForsQLGraphOperations property in the storage configuration, so during the following

opening of the Graph, you don't need to set the global setting again:

g.getRawGraph().getStorage().getConfiguration().setProperty("txRequiredForSQLGraphOperations", "false");

Usage via Java API

In order to use non-transactional graphs, after having configured the consistency mode (as above), you can now work with the

orientGraphNoTx class. Example:

OrientGraphNoTx g = new OrientGraphNoTx('"plocal:/temp/mydb");

vl.addEdge("Friend", v2);

Concurrent threads that change the graph will retry the graph change in case of concurrent modification (M VCC). The default value for

maximum retries is 50. To change this value, call the setMaxRetries() API:

OrientGraphNoTx g = new OrientGraphNoTx("plocal:/temp/mydb");
g.setMaxRetries(D

This setting will be used on the active graph instance. You can have multiple threads, which work on the same graph by using multiple
graph instances, one per thread. Each thread can then have different settings. It's also allowed to wirk with threads, which use

transactions (orientGraph class) and to work with concurrent threads, which don't use transactions.

Fetching Strategies

Fetchplans are used in two different scopes:

1. Connections that use the Binary Protocol can early load records on the client's. On traversing of connected records, the client hasn't
to execute further remote calls to the server, because the requested records are already on the client's cache
2. Connections that use the HTTP/JSON Protocol can expand the resulting JSON to include connected records as embedded in the

same JSON. This is useful on HTTP protocol to fetch all the connected records in just one call

Format for Fetch Plans

In boths scopes, the fetchplan syntaxis the same. In terms of their use, Fetch Plans are strings that you can use at run-time on queries

and record loads. The syntax for these strings is,

[[1evels]] fieldPath: depthLevel

e Levels Is an optional value that tells which levels to use with the Fetch Plans. Levels start from o . As of version 2.1, levels use
the following syntax:

o Level The specific level on which to use the Fetch Plan. For example, using the level [e] would apply only to the first level.

o Range The range of levels on which to use the Fetch Plan. For example, [0-2] means to use it on the first to third level. You
can also use the partial range syntax: [-3] means from the first to fourth level while [4-] means from the fifth level to
infinity.

o Any The wildcard variable indicates that you want to use the Fetch Plan on all levels. For example, [*] .

e Field Path Is the field name path, which OrientDB expects in dot notation. The path begins from either the root record or the
wildcard variable * to indicate any field. You can also use the wildcard at the end of the path to specify all paths taht start for a
name.

e Depth Level Is the depth of the level requested. The depth level variable uses the following syntax:

o o Indicates to load the current record.
o 1-N Indicates to load the current record to the nth record.
o -1 Indicates an unlimited level.

o -2 Indicates an excluded level.
In the event that you want to express multiple rules for your Fetch Plans, separate them by spaces.

Consider the following Fetch Plans for use with the example above:

Fetch Plan Description
*i-1 Fetches recursively the entire tree.
Fetches recursively all records, but uses the field orders in the root class. Note that the field

*i-1 orders:0 orders only loads its direct content, (that is, the records 8:12 , 8:19 ,and 8:23). No other
records inside of them load.

*:0 Fetches only non-document fields in the root class and the field address.city.country , (that is,
address.city.country:0 records 10:1, 11:2 and 12:3).
[*]in_*:-2 out_*:-2 Fetches all properties, except for edges at any level.

Early loading of records

By default, OrientDB loads linked records in a lazy manner. That is to say, it does not load linked fields until it traverses these fields. In

situations where you need the entire tree of a record, this can prove costly to performance. For instance,

Invoice

3:100
I
| customer
oooooooos > Customer
| 5:233
| address city country
PR > Address--------- > City --------- > Gy
I 10:1 11:2 12:3
I
| orders
[—— >* [OrderItem OrderItem OrderItem]
[8:12 8:19 8:23]

Here, you have a class 1Invoice , with linked fields customer , city and orders . If you weretoruna SELECT query on Invoice ,
it would not load the linked class, it would require seven different loads to build the return value. In the event that you have a remote

connection that means seven network calls, as well.

In order to avoid performance issues that may arise from this behavior, OrientDB supports fetching strategies, called Fetch Plans, that
allow you to customize how it loads linked records. The aim of a Fetch Plan is to pre-load connected records in a single call, rather than
several. The best use of Fetch Plans is on records loaded through remote connections and when using JSON serializers to produce JSON
with nested records.

NOTE OrientDB handles circular dependencies to avoid any loops while it fetches linking records.

Remote Connections

Under the default configuration, when a client executes a query or loads directly a single record to a remote database, it continues to send

network calls for each linked record involved in the query, (that is, through oLazyRecordList). You can mitigate this with a Fetch Plan.

When the client executes a query, set a Fetch Plan with a level different from o . This causes the server to traverse all the records of the
return result-set, sending them in response to a single call. OrientDB loads all connected records into the local client, meaning that the
collections remain lazy, but when accessing content, the record is loaded from the local cache to mitigate the need for additional
connections.

Examples using the Java APIs

Execute a query with a custom fetch plan

List<ODocument> resultset = database.query(new 0SQLSynchQuery<ODocument>("select * from Profile").setFetchPlan("*:-1"));

Export a document and its nested documents in JSON

Export an invoice and its customer:

invoice.toJSON("fetchPlan:customer:1");

Export an invoice, its customer and orders:

invoice.toJSON("fetchPlan:customer:1 orders:2");

Export an invoice and all the connected records up to 3rd level of depth:

invoice.toJSON("fetchPlan:*:3");

From SQL.:

SELECT @this.toJSON('fetchPlan:out_Friend:4') FROM #

Export path in outgoing direction by removing all the incoming edges by using wildcards (Since 2.0):
SELECT @this.toJSON('fetchPlan:in_*:-2') FROM #10:20

NOTES::

e To avoid looping, the record already traversed by fetching are exported only by their RIDs (RecordID) form

e "fetchPlan" settingis case sensitive

Browse objects using a custom fetch plan

for (Account a : database.browseClass(Account.class).setFetchPlan("*:0 addresses:-1")) {
System.out.println(a.getName());
}

NOTE: Fetching Object will mean their presence inside y our domain entities. So if you load an object using fetchplan *:e all

LINK type references won't be loaded.

Use Cases

This page contains the solution to the most common use cases. Please don't consider them as the definitive solution, but as suggestions

where to get the idea to solve your needs.

Use cases

e Time Series
Chat
e Use OrientDB as a Key/Value DBM S

e Persistent, Distributed and Transactional Queues

Time Series Use Case

M anaging records related to historical information is pretty common. When you have millions of records, indexes start show their
limitations, because the cost to find the records is O(logN). This is also the main reason why Relational DBM S are so slow with huge
databases.

So when you have millions of record the best way to scale up linearly is avoid using indexes at all or as much as you can. But how can
you retrieve records in a short time without indexes? Should OrientDB scan the entire database at every query? No. You should use the

Graph properties of OrientDB. Let's look at a simple example, where the domain are logs.

A typical log record has some information about the event and a date. Below is the Log record to use in our example. We're going to use

the JSON format to simplify reading:

{
"date" : 5
"priority" : "critical",
"note" : "System reboot"
}

Now let's create a tree (that is a directed, non cyclic graph) to group the Log records based on the granularity we need. Example:

Year -> month (map) -> Month -> day (map) -> Day -> hour (map) -> Hour

Where Year, Month, Day and Hour are vertex classes. Each Vertex links the other Vertices of smaller type. The links should be handled

using a M ap to make easier the writing of queries.

Create the classes:

CREATE CLASS Year
CREATE CLASS Month
CREATE CLASS Day

CREATE CLASS Hour

CREATE PROPERTY Year.month LINKMAP Month
CREATE PROPERTY Month.day LINKMAP Day
CREATE PROPERTY Day.hour LINKMAP Hour

Example to retrieve the vertex relative to the date March 2012, 20th at 10am (2012/03/20 10:00:00):

SELECT month[3].day[20].hour[10].1logs FROM Year WHERE year = "2012"

If you need more granularity than the Hour you can go ahead until the Time unit you need:

Hour -> minute (map) -> Minute -> second (map) -> Second

Now connect the record to the right Calendar vertex. If the usual way to retrieve Log records is by hour you could link the Log records

in the Hour. Example:

Year -> month (map) -> Month -> day (map) -> Day -> hour (map) -> Hour -> log (set) -> Log

The "log" property connects the Time Unit to the Log records. So to retrieve all the log of March 2012, 20th at 10am:

SELECT expand(month[3].day[20].hour[10].1logs) FROM Year WHERE year = "2012"

That could be used as starting point to retrieve only a sub-set of logs that satisfy certain rules. Example:

SELECT FROM (
SELECT expand(month[3].day[20].hour[10].1logs) FROM Year WHERE year = "2012"
) WHERE priority = 'critical'

That retrieves all the CRITICAL logs of March 2012, 20th at 10am.

Join multiple hours

If you need multiple hours/day s/months as result set you can use the UNION function to create a unique result set:

SELECT expand(records) from (
SELECT union(month[3].day[20].hour[10].1logs, month[3].day[20].hour[11].1l0ogs) AS records
FROM Year WHERE year = '"2012"

In this example we create a union between the 10th and 11th hours. But what about extracting all the hours of a day without writing a

huge query? The shortest way is using the Traverse. Below the Traverse to get all the hours of one day:

TRAVERSE hour FROM (
SELECT expand(month[3].day[20]) FROM Year WHERE year = "2012"
)

So putting all together this query will extract all the logs of all the hours in a day:

SELECT expand(logs) FROM (
SELECT union(logs) AS logs FROM (
TRAVERSE hour FROM (
SELECT expand(month[3].day[20]) FROM Year WHERE year = "2012"
)

Aggregate

Once you built up a Calendar in form of a Graph you can use it to store aggregated values and link them to the right Time Unit.

Example: store all the winning ticket of Online Games. The record structure in our example is:

{
"date" : ,
"win" : 0
"machine" : "AKDJKD7673JJSH",

You can link this record to the closest Time Unit like in the example above, but you could sum all the records in the same Day and link it

to the Day vertex. Example:

Create a new class to store the aggregated daily records:

CREATE CLASS Dailylog

Create the new record from an aggregation of the hour:

INSERT INTO DailylLog
SET win = (

SELECT SUM(win) AS win FROM Hour WHERE BETWEEN '2012-03-20 10:00:00' AND '2012-03-20 11:00:00'
)

Link it in the Calendar graph assuming the previous command returned #23:45 as the Recordld of the brand new DailyLog record:

Time Series

UPDATE (
SELECT expand(month[3].day[20]) FROM Year WHERE year = "2012"
) ADD logs = #23:45

85

Chat Use Case

OrientDB allows modeling of rich and complex domains. If you want to develop a chat based application, you can use whatever you

want to create the relationships between User and Room.

We suggest avoiding using Edges or Vertices connected with edges for messages. The best way is using the document API by creating
one class per chat room, with no index, to have super fast access to last X messages. In facts, OrientDB stores new records in append

only, and the @rid is auto generated as incrementing.
The 2 most common use cases in a chat are:

e writing a message in a chat room

e load last page of messages in a chat room

Create the initial schema

In order to work with the chat rooms, the rule of the thumb is creating a base abstract class ("ChatRoom") and then let to the concrete

classes to represent individual ChatRooms.

Create the base ChatRoom class

create class ChatRoom

alter class ChatRoom abstract

create property ChatRoom. datetime
create property ChatRoom. string
create property ChatRoom.user LINK OUser

Create a new ChatRoom

create class ItalianRestaurant extends ChatRoom

Class "ItalianRestaurant” will extend all the properties from ChatRoom.
Why creating a base class? Because you could always execute polymorphic queries that are cross-chatrooms, like get all the message

from user "Luca":

select from ChatRoom where user.name = 'Luca'

Create a new message in the Chat Room

To create a new message in the chat room you can use this code:

public ODocument addMessage {
ODocument msg = new ODocument(chatRoom);
msg.field("date", new Date());
msg.field("text", message);
msg.field("user", user);
msg.save();
return msg;

Example:

addMessage("ItalianRestaurant", "Have you ever been at Ponza island?", database.getUser());

Retrieve last messages

You can easily fetch pages of messages ordered by date in descending order, by using the OrientDB's @rid . Example:

select from ItalianRestaurant order by @rid desc skip 0 limit

You could write a generic method to access to a page of messages, like this:

public Iterable<ODocument> loadMessages {
return graph.getRawGraph().command("select from " + chatRoom + " order by @rid desc skip " + fromLast + " limit " + pageSize
) .execute();

}

Loading the 2nd (last) page from chat "ItalianRestaurant", would become this query (with pageSize = 50):

select from ItalianRestaurant order by @rid desc skip limit

This is super fast and O(1) even with million of messages.

Limitations
Since OrientDB can handle only 32k clusters, you could have maximum 32k chat rooms. Unless you want to rewrite the entire
FreeNode, 32k chat rooms will be more than enough for most of the cases.

However, if you need more than 32k chat rooms, the suggested solution is still using this approach, but with multiple databases (even

on the same server, because one OrientDB Server instance can handle thousands of databases concurrently).
In this case you could use one database to handle all the metadata, like the following classes:

e ChatRoom, containing all the chatrooms, and the database where are stored. Example: { "@class": "ChatRoom", "description":
"OrientDB public channel", "databaseName", "db1", "clusterName": "orientdb" }

e User, containing all the information about accounts with the edges to the ChatRoom vertices where they are subscribed

OrientDB cannot handle cross-database links, so when you want to know the message's author, you have to look up into the
"Metadata" database by @RID (that is O(1)).

https://freenode.net/index.shtml

Key Value Use Case

OrientDB can also be used as a Key Value DBM S by using the super fast Indexes. You can have as many Indexes as you need.

HTTP

OrientDB REST ful HTTP protocol allows to talk with a OrientDB Server instance using the HTTP protocol and JSON. OrientDB

supports also a highly optimized Binary protocol for superior performances.

Operations

To interact against OrientDB indexes use the four methods of the HTTP protocol in REST fashion:

e PUT, to create or modify an entry in the database

e GET, to retrieve an entry from the database. It's idempotent that means no changes to the database happen. Remember that in IE6
the URL can be maximum of 2,083 characters. Other browsers supports longer URLs, but if you want to stay compatible with all
limit to 2,083 characters

e DELETE, to delete an entry from the database

Create an entry

To create a new entry in the database use the Index-PUT API.
Syntax: http://<server>:[<port>]/index/<index-name>/<key>
Examp le:

HTTP PUT: http://localhost:2480/index/customers/jay

"name" : "Jay",
"surname" : "Miner"

HTTP Response 204 is returned.

Retrieve an entry

To retrieve an entry from the database use the Index-GET API.
Syntax: http://<server>:[<port>]/index/<index-name>/<key>
Example:

HTTP GET: http://localhost:2480/index/customers/jay

HTTP Response 200 is returned with this JSON as payload:

"name" : "Jay",
"surname" : "Miner"

Remove an entry

To remove an entry from the database use the Index-DELETE APIL.
Syntax: http://<server>:[<port>]/index/<index-name>/<key>
Example:

HTTP DELETE: http://localhost:2480/index/customers/jay

HTTP Response 200 is returned

Step-by-Step tutorial

Before to start assure you've a OrientDB server up and running, In this example we'll use curl considering the connection to localhost to
the default HTTP post 2480. The default "admin" user is used.

Create a new index

To use OrientDB as a Key/Value store we need a brand new manual index, let's call it "mainbucket". We're going to create it as UNIQUE

because keys cannot be duplicated. If you can have multiple keys consider:

e creating the index as NOTUNIQUE

e leave it as UNIQUE but as value handle array of documents

Create the new manual unique index "mainbucket":

> curl --basic -u admin:admin localhost:2480/command/demo/sql -d "create index mainbucket UNIQUE"

Response:

{ "result" : [
{ "@type" : "d" , "@version" : 0, "value" : 0, "@fieldTypes" : "value=1" }
]
}

Store the first entry

Below we're going to insert the first entry by using the HTTP PUT method passing "jay" as key in the URL and as value the entire

document in form of JSON:

> curl --basic -u admin:admin -X PUT localhost:2480/index/demo/mainbucket/jay -d "{'name':'Jay', 'surname':'Miner'}"

Response:

Key 'jay' correctly inserted into the index mainbucket.

Retrieve the entry just inserted
Below we're going to retrieve the entry we just entered by using the HTTP GET method passing "jay" as key in the URL:

> curl --basic -u admin:admin localhost:2480/index/demo/mainbucket/jay

Response:

[{

"@type" : "d" , "@rid" : "#3:477" , "@version" : 0O,
"name" : "Jay"
"surname" : "Miner"

}

Note that an array is always returned in case multiple records are associated to the same key (if NOTUNIQUE index is used). Look also
at the document has been created with RID #3:477. You can load it directly if you know the RID. Remember to remove the # character.

Example:

> curl --basic -u admin:admin localhost:2480/document/demo/3:477

Response:
{
"@type" : "d" , "@rid" : "#3:477" , "@version" : 0O,
"name" : "Jay",
"surname" : "Miner"
3

Drop an index

Once finished drop the index "mainbucket" created for the example:

> curl --basic -u admin:admin localhost:2480/command/demo/sql -d "drop index mainbucket"

Response:

{ "result" : [
{ "@type" : "d" , "@version" : 0, "value" : 0, "@fieldTypes" : "value=1" }

Distributed queues use case

Implementing a persistent, distributed and transactional queue system using OrientDB is possible and easy. Besides the fact you don't
need a specific API accomplish a queue, there are multiple ap proaches you can follow depending by your needs. The easiest way is

using OrientDB SQL, so this works wit any driver.

Create the queue class first:

create class queue

You could have one class per queue. Example of push operation:

insert into queue set = "this is the first message", = ()

Since OrientDB by default keeps the order of creation of records, a simple delete from the queue class with limit = 1 gives to you the

perfect pop:

delete from queue return before limit

The "return before" allows you to have the deleted record content. If you need to peek the queue, you can just use the select:

select from queue limit

That's it. Your queue will be persistent, if you want transactional and running in cluster distributed.

Administration

OrientDB has a number of tools to make administration of the database easier. There is the console, which allows you to run a large

number of commands.

There is also the OrientDB Studio, which allows you to run queries and visually look at the graph.

GratefulDeadConcerts (admin) v

@ Browse O Graph </> Functions

»
Graph Editor ave Configuration © Add Vertex I @ Clear Canvas I More v I

select from V limit 5|

[\
\2 | 1
. \ J
49
j2l %
e /{;2

OrientDB also offers several tools for the import and export of data, logging and trouble shooting, along with ETL tools.

All of OrientDB's administration facilities are aimed to make your usage of OrientDB as simple and as easy as possible.

For more information see:

e Command Reference
e Backup and Restore
e Export and Import
e Logging

e Studio

e Trouble shooting

e Performance Tuning
e ETL Tools

Console Tool

OrientDB provides a Console Tool, which is a Java application that connects to and operates on OrientDB databases and Server

instances.

Console Modes

There are two modes available to you, while executing commands through the OrientDB Console: interactive mode and batch mode.

Interactive Mode

By default, the Console starts in interactive mode. In this mode, the Console loads to an orientdb> prompt. From there you can

execute commands and SQL statements as you might expect in any other database console.

You can launch the console in interactive mode by executing the console.sh for Linux OS systems or console.bat for Windows

systems in the bin directory of your OrientDB installation. Note that running this file requires execution p ermissions.

$ $ORTENTDB_HOME/bin

$./console.sh

OrientDB console v.X.X.X (build ©) www.orientdb.com
Type 'HELP' to display all the commands supported.
Installing extensions for GREMLIN language v.X.X.X

orientdb>

From here, you can begin running SQL statements or commands. For a list of these commands, see commands.

Batch mode

When the Console runs in batch mode, it takes commands as arguments on the command-line or as a text file and executes the commands

in that file in order. Use the same console.sh or console.bat file found in bin at the OrientDB installation directory.

e Command-line: To execute commands in batch mode from the command line, pass the commands you want to run in a string,

separated by a semicolon.

$ S$ORIENTDB_HOME/bin/console.sh "CONNECT REMOTE:localhost/demo; SELECT FROM Profile"

e Script Commands: In addition to entering the commands as a string on the command-line, you can also save the commands to a

text file as a semicolon-separated list.

$ vim commands.txt

CONNECT REMOTE:localhost/demo;SELECT FROM Profile

$ $ORIENTDB_HOME/bin/console.sh commands.txt

Ignoring Errors

When running commands in batch mode, you can tell the console to ignore errors, allowing the script to continue the execution, with the

ignoreErrors setting

$ vim commands.txt

SET ignoreErrors

Enabling Echo

Regardless of whether you call the commands as an argument or through a file, when you run console commands in batch mode, you

may also need to display them as they execute. You can enable this feature using the echo setting, near the start of your commands

list.

$ vim commands.txt

SET echo

Console commands

OrientDB implements a number of SQL statements and commands that are available through the Console. In the event that you need

information while working in the console, you can access it using either the HeLP or ? command.

Command

ALTER CLASS

ALTER CLUSTER

ALTER DATABASE

ALTER PROPERTY

BACKUP DATABASE

BEGIN

BROWSE CLASS

BROWSE CLUSTER

CLASSES

CLUSTER STATUS

CLUSTERS

COMMIT

CONFIG

CONFIG GET

CONFIG SET

CONNECT

CREATE CLASS

CREATE CLUSTER

CREATE CLUSTER

CREATE DATABASE

CREATE EDGE

CREATE INDEX

CREATE LINK

Description
Changes the class schema
Changes the cluster attributes
Changes the database attributes
Changes the class's property schema
Backup a database
Begins a new transaction
Browses all the records of a class
Browses all the records of a cluster
Displays all the configured classes
Displays the status of distributed cluster of servers
Displays all the configured clusters

Commits an active transaction

Displays the configuration where the opened database is located (local or remote)

Returns a configuration value

Set a configuration value

Connects to a database

Creates a new class

Creates a new cluster inside a database
Creates a new record cluster

Creates a new database

Create a new edge connecting two vertices
Create a new index

Create a link readinga RDBM S JOIN

CREATE VERTEX

DECLARE INTENT

DELETE

DICTIONARY KEYS

DICTIONARY GET

DICTIONARY PUT

DICTIONARY
REMOVE

DISCONNECT

DISPLAY RECORD

DISPLAY RAW
RECORD

DROP CLASS

DROP CLUSTER

DROP DATABASE

DROP INDEX

DROP PROPERTY

EXPLAIN

EXPORT DATABASE

EXPORT RECORD

FIND REFERENCES

FREEZE DATABASE

GET

GRANT

GREMLIN

IMPORT DATABASE

INDEXES

INFO

INFO CLASS

INSERT

Js

JSs

LIST DATABASES

LIST
CONNECTIONS

LOAD RECORD

PROFILER

PROPERTIES

pwd

REBUILD INDEX

Create a new vertex

Declares an intent

Deletes a record from the database using the SQL syntax. To know more about the SQL syntax go here

Displays all the keys in the database dictionary

Loookups for a record using the dictionary. If found set it as the current record

Inserts or modify an entry in the database dictionary. The entry is composed by key=String, value=record-

id
Removes the association in the dictionary

Disconnects from the current database

Displays current record's attributes
Displays current record's raw format

Drop a class

Drop a cluster

Drop a database

Drop an index

Drop a property from a schema class

Explain a command by displaying the profiling values while executing it
Exports a database

Exports arecord in any of the supported format (i.e. json)

Find the references to a record

Freezes the database locking all the changes. Use this to raw backup. Once frozen it uses the RELEASE

DATABASE to release it

Returns the value of a property

Grants a permission to a user

Executes a Gremlin script

Imports a database previously exported
Displays information about indexes
Displays information about current status

Displays information about a class

Inserts a new record in the current database using the SQL syntax. To know more about the SQL syntax go

here
Executes a Javascript in the console
Executes a Javascript in the server

List the available databases
List the available connections

Loads a record in memory and set it as the current one
Controls the Profiler

Returns all the configured properties

Display current path

Rebuild an index

RELEASE Releases a Console Freeze Database database

DATABASE
RELOAD RECORD Reloads a record in memory and set it as the current one
RELOAD SCHEMA Reloads the schema
ROLLBACK Rollbacks the active transaction started with begin
Di?igigg Restore a database
SEUEET Executes a SQL query against the database and display the results. To know more about the SQL syntax go
here
REVOKE Revokes a permission to a user
SET Changes the value of a property
SLEEP Sleep for the time specified. Useful on scripts
TRAVERSE Traverse a graph of records
TRUNCATE CLASS Remove all the records of a class (by truncating all the underlying configured clusters)
CISg?E/;TE Remove all the records of a cluster
TRUNCATE RECORD Truncate a record you can't delete because it's corrupted
IEE Updates a record in the current database using the SQL syntax. To know more about the SQL syntax go
here
HELP Prints this help
EXIT Closes the console

Custom Commands

In addition to the commands implemented by OrientDB, you can also develop custom commands to extend features in your particular
implementation. To do this, edit the OConsoleDatabaseApp class and add to it a new method. There's an auto-discovery system in
place that adds the new method to the available commands. To provide a description of the command, use annotations. The command

name must follow the Java code convention of separating words using camel-case.

For instance, consider a case in which you might want to add a Move cLUSTER command to the console:

@ConsoleCommand(description = "Move the physical location of cluster files")
public void moveCluster
"cluster-name" "The name or the id of the cluster to remove") String iClusterName,
@ConsoleParameter "target-path" "path of the new position where to move the cluster files") String iN

ewPath) {
checkCurrentDatabase(); // THE DB MUST BE OPENED
System.out.println("Moving cluster '" + iClusterName + "' to path " + iNewPath + "...");

}

Once you have this code in place, MovE cLUSTER now appears in the listing of available commands shown by HeLP .

https://github.com/orientechnologies/orientdb/blob/master/tools/src/main/java/com/orientechnologies/orient/console/OConsoleDatabaseApp.java

orientdb> HELP

AVAILABLE COMMANDS:
AVAILABLE COMMANDS:
*

alter class Alter a class in the database schema
* alter cluster Alter class in the database schema

* move cluster Move the physical location of cluster files
* help Print this help
* exit Close the console

orientdb> MOVE CLUSTER foo /temp

Moving cluster 'foo' to path /tmp...

In the event that you develop a custom command and find it especially useful in your deployment, you can contribute your code to the
OrientDB Community !

https://groups.google.com/forum/#!forum/orient-database

Console - BACKUP

Executes a complete backup on the currently opened database. It then compresses the backup file using the ZIP algorithm. You can then

restore a database from backups, using the ResTOrRe DATABASE command. You can automate backups using the Automatic-Backup server

plugin.
Backups and restores are similar to the ExPORT DATABASE and IMPORT DATABASE , but they offer better performance than these options.

NOTE: OrientDB Community Edition does not support backing up remote databases. OrientDB Enterprise Edition does

support this feature. For more information on how to implement this with Enterprise Edition, see Remote Backups.

Syntax:

BACKUP DATABASE <output-file> [-incremental] [-compressionLevel=<compressionLevel>] [-bufferSize=<bufferSize>]

e <output-file> Defines the path to the backup file.

e -incremental Option to execute an incremental backup. When enabled, it computes the data to backup as all new changes since
the last backup. Available in OrientDB Enterprise Edition version 2.2 or later.

e - compressionLevel Defines the level of compression for the backup file. Valid levels are @ to 9 . The default is 9 . Available in
1.7 or later.

e -huffersize Defines the compression buffer size. By default, this is set to 1M B. Available in 1.7 or later.

Example:

e Backing up a database:

orientdb> CONNECT plocal:../databases/mydatabase admin admin

orientdb> BACKUP DATABASE /backups/mydb.zip

Backing current database to: database mydb.zip
Backup executed in 0.52 seconds

Backup API

In addition to backups called through the Console, you can also manage backups through the Java API. Using this, you can perform

either a full or incremental backup on your database.

Full Backup

In Java or any other language that runs on top of the JVM, you can initiate a full backup by using the backup() method on a database

instance.

db.backup(out, options, callable, listener, compressionLevel, bufferSize);

out Refers to the outputstream that it uses to write the backup content. Use a FileoutputStream to make the backup
persistent on disk.
e options Defines backup options as a Map<string, Object> object.
e callable Defines the callback to execute when the database is locked.
e listener Defines the listened called for backup messages.
e compressionLevel Defines the level of compression for the backup. It supports levels between e and 9 , where o equals no
compression and 9 the maximum. Higher compression levels do mean smaller files, but they also mean the backup requires more
from the CPU at execution time.

e huffersize Defines the buffer size in bytes. The larger the buffer, the more efficient the comrpession.

Example:

http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/enterprise/last/servermanagement.html

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);
db.open("admin", "admin");

try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void onMessage {
System.out.print(iText);
3
iy

OutputStream out = new FileOutputStream("/temp/mydb.zip");
db.backup(out,null, null,listener,9, G

finally {

db.close();

]

Incremental Backup

As of version 2.2, OrientDB Enterprise Edition supports incremental backups executed through Java or any language that runs on top of

the JVM, using the incrementalBackup() method against a database instance.

db.incrementalBackup(backupDirectory);

e backupbirectory Defines the directory where it generates the incremental backup files.

It is important that previous incremental backup files are present in the same directory, in order to compute the database portion to back

up, based on the last incremental backup.

Example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);
db.open("admin", "admin");
try{
db.backup("/var/backup/orientdb/mydb");
} finally {
db.close();

For more information, see:

e Restore Database

e Export Database

e Import Database

e Console-Commands

e ODatabaseExport Java class

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java

Console - BEGIN

Initiates a transaction. When a transaction is open, any commands you execute on the database remain temporary. In the event that you
are satisfied with the changes, you can call the covmiT command to commit them to the database. Otherwise, you can call the

ROLLBACK command, to roll the changes back to the point where you called BeGIN .

Syntax:

BEGIN

Examples

e Begin a transaction:
orientdb> BecIn

Transaction 1 is running

e Attempting to begin a transaction when one is already open:
orinetdb> BecIn

Error: an active transaction is currently open (id=1). Commit or rollback
before starting a new one.

e Making changes when a transaction is open:

orientdb> INSERT INTO Account (name) VALUES ('tx test') SELECT FROM Account WHERE name LIKE 'tx%'

e o
| RID | name
e oo
0 | #9:-2 | tx test
oo oo

When a transaction is open, new records all have temporary Record ID's, which are given negative values, (for instance, like the #9:-2

shown above). These remain in effect until you run commrt
For more information on Transactions, see

e Transactions
Console Command COMMIT
Console Command ROLLBACK

Console Commands

Console - BROWSE CLASS

Displays all records associated with the given class.

Syntax:
BROWSE CLASS <class-name>
e <class-name> Defines the class for the records you want to display.

Example:

e Browse records associated with the class city :

orientdb> BROWSE CLASS City

oo o e e oo
| RID | NAME
oo oo
0 | -6:0 | Rome
1| -6:1 | London
2 | -6:2 | Honolulu
e o e

For more information on other commands, see Console Commands.

Console - BROWSE CLUSTER

Displays all records associated with the given cluster.

Syntax:

BROWSE CLUSTER <cluster-name>

e <cluster-name> Defines the cluster for the records you want to display.
Example:

e Browse records associated with the cluster city :

orientdb> BROWSE CLUSTER City

| RID | NAME
0 | -6:0 | Rome

1| -6:1 | London
2 | -6:2 | Honolulu

For more information on other commands, see Console Commands.

Console - LIST CLASSES

Displays all configured classes in the current database.
Syntax:

e Long Syntax:

LIST CLASSES

e Short Syntax:

CLASSES

Example

e List current classes in the database:

orientdb> LIST cLASSES

CLASSES
------------- T T pupupupp
NAME | ID | CLUSTERS | ELEMENTS
------------- T T T pupupupup
Person | 0 | person | 7
Animal | 1 | animal | 5
AnimalRace | 2 | AnimalRace | 0
AnimalType | 3 | AnimalType | 1
OrderItem | 4 | OrderItem | 0
Order | 5 | Order | 0
City | 6 | City | 3
------------- B T I pupupupup
TOTAL 16

For more information on other commands, see Console Commands.

Console - CLUSTER STATUS

Displays the status of the cluster in distributed configuration.

Syntax:

CLUSTER STATUS

Example:

e Display the status of the cluster:

orientdb> cLUSTER STATUS

{
"localName": "_hzInstance_1 orientdb",
"localId": "3735e690-9a7b-44d2-b4bc-27089dan65e2",
"members": [
{
"id": "3735e690-9a7b-44d2-b4bc-27089da065e2",
"name": "nodel",
"startedOn": "2015-05-14 17:06:40:418",
"listeners": [
{
"protocol": "ONetworkProtocolBinary",
"listen": "10.3.15.55:2424"
}
{
"protocol": "ONetworkProtocolHttpDb",
"listen": "10.3.15.55:2480"
}
1,
"databases": []
}
]
}

For more information on other commands, see Console Commands.

Console - LIST CLUSTERS

Displays all configured clusters in the current database.
Syntax:

e Long Syntax:

LIST CLUSTERS

e Short Syntax:

CLUSTERS

Example:

e List current clusters on database:

orientdb> LIST CLUSTERS

CLUSTERS
------------- B L pepup
NAME | ID | TYPE | ELEMENTS
------------- T L pepup
metadata | 0 | Physical | 11
index | 1 | Physical | 0
default | 2 | Physical | 779
csv | 3 | Physical | 1000
binary | 4 | Physical | 1001
person | 5 | Physical | 7
animal | 6 | Physical | 5
animalrace | -2 | Logical | 0
animaltype | -3 | Logical | 1
orderitem | -4 | Logical | 0
order | -5 | Logical | 0
city | -6 | Logical | 3
------------- T
TOTAL 2807

For information on creating new clusters in the current database, see the CREATE cLUSTER command. For more information on

other commands, see Console Commands.

Console - LIST SERVERS

Displays all active servers connected within a cluster.
This command was introduced in OrientDB version 2.2.

Syntax:

LIST SERVERS

Example:

e List the servers currently connected to the cluster:
orientdb> LIST SERVERS
CONFIGURED SERVERS

#|Name |Status|Connections|StartedOn |Binary |HTTP |UsedMemory
| FreeMemory | MaxMemory

B) fboocoocoocoo fboocoocoocooos fboocoocoooos Pdooocoocoooo Pooccocoocoo fbooocooooooo
P

0|no2 |ONLINE|® | 2015-10-
30...]192.168.0.6]192.168.0.6|80MB(8.80%) | 215MB(23%) | 916MB

1|nol |ONLINE|® |2015-10-30. ..]192.168.0.6(192.168.0.6|90MB(2.49%) | 195MB (5%)
|3.5GB

B, fbcocoocoocoo fboocoocoocooos fboocooooooos Pdoooccooooooo Pooccocooooo fboocooooooo
P

e Usethe prspLAy command to show information on a specific server:

orientdb> pispLAY 6

_____________ e e e
Name | node2
Status ONLINE
Connections | @
StartedOn | Fri Oct 30 21:41:07 CDT 2015

I
I
I
I
Binary | 192.168.0.6:2425
I
I
I
I

HTTP 192.168.0.6:2481
UsedMemory | 80,16MB (8,80%)
FreeMemory | 215,34MB (23,65%)
MaxMemory 910, 560MB
_____________ e g P

For more information on other commands, see Console Commands.

Console - LIST SERVER USERS

This feature was introduced in OrientDB version 2.2.

Displays all configured users on the server. In order to display the users, the current system user that is running the console must have
permissions to read the $ORINETDB_HOME/config/orientdb-server-config.xml configuration file. For more information, see OrientDB

Server Security.

Syntax:

LIST SERVER USERS

Example:

e List configured users on a server:
orientdb> LIST SERVER USERS

SERVER USERS
- 'root', permissions: *
- 'guest', permissions: connect, server.listDatabases, server.dblist

For more information, see

® SET SERVER USER

® DROP SERVER USER

For more information on other console commands, see Console Commands.

Console - COMMIT

Closes a transaction, committing the changes you have made to the database. Use the BEGIN command to open a transaction. If you
don't want to save the changes you've made, use the roLLBACk command to revert the database state back to the point where you

opened the transaction.
For more information, see Transactions.

Syntax

COMMIT

Example

e [Initiate a transaction, using the BEGIN command:
orientdb> Becin

Transaction 2 is running

e For the sake of example, attempt to open another transaction:
orientdb> Becin

Error: an active transaction is currently open (id=2). Commit or rollback
before starting a new one.

e Insert data into the class Account , usingan INSERT statement:
orientdb> INSERT INTO Account (name) VALUES ('tx test')

Inserted record 'Account#9:-2{name:tx test} vO' in 0,000000 sec(s).

e Commit the transaction to the database:
orientdb> commT

Transaction 2 has been committed in 4ms

e Display the new content, usinga SELECT query:

orientdb> SELECT FROM Account WHERE name LIKE 'tx%'

oo oo
| RID | name
oo oo
0 | #9:1107 | tx test
oo e,

1 item(s) found. Query executed in 0.041 sec(s).

When a transaction is open, all new records use a temporary Record ID that features negative numbers. After the commit, they have a

permanent Record ID that uses with positive numbers.

Commit

For more information, see

e Transactions
e BEGIN
® ROLLBACK

Console Commands

109

Console - CONFIG

Displays the configuration information on the current database, as well as whether it is local or remote.

Syntax

CONFIG

Examples
e Display the configuration of the current database:

orientdb> conFic

REMOTE SERVER CONFIGURATION:

PocoonoCooNo0Co000Co00000000000000So0 fbocococoocoooococoooooo00000R00000000 +
| NAME | VALUE |
PocooooCooNo0oo000c0000C0000000000So0 fbocococoocoooccoooocoo0000o000000000 +
| treemap.lazyUpdates | 300 |
| db.cache.enabled | false |
| file.mmap.forceRetry | 5 [
treemap.optimizeEntryPointsFactor	1.0
storage.keepOpen	true
treemap.loadFactor	0.7
file.mmap.maxMemory	110000000
network.http.maxLength	10000
storage.cache.size	5000
treemap.nodePageSize	1024
I I I	
treemap.entryPoints	30
T o e e e e e e oo +

You can change configuration variables displayed here using the conFic ST command. To display the value set to one

configuration variable, use the CONFIG GET command.

For more information on other commands, see Console Commands.

Console - CONFIG GET

Displays the value of the requested configuration variable.

Syntax

CONFIG GET <config-variable>

e <config-variable> Defines the configuration variable you want to query.
Examples

e Display the value to the tx.log.fileType configuration variable:
orientdb> CoNFIG GET tx.log.fileType

Remote configuration: tx.log.fileType = classic

You can display all configuration variables using the conFIc command. To change the values, use the conFIG SET command.

For more information on other commands, see Config Commands.

Console - CONFIG SET

Updates a configuration variable to the given value.

Syntax

CONFIG SET <config-variable> <config-value>

e <config-variable> Defines the configuration variable you want to change.

e <config-value> Defines the value you want to set.

Example

e Display the current value for tx.autoRetry :
orientdb> CONFIG GET tx.autoRetry

Remote configuration: tx.autoRetry = 1

Change the tx.autoretry valueto 5 :
orientdb> CoNFIG SET tx.autoRetry

Remote configuration value changed correctly.

Display new value:

orientdb> CONFIG GET tx.autoRetry

1
(¢)]

Remote configuration: tx.autoRetry

You can display all configuration variables with the conF16 command. You can view the current value on a configuration variable

using the CONFIG GET command.

For more information on other commands, see Console Commands

Console - CONNECT

Opens a database.

Syntax

CONNECT <database-url> <user> <password>

e <database-url> Defines the URL of the database you want to connect to. It uses the format <mode>:<path>
o <mode> Defines the mode you want to use in connecting to the database. It can be PLOCAL or REMOTE .
o <path> Defines the path to the database.

e <user> Defines the user you want to connect to the database with.

e <password> Defines the password needed to connect to the database, with the defined user.

Examples:

e Connect to a local database as the user admin , loading it directly into the console:
orientdb> CONNECT PLOCAL:../databases/GratefulDeadConcerts admin my_admin_password

Connecting to database [plocal:../databases/GratefulDeadConcerts]...0K

e Connect to a remote database:
orientdb> CONNECT REMOTE:192.168.1.1/GratefulDeadConcerts admin my_admin_password

Connecting to database [remote:192.168.1.1/GratefulDeadConcerts]...0K

For more information on other commands, see Console Commands.

Console - CREATE CLUSTER

Creates a new cluster in the current database. The cluster you create can either be physical or in memory. OrientDB saves physical

clusters to disk. Memory clusters are volatile, so any records you save to them are lost, should the server be stopped.
Syntax

CREATE CLUSTER <cluster-name> <cluster-type> <data-segment> <location> [<position>]

e <cluster-name> Defines the name of the cluster.
e <cluster-type> Defines whether the cluster is PHYSICAL or LOGICAL .
e <data-segment> Defines the data segment you want to use.
o DEFAULT Sets the cluster to the default data segment.
e <location> Defines the location for new cluster files, if applicable. Use DEFAULT to save these to the database directory.

e <position> Defines where to add new cluster. Use APPEND to create it as the last cluster. Leave empty to replace.

Example

e Create a new cluster documents :
orientdb> CREATE CLUSTER documents PHYSICAL DEFAULT DEFAULT APPEND

Creating cluster [documents] of type 'PHYSICAL' in database demo as last one...
PHYSICAL cluster created correctly with id #68

You can display all configured clusters in the current database using the cLusTERs command. To delete an existing cluster, use

the DROP CLUSTER command.

For more information on other commands, see Console Commands

Console - CREATE DATABASE

Creates and connects to a new database.

Syntax

CREATE DATABASE <database-url> [<user> <password> <storage-type> [<db-type>]]

e <database-url> Defines the URL of the database you want to connect to. It uses the format <mode>:<path>
o <mode> Defines the mode you want to use in connecting to the database. It can be PLOCAL or REMOTE .
o <path> Defines the path to the database.
e <user> Defines the user you want to connect to the database with.
e <password> Defines the password needed to connect to the database, with the defined user.
e <storage-type> Defines the storage type that you want to use. You can choose between PLocAL and MEMORY .

e <db-type> Defines the database type. You can choose between GRAPH and DoCUMENT . The default is GRAPH .
Examples

e Create a local database demo :
orientdb> CREATE DATABASE PLOCAL:/usr/local/orientdb/databases/demo
Creating database [plocal:/usr/local/orientdb/databases/demo]...
Connecting to database [plocal:/usr/local/orientdb/databases/demo]...0K
Database created successfully.

Current database is: plocal:/usr/local/orientdb/databases/demo

orientdb {db=demo}>

e Create aremote database trick :

orientdb> CREATE DATABASE REMOTE: /trick root

E30DD873203AAA245952278B4306D94E423CF91D569881B7CAD7DOB6D1A20CES PLOCAL
Creating database [remote:192.168.1.1/trick]...
Connecting to database [remote:192.168.1.1/trick]...0K
Database created successfully.
Current database is: remote:192.168.1.1/trick
orientdb {db=trick}>
To create a static database to use from the server, see Server pre-configured storage types .

To remove a database, see DRoP DATABASE . To change database configurations after creation, see ALTER DATABASE .

For more information on other commands, see Console Commands.

Console - CREATE INDEX

Create an index on a given property. OrientDB supports three index algorithms and several index types that use these algorithms.

e SB-Tree Algorithm
o UNIQUE Does not allow duplicate keys, fails when it encounters duplicates.
o NOTUNIQUE Does allow duplicate keys.
o FULLTEXT Indexes to any single word of text.
o DICTIONARY Does not allow duplicate keys, overwrites when it encounters duplicates.
e Hash Index Algorithm
o UNIQUE_HASH_INDEX Does not allow duplicate keys, it fails when it encounters duplicates.
o NOTUNIQUE HASH_INDEX Does allow duplicate keys.
o FULLTEXT_HASH_INDEX Indexes to any single word.
o DICTIONARY Does not allow duplicate keys, it overwrites when it encounters duplicates.
e Lucene Engine
o LuceNe Full text index type using the Lucene Engine.

o spATIAL Spatial index using the Lucene Engine.
For more information on indexing, see Indexes.

Syntax

CREATE INDEX <index-name> [ON <class-name> (<property-names>)] <index-type> [<key-type>]

e <index-name> Defines a logical name for the index. Optionally, you can use the format <class-name>.<property-name> , to create

an automatic index bound to the schema property.
NOTE Because of this feature, index names cannot contain periods.
e <class-name> Defines the class to index. The class must already exist in the database schema.

e <property-names> Defines a comma-separated list of properties that you want to index. These properties must already exist in the
database schema.

e <index-type> Defines the index type that you want to use.

e <key-type> Defines the key that you want to use. On automatic indexes, this is auto-determined by reading the target schema
property where you create the index. When not specified for manual indexes, OrientDB determines the type at run-time during the

first insertion by reading the type of the class.
Examples

e Create an index that uses unique values and the SB-Tree index algorithm:

orientdb> CREATE INDEX jobs.job_id UNIQUE

The SQL creaTE INDEX page provides more information on creating indexes. M ore information on indexing can be found under

Indexes. Further SQL information can be found under sQL Commands .

For more information on other commands, see Console Commands

Console - CREATE LINK

Creates a link between two or more records of the Document type.

Syntax

CREATE LINK <link-name> FROM <source-class>.<source-property> TO <target-class>.<target-property>

e <link-name> Defines the logical name of the property for the link. When not expressed, it overwrites the <target-property>
field.

e <source-class> Defines the source class for the link.

e <source-property> Defines the source property for the link.

e <target-class> Defines the target class for the link.

e <target-property> Defines the target property for the link.
Examples

e Create a 1-n link connecting comments to posts:

orientdb> CREATE LINK comments FROM Comments.!PostId TO Posts.Id INVERSE

Understanding Links
Links are useful when importing data from a Relational database. In the Relational world, the database resolves relationships as foreign

keys. For instance, consider the above example where you need to show instances in the class Post as havinga 1-n relationship to

instances in class comment . That is, Post 1 ---> * Comment .

In a Relational database, where classes are tables, you might have something like this:

reldb> SeLECT * FROM Post;

| 16 | NoSQL movement |
| 206 | New OrientDB |

2 rows in (0.01 sec)

reldb> seLecT * FROM Comment;

Focmetmeaa - e, +
| Id | PostId | Text |
£ R P +
o	10	First
1	10	Second
21	10	Another
41	20	First again
82	20	Second Again
£ R P +

5 rows in sec (0.03 sec)

In OrientDB, you have a direct relationship in your object model. Navigation runs from Post to cComment and not vice versa, (as in

the Relational database model). For this reason, you need to create a link as INVERSE .

Create Link

For more information on SQL commands, see SQL. Commands.

For more information on other commands, see Console Commands.

118

Console - CREATE PROPERTY

Creates a new property on the given class. The class must already exist.

Syntax

CREATE PROPERTY <class-name>.<property-name> <property-type> [<linked-type>][<linked-class>]

e <class-name> Defines the class you want to create the property in.

e <property-name> Defines the logical name of the property.

e <property-type> Defines the type of property you want to create. Several options are available:
o <linked-type> Defines the container type, used in container property types.

o <linked-class> Defines the container class, used in container property types.
NOTE: There are several property and link types available.
Examples

e Create the property name on the class user , of the stringtype:

orientdb> CREATE PROPERTY User.name STRING

e Create a list of strings as the property tags in the class Profile , using an embedded list of the string type.

orientdb> CREATE PROPERTY Profile.tags EMBEDDEDLIST STRING

e Create the embedded map property friends inthe class Profile , link it to the class Profile .

orientdb> CREATE PROPERTY Profile.friends EMBEDDEDMAP Profile

This forms a circular reference.

To remove a property, use the DROP PROPERTY command.

Property Types

When creating properties, you need to define the property type, so that OrientDB knows the kind of data to expect in the field. There

are several standard property types available:

BOOLEAN INTEGER SHORT LONG
FLOAT DATE STRING EMBEDDED
LINK BYTE BINARY DOUBLE

In addition to these, there are several more property types that function as containers. These form lists, sets and maps. Using container

property types requires that you also define a link type or class.

EMBEDDEDLIST EMBEDDEDSET EMBEDDEDMAP

LINKLIST LINKSET LINKMAP

Link Types

The link types available are the same as those available as the standard property types:

BOOLEAN INTEGER SHORT LONG
FLOAT DOUBLE DATE STRING

BINARY EMBEDDED LINK BYTE

For more information, see SQL. Commands and Console Commands.

Console - DECLARE INTENT

Declares an intent for the current database. Intents allow you to tell the database what you want to do.

Syntax

DECLARE INTENT <intent-name>

e <intent-name> Defines the name of the intent. OrientDB supports three intents:
o L. Removes the current intent.
O MASSIVEINSERT

O MASSIVEREAD
Examples

e Declare an intent for a massive insert:

orientdb> DECLARE INTENT MASSIVEINSERT

e After the insert, clear the intent:

orientdb> DECLARE INTENT

For more information on other commands, see Console Commands.

Console - DELETE

Remove one or more records from the database. You can determine which records get deleted using the wHere clause.

Syntax

DELETE FROM <target-name> [LOCK <lock-type>] [RETURN <return-type>]
[WHERE <condition>*] [LIMIT <MaxRecords>] [TIMEOUT <timeout-value>]

e <target-name> Defines the target from which you want to delete records. Use one of the following target names:
o <class-name> Determines what class you want to delete from.
o CLUSTER:<cluster-name> Determines what cluster you want to delete from.
o INDEX:<index-name> Determines what index you want to delete from.
e Lock <lock-type> Defines how the record locks between the load and deletion. It takes one of two types:
o DEFAULT Operation uses no locks. In the event of concurrent deletions, the M VCC throws an exception.
o Recorp Locks the record during the deletion.
® RETURN <return-type> Defines what the Console returns. There are two supported return types:
o counT Returns the number of deleted records. This is the default return type.
o BEFORE Returns the records before the deletion.
® WHERE <condition> Defines the condition used in selecting records for deletion.
e LiMiT Defines the maximum number of records to delete.

e TIMeouT Defines the time-limit to allow the operation to run before it times out.

NOTE: When dealing with vertices and edges, do not use the standard SQL DELETE command. Doing so can disrupt graph

integrity. Instead, use the DELETE VERTEX or the DELETE EDGE commands.
Examples

e Remove all records from the class Profile , where the surname is unknown, ignoring case:

orientdb> DELETE FROM Profile WHERE surname.tolLowerCase() = 'unknown'

For more information on other commands, see SQL. Commands and Console Commands.

Console - DICTIONARY GET

Displays the value of the requested key, loaded from the database dictionary.
Syntax

DICTIONARY GET <key>

e <key> Defines the key you want to access.

Example

e Inadictionary of U.S. presidents, display the entry for Barack Obama:

orientdb> DICTIONARY GET obama

Class: Person id: 5:4 v.1

parent: null
children : [Person@5:5{parent:Person@5:4,children:null, name:Malia Ann,

surname:Obama, city:null}, Person@5:6{parent:Person@5:4,
children:null, name:Natasha, surname:0Obama, city:null}]
name : Barack
surname : Obama
city : City@-6:2{name:Honolulu}

You can display all keys stored in a database using the DICTIONARY KEYS command. For more information on indexes, see

Indexes.

For more information on other commands, see Console Commands.

Console - DICTIONARY KEYS

Displays all the keys stored in the database dictionary.

Syntax

DICTIONARY KEYS

Example

e Display all the keys stored in the database dictionary:
orientdb> DICTIONARY KEYS

Found 4 keys:

#0: key-148
#1: key-147
#2: key-146
#3: key-145

To load the records associated with these keys, use the pIcTIONARY GET command. For more information on indexes, see

Indexes.

For more information on other commands, see Console Commands.

Console - DICTIONARY PUT

Binds arecord to a key in the dictionary database, making it accessible to the DpICTIONARY GET command.

Syntax

DICTIONARY PUT <key> <record-id>

e <key> Defines the key you want to bind.

e <record-id> Defines the ID for the record you want to bind to the key.
Example

e In the database dictionary of U.S. presidents, bind the record for Barack Obama to the key obama :

orientdb> DICTIONARY PUT obama 5:4

Class: Person id: 5:4 v.1
parent : null
children : [Person@5:5{parent:Person@5:4,children:null, name:Malia Ann,
surname:Obama, city:null}, Person@5:6{parent:Person@5:4,
children:null, name:Natasha, surname:0Obama, city:null}]
name : Barack
surname : Obama
city : City@-6:2{name:Honolulu}

The entry obama=5:4 has been inserted in the database dictionary

To see all the keys stored in the database dictionary, use the DICTIONARY kEYys command. For more information on dictionaries

and indexes, see Indexes.

For more information on other commands, see Console Commands.

Console - DICTIONARY REMOVE

Removes the association from the database dictionary.

Syntax

DICTIONARY REMOVE <key>

e <key> Defines the key that you want to remove.
Example

e In adatabase dictionary of U.S. presidents, remove the key for Barack Obama:
orientdb> DICTIONARY REMOVE obama

Entry removed from the dictionary. Last value of entry was:

Class: Person id: 5:4 v.1
parent : null
children : [Person@5:5{parent:Person@5:4,children:null, name:Malia Ann,
surname:Obama, city:null}, Person@5:6{parent:Person@5:4,
children:null, name:Natasha, surname:0Obama, city:null}]
name : Barack
surname : Obama
city : City@-6:2{name:Honolulu}

You can display information for all keys stored in the database dictionary using the DICTIONARY KEy command. For more

information on dictionaries and indexes, see Indexes.

For more information on other commands, see Console Commands.

Console - DISCONNECT

Closes the currently opened database.

Syntax

DISCONNECT

Example

e Disconnect from the current database:
orientdb> bpIsconnECT

Disconnecting from the database [../databases/petshop/petshop]...0K

To connect to a database, see CONNECT . For more information on other commands, see Console Commands.

Console - DISPLAYS RECORD

Displays details on the given record from the last returned result-set.

Syntax
DISPLAY RECORD <record-number>
e <record-number> Defines the relative position of the record in the last result-set.

Example

e Query the database on the class Person to generate a result-set:

orientdb> SELECT FRoM Person

coodboccoo Pocoooooo Pbocoocoocosoo fpococoocosoooc frocococoosooos dbooccooo
| RID | PARENT | CHILDREN | NAME | SURNAME | City
cocodboccoo Pocoooooo dbocoooocosoo fbococooocoooc frococoocccoooo dbococooo
0 | 5:0 | null | null | Giuseppe | Garibaldi | -6:0
1] 5:1 | 5:0 | null | Napoleon | Bonaparte | -6:0
2| 5:2 | 5:3 | null | Nicholas | Churchill | -6:1
3| 5:3 | 5:2 | null | winston | Churchill | -6:1
4 | 5:4 | null | [2] | Barack | Obama | -6:2
5| 5:5 | 5:4 | null | Malia Ann | Obama | null
6 | 5:6 | 5:4 | null | Natasha | Obama | null
e Fommmm oo Fomm e oo oo R SR R R —— +--moo-

7 item(s) found. Query executed in 0.038 sec(s).

e With the result-set ready, display record number four in the result-set, (for M alia Ann Obama):

orientdb> DISPLAY RECORD 5

Class: Person id: 5:5 v.0
parent : Person@5:4{parent:null,children:[Person@5:5, Person@5:6],
name:Barack, surname:Obama, city:City@-6:2}
children : null
name : Malia Ann
surname : Obama
city : null

For more information on other commands, see Console Commands.

Console - DISPLAYS RAW RECORD

Displays details on the given record from the last returned result-set in a binary format.

Syntax
DISPLAY RAW RECORD <record-number>
e <record-number> Defines the relative position of the record in the last result-set.

Example

e Query the database on the class v to generate a result-set:

orientdb {db=GratefulDeadConcerts}> SeLECT song_type, name, performances FROM V LIMIT

----- R L & e S o L L P S
| @RID | @CLASS | song_type | name | performances
----- Poccoosodecnacooafoosonosooafooscnsooonconsonooonocoooiioosoooonanonas
0 | #9:1 | V | cover | HEY BO DIDDLEY | 5

1 | #9:2 | V | cover | IM A MAN | 1

2 | #9:3 | V | cover | NOT FADE AWAY | 531

3 | #9:4 | V | original | BERTHA | 394

4 | #9:5 | V | cover | GOING DOWN THE ROAD... | 293

5 | #9:6 | V | cover | MONA | 1

6 | #9:7 |V | null | Bo_Diddley | null

----- T T L T ey

LIMIT EXCEEDED: resultset contains more items not displayed (limit=6)
6 item(s) found. Query executed in 0.136 sec(s).

e Display raw record on the song "Hey Bo Diddley" from the result-set:

orientdb {db=GratefulDeadConcerts}> DISPLAY RAW RECORD ©

Raw record content. The size is 292 bytes, while settings force to print first 150

bytes:
Vsong_typenametypeperformancesout_followed_byout_written_byout_sung_byin_followed_byco
verHEY BO D

For more information on other commands available, see Console Commands.

Console - DROP CLUSTER

Removes a cluster from the database completely, deleting it with all records and caches in the cluster.
Syntax

DROP CLUSTER <cluster-name>

e <cluster-name> Defines the name of the cluster you want to drop.

NOTE: When you drop a cluster, the cluster and all records and caches in the cluster are gone. Unless you have made backups,

there is no way to restore the cluster after you drop it.
Examples

e Drop acluster person from the current, local database:
orientdb> DROP CLUSTER person
This removes both the cluster person and all records of the Person class in that cluster.

You can create a new cluster using the CREATE CLUSTER command.

For information on other commands, see SQL and Console commands.

Console - DROP DATABASE

Removes a database completely. If the database is open and a database name not given, it removes the current database.
Syntax

DROP DATABASE [<database-name> <server-username> <server-user-password>]

e <database-name Defines the database you want to drop. By default it uses the current database, if it's open.

e <server-username> Defines the server user. This user must have the privileges to drop the database.

e <server-user-password> Defines the password for the server user.

NOTE: When you drop a database, it deletes the database and all records, caches and schema information it contains. Unless you

have made backups, there is no way to restore the database after you drop it.
Examples

e Remove the current local database:

orientdb> DroP DATABASE

e Remove the database demo at localhost:

orientdb> DROP DATABASE REMOTE:localhost/demo root root_password

You can create a new database using the CReATE DATABASE command. To make changes to an existing database, use the ALTER

DATABASE command.

For more information on other commands, see SQL and Console commands.

Console - DROP SERVER USER

Removes a user from the server. In order to do so, the current system user running the Console, must have permissions to write to the

$ORIENTDB_HOME/config/orientdb-server-config.xmL configuration file.

Syntax

DROP SERVER USER <user-name>

e <user-name> Defines the user you want to drop.
NOTE: For more information on server users, see OrientDB Server Security .
This feature was introduced in version 2.2.
Example

e Remove the user editor from the Server:
orientdb> DRrRoP SERVER USER editor

Server user 'editor' dropped correctly

To view the current server users, see the LIST SERVER USERS command. To create or upda[e d Server user, see the SET SERVER

USER command.

For more information on other commands, see Console Commands.

Console - EXPORT

Exports the current database to a file. OrientDB uses a JSON-based Export Format. By default, it compresses the file using the GZIP
algorithm.

With the 1vPorT command, this allows you to migrate the database between different versions of OrientDB without losing data.

If you receive an error about the database version, export the database using the same version of OrientDB that has generated the

database.

Bear in mind, exporting a database browses it, rather than locking it. While this does mean that concurrent operations can execute during
the export, it also means that you cannot create an exact replica of the database at the point when the command is issued. In the event

that you need to create a snapshot, use the BAckuP command.
You can restore a database from an export using the 1vPORT .

NOTE: While the export format is JSON, there are some constraints in the field order. Editing this file or adjusting its indentation

may cause imports to fail.
Syntax

By default, this command exports the full database. Use its options to disable the parts you don't need to export.

EXPORT DATABASE <output-file>
[-excludeAll]
[-includeClass=<class-name>*]
[-excludeClass=<class-name>*]
[-includeCluster=<cluster-name>*]
[-excludeCluster=<cluster-name>*]
[-includeInfo=<true|false>]
[-includeClusterDefinitions=<true|false>]
[-includeSchemsa=<true|false>]
[-includeSecurity=<true|false>]
[-includeRecords=<true|false>]
[-includeIndexDefinitions=<true|false>]
[-includeManualIndexes=<true|false>]
[-compressionLevel=<0-9>]
[-compressionBuffer=<bufferSize>]

e <output-file> Defines the path to the output file.

e -excludeAll Sets the export to exclude everything not otherwise included through command options

e -includeclass Export includes certain classes, specifically those defined by a space-separated list. In case you specify multiple
class names, you have to wrap the list between quotes, eg. -includeClass="Foo Bar Baz"

e -excludeclass Export excludes certain classes, specifically those defined by a space-separated list.

e -includecluster Export includes certain clusters, specifically those defined by a space-separated list.

e -excludecluster Export excludes certain clusters, specifically those defined by a space-separated list.

e -includeInfo Defines whether the export includes database information.

e -includeClusterbefinitions Defines whether the export includes cluster definitions.

e -includeschema Defines whether the export includes the database schema.

e -includesecurity Defines whether the export includes database security parameters.

e -includeRecords Defines whether the export includes record contents.

e -includeIndexbefinitions Defines whether the export includes the database index definitions.

e -includeManualIndexes Defines whether the export includes manual index contents.

e -compressionLevel Defines the compression level to use on the export, in a range between @ (no compression) and 9
(maximum compression). The default is 1 . (Feature introduced in version 1.7.6.)

e -compressionBuffer Defines the compression buffer size in bytes to use in compression. The default is 16kb. (Feature introduced

in version 1.7.6.)
Examples

e Export the current database, including everything:

orientdb> EXPORT DATABASE C:\temp\petshop.export
Exporting current database to: C:\temp\petshop.export...

Exporting database info...0K

Exporting dictionary...OK

Exporting schema...0K

Exporting clusters...

- Exporting cluster 'metadata' (records=11) -> OK
- Exporting cluster 'index' (records=0) -> OK

- Exporting cluster 'default' (records=779) -> OK
- Exporting cluster 'csv' (records=1000) -> OK

- Exporting cluster 'binary' (records=1001) -> 0K
- Exporting cluster 'person' (records=7) -> OK

- Exporting cluster 'animal' (records=5) -> OK

- Exporting cluster 'animalrace' (records=0) -> OK
- Exporting cluster 'animaltype' (records=1) -> OK
- Exporting cluster 'orderitem' (records=0) -> OK
- Exporting cluster 'order' (records=0) -> OK

- Exporting cluster 'city' (records=3) -> 0K
Export of database completed.

e Export the current database, including only its functions:

orientdb> EXPORT DATABASE functions.gz -includeClass=OFunction -includeInfo=FALSE
-includeClusterDefinitions=FALSE -includeSchema=FALSE

-includeIndexDefinitions=FALSE -includeManualIndexes=FALSE

e Alternatively, you can simplify the above by excluding all, then including only those features that you need. For instance, export
the current database, including only the schema:

orientdb> EXPORT DATABASE schema.gz -excludeALL -includeSchema=TRUE

Export API

In addition to the Console, you can also trigger exports through Java and any other language that runs on the JVM, by using the

ODatabaseExport class.

For example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb");
db.open("admin", "admin");

try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void {

System.out.print(iText);
3
3

ODatabaseExport export = new ODatabaseExport(db, "/temp/export", listener);
export.exportDatabase();
export.close();
} finally {
db.close();
3

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java

Export Database

For more information on backups and restores, imports and exports, see the following commands:

e IMPORT DATABASE
e BACKUP DATABASE
e RESTORE DATABASE

as well as the following pages:

e Export File Format

e oODatabaseExport Java Class

For more information on other commands, see Console Commands.

135

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java

Console - EXPORT RECORD

Exports the current record, using the requested format. In the event that you give a format that OrientDB does not support, it provides
a list of supported formats.

Syntax

EXPORT RECORD <format>

e <format> Defines the export format you want to use.
Examples
e Use SELECT to create a record for export:

orientdb> SELECT name, surname, parent, children, city FROM Person WHERE

name='Barack' AND surname='Obama'

cocodboccoo Pocoooooo Pbocoococoo Pococoooos focoocooccosoo dooccocoo
| RID | name | surname | parent | children | city
cocodboccoo Pocoooooo Pbococococoo Pococooooo focoocooccoooo dbooccocoo
0 | 5:4 | Barack | Obama | null | [5:5, 5:6] | -6:2
[Fommmm oo Fommm e oo Fommee oo [SRS +----o-

e Export JSON data from this record:

orientdb> EXPORT RECORD JSON

{
'name': 'Barack',
'surname': 'Obama',
'parent': null,
'children': [5:5, 5:6],
'city': -6:2

}

e Use a bad format value to determine what export formats are available on your database:

orientdb> EXPORT RECORD GIBBERISH

ERROR: Format 'GIBBERISH' was not found.
Supported formats are:

- json

- ORecordDocument2csv

For more information on other commands, see Console Commands.

Console - FREEZE DATABASE

Flushes all cached content to disk and restricts permitted operations to read commands. With the exception of reads, none of the

commands made on a frozen database execute. It remains in this state until you run the ReELEASE command.

Executing this command requires server administration rights. You can only execute it on remote databases. If you would like to freeze or

release a local database, use the opatabase.freeze() and oOpatabase.release() methods directly through the OrientDB API.

You may find this command useful in the event that you would like to perform backups on a live database. To do so, freeze the

database, perform a file system snapshot, then release the database. You can now copy the snapshot any where you want.
This works best when the backup doesn't take very long to run.

Syntax

FREEZE DATABASE

Example

e Freezes the current database:

orientdb> FREEZE DATABASE

To unfreeze a database, use the RELEASE DATABASE command.

For more information on other commands, see SQL and Console commands.

Console - GET

Returns the value of the requested property.

Syntax

GET <property-name>

e <property-name> Defines the name of the property.
Example

e Find the default limit on your database:
orientdb> GET LIMIT
limit = 20

To display all available properties configured on your database, use the PROPERTIES command.

For more information on other commands, see Console Commands.

Console - GREMLIN

Executes commands in the Gremlin language from the Console.

Gremlin is a graph traversal language. OrientDB supports it from the Console, API and through a Gremlin shell launched from

$ORIENTDB_HOME/bin/gremlin.sh .

Syntax

GREMLIN <command>

e <command> Defines the commands you want to know.

NOTE: OrientDB parses Gremlin commands as multi-line input. It does not execute the command until you type end . Bear in

mind, the end here is case-sensitive.
Examples

e Create a vertex using Gremlin:

orientdb> GREMLIN vi = g.addVertex();
[Started multi-line command. Type just 'end' to finish and execute.]

orientdb> end
v[#9:0]

Script executed in 0,100000 sec(s).

For more information on the Gremlin language, see Gremlin. For more information on other commands, see Console Commands.

Console - IMPORT

Imports an exported database into the current one open.

The input file must use the JSON Export Format, as generated by the ExrorT command. By default, this file is compressed using the
GZIP algorithm.

With ExporT , this command allows you to migrate between releases without losing data, by exporting data from the old version and

importing it into the new version.

Syntax

IMPORT DATABASE <input-file> [-preserveClusterIDs = <true|false>]
[-merge = <true|false>]
[-migrateLinks = <true|false>]
[-rebuildIndexes = <true|false>]

e <inputy-file> Defines the path to the file you want to import.

e -preserveclusterids Defines whether you want to preserve cluster ID's during the imp ort. When turned off, the import creates
temporary cluster ID's, which can sometimes fail. This option is only valid with PLocal storage.

e -merge Defines whether you want to merge the import with the data already in the current database. When turned off, the default,
the import overwrites current data, with the exception of security classes, (0ORole , ouser , OIdentity), which it always
preserves. This feature was introduced in version 1.6.1.

e -migrateLinks Defines whether you want to migrate links after the import. When enabled, this updates all references from the old
links to the new Record ID's. By default, it is enabled. Advisable that you only turn it off when merging and you're certain no other
existent records link to those you're importing, This feature was introduced in version 1.6.1.

e -rebuildindexes Defines whether you want to rebuild indexes after the import. By default, it does. You can set it to false to
speed up the import, but do so only when you're certain the import doesn't affect indexes. This feature was introduced in version
1.6.1.

Example

e Import the database petshop.export :
orientdb> IMPORT DATABASE C:/temp/petshop.export -preserveClusterIDs=true

Importing records...

- Imported records into the cluster 'internal': 5 records

- Imported records into the cluster 'index': 4 records

- Imported records into the cluster 'default': 1022 records

- Imported records into the cluster 'orole': 3 records

- Imported records into the cluster 'ouser': 3 records

- Imported records into the cluster 'csv': 100 records

- Imported records into the cluster 'binary': 101 records

- Imported records into the cluster 'account': 1005 records

- Imported records into the cluster 'company': 9 records

- Imported records into the cluster 'profile': 9 records

- Imported records into the cluster 'whiz': 1000 records

- Imported records into the cluster 'address': 164 records

- Imported records into the cluster 'city': 55 records

- Imported records into the cluster 'country': 55 records

- Imported records into the cluster 'animalrace': 3 records

- Imported records into the cluster 'ographvertex': 102 records
- Imported records into the cluster 'ographedge': 101 records
- Imported records into the cluster 'graphcar': 1 records

For more information on backups, restores, and exports, see: BACKUP , RESTORE and EXPORT commands, and the

obatabaseImport Java class. For the JSON format, see Export File Format.

For more information on other commands, see Console Commands.

Import API

In addition to the Console, you can also manage imports through the Java API, and with any language that runs on top of the JVM,

using the opatabaseImport class.

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);
db.open("admin", "admin");

try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void onMessage {
System.out.print(iText);
}
}

ODatabaseImport import = new ODatabaseImport(db, "/temp/export/export.json.gz", listener);
import.importDatabase();
import.close();
} finally {
db.close();
}

Troubleshooting

Validation Errors

Occasionally, you may encounter validation errors during imports, usually shown as an ovalidationException exception. Beginning
with version 2.2, you can disable validation at the database-level using the ALTER pATABASE command, to allow the import to go
through.

1. Disable validation for the current database:

orientdb> ALTER DATABASE validation

2. Import the exported database:

orientdb> IMPORT DATABASE /path/to/my data.export -preserveClusterIDs=TRUE

3. Re-enable validation:

orientdb> ALTER DATABASE validation

Cluster ID's

During imports you may occasionally encounter an error that reads: Imported cluster 'XXX' has id=6 different from the original: 5 .
Typically occurs in databases that were created in much older versions of OrientDB. You can correct it using the brop cLAss on the

class oRriDs , then attempting the import again.

1. Import the database:

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java
https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java

orientdb> IMPORT DATABASE /path/to/old data.export

Importing records...

- Creating cluster 'company'...Error on database import happened just before line
16, column 52 com.orientechnologies.orient.core.exception.OConfigurationException:
Imported cluster 'company has id=6 different from the original: 5 at
com.orientechnologies.orient.core.db.tool.0ODatabaseImport.importClusters(
ODatabaseImport.java:500) at
com.orientechnologies.orient.core.db.tool.0ODatabaseIMport.importDatabase(
ODatabaseImport.java:121)

2. Drop the orips class:

orientdb> Dbrop cLASS ORIDs

3. Import the database:

orientdb> IMPORT DATABASE /path/to/old data.export

The database now imports without error.

Console - INDEXES

Displays all indexes in the current database.

Syntax

INDEXES

Example

e Display indexes in the current database:

orientdb {db=GratefulDeadConcerts}> INDEXES

INDEXES

-------------- PocoooocoooooticooocoodPo o000 s oMo coo00 oo
NAME | TYPE | CLASS | FIELDS | RECORDS
-------------- PbocoocoocoooooiiooooooodPo o000 ooiPoccoo00 oo
dictionary | DICTIONARY | | | 0
Group.Grp_Id | UNIQUE | Group | Grp_Id | 1
ORole.name | UNIQUE | ORole | name | 3
OUser .name | UNIQUE | Ouser | name | 4
-------------- g
TOTAL = 4 8

For more information on other commands, see Console Commands.

Console - INFO

Displays all information on the current database.

Syntax

INFO

Example

e Display information on database petshop :
orientdb {db=petshop}> 1nro

Current database: ../databases/petshop/petshop

CLUSTERS:
------------ PocoooodPoooocccoooodbscoocsoooc
NAME | ID | TYPE | ELEMENTS
------------ PocoooodPoooocccoooodbscoocsoooc
metadata | 0 | Physical | 11
index | 1 | Physical | 0
default | 2 | Physical | 779
csv | 3 | Physical | 1000
binary | 4 | Physical | 1001
person | 5 | Physical | 7
animal | 6 | Physical | 5
animalrace | -2 | Logical | 0
animaltype | -3 | Logical | 1
orderitem | -4 | Logical | 0
order | -5 | Logical | 0
city | -6 | Logical | 3
------------ B T pepupupupp
TOTAL 2807
CLASSES
------------ B T pupupupup
NAME | ID | CLUSTERS | ELEMENTS
------------ dhocoodfocoooooooooodPoooc o000
Person | © | person | 7
Animal | 1 | animal | 5
AnimalRace | 2 | AnimalRace | 0
AnimalType | 3 | AnimalType | 1
OrderItem | 4 | OrderItem | 0
Order | 5 | Order | 0]
City | 6 | City | 3
------------ B T
TOTAL 16

For more information on other commands, see Console Commands.

Console - INFO CLASS

Displays all information on givne class.

Syntax
INFO CLASS <class-name>
e <class-name> Defines what class you want information on.

Example

e Display information on class profile

orientdb> 1INFO cLASS Profile

Default cluster......: profile (id=10)
Supported cluster ids: [10]
Properties:

-------- T T T = Sy
NAME | ID | TYPE | LINK TYPE | INDEX | MANDATORY | NOT NULL | MIN | MAX
-------- L T gy U Sy
nick | 3 | STRING | null | | false | false | 3 | 30
name | 2 | STRING | null |NOTUNIQUE| false | false | 3 | 30
surname| 1 | STRING | null | | false | false | 3 | 30

| | | ... | ... | ... | | | ...
photo | © | TRANSIENT| null | | false | false |
-------- e L g

For more information on other commands, see Console Commands.

Console - INFO PROPERTY

Displays all information on the given property.

Syntax

INFO PROPERTY <class-name>.<property-name>

e <class-name> Defines the class to which the property belongs.

e <property-name> Defines the property you want information on.
Example

e Display information on the property name in the class ouser :
orientdb> INFO PROPERTY OUser.name

PROPERTY 'OUser .name'

TY[®800aa0a000000aanao STRING
Mandatory............: true
Not null.............: true
Read only............: false
Default value........: null
Minimum value........: null
Maximum value........: null
REGEXP........vevvvw..t null
Collate..............: {OCaseInsensitiveCollate : name = ci}
Linked class.........: null
Linked type..........: null

INDEXES (1 altogether)

____________________ gy
NAME | PROPERTIES
____________________ e e e e - -
Ouser .name | name

____________________ e e e e - -

For more information on other commands, see Console Commands.

Console - INSERT

Inserts a new record into the current database. Remember, OrientDB can work in schema-less mode, meaning that you can create any
field on the fly.

Syntax

INSERT INTO <<class-name>|CLUSTER:<cluster-name>> (<field-names>) VALUES (<field-values>)

e <class-name> Defines the class you want to create the record in.
® CLUSTER:<cluster-name> Defines the cluster you want to create the record in.
e <field-names> Defines the fields you want to add the records to, in a comma-separated list.

e <field-values> Defines the values you want to insert, in a comma-separated list.

Examples

e Insert a new record into the class Profile , usingthe name Jay and surname Miner :
orientdb> 1INSERT INTO Profile (name, surname) VALUES ('Jay', Miner')

Inserted record in 0,060000 sec(s).

e Insert a new record into the class Employee , while defining a relationship:

orientdb> INSERT INTO Employee (name, boss) VALUES ('Jack', 11:99)

e Insert a new record, adding a collection of relationships:

orientdb> INSERT INTO Profile (name, friends) VALUES ('Luca', [10:3, 10:4])

For more information on other commands, see SQL and Console commands.

Console - LIST DATABASES

Displays all databases hosted on the current server. Note that this command requires you connect to the OrientDB Server.

Syntax

LIST DATABASES

Example

e Connect to the server:

orientdb> CONNECT REMOTE:localhost admin admin_password

e List the databases hosted on the server:
orientdb {server=remote:localhost/}> LIST DATABASES
Found 4 databases:
* ESA (plocal)
* Napster (plocal)

* Homeland (plocal)
* GratefulDeadConcerts (plocal)

For more information on other commands, see Console Commands.

Console - LIST CONNECTIONS

Displays all active connections to the OrientDB Server. Command introduced in version 2.2.

Syntax

LIST CONNECTIONS

Example

e List the current connections to the OrientDB Server:

orientdb {server=remote:localhost/}> LIST CONNECTIONS

soofhoccoffccnasonaonosos osoooo Pocooccoosonoooonsos Pocoocsos fPocoos foccocoos Pocoocoos
| ID |REMOTE_ADDRESS|PROTOC|LAST_OPERATION_ON |DATABASE|USER |COMMAND |TOT_REQS
soofhoccoffccoacosoonosos ocooso Pocooccooscnoooonsos Pocoocsos focoos foccocoos ocoocoos
0 | 17 |/127.0.0.1 |binary|2015-10-12 19:22:34] - | - |info | 1
1| 16 |/127.0.0.1 |binary|1970-01-01 01:00:00] - | - | - | ©
5|1 |/127.0.0.1 |http [1970-01-01 00:59:59|pokec |admin|Listen | 32
U oo o - P +o-mmmo- - +----- Fommmmo oo Fommmo oo

For more information on other commands, see Console Commands.

Console - LOAD RECORD

Loads a record the given Record ID from the current database.

Syntax

LOAD < -id>

e <record-id Defines the Record ID of the record you want to load.
In the event that you don't have a Record ID, execute a query to find the one that you want.
Example

o Load the record for #5:5 :

orientdb> Loap #5:

Class: Person 1id: #5:5 v.0
parent : Person@5:4{parent:null,children:[Person@5:5, Person@5:6], name:Barack,
surname:Obama, city:City@-6:2}
children : null
name : Malia Ann
surname : Obama
city : null

For more information on other commands, see Console Commands.

Console - PROFILER

Controls the Profiler.

Syntax

PROFILER ON|OFF|DUMP |RESET

e on Turn on the Profiler and begin recording,
e oFf Turn off the Profiler and stop recording.
e puvp Dump the Profiler data.

e RESET Reset the Profiler data.
Example

e Turn the Profiler on:
orientdb> PROFILER ON

Profiler is ON now, use 'profiler off' to turn off.

e Dump Profiler data:

orientdb> PROFILER DUMP

For more information on other commands, see Console Commands.

Console - PROPERTIES

Displays all configured properties.

Syntax

PROPERTIES

Example

e List configured properties:

orientdb> PROPERTIES

PROPERTIES:

limit

backupBufferSize
backupCompressionLevel
collectionMaxItems
verbose

width

maxBinaryDisplay

debug

ignoreErrors

20
1048576
9

10

To change a property value, use the seT command.

For more information on other commands, see Console Commands.

Console - RELEASE DATABASE

Releases database from a frozen state, from where it only allows read operations back to normal mode. Execution requires server

administration rights.

You may find this command useful in the event that you want to perform live database backups. Run the FRreeze pDATABASE command to

take a snapshot, you can then copy the snapshot anywhere you want. Use such approach when you want to take short-term backups.

Syntax

RELEASE DATABASE

Example

e Release the current database from a freeze:

orientdb> RELEASE DATABASE

To freeze a database, see the FREEZE DATABASE command.

For more information on other commands, see Console and SQL commands.

Console - RELOAD RECORD

Reloads a record from the current database by its Record ID, ignoring the cache.
You may find this command useful in cases where external applications change the record and you need to see the latest update.

Syntax

RELOAD RECORD <record-id>

e <record-id> Defines the unique Record ID for the record you want to reload. If you don't have the Record ID, execute a query

first.
Examples

e Reload record with the ID of 5:5 :

orientdb> RELOAD RECORD 5:5

Class: Person 1id: 5:5 v.0
parent : Person@5:4{parent:null,children:[Person@5:5, Person@5:6],
name:Barack, surname:0Obama, city:City@-6:2}
children : null
name : Malia Ann
surname : Obama
city : null

For more information on other commands, see Console Commands.

Console - RESTORE DATABASE

Restores a database from a backup. It must be done against a new database. It does not support restores that merge with an existing

database. If you need to backup and restore to an existing database, use the ExPORT DATABASE and IMPORT DATABASE commands.
OrientDB Enterprise Edition version 2.2 and major, support incremental backup.
To create a backup file to restore from, use the Backup DATABASE command.

Syntax

RESTORE DATABASE <backup-file>|<incremental-backup-directory>

e <backup-file> Defines the database file you want to restore.
e <incremental-backup-directory> Defines the database directory you want to restore from an incremental backup. Available only

in OrientDB Enterprise Edition version 2.2 and major.

Example of full restore

e Create a new database to receive the restore:

orientdb> CREATE DATABASE PLOCAL:/tmp/mydb

e Restore the database from the mydb.zip backup file:
orientdb {db=/tmp/mydb}> RESTORE DATABASE /backups/mydb.zip
Example of incremental restore

This is available only in OrientDB Enterprise Edition version 2.2 and major.

e Open a database to receive the restore:

orientdb> CONNECT PLOCAL:/tmp/mydb

e Restore the database from the /backup backup directory:

orientdb {db=/tmp/mydb}> RESTORE DATABASE /backup

For more information, see the BACKUP DATABASE , EXPORT DATABASE , IMPORT DATABASE commands. For more information on

other commands, see Console Commands.

Restore API

In addition to the console commands, you can also execute restores through the Java API or with any language that can run on top of the

JVM using the restore() method against the database instance.

db.restore(in, options, callable, listener);

e in Defines the Inputstream used to read the backup content. Uses a FileInputStream to read the backup content from disk.
e options Defines backup options, such as Map<string, object> object.

e callable Defines the callback to execute when the database is locked.

e listener Listener called for backup messages.

e compressionLevel Defines the Zip Compression level, between o for no compression and 9 for maximum compression. The

greater the compression level, the smaller the final backup content and the greater the CPU and time it takes to execute.

e huffersize Buffer size in bytes, the greater the buffer the more efficient the compression.

Example

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/mydb™);
db.open("admin", "admin");

try{
OCommandOutputListener listener = new OCommandOutputListener() {
@override
public void onMessage {
System.out.print(iText);
}
iy

InputStream out = new FileInputStream("/temp/mydb.zip");
db.restore(in,null, null,listener);

} finally {
db.close();

Console - ROLLBACK

Aborts a transaction, rolling the database back to its save point.

Syntax

BEGIN

For more information on transactions, see Transactions. To initiate a transaction, use the BEGIN command. To save changes, see

coMMIT command.
Example

e Initiate a new transaction:
orientdb> BecINn

Transaction 1 is running

e Attempt to start a new transaction, while another is open:
orientdb> BecINn

Error: an active transaction is currently open (id=1). Commit or rollback before

starting a new one.

e Make changes to the database:
orientdb> INSERT INTO Account (name) VALUES ('tx test')

Inserted record 'Account#9:-2{name:tx test} vO' in 0,004000 sec(s).

e View changes in database:

orientdb> SELECT FROM Account WHERE name LIKE 'tx%'

oo e o e
| RID | name

e o e e
0 | #9:-2 | tx test

e o e e

1 item(s) found. Query executed in 0.076 sec(s).

e Abort the transaction:
orientdb> RroLLBACK

Transaction 1 has been rollbacked in 4ms

e View rolled back database:

Rollback

orientdb> SELECT FROM Account WHERE name LIKE 'tx%'

0 item(s) found. Query executed in 0.037 sec(s).

For more information on other commands, see Console Commands.

Console - SET

Changes the value of a property.

Syntax

SET <property-name> <property-value>

e <property-name> Defines the name of the property
e <property-value> Defines the value you want to change the property to.

Example

e Change the LIMIT property to one hundred:
orientdb> ser LImMIT

Previous value was: 20
limit = 100

To display all properties use the PRoPERTIES command. To display the value of a particular property, use the GET command.

For more information on other commands, see Console Commands.

Console - SET SERVER USER

Creates a server user. If the server user already exists, it updates the password and permissions.

In order to create or modify the user, the current system user must have write permissions on the $ORIENTDB_HOME/config/orientdb-

server-config.xml configuration file.

Syntax

SET SERVER USER <user-name> <user-password> <user-permissions>

e <user-name> Defines the server username.
e <user-password> Defines the password for the server user.

e <user-permissions> Defines the permissions for the server user.

For more information on security, see OrientDB Server Security. Feature introduced in version 2.2.

Example

e Create the server user editor , give it all permissions:
orientdb> SET SERVER USER editor my_password *

Server user 'editor' set correctly

To display all server users, see the LIST SERVER USERS command. To remove a server user, see DROP SERVER USER command.

For more information on other commands, see Console Commands.

Console - SLEEP

Pauses the console for the given amount a time. You may find this command useful in working with batches or to simulate latency.

Syntax

SLEEP <time>

e <time> Defines the time the Console should pause in milliseconds.
Example

e Pause the console for three seconds:

orientdb {server=remote:localhost/}> sLEEP 3000

For more information on other commands, see Console Commands.

Upgrading

OrientDB uses the Semantic Versioning System (http ://semver.org), where the version numbers follow this format
MAJOR.MINOR.PATCH, Here are the meanings of the increments:

e MAJOR version entails incompatible API changes,
e MINOR version entails functionality in a backward-compatible manner
e PATCH version entails backward-compatible bug fixes.

So between PATCH versions, the compatibility is assured (example 1.7.0 -> 1.7.8). Between MINOR and M AJOR versions, you may
need to export and re-import the database. To find out if your up grade must be done over exporting and importing the database, see
below in the column "Database":

Compatibility Matrix

. . Binary HTTP
FROM TO Guide Blueprints Database Protocol Protocol
Final .
2.0.x 2.1.x Release 2.1.x Automatic 30 10
v2.6.0
Migration- .
1.7.x 2.0.x from-1.7.x- LFizel Automatic 25 10
v2.6.0
to-2.0.x
Migration- .
1.6.x 1.7.x from-1.6.x- Final Automatic 20, 21 10
v2.5.0
to-1.7.x
M igration-
1.5.x 1.6x from-1.5x Clhrmzzd Automatic 18,19 10
v2.5.x
to-1.6.x
Migration-
1.4x 1.5x | from-l4x Changed Automatic | 16, 17 10
v2.4.x
to-1.5.x
Migration-
1.3.x 1.4.x from-1.3.x- Changed Automatic 14, 15 n.a.
v2.3.x
to-1.4.x
Need
Changed export 12,
1.2.x 1.3.x n.a. V2.2.% OK OK OK & Re- 13 n.a.
import
References:

e Binary Network Protocol: Network Binary Protocol
e HTTP Network Protocol: OrientDB REST

Migrate from LOCAL storage engine to PLOCAL

Starting from version 1.5.x OrientDB comes with a brand new storage engine: PLOCAL (Paginated LOCAL). It's persistent like the

LOCAL, but stores information in a different way. Below are the main differences with LOCAL:

e records are stored in cluster files, while with LOCAL was split between cluster and data-segments
e more durable than LOCAL because the append-on-write mode
e minor contention locks on writes: this means more concurrency

e it doesn't use Memory Mapping techniques (MMap) so the behavior is more "predictable"

http://semver.org

To migrate your LOCAL storage to the new PLOCAL, you need to export and reimport the database using PLOCAL as storage engine.

Follow the steps below:
1) open a new shell (Linux’M ac) or a Command Prompt (Windows)

2) export the database using the console. Example by exporting the database under /temp/db:

$ bin/console.sh (or bin/console.bat under Windows)
orientdb> CONNECT DATABASE local:/temp/db admin admin
orientdb> EXPORT DATABASE /temp/db.json.gzip
orientdb> DISCONNECT

3) now always in the console create a new database using the "plocal" engine:
a) on a local filesystem:

orientdb> CREATE DATABASE plocal:/temp/newdb admin admin plocal graph

b) on a remote server (use the server's credentials to access):

orientdb> CREATE DATABASE remote:localhost/newdb root password plocal graph

4) now always in the console import the old database in the new one:

orientdb> IMPORT DATABASE /temp/db.json.gzip -preserveClusterIDs=true
orientdb> QUIT

5) If you access to the database in the same JVM remember to change the URL from "local:" to "plocal:"

Migrate graph to RidBag

As of OrientDB 1.7 the RidBag is default collection that manages adjacency relations in graphs. While the older database managed by an

M VRB-Tree are fully compatible, you can update your database to the more recent format.

You can upgrade your graph via console or using the ORidBagM igration class

Using console

e Connect to database CONNECT plocal:databases/GratefulDeadConcerts

e Run upgrade graph command

Using the API

e Create OGraphMigration instance. Pass database connection to constructor.

e Invoke method execute()

Backward Compatibility

OrientDB supports binary compatibility between previous releases and latest release. Binary compatibility is supported at least

between last 2 minor versions.

For example, lets suppose that we have following releases 1.5, 1.5.1, 1.6.1, 1.6.2, 1.7, 1.7.1 then binary compatibility at least between
1.6.1, 1.6.2, 1.7, 1.7.1 releases will be supported.

If we have releases 1.5, 1.5.1, 1.6.1, 1.6.2, 1.7, 1.7.1, 2.0 then binary compatibility will be supported at least between releases 1.7, 1.7.1,
2.0.

Binary compatibility feature is implemented using following algorithm:

1. When storage is opened, version of binary format which is used when storage is created is read from storage configuration.

2. Factory of objects are used to present disk based data structures for current binary format is created.

Only features and database components which were exist at the moment when current binary format was latest one will be used. It
means that you can not use all database features available in latest release if you use storage which was created using old binary format
version. It also means that bugs which are fixed in new versions may be (but may be not) reproducible on storage created using old

binary format.

To update binary format storage to latest one you should export database in JSON format and import it back. Using either console
commands export database and import database or Java API look at com.orientechnologies.orient.core.db.tool.0DatabaseImport ,
com.orientechnologies.orient.core.db.tool.0ODatabaseExport classes and

com.orientechnologies.orient.test.database.auto.DbImportExportTest test.

e Current binary format version can be read from
com.orientechnologies.orient.core.db.record.0CurrentStorageComponentsFactory#binaryFormatVersion pIoporty.

e Instance of ocurrentStorageComponentsFactory class can be retrieved by call of
com.orientechnologies.orient.core.storage.0Storage#getComponentsFactory method.

e Latest binary format version can be read from here

com.orientechnologies.orient.core.config.0StorageConfiguration#CURRENT_BINARY_FORMAT_VERSION .

Please note that binary compatibility is supported since 1.7-rc2 version for plocal storage (as exception you can read database created in

1.5.1 version by 1.7-rc2 version).

Return to Upgrade.

Release 2.2.x

What's new?

Direct Memory

Starting from v2.2, OrientDB uses direct memory. The new server.sh (and .bat) already set the maximum size value to 512GB of

memory by setting the JVM configuration

-XX:MaxDirectMemorySize=512¢g
If you run OrientDB embedded or with a different script, please set MaxbirectMemorySize to a high value, like 5129 .

Command Cache

OrientDB 2.2 has a new component called Command Cache, disabled by default, but that can make a huge difference in performance on

some use cases. Look at Command Cache to know more.

Sequences

-In progress-

Parallel queries

Starting from v2.2, the OrientDB SQL executor will decide if execute or not a query in parallel. Before v2.2 executing parallel queries

could be done only manually by appending the pArRALLEL keyword at the end of SQL SELECT. Issue 4578.

Automatic usage of Multiple clusters

Starting from v2.2, when a class is created, the number of underlying clusters will be the number of cores. Issue 4518.

Encryption at rest

OrientDB v2.2 can encrypt database at file system level 89.

New ODocument.eval()

To execute quick expression starting from a ODocument and Vertex/Edge objects, use the new .eval() method. The old syntax

ODocument . field("city[0].country.name") is not supported anymore. [ssue 4505.

Migration from 2.1.x to 2.2.x

Databases created with release 2.1.x are compatible with 2.2.x, so you don't have to export/import the database.

Security and speed

OrientDB v2.2 increase security by using SALT. This means that hashing of password is much slower than OrientDB v2.1. You can
configure the number of cycle for SALT: more is harder to decode but is slower. Change setting security.userPasswordSaltIterations
to the number of cycles. Default is 65k cycles. The default password hashing algorithm is now PBKDF2withHmacsHA256 this is not
present in any environment so you can change it setting security.userPasswordbefaultAlgorithm possible alternatives values are

PBKDF2WithHmacSHA1 Or SHA-256

To improve performance consider also avoiding op ening and closing connection, but rather using a connection pool.

https://github.com/orientechnologies/orientdb/issues/4578
https://github.com/orientechnologies/orientdb/issues/4518
https://github.com/orientechnologies/orientdb/issues/89
https://github.com/orientechnologies/orientdb/issues/4505
https://github.com/orientechnologies/orientdb/issues/1229

API changes

ODocument.field()

To execute quick expression starting from a ODocument and Vertex/Edge objects, use the new .eval() method. The old syntax
ODocument . field("city[0].country.name") is not supported anymore. This is because we simplified the .field() method to don't

accept expressoion anymore. This allows to boost up performance on such used method. Issue 4505.

Schema.dropClass()

On drop class are dropped all the cluster owned by the class, and not just the default cluster.

Configuration Changes

Since 2.2 you can force to not ask for a root password setting <isAfterFirstTime>true</isAfterFirstTime> inside the <orient-server>

element in the orientdb-server-config.xml file.

SQL and Console commands Changes

Strict SQL parsing is now applied also to statements for S chema Manipulation (CREATE CLASS, ALTER CLASS, CREATE
PROPERTY, ALTER PROPERTY etc.)

AILTER DATABASE: A statement like

ALTER DATABASE dateformat yyyy-MM-dd

is correctly executed, but is interpreted in the WRONG way: the yyyy-mM-dd is interpreted as an expression (two subtractions) and not

as a single date format. Please re-write it as (see quotes)
ALTER DATABASE dateformat 'yyyy-MM-dd'
CREATE FUNCTION
In some cases a variant the syntax with curly braces was accepted (not documented), eg.

CREATE FUNCTION testCreateFunction {return 'hello '+name;} PARAMETERS [name] IDEMPOTENT true LANGUAGE Javascript

Now it's not supported anymore, the right syntax is

CREATE FUNCTION testCreateFunction "return 'hello '+name;" PARAMETERS [name] IDEMPOTENT true LANGUAGE Javascript
ALTER PROPERTY
The ALTER PROPERTY command, in previous versions, accepted any unformatted value as last argument, eg.

ALTER PROPERTY Foo.name min 2015-01-01 00:00:00

In v.2.2 the value must be a valid expression (eg. a string):

ALTER PROPERTY Foo.name min "2015-01-01 00:00:00"

https://github.com/orientechnologies/orientdb/issues/4505

Release 2.1.x

What's new?

Live Query

OrientDB 2.1 includes the first exp erimental version of LiveQuery. See details here.

Migration from 2.0.x to 2.1.x

Databases created with release 2.0.x are compatible with 2.1, so you don't have to export/import the database.

Difference function

In 2.0.x difference() function had inconsistent behavior: it actually worked as a symmetric difference (see 4366, 3969) In 2.1 it was
refactored to perform normal difference (https:/proofwiki.org/wiki/Definition:Set_Difference) and another function was created for
symmetric difference (called "sy mmetricDifference()").

If for some reason you application relied on the (wrong) behavior of difference() function, please change your queries to invoke
symmetricDifference() instead.

Strict SQL parser

V 2.1 introduces a new implementation of the new SQL parser. This implementation is more strict, so some queries that were allowed in

2.0.x could not work now.

For backward compatibility, you can disable the new parser from Studio -> DB -> Configuration -> remove the flag from strictSql
(bottom right of the page).

Custom Properties

Name Value

strictSql v

Or via console by executing this command, just once:

ALTER DATABASE custom strictSql=

Important improvements of the new parser are:

e full support for named (:param) and unnamed (?) input parameters: now you can use input parameters almost everywhere in a
query: in subqueries, function parameters, between square brackets, as a query target

e better management of blank spaces and newline characters: the old parser was very sensitive to presence or absence of blank spaces
(especially in particular points, eg. before and after square brackets), now the problem is completely fixed

e strict validation: the old parser in some cases failed to detect invalid queries (eg. a macroscopic example was a query with two
WHERE conditions, like SELECT FORM Foo WHERE a = 2 WHERE a = 3), now all these problems are completely fixed

Writing the new parser was a good opportunity to validate our query language. We discovered some ambiguities and we had to remove

them. Here is a short list of these problems and how to manage them with the new parser:

e - as avalid character for identifiers (property and class names): in the old implementation you could define a property name like
"simple-name" and do SELECT simple-name FROM Foo . This is not allowed anymore, because - character is used for arithmetic
operations (subtract). To use names with - character, use backticks. Example: SELECT “simple-name™ FROM Foo

e reserved keywords as identifiers: words like select , from, where ... could be used as property or class name, eg. this query

was valid SeLecT FrRoM FRoM FRoM . In v 2.1 all the reserved keywords have to be quoted with a backtick to be used as valid

https://github.com/orientechnologies/orientdb-docs/blob/master/Live-Query.md
https://github.com/orientechnologies/orientdb/issues/4366
https://github.com/orientechnologies/orientdb/issues/3969
https://proofwiki.org/wiki/Definition:Set_Difference

identifiers: SELECT “FROM™ FROM “FROM

Object database

Before 2.1 entity class cache was static, so you could not manage multiple OObjectDatabase connections in the same VM. In 2.1

registerEntity Class() works at storage level, so you can open multiple OObjectDatabase connections in the same VM.

IMPORTANT: in 2.1 if you close and re-open the storage, you have to re-register your POJO classes.

Distributed architecture

Starting from release 2.1.6 it's not possible to hot upgrade a distributed architecture node by node, because the usage of the last recent
version of Hazelcast that breaks such network compatibility. If you're up grading a distributed architecture you should power off the

entire cluster and restart it with the new release.

API changes

ODatabaseDocumentTx.activateOnCurrentThread()

If by upgading to v2.1 you see errors of kind "Database instance is not set in current thread...", this means that you used the same
ODatabase instance across multiple threads. This was always forbidden, but some users did it with unpredictable results and random

errors. For this reason in v2.1 OrientDB always checks that the ODatabase instance was bound to the current thread.

We introduced a new API to allow moving a ODatabase instance across threads. Before to use a ODatabase instance call the method

ObatabaseDocumentTx.activateonCurrentThread() and the ODatabase instance will be bound to the current thread. Example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal/temp/mydb").open("admin", "admin");
new Thread(){
public void run() {
db.activateOnCurrentThread(); // <---- BINDS THE DATABASE ON CURRENT THREAD
db.command(new OCommandSQL("select from MyProject where thisSummerIsVeryHot = true")).execute();
}
}.start();

Migration from 1.7.x to 2.0.x

Databases created with release 1.7.x are compatible with 2.0, so you don't have to export/import the database like in the previous

releases. Check your database directory: if you have a file *.wal, delete it before migration.

Use the new binary serialization

To use the new binary protocol you have to export and reimport the database into a new one. This will boost up your database
performance of about +20% against old database.

To export and reimport your database follow these steps:
1) Stop any OrientDB server running
2) Open a new shell (LinuxM ac) or a Command Prompt (Windows)

2) Export the database using the console. M ove into the directory where you've installed OrientDB 2.0 and execute the following

commands:

> cd bin

> ./console.sh (or bin/console.bat under Windows)
orientdb> CONNECT plocal:/temp/mydb admin admin
orientdb> EXPORT DATABASE /temp/mydb.json.gz
orientdb> DISCONNECT

orientdb> CREATE DATABASE plocal:/temp/newdb
orientdb> IMPORT DATABASE /temp/mydb.json.gz

Now your new database is: /temp/newdb.

API changes

ODocument pin() and unpin() methods

We removed pin() and unpin() methods to force the cache behavior.

ODocument protecting of internal methods

We have hidden some methods considered internal to avoid users call them. However, if your usage of OrientDB is quite advanced and
you still need them, you can access from Internal helper classes. Please still consider them as internals and could change in the future.

Below the main ones:

o ORecordAbstract.addListener(), uses ORecordListenerM anager.addListener() instead

ODatabaseRecord.getStorage()

‘We moved getStorage() method to ODatabaseRecordInternal.

ODatabaseDocumentPool

We replaced ODatabaseDocumentPool Java class (now deprecated) with the new, more efficient

com.orientechnologies.orient.core.db.OPartitionedDatabasePool.

Caches

‘We completely removed Level2 cache. Now only Levell and Storage DiskCache are used. This change should be transparent with code

that run on previous versions, unless you enable/disable Level2 cache in your code.

Furthermore it's not possible anymore to disable Cache, so method setenable() has been removed.

Changes
Context 1.7.x 2.0.x
API ODatabaseRecord.getLevel1Cache() ODatabaseRecord.getLocalCache()
API ODatabaseRecord.getLevel2Cache() Not available

Configuration OGlobalConfiguration. CACHE_LEVEL1_ENABLED OGlobalConfiguration. CACHE_LOCAL_ENABLED

Configuration OGlobalConfiguration. CACHE_LEVEL2_ENABLED Not available

No more LOCAL engine

We completely dropped the long deprecated LOCAL Storage. If your database were created using "LLOCAL:" then you have to export it
with the version you were using, then import it in a fresh new database created with OrientDB 2.0.

Server

First run ask for root password

At first run, OrientDB asks for the root's password. Leave it blank to auto generate it (like with 1.7.x). This is the message:

| This is the first time the server is running.
| Please type a password of your choice for the
| 'root' user or leave it blank to auto-generate it. |

Root password [BLANK=auto generate it]: _

If you set the system setting or environment variable ORIENTDB_ROOT_PASSWORD , then its value will be taken as root password. If it's

defined, but empty, a password will be automatically generated.

Distributed

First run ask for node name

At first run as distributed, OrientDB asks for the node name. Leave it blank to auto generate it (like with 1.7.x). This is the message:

| This is the first time that the server is running |
| as distributed. Please type the name you want
| to assign to the current server node.

Node name [BLANK=auto generate it]: _

If you set the system setting or environment variable ORIENTDB_NODE_NAME , then its value will be taken as node name. If it's defined, but

empty, a name will be automatically generated.

Multi-Master replication

With OrientDB 2.0 each record cluster selects assigns the first server node in the servers list node as master for insertion only. In 99%
of the cases you insert per class, not per cluster. When you work per class, OrientDB auto-select the cluster where the local node is the

master. In this way we completely avoid conflicts (like in 1.7.x).

Example of configuration with 2 nodes replicated (no sharding):

INSERT INTO Customer (name, surname) VALUES ('Jay', 'Miner')

If you execute this command against a nodel, OrientDB will assign the cluster-id where nodel is master, i.e. #13:232. With node2 would

be different: it couldn't never be #13.

For more information look at: http:/www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding html.

Asynchronous replication

OrientDB 2.0 supports configurable execution mode through the new variable executionMode . It can be:

e undefined , the default, means synchronous
e synchronous , to work in synchronous mode

e asynchronous , to work in asynchronous mode

"autoDeploy": ,
"hotAlignment": ,
"executionMode": "undefined",
"readQuorum": 1,
"writeQuorum": 2,
"failureAvailableNodesLessQuorum": .
"readYourWrites": ,
"clusters": {

"internal": {

}

"index": {

}

ey g

"servers" : ["<NEW_NODE>"]

Set to "asynchronous" to speed up the distributed replication.

Graph API

Multi-threading

Starting from OrientDB 2.0, instances of both classes OrientGraph and OrientGraphNoTx can't be shared across threads. Create and

destroy instances from the same thread.

Edge collections

OrientDB 2.0 disabled the auto scale of edge. In 1.7.x, if a vertex had 1 edge only, a LINK was used. As soon as a new edge is added the
LINK is auto scaled to a LINKSET to host 2 edges. If you want this setting back you have to call these two methods on graph instance
(or OrientGraphFactory before to get a Graph instance):

graph.setAutoScaleEdgeType(true);
graph.setEdgeContainerEmbedded2TreeThreshold(40);

http://www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding.html

Migration from 1.6.x to 1.7.x

Databases created with release 1.6.x are compatible with 1.7, so you don't have to export/import the database like in the previous

releases.

Engine

OrientDB 1.7 comes with the PLOCAL engine as default one. For compatibility purpose we still support "local" database, but this will
be removed soon. So get the chance to migrate your old "local" database to the new "plocal" follow the steps in: M igrate from local

storage engine to plocal.

Migration from 1.5.x to 1.6.x

Databases created with release 1.5.x need to be exported and reimported in OrientDB 1.6.x.
From OrientDB 1.5.x:

e Open the console under "bin/" directory calling:

o ./console.sh (or .bat on Windows)

e Connect to the database and export it, example:
o orientdb> connect plocal:/temp/db admin admin
o orientdb> export database /temp/db.zip

e Run OrientDB 1.6.x console

o ./console.sh (or .bat on Windows)

e Create a new database and import it, example:
o orientdb> create database plocal:/temp/db admin admin plocal

o orientdb> import database /temp/db.zip

For any problem on import, look at Import Troubleshooting.

Engine

OrientDB 1.6.x comes with the new PLOCAL engine. To migrate a database create with the old "local" to such engine follow the steps

in: Migrate from local storage engine to plocal.

Migration from 1.4.x to 1.5.x

OrientDB 1.5.x automatic upgrades any databases created with version 1.4.x, so export and import is not needed.

Engine

OrientDB 1.5.x comes with the new PLOCAL engine. To migrate to such engine follow the steps in: Migrate from local storage engine to

plocal.

Migration from 1.3.x to 1.4.x

GraphDB

OrientDB 1.4.x uses a new optimized structure to manage graphs. You can use the new OrientDB 1.4.x API against graph databases
created with OrientDB 1.3.x setting few properties at database level. In this way you can continue to work with your database but

remember that this doesn't use the new structure so it's strongly suggested to export and import the database.

The new Engine uses some novel techniques based on the idea of a dynamic Graph that change shape at run-time based on the settings

and content. The new Engine is much faster than before and needs less space in memory and disk. Below the main improvements:

e avoid creation of edges as document if haven't properties. With Graphs wit no properties on edges this can save more than 50% of
space on disk and therefore memory with more chances to have a big part of database in cache. Furthermore this speed up traversal
too because requires one record load less. As soon as the first property is set the edge is converted transparently

e Vertex "in" and "out" fields aren't defined in the schema anymore because can be of different types and change at run-time adapting
to the content:

o no connection = null (no space taken)
o 1 connection = store as LINK (few bytes)
o 1 connections = use the Set of LINKS (using the M VRBTreeRIDSet class)

e binding of Blueprints "label" concept to OrientDB sub-classes. If you create an edge with label "friend", then the edge sub-type
"friend" will be used (created by the engine transparently). This means: 1 field less in document (the field "label") and therefore less
space and the ability to use the technique 1 (see above)

e edges are stored on different files at file system level because are used different clusters

e better partitioning against multiple disks (and in the future more parallelism)

e direct queries like "select from friend" rather than "select from E" and then filtering the result-set looking for the edge with the
wanted label property

e multiple properties for edges of different labels. Not anymore a "in" and "out" in Vertex but "out_friend" to store all the outgoing
edges of class "friend". This means faster traversal of edges giving one or multiple labels avoiding to scan the entire Set of edges to
find the right one

Blueprints changes

If you was using Blueprints look also to the Blueprints changes 1.x and 2.x.

Working with database created with 1.3.x

Execute these commands against the open database:

ALTER DATABASE custom uselLightweightEdges=

ALTER DATABASE custom useClassForEdgelLabel=

ALTER DATABASE custom useClassForVertexLabel=
ALTER DATABASE custom useVertexFieldsForEdgelLabels=

Base class changed for Graph elements

Before 1.4.x the base classes for Vertices was "OGraphVertex" with alias "V" and for Edges was "OGraphEdge" with alias "E". Starting
from v1.4 the base class for Vertices is "V" and "E" for Edges. So if in your code you referred "V" and "E" for inheritance nothing is
changed (because "V" and "E" was the aliases of OGraphVertex and "OGraphEdge"), but if you used directly "OGraphVertex" and
"OGraphEdge" you need to replace them into "V" and "E".

If you don't export and import the database you can rename the classes by hand typing these commands:

https://github.com/tinkerpop/blueprints/wiki/The-Major-Differences-Between-Blueprints-1.x-and-2.x

ALTER CLASS OGraphVertex shortname
ALTER CLASS OGraphVertex name V
ALTER CLASS 0GraphEdge shortname=
ALTER CLASS 0GraphEdge name E

Export and re-import the database

Use GREMLIN and GraphML format.

If you're exporting the database using the version 1.4.x you've to set few configurations at database level. See above Working with

database created with 1.3.x.

Export the database

$ cd $ORIENTDB_HOME/bin
$./gremlin.sh

\d
(o 0)

gremlin> g = new OrientGraph("local:/temp/db");
==>orientgraph[local:/temp/db]

gremlin> g.saveGraphML("/temp/export.xml")
==>null

Import the exported database

gremlin> g = new OrientGraph("local:/temp/newdb");
==>orientgraph[local:/temp/newdb]

gremlin> g.loadGraphML("/temp/export.xml");
==>null

gremlin>

Your new database will be created under "/temp/newdb" directory.

General Migration

If you want to migrate from release 1.3.xto 1.4.x you've to export the database using the 1.3.x and re-import it using 1.4.x. Example:

Export the database using 1.3.x

$ cd $ORIENTDB_HOME/bin

$./console.sh

OrientDB console v.1.3.0 - www.orientechnologies.com
Type 'help' to display all the commands supported.

orientdb> CONNECT local:../databases/mydb admin admin
Connecting to database [local:../databases/mydb] with user 'admin'...
OK

orientdb> EXPORT DATABASE /temp/export.json.gz
Exporting current database to: database /temp/export.json.gz...

Started export of database 'mydb' to /temp/export.json.gz...
Exporting database info...OK

Exporting clusters...OK (24 clusters)

Exporting schema...OK (23 classes)

Exporting records. ..

Cluster 'internal' (id=0)...0K (records=3/3)
Cluster 'index' (id=1)...0K (records=0/0)
Cluster 'manindex' (id=2)...0K (records=1/1)
Cluster 'default' (id=3)...0K (records=0/0)
Cluster 'orole' (id=4)...0K (records=3/3)
Cluster 'ouser' (id=5)...0K (records=3/3)
Cluster 'ofunction' (id=6)...0K (records=1/1)
Cluster 'oschedule' (id=7)...0K (records=0/0)

- Cluster 'orids' (id=8)............. OK (records=428/428)

- Cluster 'v' (id=9)............. OK (records=809/809)

- Cluster 'e' (id=10)...0K (records=0/0)

- Cluster 'followed_by' (id=11)............. OK (records=7047/7047)

Cluster 'sung_by' (id=12)...0K (records=2/2)
Cluster 'written_by' (id=13)...0K (records=1/1)
Cluster 'testmodel' (id=14)...0K (records=2/2)
Cluster 'vertexwithmandatoryfields' (id=15)...0K (records=1/1)
Cluster 'artist' (id=16)...0K (records=0/0)
Cluster 'album' (id=17)...0K (records=0/0)
Cluster 'track' (id=18)...0K (records=0/0)
Cluster 'sing' (id=19)...0K (records=0/0)
Cluster 'has' (id=20)...0K (records=0/0)
Cluster 'person' (id=21)...0K (records=2/2)
Cluster 'restaurant' (id=22)...0K (records=1/1)
Cluster 'eat' (id=23)...0K (records=0/0)

Done. Exported 8304 of total 8304 records

Exporting index info...

- Index dictionary...0K

OK (1 indexes)

Exporting manual indexes content...

- Exporting index dictionary ...OK (entries=0)
OK (1 manual indexes)

Database export completed in 1913ms

Re-import the exported database using OrientDB 1.4.x:

$ cd $ORIENTDB_HOME/bin

$./console.sh

OrientDB console v.1.3.0 - www.orientechnologies.com
Type 'help' to display all the commands supported.

orientdb> CREATE DATABASE local:../databases/newmydb admin admin local

Creating database [local:../databases/newmydb] using the storage type [local]...
Database created successfully.

Current database is: local:../databases/newmydb

orientdb> IMPORT DATABASE /temp/export.json.gz
Importing database database /temp/export.json.gz...

Started import of database 'local:../databases/newmydb' from /temp/export.json.gz...
Importing database info...OK

Importing clusters...

Creating cluster 'internal'...OK, assigned id=0
Creating cluster 'default'...OK, assigned id=3

Creating cluster 'orole'...OK, assigned id=4

Creating cluster 'ouser'...OK, assigned id=5

Creating cluster 'ofunction'...OK, assigned id=6
Creating cluster 'oschedule'...OK, assigned id=7
Creating cluster 'orids'...OK, assigned id=8

Creating cluster 'v'...OK, assigned id=9

Creating cluster 'e'...OK, assigned id=10

Creating cluster 'followed_by'...OK, assigned id=11
Creating cluster 'sung_by'...OK, assigned id=12
Creating cluster 'written_by'...OK, assigned id=13
Creating cluster 'testmodel'...OK, assigned id=14
Creating cluster 'vertexwithmandatoryfields'...OK, assigned id=15
Creating cluster 'artist'...OK, assigned id=16

Creating cluster 'album'...OK, assigned id=17

Creating cluster 'track'...OK, assigned id=18

Creating cluster 'sing'...OK, assigned id=19

Creating cluster 'has'...OK, assigned id=20

Creating cluster 'person'...OK, assigned id=21

Creating cluster 'restaurant'...OK, assigned id=22
Creating cluster 'eat'...OK, assigned id=23

Done. Imported 22 clusters

Importing database schema...OK (23 classes)

Importing records...

- Imported records into cluster 'internal' (id=0): 3 records
- Imported records into cluster 'orole' (id=4): 3 records
- Imported records into cluster 'ouser' (id=5): 3 records

- Imported records into cluster 'internal' (id=0): 1 records

- Imported records into cluster 'v' (id=9): 809 records

- Imported records into cluster 'followed_by' (id=11): 7047 records

- Imported records into cluster 'sung_by' (id=12): 2 records

- Imported records into cluster 'written_by' (id=13): 1 records

- Imported records into cluster 'testmodel' (id=14): 2 records

- Imported records into cluster 'vertexwithmandatoryfields' (id=15): 1 records
- Imported records into cluster 'person' (id=21): 2 records

Done. Imported 7874 records

Importing indexes ...

- Index 'dictionary'...OK

Done. Created 1 indexes.

Importing manual index entries...

- Index 'dictionary'...OK (O entries)
Done. Imported 1 indexes.

Delete temporary records...OK (O records)

Database import completed in 2383 ms
orientdb>

Your new database will be created under "../databases/newmydb" directory.

Backup & Restore

OrientDB supports back and and restore operations, like any database management system.

The Backup DATABASE command executes a comp lete backup on the currently open database. It compresses the backup the backup

using the ZIP algorithm. To restore the database from the subsequent .zip file, you can use the RESTORE DATABASE command.

Backups and restores are much faster than the ExPorT pDATABASE and IMPORT DATABASE commands. You can also automate backups
using the Automatic Backup server plugin. Additionally, beginning with version 2.2 of Enterprise Edition OrientDB introduces major
support for incremental backups.

Backups versus Exports

During backups, the Backup pATABASE command produces a consistent copy of the database. During this process, the database locks all
write op erations, waiting for the backup to finish. If you need perform reads and writes on the database during backups, set up a
distributed cluster of nodes.

By contrast, the ExporT pDATABASE command doesn't lock the database, allowing concurrent writes to occur during the export process.

Consequentially, the export may include changes made after you initiated the export, which may result in inconsistencies.

Using the Backup Script

Beginning in version 1.7.8, OrientDB introduces a backup.sh script found in the $ORIENTDB_HOME/bin directory. This script allows

you to initiate backups from the system console.

Syntax

./backup.sh <db-url> <user> <password> <destination> [<type>]

e <db-url> Defines the URL for the database to back up.
e <user> Defines the user to run the backup.
e <password> Defines the password for the user.
e <destination> Defines the path to the backup file the script creates, (use the .zip extension).
e <type> Defines the backup type. Supported types:
o default Locks the database during the backup.

o 1vm Executes an LVM copy-on-write snapshot in the background.
Examples

e Backup a database opened using plocal :

$ S$ORIENTDB HOME/bin/backup.sh plocal:../database/testdb \
admin adminpasswd \

/path/to/backup.zip

e Perform a non-blocking LVM backup, using plocal :

$ $ORIENTDB_HOME/bin/backup.sh plocal:../database/testdb \
admin adminpasswd \
/path/to/backup.zip \

1lvm

e Perform a non-blocking LVM backup, using a remote database hosted at localhost :

$ $ORIENTDB_HOME/bin/backup.sh remote:localhost/testdb \

root rootpasswd \
/path/to/backup.zip \

1lvm

e Perform a backup using the OrientDB Console with the BAckup command:

orientdb> CONNECT PLOCAL:../database/testdb/ admin adminpasswd

orientdb> BACKUP DATABASE /path/to/backup.zip

Backup executed in 0.52 seconds.

NOTE Non-blocking backups require that the operating system support LVM. For more information, see

e VM
e File system snapshots with LVM
e LVM snapshot backup

Restoring Databases

Once you have created your backup.zip file, you can restore it to the database either through the OrientDB Console, using the

RESTORE DATABASE command.
orientdb> RESTORE DATABASE /backups/mydb.zip

Restore executed in 6.33 seconds

Bear in mind that OrientDB does not support merging during restores. If you need to merge the old data with new writes, instead use

EXPORT DATABASE and IMPORT DATABASE commands, instead.
For more information, see

® BACKUP DATABASE
® RESTORE DATABASE
® EXPORT DATABASE
® IMPORT DATABASE

Console Commands

http://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29
http://arstechnica.com/information-technology/2004/10/linux-20041013/
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html

Export and Import

OrientDB supports export and import operations, like any database management system.

The ExporT DATABASE command exports the current opened database into a file. The exported file is in the Export JSON format. By

default, it compresses the file using the GZIP algorithm.

Using exports with the IMPORT DATABASE command, you can migrate the database between different releases of OrientDB without

losing data. When doing this, if you receive an error relating to the database version, export the database using the same version of

OrientDB on which you created the database.

orientdb>

Exporting

Exporting
Exporting
Exporting
Exporting

Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting
Exporting

cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster
cluster

EXPORT DATABASE /temp/petshop.export

current database to: /temp/petshop.export...

database info...OK
dictionary...0K
schema. . .0K
clusters...

'metadata'’ (records=11) -> oK
'index' (records=0) -> OK
'default' (records=779) -> OK
'csv' (records=1000) -> OK
'binary' (records=1001) -> OK
'person' (records=7) -> OK
'animal' (records=5) -> OK
'animalrace' (records=0) -> OK
'animaltype' (records=1) -> OK
'orderitem' (records=0) -> OK
'order' (records=0) -> OK
'city' (records=3) -> OK

Export of database completed.

Exports versus Backups

Exports don't lock the database. Instead, they browse the contents. This means that OrientDB can execute concurrent operations during

the export, but the exported database may not be an exact replica from the time when you issued the command. If you need a database

snapshot, use backups.

The Backur pATABASE command does create a consistent copy of the database, but it locks the database. During the backup, the

database remains in read-only mode, all concurrent write operations are blocked until the backup finishes. In the event that you need a

database snapshot and the ability to perform read/write op erations during the backup, set up a distributed cluster of nodes.

NOTE: Even though the export file is 100% JSON, there are some constraints in the JSON format, where the field order must be

kept. M odifying the file to adjust the indentation may make the file unusable in database imports.

Importing Databases

Once you have exported your database, you can import it using the IMPORT DATABASE command.

orientdb> IMPORT DATABASE /temp/petshop.export -preserveClusterIDs=true

Importing records...

Imported records into the cluster 'internal': 5 records
Imported records into the cluster 'index': 4 records
Imported records into the cluster 'default': 1022 records
Imported records into the cluster 'orole': 3 records
Imported records into the cluster 'ouser': 3 records
Imported records into the cluster 'csv': 100 records
Imported records into the cluster 'binary': 101 records
Imported records into the cluster 'account': 1005 records
Imported records into the cluster 'company': 9 records
Imported records into the cluster 'profile': 9 records
Imported records into the cluster 'whiz': 1000 records
Imported records into the cluster 'address': 164 records
Imported records into the cluster 'city': 55 records
Imported records into the cluster 'country': 55 records
Imported records into the cluster 'animalrace': 3 records
Imported records into the cluster 'ographvertex': 102 records
Imported records into the cluster 'ographedge': 101 records
Imported records into the cluster 'graphcar': 1 records

For more information, see

e JSON Export Format
® RESTORE DATABASE
® EXPORT DATABASE
® IMPORT DATABASE

Console Commands

L]

Export Format

When you run the ExporT pATABASE command, OrientDB exports the database into a zipped file using a special JSON format. When

you run the 1vpoRT DATABASE command, OrientDB unzips the file and parses the JSON, making the import.

Sections

Export files for OrientDB use the following sections. Note that while the export format is 100% JSON, there are some constraints in the
format, where the field order must be kept. Additionally, modifying the file to adjust the indentation (as has been done in the examples

below), may make it unusable in database imports.

Info Section

The first section contains the resuming database information as well as all versions used during the export. OrientDB uses this

information to check for compatibility during the import.

"info": {
"name": "demo",
"default-cluster-id": 2,
"exporter-format": 2,
"engine-version": "1.7-SNAPSHOT",
"storage-config-version": 2,
"'schema-version": 4,
"mvrbtree-version":

}
Parameter Description JSON Type
"'name" Defines the name of the database. String
"default-cluster-id" Defines the Cluster ID to use by default. Range: 0-32,762. Integer
"exporter-format" Defines the version of the database exporter. Integer
"engine-version" Defines the version of OrientDB. String
"'storage-version" Defines the version of the Storage layer. Integer
"schema-version" Defines the version of the schema exporter. Integer
"mvrbtree-version” Defines the version of the M VRB-Tree. Integer

Clusters Section

This section defines the database structure in clusters. It is formed from a list with an entry for each cluster in the database.

"clusters": [
{"name": "internal", "id": 0, "type": "PHYSICAL"},
{"name": "index", "id": 1, "type": "PHYSICAL"},

{"name": "default", "id": 2, "type": "PHYSICAL"}
]
Parameter Description JSON Type
"name" Defines the logical name of the cluster. String
"id" Defines the Cluster ID. Range: 0-32, 767. Integer
"type" Defines the cluster type: PHYSICAL , LOGICAL and MEMORY . String

Schema Section

This section defines the database schema as classes and properties.

"schema": {
"version": 7
"classes": [
{"name": "Account", "default-cluster-id": 9, "cluster-ids": [9],
"properties": [
{"name": "binary", "type": "BINARY", "mandatory": , "not-null": }
{"name": "birthDate", "type": "DATE", "mandatory": , "not-null": }
{"name": "id", "type": "INTEGER", "mandatory": , "not-null": }
1
}
1
3
Parameter Description JSON Type
"version" Defines the version of the record storing the schema. Range: 0-2,147,483,647. Integer
"classes" Defines a list of entries for each class in the schema. Array

Parameters for the Classes Subsection:

Parameter Description JSON Type
"name" Defines the logical name of the class. String
"default- Defines the default Cluster ID for the class. It represents the cluster that stores the Integer

cluster-id" class records. g
weluster-ids" Defines an array of Cluster ID's that store the class records. The first ID is always the Array of
default Cluster ID. Integers
"properties" Defines a list of entries for each property for the class in the schema. Array

Parameters for the Properties Sub-subsection:

Parameter Description JSON Type
"'name" Defines the logical name of the property. String
"type" Defines the property type. String
"mandatory" Defines whether the property is mandatory. Boolean
"not-null" Defines whether the property accepts a NuLL value. Boolean

Records Section

This section defines the exported record with metadata and fields. Entries for metadata are distinguished from fields by the @ symbol.

"records": [
{"@type": "d", "@rid": "#12:476", "@version": 0, "@class": "Account",
"account_id": ,
"date": "2011-12-09 00:00:00:0000",
"@fieldTypes": ["account_id=i", "date=t"]

i

{"@type": "d", "@rid": "#12:477", "@version": 0, "@class": "Whiz",
"id": ,
"date": "2011-12-09 00:00:00:000",
"text": "He in office return He inside electronics for $500,000 Jay",
"@fieldTypes": "date=t"

3

Parameters for Metadata

Parameter Description
"@type" Defines the record-type: d for Document, b for Binary.
"@rid" Defines the Record ID, using the format: <cluster-id>:<cluster-position> .
"@version" Defines the record version. Range: 0-2, 147, 483, 647.
"@class" Defines the logical class name for the record.
"@fieldTypes" Defines an array of the types for each field in this record.
Supported Field Types
Value
1 Long
f Float
d Double
s Short
t Datetime
d Date
c Decimal
b Byte

Full Example

{

"info":{
"name": "demo",
"default-cluster-id": 2,
"exporter-version": 2,
"engine-version": "1.0rc8-SNAPSHOT",
"storage-config-version": 2,
"'schema-version": 4,
"mvrbtree-version": 0

1y

"clusters": [
{"name": "internal", "id": 0, "type": "PHYSICAL"},
{"name": "index", "id": 1, "type": "PHYSICAL"},
{"name": "default", "id": 2, "type": "PHYSICAL"},
{"name": "orole", "id": 3, "type": "PHYSICAL"},
{"name": "ouser", "id": 4, "type": "PHYSICAL"},
{"name": "orids", "id": 5, "type": "PHYSICAL"},
{"name": "csv", "id": 6, "type": "PHYSICAL"},
{"name": "binary", "id": 8, "type": "PHYSICAL"},
{"name": "account", "id": 9, "type": "PHYSICAL"},
{"name": "company", "id": 10, "type": "PHYSICAL"},
{"name": "profile", "id": 11, "type": "PHYSICAL"},
{"name": "whiz", "id": 12, "type": "PHYSICAL"},
{"name": "address", "id": 13, "type": "PHYSICAL"},
{"name": "city", "id": 14, "type": "PHYSICAL"},
{"name": "country", "id": 15, "type": "PHYSICAL"},
{"name": "dummy", "id": 16, "type": "PHYSICAL"},
{"name": "ographvertex", "id": 26, "type": "PHYSICAL"},
{"name": "ographedge", "id": 27, "type": "PHYSICAL"},
{"name": "graphvehicle", "id": 28, "type": "PHYSICAL"},
{"name": "graphcar", "id": 29, "type": "PHYSICAL"},
{"name": "graphmotocycle", "id": 30, "type": "PHYSICAL"},
{"name": "newv", "id": 31, "type": "PHYSICAL"},
{"name": "mappoint", "id": 33, "type": "PHYSICAL"},
{"name": "person", "id": 35, "type": "PHYSICAL"},
{"name": "order", "id": 36, "type": "PHYSICAL"},
{"name": "post", "id": 37, "type": "PHYSICAL"},

{"name":

"comment", "id": 38, "type": "PHYSICAL"}

JSON Type
String
String
Integer
String

Any

Export format

]!
"schema": {
"version": 210,
"classes": [
{"name": "Account", "default-cluster-id": 9, "cluster-ids": [9],
"properties": [
{"name": "binary", "type": "BINARY", "mandatory": false, "not-null": false},
{"name": "birthDate", "type": "DATE", "mandatory": false, "not-null": false},
{"name": "id", "type": "INTEGER", "mandatory": false, "not-null": false}

]
}
{"name": "Address", "default-cluster-id": 13, "cluster-ids": [13]
By
{"name": "Animal", "default-cluster-id": 17, "cluster-ids": [17]
By
{"name": "AnimalRace", "default-cluster-id": 18, "cluster-ids": [18]
By
{"name": "COMMENT", "default-cluster-id": 38, "cluster-ids": [38]
3
{"name": "City", "default-cluster-id": 14, "cluster-ids": [14]
By

{"name": "Company", "default-cluster-id": 10, "cluster-ids": [10], "super-class": "Account",
"properties": [

]
by
{"name": "Country", "default-cluster-id": 15, "cluster-ids": [15]
by
{"name": "Dummy", "default-cluster-id": 16, "cluster-ids": [16]
By

{"name": "GraphCar", "default-cluster-id": 29, "cluster-ids": [29], "super-class": "GraphVehicle",
"properties": [
]
}
{"name": "GraphMotocycle", "default-cluster-id": 30, "cluster-ids": [30], "super-class": "Graphvehicle",
"properties": [
]
iy
{"name": "Graphvehicle", "default-cluster-id": 28, "cluster-ids": [28], "super-class": "OGraphvertex",
"properties": [
]
}
"name": "MapPoint", "default-cluster-id": 33, "cluster-ids": [33],
p
"properties": [
{"name": "x", "type": "DOUBLE", "mandatory": false, "not-null": false},
{"name": "y", "type": "DOUBLE", "mandatory": false, "not-null": false}
]
}
{"name": "OGraphEdge", "default-cluster-id": 27, "cluster-ids": [27], "short-name": "E",
"properties": [
{"name": "in", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "OGraphVertex"},
{"name": "out", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "OGraphVertex"}
]
1y
{"name": "OGraphVertex", "default-cluster-id": 26, "cluster-ids": [26], "short-name": "V",
"properties": [
{"name": "in", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "OGraphEdge"},
{"name": "out", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "OGraphEdge"}
]
}
{"name": "ORIDs", "default-cluster-id": 5, "cluster-ids": [5]
1y
{"name": "ORole", "default-cluster-id": 3, "cluster-ids": [3],
"properties": [
{"name": "mode", "type": "BYTE", "mandatory": false, "not-null": false},
{"name": "name", "type": "STRING", "mandatory": true, "not-null": true},
{"name": "rules", "type": "EMBEDDEDMAP", "mandatory": false, "not-null": false, "linked-type": "BYTE"}
]
}
" : , - -id": 4, -1 : ,
{"name": "OUser", "default-cluster-id": 4, "cluster-ids": [4]
"properties": [
{"name": "name", "type": "STRING", "mandatory": true, "not-null": true},
{"name": "password", "type": "STRING", "mandatory": true, "not-null": true},
{"name": "roles", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "ORole"}
]
iy

{"name": "Order", "default-cluster-id": 36, "cluster-ids": [36]

186

Export format

}!
{"name": "POST", "default-cluster-id": 37, "cluster-ids": [37],
"properties": [
{"name": "comments", "type": "LINKSET", "mandatory": false, "not-null": false, "linked-class": "COMMENT"}
1
}!
{"name": "Person", "default-cluster-id": 35, "cluster-ids": [35]
1y
{"name": "Person2", "default-cluster-id": 22, "cluster-ids": [22],
"properties": [
{"name": "age", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "firstName", "type": "STRING", "mandatory": false, "not-null": false},
{"name": "lastName", "type": "STRING", "mandatory": false, "not-null": false}
]
1y
{"name": "Profile", "default-cluster-id": 11, "cluster-ids": [11],
" i agl
properties": [
{"name": "hash", "type": "LONG", "mandatory": false, "not-null": false},
{"name": "lastAccessOn", "type": "DATETIME", "mandatory": false, "not-null": false, "min": "2010-01-01 00:00:00"},
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false, "min": "3", "max": "30"},
{"name": "nick", "type": "STRING", "mandatory": false, "not-null": false, "min": "3", "max": "30"},
{"name": "photo", "type": "TRANSIENT", "mandatory": false, "not-null": false},
{"name": "registeredon", "type": "DATETIME", "mandatory": false, "not-null": false, "min": "2010-01-01 00:00:00"},
{"name": "surname", "type": "STRING", "mandatory": false, "not-null": false, "min": "3", "max": "30"}
]
iy
{"name": "PropertyIndexTestClass", "default-cluster-id": 21, "cluster-ids": [21],
" ol
properties": [
{"name": "propl", "type": "STRING", "mandatory": false, "not-null": false},
{"name": "prop2", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "prop3", "type": "BOOLEAN", "mandatory": false, "not-null": false},
{"name": "prop4", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "prop5", "type": "STRING", "mandatory": false, "not-null": false}
]
1y
{"name": "SQLDropIndexTestClass", "default-cluster-id": 23, "cluster-ids": [23],
" i ol
properties": [
{"name": "prop1", "type": "DOUBLE", "mandatory": false, "not-null": false},
{"name": "prop2", "type": "INTEGER", "mandatory": false, "not-null": false}
]
}
{"name": "SQLSelectCompositeIndexDirectSearchTestClass", "default-cluster-id": 24, "cluster-ids": [24],
"properties": [
{"name": "propl", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "prop2", "type": "INTEGER", "mandatory": false, "not-null": false}
]
+
{"name": "TestClass", "default-cluster-id": 19, "cluster-ids": [19],
"properties": [
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false},
{"name": "testLink", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "TestLinkClass"}
]
}
{"name": "TestLinkClass", "default-cluster-id": 20, "cluster-ids": [20],
"properties": [
{"name": "testBoolean", "type": "BOOLEAN", "mandatory": false, "not-null": false},
{"name": "testString", "type": "STRING", "mandatory": false, "not-null": false}
]
1y
{"name": "whiz", "default-cluster-id": 12, "cluster-ids": [12],
"properties": [
{"name": "account", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "Account"},
{"name": "date", "type": "DATE", "mandatory": false, "not-null": false, "min": "2010-01-01"},
{"name": "id", "type": "INTEGER", "mandatory": false, "not-null": false},
{"name": "replyTo", "type": "LINK", "mandatory": false, "not-null": false, "linked-class": "Account"},
{"name": "text", "type": "STRING", "mandatory": true, "not-null": false, "min": "1", "max": "140"}
]
}
{"name": "classclassIndexManagerTestClassTwo", "default-cluster-id": 25, "cluster-ids": [25]
iy
{"name": "newV", "default-cluster-id": 31, "cluster-ids": [31], "super-class": "OGraphvertex",
"properties": [
{"name": "f_int", "type": "INTEGER", "mandatory": false, "not-null": false}
]
iy

{"name": "vertexA", "default-cluster-id": 32, "cluster-ids": [32], "super-class": "OGraphVertex",

187

Export format

"properties": [
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false}
1
}!
{"name": "vertexB", "default-cluster-id": 34, "cluster-ids": [34], "super-class": "OGraphvertex",
"properties": [
{"name": "map", "type": "EMBEDDEDMAP", "mandatory": false, "not-null": false},
{"name": "name", "type": "STRING", "mandatory": false, "not-null": false}

]

1y

"records": [{
"@type": "d", "@rid": "#12:476", "@version": 0, "@class": "Whiz",
"id": 476,
"date": "2011-12-09 00:00:00:000",
"text": "Los a went chip, of was returning cover, In the",
"@fieldTypes": "date=t"

3o

"@type": "d", "@rid": "#12:477", "@version": 0, "@class": "Whiz",
"id": 477,
"date": "2011-12-09 00:00:00:000",
"text": "He in office return He inside electronics for $500,000 Jay",
"@fieldTypes": "date=t"

188

Import from RDBMS

NOTE: As of OrientDB 2.0, you can use the OrientDB-ETL module to import data from an RDBMS. You can use ETL also with 1.7.x by

installing it as a separate module.

OrientDB supports a subset of SQL, so importing a database created as "Relational" is straightforward. For the sake of simplicity,

consider your Relational database having just these two tables:

e POST
e COMMENT

Where the relationship is between Post and comment as One-2-M any.

TABLE POST:

dboooodboooooooooooooooo +
| id | title |
Doocofroccooocosoooocos +

| 10 | NoSQL movement |
| 20 | New OrientDB |
R CET T +

TABLE COMMENT:

s O oo +
| id | postId | text

R CEEEEE oo +
| @ 10 | First

| 12| 10 | Second

| 22 | 10 | Another

| 410 | 20 | First again

| 82 | 20 | Second Again |
s CEETEE Fommmee +

e Import using the Document M odel (relationships as links)

e Import using the Graph Model (relationships as edges)

https://github.com/orientechnologies/orientdb-etl/wiki/Import-from-DBMS

Import from a Relational Database

Relational databases typically query and manipulate data with SQL. Given that OrientDB supports a subset of SQL, it is relatively
straightfoward to import data from a Relational databases to OrientDB. You can manage imports using the Java API, OrientDB Studio

or the OrientDB Console. The examples below use the Console.

This guide covers importing into the Document M odel. Beginning with version 2.0, you can import into the Graph M odel using

the ETL Module. From version 1.7.x you can still use ETL by installing it as a separate module

For these examples, assume that your Relational database, (referred to as reldb in the code), contains two tables: Post and

comment . The relationship between these tables is one-to-many.

reldb> SELECT * FROM post;

| 10 | NoSQL movement |
| 20 | New OrientDB |

[R Sy, Yy, +

id | postId | text |
[SRR U, Y, +
©	10	First
1	10	Second
21	10	Another
41	20	First again
82	20	Second Again
[SRS SRR, Yy, +

Given that the Relational M odel doesn't use concepts from Object Oriented Programming, there are some things to consider in the

transition from a Relational database to OrientDB.
e In Relational databases there is no concept of class, so in the import to OrientDB you need to create on class per table.

e In Relational databases, one-to-many references invert from the target table to the source table.

Table POST <- (foreign key) Table COMMENT

In OrientDB, it follows the Object Oriented M odel, so you have a collection of links connecting instances of Post and Comment .

Class POST ->* (collection of links) Class COMMENT

Exporting Relational Databases

Most Relational database management systems provide a way to export the database into SQL format. What you specifically need from

this is a text file that contains the SQL 1INsSERT commands to recreate the database from scratch. For example,

e MySQL: the mysqldump utility.
e Oracle Database: the Datapump utilities.

e Microsoft SQL Server: the Import and Export Wizard.

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
http://www.orafaq.com/wiki/Data_Pump
https://msdn.microsoft.com/en-us/library/ms141209.aspx

When you run this utility on the example database, it produces an .sql file that contains the exported SQL of the Relational database.

DROP TABLE IF EXISTS post;
CREATE TABLE post (

id (11) NOT AUTO_INCREMENT,
title (Vo

PRIMARY KEY (id)

)i

DROP TABLE IF EXISTS comment;
CREATE TABLE comment (
id (11) NOT AUTO_INCREMENT,
postId (11),
'
PRIMARY KEY (id),
CONSTRAINT “fk_comments®
FOREIGN KEY (postId’)
REFERENCES “post™ (“id")
)

INSERT INTO POST (id, title) VALUES(10, 'NoSQL movement');
INSERT INTO POST (id, title) VALUES(20, 'New OrientDB');

INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,
INSERT INTO COMMENT (id, postId,

VALUES(©, 10, 'First');

VALUES(1, , 'Second');
VALUES(5 , 'Another');
VALUES(, , 'First again');
VALUES(, , 'Second Again');

—_—— — — —

Modifying the Export File

Importing from the Relational database requires that you modify the SQL file to make it usable by OrientDB. In order to do this, you
need to open the SQL file, (called export.sql below), in a text editor and modify the commands there. Once this is done, you can

execute the file on the Console using batch mode.

Database

In order to import a data into OrientDB, you need to have a database ready to receive the import. Note that the example export.sql

file doesn't include statements to create the database. You can either create a new database or use an existing one.

Using New Databases

In creating a database for the import, you can either create a volatile in-memory database, (one that is only available while OrientDB is
running), or you can create a persistent disk-based database. For a persistent database, you can create it on a remote server or locally
through the PLocal mode.

The recommended method is PLocal, given that it offers better performance on massive inserts.

e Using the embedded Plocal mode:

$ vim export.sql

CREATE DATABASE PLOCAL:/tmp/db/blog admin_user admin_passwd PLOCAL DOCUMENT

Here, the crReATE DATABASE command creates a new database at /tmp/db/blog .

e Using the Remote mode:

$ vim export.sql

CREATE DATABASE REMOTE:localhost/blog root_user dkdf383dhdsj PLOCAL DOCUMENT

This creates a database at the URL http://localhost/blog .

NOTE: When you create remote databases, you need the server credentials to access it. The user root and its password are
stored in the $ORIENTDB HOME/config/orientdb-server-config.xml configuration file.
Using Existing Databases

In the event that you already have a database set up and ready for the import, instead of creating a database add a line that connects to

that databases, using the connecT command.

e Using the embedded PLocal mode:

$ vim export.sh

CONNECT PLOCAL:/tmp/db/blog admin_user admin_passwd

This connects to the database at /tmp/db/blog .

e Using the Remote mode:

$ vim export.sql

CONNECT REMOTE:localhost/blog admin_user admin_passwd
This connects to the database at the URL http://localhost/blog .

Declaring Intent

In the SQL file, after you create or connect to the database, you need to declare your intention to perform a massive insert. Intents allow

you to utilize automatic tuning OrientDB for maximum performance on particular op erations, such as large inserts or reads.

$ vim export.sh

DECLARE INTENT MASSIVEINSERT

Creating Classes

Relational databases have no parallel to concepts in Object Oriented programming, such as classes. Conversely, OrientDB doesn't have a

concept of tables in the Relational sense.

Modify the SQL file, changing CREATE TABLE statements to CREATE CLASS commands:

$ vim export.sql

CREATE CLASS Post
CREATE CLASS Comment

NOTE: In cases where your Relational database was created using Object Relational Mapping, or ORM, tools, such as Hibernate

or Data Nucleus, you have to rebuild the original Object Oriented Structure directly in OrientDB.

Create Links

In the Relational database, the relationship between the post and comment was handled through foreign keys on the id fields.

OrientDB handles relationships differently, using links between two or more records of the Document type.

By default, the creaTE LINk command creates a direct relationship in your object model. Navigation goes from Post to Comment and
not vice versa, which is the case for the Relational database. You'll need to use the inverse keyword to make the links work in both

directions.

Add the following line after the INSERT statements.

http://www.hibernate.org
http://www.datanucleus.org

$ vim export.sql

CREATE LINK comments TYPE LINKSET FROM comment.postId TO post.id INVERSE

Remove Constraints

Unlike how Relational databases handle tables, OrientDB does not require you to create a strict schema on your classes. The properties
on each class are defined through the 1nserT statements. That is, id and title on Post and id , postId and text on

Comment .

Given that you created a link in the above section, the property postid is no longer necessary. Instead of modifying each 1nNSERT

statement, you can use the uppATE command to remove them at the end:
$ vim export.sql
UPDATE comment REMOVE postId

Bear in mind, this is an optional step. The database will still function if you leave this field in place.

Expected Output

When you've finished, remove any statements that OrientDB does not support. With the changes above this leaves you with a file

similar to the one below:
$ cat export.sql
CONNECT plocal:/tmp/db/blog admin admin
DECLARE INTENT MASSIVEINSERT

CREATE CLASS Post
CREATE CLASS Comment

INSERT INTO Post (id, title) VALUES(10, 'NoSQL movement')
INSERT INTO Post (id, title) VALUES(20, 'New OrientDB')

INSERT INTO Comment (id, postId, text) VALUES(0, 10, 'First')

INSERT INTO Comment (id, postId, text) VALUES(1, 10, 'Second')

INSERT INTO Comment (id, postId, text) VALUES(21, 10, 'Another')
INSERT INTO Comment (id, postId, text) VALUES(41, 20, 'First again')
INSERT INTO Comment (id, postId, text) VALUES(82, 20, 'Second Again')

CREATE LINK comments TYPE LINKSET FROM Comment.postId TO Post.id INVERSE
UPDATE Comment REMOVE postId

Importing Databases

When you finish modifying the SQL file, you can execute it through the Console in batch mode. This is done by starting the Console
with the SQL file given as the first argument.

$ SORIENTDB_HOME/bin/console.sh export.sql

When the OrientDB starts, it executes each of the commands given in the SQL files, creating or connecting to the database, creating the

classes and inserting the data from the Relational database. You now have a working instance of OrientDB to use.

Using the Database

You now have an OrientDB Document database where relationships are direct and handled without the use of joins.

e Query for all posts with comments:

orientdb> SELECT FROM Post WHERE comments.size() >

e Query for all posts where the comments contain the word "flame" in the text property:

orientdb> SELECT FROM Post WHERE comments CONTAINS(

LIKE '%flame%')

e Query for all posts with comments made today, assuming that you have added a date property to the comment class:

orientdb> SELECT FROM Post WHERE comments CONTAINS(>

'2011-04-14 00:00:00")

For more information, see

e SQL commands

e Console-Commands

Import from RDBMS to Graph Model

To import from RDBMS to OrientDB using the Graph M odel the ETL tool is the suggested way to do it. Take a look at: Import from
CSV to a Graph.

http://www.orientechnologies.com/docs/last/orientdb-etl.wiki/Import-from-CSV-to-a-Graph.html

Import from Neo4j
Neo4j is an open-source graph database that queries and manipulates data using its own Cypher Query Language and can export in

GraphML, an XM L-based file format for graphs. Given that OrientDB can read GraphML, it is relatively straightforward to import

data from Neo4j into OrientDB. You can manage the imports using the Console or the Java API.

Neodj is a registered trademark of Neo Technology, Inc. For more information on the differences between Neo4j and OrientDB,

see OrientDB vs. Neo4;.

Exporting GraphML

In order to export data from Neo4j into GraphM L, you need to install the Neo4j Shell Tools plugin. Once you have this package

installed, you can use the export-graphml utility to export the database.

1. Change into the Neo4j home directory:

$ cd /path/to/neo4j-community-2.3.2

2. Download the Neo4j Shell Tools:

$ curl http://dist.neo4j.org/jexp/shell/neodj-shell-tools_2.3.2.zip \

-0 neo4j-shell-tools.zip

3. Unzip the neo4j-shell-tools.zip fileinto the 1ib directory:

$ unzip neodj-shell-tools.zip -d lib

4. Restart the Neo4j Server. In the event that it's not running, start it:

$./bin/neo4j restart

5. Once you have Neo4j restarted with the Neo4j Shell Tools, launch the Neo4j Shell tool, located in the bin/ directory:
$./bin/neo4j-shell
wWelcome to the Neo4j Shell! Enter 'help' for a list of commands

NOTE: Remote Neo4j graph database service 'shell' at port 1337

neo4j-sh (0)$

6. Export the database into GraphM L:
neo4j-sh (0)$ -graphml -t -o /tmp/out.graphml

Wrote to GraphML-file /tmp/out.graphml 0. 100%: nodes = 302 rels = 834
properties = 4221 time 59 sec total 59 sec

This exports the database to the path /tmp/out.graphml .

Importing GraphML

There are three methods available in importing the GraphM L file into OrientDB: through the Console, through Gremlin or through the
Java APIL

http://orientdb.com/orientdb-vs-neo4j/
https://github.com/jexp/neo4j-shell-tools
http://docs.neo4j.org/chunked/stable/shell.html

Importing through the OrientDB Console

For more recent versions of OrientDB, you can import data from GraphML through the OrientDB Console. If you have version 2.0 or

greater, this is the recommended method given that it can automatically translate the Neo4;j labels into classes.

1. Loginto the OrientDB Console.

$ SORIENTDB_HOME/bin/console.sh

2. In OrientDB, create a database to receive the import:
orientdb> CREATE DATABASE PLOCAL:/tmp/db/test
Creating database [plocal:/tmp/db/test] using the storage type [plocal]...

Database created successfully.

Current database is: plocal:/tmp/db/test

3. Import the data from the GraphML file:
orientdb {db=test}> IMPORT DATABASE /tmp/out.graphml

Importing GRAPHML database database from /tmp/out.graphml...
Transaction 8 has been committed in 12ms

This imports the Neo4j database into OrientDB on the test database.

Importing through the Gremlin Console

For older versions of OrientDB, you can import data from GraphM L through the Gremlin Console. If you have a version 1.7 or earlier,
this is the method to use. It is not recommended on more recent versions, given that it doesn't consider labels declared in Neo4;. In this
case, everything imports as the base vertex and edge classes, (that is, v and E). This means that, after imp orting through Gremlin

you need to refactor you graph elements to fit a more structured schema.
To import the GraphML file into OrientDB, comp lete the following steps:

1. Launch the Gremlin Console:
$ SORIENTDB HOME/bin/gremlin.sh

\III/
(o 0)

2. From the Gremlin Console, create a new graph, specifying the path to your Graph database, (here /tmp/db/test):

gremlin> g = new OrientGraph('"plocal:/tmp/db/test");
==>orientgraph[plocal:/db/test]

3. Load the GraphML file into the graph object (that is, g):

g remlin> g.loadGraphML("/tmp/out.graphml");
==>null

4. Exit the Gremlin Console:

gremlin> quit

This imports the GraphML file into your OrientDB database.

Importing through the Java AP1
OrientDB Console calls the Java API. Using the Java API directly allows you greater control over the import process. For instance,

new OGraphMLReader (new OrientGraph('plocal:/temp/bettergraph")).inputGraph("/temp/neo4j.graphml");
This line imports the GraphML file into OrientDB.

Defining Custom Strategies

Beginning in version 2.1, OrientDB allows you to modify the import process through custom strategies for vertex and edge attributes. It

supports the following strategies:

e com.orientechnologies.orient.graph.graphml.0IgnoreGraphMLImportStrategy Defines attributes to ignore.

® com.orientechnologies.orient.graph.graphml.ORenameGraphMLImportStrategy Defines attributes to rename.
Exammples

e Ignore the vertex attribute type :

new OGraphMLReader (new OrientGraph('"plocal:/temp/bettergraph")).defineVertexAttributeStrategy(" type ", new OIgnoreGrap
hMLImportStrategy()).inputGraph("/temp/neo4j.graphml");

e Ignore the edge attribute weight :

new OGraphMLReader (new OrientGraph("plocal:/temp/bettergraph")).defineEdgeAttributeStrategy("weight", new OIgnoreGraphMLI
mportStrategy()).inputGraph("/temp/neo4j.graphml");

e Rename the vertex attribute type injust type :

new OGraphMLReader (new OrientGraph("plocal:/temp/bettergraph")).defineVertexAttributeStrategy(" type ", new ORenameGrap
hMLImportStrategy("type")).inputGraph("/temp/neo4j.graphml™);

Import Tips and Tricks

Dealing with Memory Issues

In the event that you exp erience memory issues while attempting to import from Neo4j, you might consider reducing the batch size. By

default, the batch size is set to 10ee . Smaller value causes OrientDB to process the import in smaller units.

e Import with adjusted batch size through the Console:

orientdb {db=test}> IMPORT DATABASE /tmp/out.graphml batchSize=100

e Import with adjusted batch size through the Java API:

new OGraphMLReader (new OrientGraph("plocal:/temp/bettergraph")).setBatchSize() .inputGraph("/temp/neo4j.graphml");

Storing the Vertex ID's

By default, OrientDB updates the import to use its own ID's for vertices. If you want to preserve the original vertex ID's from Neo4j,

use the storevertexids option.

e Import with the original vertex ID's through the Console:

orientdb {db=test}> IMPORT DATABASE /tmp/out.graphml storeVertexIds=true

e Import with the original vertex ID's through the Java API:

new OGraphMLReader (new OrientGraph('"plocal:/temp/bettergraph")).setStoreVertexIds(true).inputGraph("/temp/neo4j.graphml™)

’

ETL

The Extractor Transformer and Loader, or ETL, module for OrientDB provides support for moving data to and from OrientDB

databases using ETL processes.

Configuration: The ETL module uses a configuration file, written in JSON.

Extractor Pulls data from the source database.

Transformers Convert the data in the pipeline from its source format to one accessible to the target database.

Loader loads the data into the target database.

How ETL Works

The ETL module receives a backup file from another database, it then converts the fields into an accessible format and loads it into
OrientDB.

EXTRACTOR => TRANSFORMERS[] => LOADER

For example, consider the process for a CSV file. Using the ETL module, OrientDB loads the file, applies whatever changes it needs,

then stores the reocrd as a document into the current OrientDB database.

frocoosasoooa frooccocooccsosososooconos focoococosos +
| | PIPELINE |
+ EXTRACTOR +-=---=-mmmmmmmmmmmaama Pooscocsasss +
| | TRANSFORMERS | LOADER |
frocoosasoooa froccocooccoososocooconos focoocccooos +
| FILE ==> CSV->FIELD->MERGE ==> OrientDB |
frocoosasoooa froccocooccoososocooconos focoocccooos +

You can modify this pipeline, allowing the transformation and loading phases to run in parallel by setting the configuration variable

"parallel" to true .

{"parallel": }

Installation

Beginning with version 2.0, OrientDB bundles the ETL module with the official release. Follow these steps to use the module:

Clone the repository on your computer, by executing:

O git clone https://github.com/orientechnologies/orientdb-etl.git

Compile the module, by executing:

o mvn clean install
e Copy script/oetl.sh (or.bat under Windows) to SORIENTDB_HOM E/bin
e Copy target/orientdb-etl-2.0-SNAPSHOT.jar to SORIENTDB_HOME/ib

Usage
To use the ETL module, run the oetl.sh script with the configuration file given as an argument.

$ $ORIENTDB_HOME/bin/oetl.sh config-dbpedia.json

http://en.wikipedia.org/wiki/Extract,_transform,_load

NOTE: If you are importing data for use in a distributed database, then you must set
ridBag.embeddedToSbtreeBonsaiThreshold=Integer.MAX_VALUE for the ETL process to avoid replication errors,
when the database is updated online.

Run-time Configuration

When you run the ETL module, you can define its configuration variables by passing it a JSON file, which the ETL module resolves at

run-time by passing them as it starts up.

You could also define the values for these variables through command-line options. For example, you could assign the database URL as

${databaseURL} , then pass the relevant argument through the command-line:

$ $ORIENTDB HOME/bin/ocetl.sh config-dbpedia.json \

-databaseURL=plocal:/tmp/mydb

When the ETL module initializes, it pulls /tmp/mydb from the command-line to define this variable in the configuration file.

Available Components

o Blocks

e Sources

e Extractors

e Transformers

o Loaders
Examples:

e Import the database of Beers
e Import from CSV to a Graph
e Import from JSON

e Import DBPedia

e Import froma DBMS

e Import from Parse (Facebook)

ETL - Configuration

OrientDB manages configuration for the ETL module through a single JSON configuration file, called at execution.

Syntax
{
"config": {
<name>: <value>
H
"begin": [

{ <block-name>: { <configuration> } }
1,
"source" : {
{ <source-name>: { <configuration> } }
H
"extractor" : {
{ <extractor-name>: { <configuration> } }

3
"transformers" : [
{ <transformer-name>: { <configuration> } }

1
"loader" : { <loader-name>: { <configuration> } },
"end": [
{ <block-name>: { <configuration> } }
]
}

e "config" Manages all settings and context variables used by any component of the process.
e "source" Manages the source data to process.

e "begin" Defines a list of blocks to execute in order when the process begins.

e "extractor" Manages the extractor settings.

e "transformers" Defines a list of transformers to execute in the pipeline.

e "loader" Manages the loader settings.

e "end" Defines alist of blocks to execute in order when the process finishes.

Example

"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"
H
"begin": [
{ "let": { "name": "$filePath", "value": "$fileDirectory.append($fileName)"} },
{ "let": { "name": "$className", "value": "$fileName.substring(0, $fileName.indexOf("."))"} }
1,
"source" : {
"file": { "path": "$filePath", "lock" : true }
1y
"extractor" : {
"row": {}
iy
"transformers" : [
{ "csv": { "separator": ",", "nullvalue": "NULL", "skipFrom": 1, "skipTo": 3 } }
{ "merge": { "joinFieldName":"URI", "lookup":"V.URI" } },
{ "vertex": { "class": "$className"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbuser": "admin",
"dbPassword": "admin",
"dbAutoCreate": true,
"tx": false,
"batchCommit": 1000,
"dbType": "graph",
"indexes": [{"class":"V", "fields":["URI:string"], "type":"UNIQUE" }]

General Rules

In developing a configuration file for ETL module processes, consider the following:

e You can use context variables by prefixing them with the $ sign.
e It assigns the s$input context variable before each transformation.

e You can execute an expression in OrientDB SQL with the ={<expression>} syntax. For instance,

"field": ={EVAL('3 * 5)}

Conditional Execution

In conditional execution, OrientDB only runs executable blocks, such as transformers and blocks, when a condition is found true, such as

with a wHERe clause.

For example,

{ "let": {
"name": "path"
"value": "C:/Temp",
"if": "${os.name} = 'Windows'"
}
i
{ "let": {
"name": "path"
"value": "/tmp",
"if": "${os.name}.index0f('nux')"
}
}

Log setting

Most blocks, such transformers and blocks, support the "log" setting. Logs take one of the following logging levels, (which are case-

insensitive),: NONE , ERROR , INFO , DEBUG . By default, it uses the 1nFo level.

Setting the log-level to DEBUG displays more information on execution. It also slows down execution, so use it only for development

and debugging purposes.

{ "http": {

"url": "http://ip.jsontest.com/",

"method": "GET",
"headers": {

"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9 4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.12

5 Safari/537.36"

i

"log": "DEBUG"

}
}

Configuration Variables

The ETL module binds all values declared in the "config" block to the execution context and are accessible to ETL processing. There

are also some special variables used by the ETL process.

Variable

"Iog"

"maxRetries"

"parallel"

"haltOnError"

Description

Defines the global logging level. The accepted levels are: NONE , ERROR , INFO ,
and DEBUG . This parameter is useful to debug a ETL process or single
component.

Defines the maximum number of retries allowed, in the event that the loader
raises an ONeedRetryException , for concurrent modification of the same record.

Defines whether the ETL module executes pipelines in parallel, using all available
cores.

Defines whether the ETL module halts the process when it encounters
unmanageable errors. When set to false , the process continues in the event of
errors. It reports the number of errors it encounters at the end of the import. This
feature was introduced in version 2.0.9.

Split Configuration on Multiple Files

Type

string

integer

boolean

boolean

Default
value

INFO

10

false

true

You can split the configuration into several files allowing for the composition of common parts such as paths, URL's and database

references.

For example, you might split the above configuration into two files: one with the input paths for person.csv specifically, while the

other would contain common configurations for the ETL module.

$ cat personConfig.json

{
"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"
3
3

$ cat commonConfig.json

"begin": [
{ "let": { "name": "$filePath", "value": "$fileDirectory.append($fileName)"} },
{ "let": { "name": "$className", "value": "$fileName.substring(0, $fileName.indexof("."))"} }

1

"source" : {
"file": { "path": "$filePath", "lock" : true }
iy
"extractor" : {
"row": {}
iy
"transformers" : [
{ "csv": { "separator": ",", "nullvalue": "NULL", "skipFrom": 1, "skipTo": 3 } }
{ "merge": { "joinFieldName":"URI", "lookup":"V.URI" } },
{ "vertex": { "class": "$className"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbuUser": "admin",
"dbPassword": "admin",

"dbAutoCreate": true,

"tx": false,

"batchCommit": 1000,

"dbType": "graph",

"indexes": [{"class":"V", "fields":["URI:string"], "type":"UNIQUE" }]

Then, when you can call both configuration files when you run the ETL module:

$ S$ORIENTDB_HOME/bin/oetl.sh commonConfig.json personConfig.json

Run-time configuration

In the configuration file for the ETL module, you can define variables that the module resolves at run-time by passing them as command-
line options. Values passed in this manner override the values defined in the "config" section, even when you use multiple

configuration files.

For instance, you might set the configuration variable in the file to ${databaseurL} , then define it through the command-line using:

$ $ORIENTDB_HOME/bin/oetl.sh config-dbpedia.json \

-databaseURL=plocal:/tmp/mydb

In this case, the databaseURL parameter is set in the "config" sectionto /tmp/mydb , overriding any value given the file.

Configuration

"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"
"databaseUrl": "plocal:/temp/currentDb"
1y

206

ETL - Blocks

When OrientDB executes the ETL module, blocks in the ETL configuration define components to execute in the process. The ETL
module in OrientDB supports the following types of blocks:

e 'let"
® 'code"

® 'console"

Let Blocks

Ina "let" block, you can define variables to the ETL process context.

e Component name: let

Syntax
s, Defaul
Parameter Description Type Mandatory elault
value
"hame" Dgﬁnes the Varlaple name. The ETL process ignores any values string yes
with the $ prefix.
"value" Defines the fixed value to assign. an
C— Defines. an expression in the OrientDB SQL language to evaluate string
and assign.
Examples

e Assign a value to the file path variable

{
"let": {
"name": "$filePath",
"value": "/temp/myfile"
}
}

e Concat the $fileName variable to the $fileDirectory to create a new variable for $filepath :

{
"let": {
"name": "$filePath",
"expression": "$fileDirectory.append($fileName)"
}
3

Code Block

In the "code" block, you can configure code snippets to execute in any JVM-supported languages. The default language is JavaScript.

e Component name: code

Syntax
Parameter Description Type Mandatory Default value
"language" Defines the programming language to use. string Javascript

"code" Defines the code to execute. string yes

Examples

e Executea Hello, world! program in JavaScript, through the ETL module:

{
"code": {
"language": "Javascript",
"code": "print('Hello World!');"
}
}

Console Block

Ina "console" block, you can define commands OrientDB executes through the Console.

e Component name: console

Syntax
L. Default
Parameter Description Type Mandatory
value
nEilen Defines the path to a file containing the commands you want string
to execute.
"commands” Defines an array of commands, as strings, to execute in string
sequence. array
Example

e Invoke the console with a file containing the commands:

"console": {
"file": "/temp/commands.sqgl"

e Invoke the console with an array of commands:

"console": {
"commands": [
"CONNECT plocal:/temp/db/mydb admin admin",
"INSERT INTO Account set name = 'Luca'"

ETL - Sources

When OrientDB executes the ETL module, source components define the source of the data you want to extract. In the case of some
extractors like JDBCExtractor work without source, making this component optional. The ETL module in OrientDB supports the

following types of sources:

e '"file"
® '"input"
® 'http"

File Sources

In the file source component, the variables represent a source file containing the data you want the ETL module to read. You can use text

files or files comprssed to tar.gz .

e Component name: file

Syntax
Parameter Description Type Mandatory Default value
"path" Defines the path to the file string yes
"lock" Defines whether to lock the file during the extraction phase. boolean false
"encoding” Defines the encoding for the file. string UTF-8
Examples

e Extract data from the file at /tmp/actor.tar.gz :

{
"file": {
"path": "/tmp/actor.tar.gz",
"lock" : ,
"encoding" : "UTF-8"
}
}

Input Sources

In the input source component, the ETL module extracts data from console input. You may find this useful in cases where the ETL

module operates in a pipe with other tools.
e Component name: input

Syntax

oetl.sh "<input>"

Example

e C(Cat afile, pipingits output into the ETL module:

$ cat /etc/csv | $ORIENTDB_HOME/bin/oetl.sh \

"{transformers:[{csv:{}}]1}"

HTTP Sources

In the HTTP source component, the ETL module extracts data from an HT TP address as source.

e Component name: http

Syntax
Parameter Description
"url" Defines the URL to look to for source data.
Defines the HTTP method to use in extracting data. Supported
"method" methods are: GET , POST , PUT , DELETE , HEAD , OPTIONS ,
and TRACE .
"headers" Defines the request headers as an inner document key /value.
Examples

e Execute an HTTP request in a GET , setting the user agent in the header:

"http": {
"url": "http://ip.jsontest.com/",
"method": "GET",
"headers": {

Type

string

string

document

Mandatory

yes

Default
value

GET

"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0

.1985.125 safari/537.36"
}

ETL - Extractors

When OrientDB executes the ETL module, extractor components handle data extraction from source. They are the first part of the ETL
process. The ETL module in OrientDB supports the following extractors:

e Row
o CSV
e JDBC

e JSON
e XML

Row Extractor

When the ETL module runs with a Row Extractor, it extracts content row by row. It outputs a string array class.

e Compnent name: row

e Output Class: [string]

Syntax
L Default
Parameter Description Type Mandatory
value
wpultiline" Defines whethgr thg process sup ports .rnultlhne. Useful with boolean P—
CSV's supporting linefeed inside of string.
"linefeed" Defines the linefeed to use in the event of multiline processing. string \ri\n

The "multiLine" and "linefeed" parameters were introduced in version 2.0.9.

Examples

e Use the row extractor with its default configuration:

"row": {}

CSV Extractor

When the ETL module runs the CSV Extractor, it parses a file formated to Apache Commons CSV and extracts the data into OrientDB.

This component was introduced in version 2.1.4 and is unavailable in older releases of OrientDB.

e Component name: csv

e OQOutput class: [obocument]

Syntax

https://commons.apache.org/proper/commons-csv

Default

Parameter Description Type Mandatory
value
"separator" Defines the column separator. char ,
"o lUmNSONFLrstLine® Defm.es whether the first line contains column boolean true
descriptors.
neolumns” Defines array for names and (optionally) types to string
write. array
"nullvalue" Defines the null value in the file. string NULL
" " X . . X . VYyy-mm-
dateFormat Defines the format to use in parsing dates from file. string dd
"quote" Defines string character delimiter. char !
"'skipFrom" Defines the line number you want to skip from. integer
"'skipTo" Defines the line number you want to skip to. integer
"ignoreEmptyLines" Defines whether it should ignore empty lines. boolean false
"predefinedFormat" Defines the CSV format you want to use. string

e Forthe "columns" parameter, specify the type by postfixing it to the value. Specifying types guarantees better performance.
e Forthe "predefinedFormat" parameter, the available formats are: pefault , Excel , MySQL , RFC4180 , TDF .
Examples
e Extract lines from CSV to the obocument class, using commas as the separator, considering nuLL as the null value and skipping

rows two through four:

{ "csv":

{ '"separator": ",",
"nullvalue": "NULL",
"skipFrom":
"skipTo":

e Extract lines from a CSV exported from My SQL:

{ "csv":
{ "predefinedFormat": "MySQL"}

e Extract lines from a CSV with the default formatting, using N/A as the null value and a custom date format:

{ "csv'":
{ '"predefinedFormat": "Default",
"nullvalue" : "N/A",
"dateFormat" : "dd-mm-yyyy HH:MM"

JDBC Extractor

When the ETL module runs the JDBC Extractor, it can access any database management system that supports the JDBC driver.

In order for the ETL component to connect to the source database, put the source database's JDBC driver in the classpath, or in the

$ORIENTDB_HOME/1lib directory.

e Component name: jdbc

e Output class: [Obocument]

http://en.wikipedia.org/wiki/JDBC_driver

Syntax

Parameter Description Type Mandatory Dveaflé:::!lt
"driver" Defines the JDBC Driver class. string yes
"url" Defines the JDBC URL to connect to. string yes
"userName" Defines the username to use on the source database. string yes
"userPassword" Defines the user password to use on the source database. string yes
"query" Defines the query to extract the record you want to import. string yes

Defines query that returns the count of the fetched records,

"queryCount" . ’
(used to provide a correct progress indicator).

string

Example

e Extract the contents of the client table on the MySQL database test at localhost:

{ "jdbc": {
"driver": "com.mysqgl.jdbc.Driver",
"url": "jdbc:mysql://localhost/test",
"userName": "root",
"userPassword": "my_mysqgl passwd",
"query": "SELECT * FROM client"

JSON Extractor

When the ETL module runs with a JSON Extractor, it extracts data by parsing JSON objects. If the data has more than one JSON items,

you must enclose the in [] brackets.

e Component name: json

e Output class: [Obocument]
Example

e Extract data from a JSON file.

{ "json"s {3 }

XML Extractor

When the ETL module runs with the XML extractor, it extracts data by parsing XML elements. This feature was introduced in version
2.2.

e Component name: xml

e OQutput class: [obocument]

Syntax
.. Default
Parameter Description Type Mandatory
value

"rootNode" De.flnes the root node to extre'ict in tl'le XML. By default, it string

builds from the root element in the file.

Defines an array of elements, where child elements are strin
""tagsAsAttribute" considered as attributes of the document and the attribute arrayg

values as the text within the element.

Examples

e Extract data from an XML file, where the XML file reads as:

<?xml version="1.0" encoding="UTF-8"?>

<a>

<c name='Ferrari' color='red'>ignore</c>
<c name='Maserati' color='black'/>

While the OrientDB-ETL configuration file reads as:

{ "source":
{ "file":
{ "path": "src/test/resources/simple.xml" }
1y
"extractor"
{ manls {33,
"loader":
{ "test": {3} }
}

This extracts the data as:

{
"a": {
"b": {
"' [
{
"color": "red",
"name": "Ferrari"
}
{
"color": "black",
"name": "Maserati"
}
]
}
}
}

e Extract a collection from XML, where the XML file reads as:

<?xml version="1.0" encoding="UTF-8"?>
<CATALOG>
<CD>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>
</CD>
<CD>
<TITLE>Hide your heart</TITLE>
<ARTIST>Bonnie Tyler</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>
</CD>
<CD>
<TITLE>Greatest Hits</TITLE>
<ARTIST>Dolly Parton</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>RCA</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1982</YEAR>
</CD>
</CATALOG>

Extractors

While the OrientDB-ETL configuration file reads:

{ "source":
{ "file":
{ "path": "src/test/resources/music.xml" }
}, "extractor" :
{ "xml":
{ "rootNode": "CATALOG.CD",
"tagsAsAttribute": ["CATALOG.CD"]
3
3
"loader": { "test": {} }

This extracts the data as:

"TITLE": "Empire Burlesque",
"ARTIST": "Bob Dylan",
"COUNTRY": "USA",

"COMPANY": "Columbia",
"PRICE": "10.90",

"YEAR": "1985"

"TITLE": "Hide your heart",
"ARTIST": "Bonnie Tyler",
"COUNTRY": "UK",

"COMPANY": "CBS Records",
"PRICE": "9.90",

"YEAR": "1988"

"TITLE": "Greatest Hits",
"ARTIST": "Dolly Parton",
"COUNTRY": "USA",
"COMPANY": "RCA",
"PRICE": "9.90",

"YEAR": "1982"

ETL Transformers

When OrientDB runs the ETL module, transformer components execute in a pipeline to modify the data before it gets loaded into the

OrientDB database. The operate on received input and return output.

Before execution, it always initalizes the $input variable, so that if you need to you can access it at run-time.

e CSV

e FIELD

e MERGE
e VERTEX
e CODE

e LINK

e EDGE

e FLOW

o LOG

e BLOCK
e COMMAND

CSV Transformer

Beginning with version 2.1.4, the CSV Transformer has been deprecated in favor of the CSV Extractor.

Converts a string in a Document, parsing it as CSV

Component description.

e Component name: csv

e Supported inputs types: [String]

e Output: ODocument

Syntax

Parameter

"separator"

"columnsOnFirstLine"

"columns"

"nullvalue"
"stringCharacter"
"skipFrom"

"skipTo"

Description

Defines the column separator.

Defines whether the first line contains column
descriptions.

Defines array containing column names, you can define
types by postfixing the names with :<type> .

Defines the value to interpret as null.
Defines string character delimiter.
Defines the line number to skip from.

Defines the line number to skip to.

For the "columns" parameter, specifyingtype guarantees better performance.

Example

Type

char

boolean

string
array

string
char
integer

integer

Mandatory

yes

yes

Default
value

true

e Transform arow in CSV (as obocument class), using commas as the separator, considering nuLL as a null value and skipping

rows two through four.

{ "csv": { "separator": ",", "nullvalue": "NULL",

"skipFrom":

, "skipTo": 13

Field Transformer

When the ETL module calls the Field Transformer, it executes an SQL transformer against the field.

Component description.

° Comp onent name: vertex

e Supported inputs types: [ODocument]

e Output: ODocument

Syntax

Parameter
"fieldName"

"expression"

"value"

"operation"

"save"

Description

Defines the document field name to use.

Defines the expression you want to evaluate, using Orient DB
SQL.

Defines the value to set. If the value is taken or computed at run-
time, use "expression" instead.

Defines the operation to execute against the fields: set or
REMOVE .

Defines whether to save the vertex, edge or document right after
setting the fields.

The "fieldName" parameter was introduced in version 2.1.

Examples

e Transform the field class intothe obocument class, by prefixing it with _ :

{ "field":

{ "fieldName": "@class",
"expression": "class.prefix('_')"

e Apply the class name, based on the value of another field:

{ "field":

{ "fieldName": "@class",

"expression": "if((fileCount >= 0), 'D', 'F')"

e Assign the last part of a path to the name field:

{ "field":

{ "fieldName": "name",

"expression": "path.substring(eval('$current.path.lastIndexOf(\"/\") + 1'))"

e Asign the field a fixed value:

{ "field":

{ "fieldName": "counter",

"value":

o Rename the field from salary to renumeration :

Type
string

string

any

string

boolean

Mandatory

yes

Default
value

SET

false

{ "field":

{ "fieldName": "remuneration",
"expression": "salary"
}
H
{ "field":
{ "fieldName": "salary",
"operation": "remove"
}
3

e Rename multiple fields in one call.

{ "field":
{ "fieldNames":
["remuneration", "salary"],
"operation": "remove"
}
}

This feature was introduced in version 2.1.

Merge Transformer

When the ETL module calls the M erge Transformer, it takes input from one obocument instance to output into another, loaded by
lookup. THe lookup can either be a lookup against an indexor a SeLECT query.

Component description.

e Component name: merge
e Supported inputs types: [ODocument, OrientVertex]
e Output: ODocument

Syntax
o Default
Parameter Description Type Mandatory
value
"joinFieldName" Defines the field containing the join value. string yes
m o Defines the index on which to execute th elookup, or a .
Llookup P string yes
SELECT query.
nunresolvedLinkAction" Defines the action to execute in the event that the join string e —

hasn't been resolved.

For the "unresolvedLinkAction" parameter, the supported actions are:

Action Description
NOTHING Tells the transformer to do nothing,
WARNING Tells the transformer to increment warnings.
ERROR Tells the transformer to increment errors.
HALT Tells the transformer to interrupt the process.
SKIP Tells the transformer to skip the current row.

Example

e Merge the current record against the record returned by the lookup on index v.ur1 , with the value contained in the field urr of

the input document:

{ "merge":
{ "joinFieldName": "URI",
"lookup":"V.URI"
}
}

Vertex Transformer

When the ETL module runs the Vertex Transformer, it transforms obocument input to output OrientVertex .

Component description.

e Component name: vertex
e Supported inputs types: [ODocument, OrientVertex]
e Output: OrientVertex

Syntax
Parameter Description
"class" Defines the vertex class to use.
nskipbuplicates"” Defines whether it skips duplicates. When class has a

UNIQUE constraint, ETL ignores duplicates.

The "skippuplicates" parameter was introduced in version 2.1.

Example

Type Mandatory

string

boolean

e Transform obocument input into a vertex, setting the class value to the $classname variable:

{ "vertex":
{ "class": "$className",
"skipDuplicates":
}
}

Edge Transformer

Default
value

\"

false

When the ETL modules calls the Edge Transformer, it converts join values in one or more edges between the current vertex and all

vertices returned by the lookup. The lookup can either be made against an index ora SELECT .

Component description.

o Component name: EDGE
e Supported inputs types: [ODocument, OrientVertex]
e OQOutput: OrientVertex

Syntax

Default

Parameter Description e Mandato
P Typ vy value
"joinFieldName" Defines the field containing the join value. string yes
"direction" Defines the edge direction. string out
"class" Defines the edge class. string E
" " Defines the index on which X¢ he look r .
SR efines the index on which to execute the lookup o it -
a SELECT .
"targetVertexFields" Defines the field on which to set the target vertex. object
"edgeFields" Defines the fields to set in th eedge. object
Defines whether to skip duplicate edges when the
"skipbuplicates" UNIQUE constraint is set on both the out and in boolean false
properties.
wunresolvedLinkAction” Defines the action to execute in the event that the siirg NOTHING

join hasn't been resolved.

The "targetvertexFields" andx "edgeFields" parameter were introduced in version 2.1.

For the "unresolvedLinkAction" parameter, the following actions are supported:

Action Description
NOTHING Tells the transformer to do nothing.
CREATE Tells the transformer to create an instance of orientvertex , setting the primary key to the join value.
WARNING Tells the transformer to increment warnings.
ERROR Tells the transformer to increment errors.
HALT Tells the transformer to interrupt the process.
SKIP Tells the transformer to skup the current row.
Examples

e Create an edge from the current vertex, with the class set to Parent , to all vertices returned by the lookup on the D.inode index

with the value contained in the filed inode_parent of the input's vertex:

{ "edge":
{ "class": "Parent",
"joinFieldName": "inode_parent",

"lookup":"D.inode",
"unresolvedLinkAction": "CREATE"

e Transformer a single-line CSV that contains both vertices and edges:

{ "source":
{ "content":
{ "value": "id, name, surname, friendSince, friendId, friendName, friendSurname\no, Jay, Miner, 1996, 1, Luca, Garulli"
}
H
"extractor":
{ "row": {} },
"transformers":
[
{ "esv': {3},
{ "vertex":
{ "class": "vi" }
}
{ "edge":

{ "unresolvedLinkAction": "CREATE",
"class": "Friend",
"joinFieldName": "friendId",
"lookup": "v2.fid",
"targetVertexFields":

{ "name": "${input.friendName}",
"surname": "${input.friendSurname}"
}
"edgeFields":
{ "since": "${input.friendSince}" }
}
}
{ "field":
{ "fieldNames":
["friendSince",
"friendId",
"friendName",
"friendSurname"
1

"operation": "remove"

}
1,
"loader":
{ "orientdb":
{ "dbURL": "memory:ETLBaseTest",
"dbType": "graph",
"useLightweightEdges": false

Flow Transformer

When the ETL module calls the Flow Transformer, it modifies the flow through the pipeline. Supported operations are skip and
halt . Typically, this transformer operates with the if attribute.

Component description.

e Component name: flow
e Supported inputs types: Any

e QOutput: same type as input

Syntax
Parameter Description Type Mandatory Default value
"operation” Defines the flow operation: skip or halt . string yes
Example

e Skip the current record if name is null:

{ "flow":
{ "if": "pame is null",
"operation" : "skip"
}
}

Code Transformer

When the ETL module calls the Code Transformer, it executes a snippet of code in any JVM supported language. The default is

JavaScript. The last object in the code is returned as output.
In the execution context:

e input The input object received.

e record The record extracted from the input object, when possible. In the event that input object is a vertex or edge, it assigns the

underlying opbocument to the variable.
Component description.

e Component name: code
e Supported inputs types: [Object]
e Output: Object

Syntax
Parameter Description Type
"language" Defines the programming language to use. string
"code" Defines the code to execute. string
Example

e Display the current record and return the parent:

{ "code":
{ "language": "Javascript",
"code": "print('Current record: ' + record); record.field('parent');"
}
}

Link Transformer

Mandatory Default value
JavaScript

yes

When the ETL module calls the Link Transformer, it converts join values into links within the current record, using the result of the

lookup. The lookup can be made against an index or a SELECT .
Component description.

e Component name: link
e Supported inputs types: [ODocument, OrientVertex]
e Output: ODocument

Syntax

Default

Parameter Description Type Mandatory value
"joinFieldName" Defines the field containing hte join value. string
"joinvalue" Defines the value to look up. string
"1linkFieldName" Defines the field containing the link to set. string yes
"linkFieldType" Defines the link type. string yes
"lookup® Defines the index on which to execute the lookup or a string yes

SELECT query.

wunresolvedLinkAction” Defines the action to execute in the event that the join sirtieg ORI

doesn't resolve.

For the "linkFieldType" parameter, supported link types are: LINK , LINKSET and LINKLIST .

For the "unresolvedLinkAction" parameter the following actions are supported:

Action Description
NOTHING Tells the transformer to do nothing.
CREATE Tells the transformer to create an obocument instance, setting the primary key as the join value.
WARNING Tells the transformer to increment warnings.
ERROR Tells the transformer to increment errors.
HALT Tells the transformer to interrupt the process.
SKIP Tells the transformer to skip the current row.
Example

e Transform a JSON value into a link within the current record, set as parent of thetype LINk , with the result of the lookup on

the index D.node with the value contained in the field inode_parent on the input document.

{ "link":

{ "linkFieldName": "parent",
"linkFieldType": "LINK",
"joinFieldName": "inode_parent",
"lookup":"D.inode",
"unresolvedLinkAction":"CREATE"

Log Transformer

When the ETL module uses the Log Transformer, it logs the input object to system.out .
Component description.

e Component name: log

e Supported inputs types: Any

e OQOutput: Any
Syntax
Parameter Description Type Mandatory Default value
"prefix" Defines what it writes before the content. string
"postfix" Defines what it writes after the content. string
Examples

e Logthe current value:

{ "log": {} }

e Logthe currnt value with -> as the prefix:

{ "log":
{ "prefix" : "o> "}
}

Block Transformer

When the ETL module calls the Block Transformer, it executes an ETL Block component as a transformation step.

Component description.

e Component name: block

e Supported inputs types: [Any]

e Output: Any
Syntax
Parameter Description
"block" Defines the block to execute. document
Example

e Logthe current value:

{ "block":
{ "let":
{ "name": "id",
"value": "={eval('$input.amount * 2')3}"
3
3
3

Command Transformer

When the ETL module calls the Command Transformer, it executes the given command.

Component description.

e Component name: command
e Supported inputs types: [ODocument]
e Output: ODocument

Syntax
Parameter Description
"language" Defines the command language: SQL or Gremlin.
"command" Defines the command to execute.

Example

e FExecutea seLecT and output an edge:

{ "command" :
{ "command" : "SELECT FROM E WHERE id = ${edgeid}",
"output" : "edge"
3

}

Mandatory
yes
Type Mandatory
string
string yes

Default value

Default value

sql

Transformers

225

ETL - Loaders

When the ETL module executes, Loaders handle the saving of records. They run at the last stage of the process. The ETL module in
OrientDB supports the following loaders:

e Output
e OrientDB

Output Loader
When the ETL module runs the Output Loader, it prints the transformer results to the console output. This is the loader that runs by
default.

e Component name: output

e Accepted input classes: [Object]

OrientDB Loader

When the ETL module runs the OrientDB Loader, it loads the records and vertices from the transformers into the OrientDB database.

e Component name: orientdb

e Accepted input classes: [Obocument, OrientVertex]

Syntax

Parameter

"dbURL"

"dbuser"

"dbPassword"

"dbAutoCreate"

"dbAutoCreateProperties"

"dbAutoDropIfExists"

gyt

"txUselLog"

yal

"batchCommit"

"dbType"

"class"

"cluster"

"classes"

"indexes"

"useLightweightEdges"

"standardELementConstraints"

Description

Defines the database URL.
Defines the user name.
Defines the user password.

Defines whether it automatically creates the
database, in the event that it doesn't exist
already.

Defnes whether it automatically creates
properties in the schema.

Defines whether it automatically drops the
database if it exists already.

Defines whether it uses transactions
Defines whether it uses log in transactions.

Defines whether it uses write ahead logging.
Disable to achieve better performance.

When using transactions, defines the batch
of entries it commits. Helps avoid having
one large transaction in memory.

Defines the database type: graph or
document

Defines the class to use in storing new
record.

Defines the cluster in which to store the
new record.

Defines whether it creates classes, if not
defined already in the database.

Defines indexes to use on the ETL process.
Before starting, it creates any declared
indexes not present in the database. Indexes
must have "type" , "class" and

"fields" .

Defines whether it changes the default
setting for Lightweight Edges.

Defines whether it changes the default
setting for TinkerPop BLueprint
constraints. Value cannot be null and you
cannot use id as a property name.

Type Mandatory

string yes
string

string

boolean

boolean

boolean

boolean

boolean

boolean

integer

string

string

string
inner

document

inner
document

boolean

boolean

Default
value

admin

admin

true

false

false

false

true

document

false

true

For the "txuseLog" parameter, when WAL is disabled you can still achieve reliable transactions through this parameter. You may find it

useful to group many operations into a batch, such as CREATE EDGE .

Classes

When using the "classes" parameter, it defines an inner document that contains additional configuration variables.

Parameter Description Type Mandatory Default value
"name" Defines the class name. string yes

"extends" Defines the super-class name. string

"clusters" Defines the number of cluster to create under the class. integer 1

NOTE: The "clusters" parameter was introduced in version 2.1.

Indexes

Parameter Description Type Mandatory Default
value

“name" Defines the index name. string

"class" Defines the class name in which to create the index. string yes

"type" Defines the index type. string yes

nields" Defines an z_array of fields to index. To specify the field type, use the string yies

syntax: <field>.<type> .
"metadata” Defines additional index metadata. string
Examples

Configuration to load data into the database dbpedia on OrientDB, in the directory /temp/databases usingthe PLocal protocol and a
Graph database. The load is transactional, performing commits in thousand insert batches. It creates two lookup vertices with indexes

against the property string URI in the base vertex class v . The index is unique.

"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbUser": "importer",
"dbPassword": "IMP",
"dbAutoCreate": ,
"tx': 7
"batchCommit": 7
"wal" : 7

"dbType": "graph",
"classes": [
{"name":"Person", "extends": "V" },
{"name":"Customer", "extends": "Person", "clusters":8 }
1,
"indexes": [
{"class":"V", "fields":["URI:string"], "type":"UNIQUE" },
{"class":"Person", "fields":["town:string"], "type":"NOTUNIQUE"
metadata : { "ignoreNullvalues" : }

Import Database of Beers in OrientDB

First, create a new folder somewhere on your hard drive. For this test we'll assume /temp/openbeer .

$ mkdir /temp/openbeer

Download Beers Database in CSV format

$ curl http://openbeerdb.com/data_files/openbeerdb_csv.zip > openbeerdb_csv.zip
$ unzip openbeerdb_csv.zip

Install OrientDB

$ curl "http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-community-2.0.9.zip&os=multi" > orientdb-comm
unity-2.0.9.zip
$ unzip orientdb-community-2.0.9.zip

Import Beer Categories

These are the first 2 lines of categories.csv file:

"id", "cat_name", "last_mod"
"1", "British Ale",'"2010-10-24 13:50:10"

In order to import this file in OrientDB, we have to create the following file as categories.json :

{
"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/categories.csv" } },
"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Category" } }
1
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
{"name": "Category", "extends": "V"}
1, "indexes": [
{"class":"Category", "fields":["id:integer"], "type":"UNIQUE" }
]
3
3

Now to import it into OrientDB, move into the "bin" directory of OrientDB distribution.

$ cd orientdb-community-2.0.9/bin

And run OrientDB ETL.

$./oetl.sh /temp/openbeer/categories.json

OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR
END ETL PROCESSOR

+ extracted 12 rows (0 rows/sec) - 12 rows -> loaded 11 vertices (0 vertices/sec) Total time: 77ms [0 warnings, © errors]

Import Beer Styles

Now let's import the Beer Styles. These are the first 2 lines of the styles.csv file.

"id", "cat_id", "style_name", "last_mod"
"1","1", "Classic English-Style Pale Ale","2010-10-24 13:53:31"

In this case, we'll correlate the Style with the Category created earlier. This is the styles.json

step.

"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/styles.csv" } },

"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Style" } },

to use with OrientDB ETL for the next

{ "edge": { "class": "HasCategory", "joinFieldName": "cat_id", "lookup": "Category.id" } }

1,
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
{"name": "Style", "extends": "V"},
{"name": "HasCategory", "extends": "E"}
1, "indexes": [
{"class":"Style", "fields":["id:integer"], "type":"UNIQUE" }

Now import the styles.

$./oetl.sh /temp/openbeer/styles.json

OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR
END ETL PROCESSOR

+ extracted 142 rows (O rows/sec) - 142 rows -> loaded 141 vertices (O vertices/sec) Total time: 498ms [0 warnings, O errors]

Import Breweries

Now it's time for the Breweries. These are the first 2 lines of the breweries.csv file.

"id", "name", "address1", "address2", "city", "state", "code", "country", "phone", "website", "filepath", "descript", "last_mod"
"1","(512) Brewing Company", "407 Radam, F200",,"Austin", "Texas","78745","United States",'"512.707.2337","http://512brewing.com/
",,"(512) Brewing Company is a microbrewery located in the heart of Austin that brews for the community using as many local, d

omestic and organic ingredients as possible.",'"2010-07-22 20:00:20"

Breweries have no outgoing relations with other entities, so this is a plain import similar to categories. This is the breweries.json to
use with OrientDB ETL for the next step.

{
"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/breweries.csv" } },
"extractor": { "csv": {3} },
"transformers": [
{ "vertex": { "class": "Brewery" } }
1,
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
"name": "Brewery", "extends": "V"}
], "indexes": [
{"class":"Brewery", "fields":["id:integer"], "type":"UNIQUE" }
1
}
}
3

Run the import for breweries.

$./oetl.sh /temp/openbeer/breweries.json

OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR
END ETL PROCESSOR

+ extracted 1.395 rows (O rows/sec) - 1.395 rows -> loaded 1.394 vertices (0 vertices/sec) Total time: 830ms [0 warnings, O er
rors]

Import Beers

Now it's time for the last and most important file: the Beers! These are the first 2 lines of the beers.csv file.

"id", "brewery_id", "name", "cat_id", "style_ id", "abv","ibu","srm", "upc", "filepath", "descript","last_mod",,,,, ;s irrrirrirriirrirs

NN NN NN
NN NN
FER IR I I T T LTI I LTI I LI T L LI LI L L L L L L L L L L L E L L LI L L L EE L L L L i i i rrrrrrrrrrs

NN NN NN

e
"1",6"812", "Hocus Pocus","11",6"116","4.5","0","0","0",,"Our take on a classic summer ale. A toast to weeds, rays, and summer h
aze. A light, crisp ale for mowing lawns, hitting lazy fly balls, and communing with nature, Hocus Pocus is offered up as a s

ummer sacrifice to clodless days.
As you can see each beer is connected to other entities through the following fields:

® brewery_id -> Brewery
e cat_id -> Category
e style id -> Style

This is the breweries.json to use with OrientDB ETL for the next step.

"config" : { "haltOnError": false },
"source": { "file": { "path": "/temp/openbeer/openbeerdb_csv/beers.csv" } },
"extractor": { "csv": { "columns": ["id","brewery_id", "name","cat_id","style_id", "abv","ibu","srm", "upc", "filepath", "descrip
t","last_mod"],
"columnsOnFirstLine": true } },
"transformers": [
{ "vertex": { "class": "Beer" } },
{ "edge": { "class": "HasCategory", "joinFieldName": "cat_id", "lookup": "Category.id" } },
{ "edge": { "class": "HasBrewery", "joinFieldName": "brewery_id", "lookup": "Brewery.id" } },
{ "edge": { "class": "HasStyle", "joinFieldName": "style_id", "lookup": "Style.id" } }
1,
"loader": {
"orientdb": {
"dbURL": "plocal:../databases/openbeerdb",
"dbType": "graph",
"classes": [
{"name": "Beer", "extends": "V"},
{"name": "HasCategory", "extends": "E"},
{"name": "HasStyle", "extends": "E"},
{"name": "HasBrewery", "extends": "E"}
1, "indexes": [
{"class":"Beer", "fields":["id:integer"], "type":"UNIQUE" }

Run the final import for beers.

$./oetl.sh /temp/openbeer/beers.json

OrientDB etl v.2.0.9 (build @BUILD@) www.orientechnologies.com
BEGIN ETL PROCESSOR

+ extracted 5.862 rows (1.041 rows/sec) - 5.862 rows -> loaded 4.332 vertices (929 vertices/sec) Total time: 10801ms [0 warnin
gs, 27 errors]
END ETL PROCESSOR

_Note: 27 errors are due to the 27 wrong content lines that have no id.

This database is available online. Install it with:

e Studio: in the login page press the "Cloud" button, put server's credential and press on download button on "OpenBeer" line
e Download it manually from http://orientdb.com/public-databases/OpenBeer.zip and unzip it in a OpenBeer folder inside
OrientDB's server "databases" directory

http://orientdb.com/public-databases/OpenBeer.zip

Import from a CSV file to a Graph

This example describes the process for importing from a CSV file into OrientDB as a Graph. For the sake of simplicity, consider only

these 2 entities:

e POST
e COMMENT

Also consider the relationship between Post and Comment as One-2-M any. One Post can have multiple Comments. We're representing

them as they would appear in an RDBMSS, but the source could be anything.

With an RDBM S Post and Comment would be stored in 2 separate tables:

TABLE POST:

dboooodboooooooooooooooo +
| id | title |
Doocofroccooocosoooocos +

| 10 | NoSQL movement |
| 20 | New OrientDB |
R CET T +

TABLE COMMENT:

s O oo +
| id | postId | text

R CEEEEE oo +
| @ 10 | First

| 12| 10 | Second

| 22 | 10 | Another

| 410 | 20 | First again

| 82 | 20 | Second Again |
s CEETEE Fommmee +

With an RDBMSS, one-2-many references are inverted from the target table (Comment) to the source one (Post). This is due to the

inability of an RDBMSS to handle a collection of values.

In comparison, using the OrientDB Graph model, relationships are modeled as you would think, when you design an application:
POSTs have edges to COMMENTS.

So, with an RDBM S you have:

Table POST <- (foreign key) Table COMMENT

With OrientDB, the Graph model uses Edges to manage relationships:

Class POST ->* (collection of edges) Class COMMENT

(1) Export to CSV

If you're using an RDBMSS or any other source, export your data in CSV format. The ETL module is also able to extract from JSON and
an RDBM S directly through JDBC drivers. However, for the sake of simplicity, in this example we're going to use CSV as the source

format.

Consider having 2 CSV files:

File posts.csv

posts.csv file, containing all the posts

id, title
10, NoSQL movement
20,New OrientDB

File comments.csv

comments.csv file, containing all the comments, with the relationship to the commented post

id, postId, text
0,10, First

1,10, Second

21,10, Another
41,20,First again
82,20,Second Again

(2) ETL Configuration

The OrientDB ETL tool requires only a JSON file to define the ETL process as Extractor, a list of Transformers to be executed in the
pipeline, and a Loader, to load graph elements into the OrientDB database.

Below are 2 files containing the ETL to import Posts and Comments separately.

post.json ETL file

"source": { "file": { "path": "/temp/datasets/posts.csv" } },
"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Post" } }
1
"loader": {
"orientdb": {
"dbURL": "plocal:/temp/databases/blog",
"dbType": "graph",
"classes": [

{"name": "Post", "extends": "V"},
{"name": "Comment", "extends": "V"},
{"name": "HasComments", "extends": "E"}

1, "indexes": [
{"class":"Post", "fields":["id:integer"], "type":"UNIQUE" }
]

The Loader contains all the information to connect to an OrientDB database. We have used a plocal database, because it's faster.
However, if you have an OrientDB server up & running, use "remote:" instead. Note the classes and indexes declared in the Loader. As
soon as the Loader is configured, the classes and indexes are created, if they do not already exist. We have created the index on the

Post.id field to assure that there are no duplicates and that the lookup on the created edges (see below) will be fast enough.

comments.json ETL file

"source": { "file": { "path": "/temp/datasets/comments.csv" } },
"extractor": { "csv": {} },
"transformers": [
{ "vertex": { "class": "Comment" } },
{ "edge": { "class": "HasComments",
"joinFieldName": "postId",
"lookup": "Post.id",

"direction": "in"
}
}
1,
"loader": {
"orientdb": {

"dbURL": "plocal:/temp/databases/blog",
"dbType": "graph",
"classes": [
{"name": "Post", "extends": "V"},
{"name": "Comment", "extends": "V"},
{"name": "HasComments", "extends": "E"}
], "indexes": [
{"class":"Post", "fields":["id:integer"], "type":"UNIQUE" }

This file is similar to the previous one, but the Edge transformer does the job. Since the link found in the CSV goes in the opposite

direction (Comment->Post), while we want to model directly (Post->Comment), we used the direction "in" (default is always "out").

(3) Run the ETL process

Now allow the ETL to run by executing both imports in sequence. Open a shell under the OrientDB home directory, and execute the
following steps:

$ cd bin
$./oetl.sh post.json
$./oetl.sh comment.json

Once both scripts execute successfully, you'll have your Blog imported into OrientDB as a Graph!

(4) Check the database

Open the database under the OrientDB console and execute the following commands to check that the import is ok:

$./console.sh

OrientDB console v.2.0-SNAPSHOT (build 2565) www.orientechnologies.com
Type 'help' to display all the supported commands.

Installing extensions for GREMLIN language v.2.6.0

orientdb> connect plocal:/temp/databases/blog admin admin

Connecting to database [plocal:/temp/databases/blog] with user 'admin'...OK

orientdb {db=blog}> select expand(out()) from Post where id = 10

sooodhooooo fooooooo oooodboooooo droccoooo drocoooooonooooo
|@RID |@CLASS |id |postId|text | in_HasComments
sooodhooooo Pooooooo Poooodboooooo droccoooo droococooooonooooo
[c] |#12:0|Comment | @ |10 |First |[size=1]
1 |#12:1|Comment |1 |10 |Second |[size=1]
2 |#12:2|Comment |21 |10 |Another | [size=1]
cooodhooooo fooooooo doooodboooooo droccoooo drococooooooooooo

3 item(s) found. Query executed in 0.002 sec(s).
orientdb {db=blog}> select expand(out()) from Post where id = 20

s e e R T R L E R R EEEEE
|@RID |@CLASS |id |postId|text | in_HasComments
s e e R T R L E R R EEEEE
0 |#12:3|Comment|41 |20 |First again |[size=1]
1 |#12:4|Comment|82 |20 |Second Again|[size=1]
s e Hommmmen oo R L B L EEEEE

2 item(s) found. Query executed in 0.001 sec(s).

Import a tree structure

If you have a tree structure in an RDBM S or CSV file and you want to import it in OrientDB, the ETL can come to your rescue. In this

example, we use CSV for the sake of simplicity, but it's the same with JDBC input and a SQL query against an RDBMSS.

source.csv

ID, PARENT_ID, LAST_YEAR_INCOME, DATE_OF_BIRTH, STATE
0, -1,10000,1990-08-11, Arizona
1,0,12234,1976-11-07, Missouri
2,0,21322,1978-01-01, Minnesota
3,0,33333,1960-05-05, Iowa

etl.json

"source": { "file": { "path": "source.csv" } },
"extractor": { "row": {} },
"transformers": [
{Mesv {3 1,
{ "vertex": { "class": "User" } },
{ "edge": {
"class": "ParentOf",
"joinFieldName": "PARENT_ID",
"direction": "in",
"lookup": "User.ID",
"unresolvedLinkAction": "SKIP"

}
1,
"loader": {
"orientdb": {
"dbURL": "plocal:/temp/mydb",
"dbType": "graph",
"classes": [
{"name": "User", "extends": "V"},
{"name": "ParentOf", "extends": "E"}
1, "indexes": [
{"class":"User", "fields":["ID:Long"], "type":"UNIQUE" }

Import form JSON

If you are migrating from MongoDB or any other DBM S that exports data in JSON format, the JSON extractor is what you need. For

more information look also at: Import-from-PARSE.

This is the input file stored in /tmp/database.json file:

{
"name": "Joe",
nigns
B
"friends": [2,4,5],
"enemies": [6]
H
{
"name": "Suzie",
nigns
2y
"friends": [1,4,6],
"enemies": [5,2]
}

Note that friends and enemies represent relationships with nodes of the same type. They are in the form of an array of IDs. This is

what we need:

e Use the Vertex class "Account" to store nodes

e Use the Edge classes "Friend" and "Enemy" to connect vertices

e Merge and Lookups will be on id property of Account class that will be unique

e In case the connected friend hasn't been inserted yet, create it ("unresolvedLinkAction": "CREATE")

e To speed up lookups, a unique index will be created on Account.it

And this pipeline (logis at debug level to show all the messages):

Import from JSON

"config": {
"log": "debug"
H
"source" : {
"file": { "path": "/tmp/database.json" }
H
"extractor" : {
"json": {}
H
"transformers" : [
{ "merge": { "joinFieldName": "id", "lookup": "Account.id" } },
{ "vertex": { "class": "Account"} },
{ "edge": {
"class": "Friend",
"joinFieldName": "friends",
"lookup": "Account.id",
"unresolvedLinkAction": "CREATE"
L
"edge": {
"class": "Enemy",

-~

"joinFieldName": "enemies",
"lookup": "Account.id",
"unresolvedLinkAction": "CREATE"
3
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/tmp/databases/db",
"dbuUser": "admin",
"dbPassword": "admin",
"dbAutoDropIfExists": true,
"dbAutoCreate": true,
"standardElementConstraints": false,
"tx": false,
"wal": false,
"batchCommit": 1000,
"dbType": "graph",
"classes": [{"name": "Account", "extends":"V"}, {"name": "Friend", "extends":"E"}, {"name": 'Enemy', "extends":"E"}],
"indexes": [{"class":"Account", "fields":["id:integer"], "type":"UNIQUE_HASH_INDEX" }]

Note also the setting

"standardElementConstraints": false,

This is needed, in order to allow importing the property "id" in the OrientDB Loader. Without this option, the Blueprints standard

would reject it, because "id" is a reserved name.

By executing the ETL process, this is the output:

OrientDB etl v.2.1-SNAPSHOT www.orientechnologies.com

feb 09, 2015 2:46:42 AM com.orientechnologies.common.log.0OLogManager log

INFORMAZIONI: OrientDB auto-config DISKCACHE=10.695MB (heap=3.641MB 0s=16.384MB disk=42.205MB)
[orientdb] INFO Dropping existent database 'plocal:/tmp/databases/db'...

BEGIN ETL PROCESSOR

[file] DEBUG Reading from file /tmp/database.json

[orientdb] DEBUG - OrientDBLoader: created vertex class 'Account' extends 'V'

[orientdb]
[orientdb]
[orientdb]
[orientdb]
[orientdb]
[orientdb]
[orientdb]

id:integer]
[0:merge] DEBUG Transformer input: {name:Joe,id:1,friends:[3],enemies:[1]}
[0:merge] DEBUG joinValue=1, lookupResult=null

[0:merge] DEBUG Transformer output: {name:Joe,id:1,friends:[3],enemies:[1]}
[0:vertex] DEBUG Transformer input: {name:Joe,id:1,friends:[3],enemies:[1]}
[0:vertex] DEBUG Transformer output: v(Account)[#11:0]

[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]
[0:edge]

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

DEBUG orientdb: found @ vertices in class 'null'

DEBUG - OrientDBLoader: created edge class 'Friend' extends 'E'

DEBUG orientdb: found @ vertices in class 'null'

DEBUG - OrientDBLoader: created edge class 'Enemy' extends 'E'

DEBUG orientdb: found @ vertices in class 'null'

DEBUG - OrientDBLoader: created property 'Account.id' of type: integer

DEBUG - OrientDocumentLoader: created index 'Account.id' type 'UNIQUE_HASH_INDEX' against Class 'Account', fields [

Transformer input: v(Account)[#11:0]
joinCurrentValue=2, lookupResult=null

created new vertex=Account#11:1{id:2} v1
created new edge=e[#12:0][#11:0-Friend->#11:1]
joinCurrentvalue=4, lookupResult=null

created new vertex=Account#11:2{id:4} v1
created new edge=e[#12:1][#11:0-Friend->#11:2]
joinCurrentvalue=5, lookupResult=null

created new vertex=Account#11:3{id:5} v1
created new edge=e[#12:2][#11:0-Friend->#11:3]
Transformer output: v(Account)[#11:0]
Transformer input: v(Account)[#11:0]
joinCurrentvalue=6, lookupResult=null

created new vertex=Account#11:4{id:6} v1
created new edge=e[#13:0][#11:0-Enemy->#11:4]
Transformer output: v(Account)[#11:0]

[1:merge] DEBUG Transformer input: {name:Suzie,id:2,friends:[3],enemies:[2]}

[1:merge] DEBUG joinvalue=2, lookupResult=Account#11:1{id:2,in_Friend:[#12:0]} v2

[1:merge] DEBUG merged record Account#11:1{id:2,in_Friend:[#12:0],name:Suzie, friends:[3],enemies:[2]} v2 with found record={na
me:Suzie,id:2, friends:[3],enemies:[2]}

[1:merge] DEBUG Transformer output: Account#11:1{id:2,in_Friend:[#12:0],name:Suzie, friends:[3],enemies:[2]} v2

[1:vertex] DEBUG Transformer input: Account#11:1{id:2,in_Friend:[#12:0],name:Suzie, friends:[3], enemies:[2]} v2

[1:vertex] DEBUG Transformer output: v(Account)[#11:1]

[1:edge] DEBUG Transformer input: v(Account)[#11:1]

[1:edge] DEBUG joinCurrentValue=1, lookupResult=Account#11:0{name:Joe,id:1,friends:[3],enemies:[1],out_Friend:[#12:0, #12:1, #
12:2],out_Enemy: [#13:0]} v5

[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
[1:edge]
end: [#12:
[1:edge]
[1:edge]

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

created new edge=e[#12:3][#11:1-Friend->#11:0]

joinCurrentvalue=4, lookupResult=Account#11:2{id:4,in_Friend:[#12:1]} v2

created new edge=e[#12:4][#11:1-Friend->#11:2]

joinCurrentvalue=6, lookupResult=Account#11:4{id:6,in_Enemy:[#13:0]} v2

created new edge=e[#12:5][#11:1-Friend->#11:4]

Transformer output: v(Account)[#11:1]

Transformer input: v(Account)[#11:1]

joinCurrentValue=5, lookupResult=Account#11:3{id:5,in_Friend:[#12:2]} v2

created new edge=e[#13:1][#11:1-Enemy->#11:3]

joinCurrentValue=2, lookupResult=Account#11:1{id:2,in_Friend:[#12:0], name:Suzie, friends:[3],enemies:[2],out_Fri

3, #12:4, #12:5],out_Enemy:[#13:1]} v6

DEBUG
DEBUG

created new edge=e[#13:2][#11:1-Enemy->#11:1]
Transformer output: v(Account)[#11:1]

END ETL PROCESSOR
+ extracted 2 entries (0 entries/sec) - 2 entries -> loaded 2 vertices (0 vertices/sec) Total time: 228ms [0 warnings, O error

s]

Once ready, let's open the database with Studio and this is the result:

Import from JSON

241

ETL - Import from RDBMS

Most of DBM Ss support JDBC driver. All you need is to gather the JDBC driver and put it in classpath or simply in the
$ORIENTDB_HOM E/lib directory.

With the configuration below all the records from the table "Client" are imported in OrientDB from My SQL database.

Example importing a flat table

{
"config": {
"log": "debug"
H
"extractor" : {
"jdbc": { "driver": "com.mysqgl.jdbc.Driver",
"url": "jdbc:mysql://localhost/mysqlcrm",
"userName": "root",
"userPassword": "",
"query": "select * from Client" }
iy
"transformers" : [

{ "vertex": { "class": "Client"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/orientdbcrm",
"dbAutoCreate":

Example loading records from 2 connected tables

With this example we want to import a database that contains Blog posts in the following tables:

e Authors, in TABLE Author, with the following columns: id and name
e Posts, in TABLE Post, with the following columns: author_id, title and text

To import them into OrientDB we'd need 2 ETL processes.

Importing of Authors

{
"config": {
"log": "debug"
1y
"extractor" : {
"jdbc": { "driver": "com.mysqgl.jdbc.Driver",
"url": "jdbc:mysql://localhost/mysql",
"userName": "root",
"userPassword": "",
"query": "select * from Author" }
1y
"transformers" : [
{ "vertex": { "class": "Author"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/orientdb",
"dbAutoCreate":
3
3

http://en.wikipedia.org/wiki/JDBC_driver

Import from RDBM S

Importing of Posts

"config": {
"log": "debug"
H
"extractor" : {
"jdbc": { "driver": "com.mysql.jdbc.Driver",
"url": "jdbc:mysqgl://localhost/mysql",
"userName": "root",
"userPassword": "",
"query": "select * from Post" }
1y
"transformers" : [

{ "vertex": { "class": "Post"} },

{ "edge": { "class": "Wrote", "direction" : "in",
"joinFieldName": "author_id",
"lookup":"Author.id", "unresolvedLinkAction":"CREATE"} }

1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/orientdb",
"dbAutoCreate": true

Note the edge configuration has the direction as "in", that means starts from the Author and finishes to Post.

N

w

Import from DB-Pedia

DBPedia exports all the entities as GZipped CSV files. Features:

e First line contains column names, second, third and forth has meta information, which we'll skip (look at "skipFrom": 1, "skipTo":

3 in CSV transformer)

e The vertex class name is created automatically based on the file name, so we can use the same file against any DBPedia file
e The Primary Key is the "URI" field, where a UNIQUE index has also been created (refer to "ORIENTDB" loader)

e The "merge" transformer is used to allow to re-import or update any file without generating duplicates

Configuration

"config": {
"log": "debug",
"fileDirectory": "/temp/databases/dbpedia_csv/",
"fileName": "Person.csv.gz"

1y

"begin": [

{ "let": { "name": "$filePath", '"value": "$fileDirectory.append($fileName)"} },
{ "let": { "name": "$className", "value": "$fileName.substring(0, $fileName.indexOf('.'))"} }

1

"source" : {
"file": { "path": "$filePath", "lock" : true }
iy
"extractor" : {
{ "csv": { "separator": ",", "nullvalue": "NULL", "skipFrom":
iy
"transformers" : [
{ "merge": { "joinFieldName":"URI", "lookup":"V.URI" } },
{ "vertex": { "class": "$className"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/dbpedia",
"dbUser": "admin"
"dbPassword": "admin",
"dbAutoCreate": true,
"tx": false,
"batchCommit": 1000,
"dbType": "graph",
"indexes": [{"class":"V", "fields":["URI:string"], "type"
}
}

1, "skipTo": 3 } },

:"UNIQUE" }]

http://oldwiki.dbpedia.org/DBpediaAsTables

Import from Parse

Parse is a very popular BaaS (Backend as a Service), acquired by Facebook. Parse uses M ongoDB as a database and allows to export the
database in JSON format. The format is an array of JSON objects. Example:

"user": {

"__type": "Pointer",

"className": "_User",

"objectId": "Ldlskf4mfs"
H
"address": {

"__type": "Pointer",

"className": "Address",

"objectId": "1lvkDfj4dmS"
H
"createdAt": "2013-11-15T18:15:59.336Z",
"updatedAt": "2014-02-27T23:47:00.440Z",
"objectId": "Ldk39fDkcj",
"ACL": {

"Lfo33mfDkf": {

"write":
}
weny g

"read":

}
Ao
"user": {
"__type": "Pointer",
"className": "_User",
"objectId": "Lflfem3mFe"
}
"address": {
"__type": "Pointer",
"className": "Address",
"objectId": "Ldldjfj3dd"
}
"createdAt": '"2014-01-01T18:04:02.3212",
"updatedAt": '"2014-01-23T20:12:23.9482",
"objectId": "fkfj49fjFFN",
"ACL": {
"d1fnDJckss": {
"write":
}
ey g

"read":

Notes:

Each object has its own objectid that identifies the object in the entire database.

Parse has the concept of class , like OrientDB.

Links are similar to OrientDB RID (but it requires a costly JOIN to be traversed), but made as an embedded object containing:
o className as target class name
o objectId as target objectld

Parse has ACL at record level, like OrientDB.

In order to import a PARSE file, you need to create the ETL configuration using JSON as Extractor.

Example

https://parse.com/
http://www.orientechnologies.com/docs/last/orientdb.wiki/Security.html#record-level-security

In this example, we're going to import the file extracted from Parse containing all the records of the user class. Note the creation of the
class user in OrientDB, which extends v (Base Vertex class). We created an index against property User.objectId to use the same
ID, similar to Parse. If you execute this ETL import multiple times, the records in OrientDB will be updated thanks to the merge

feature.
{
"config": {
"log": "debug"
H

"source" : {
"file": { "path": "/temp/parse-user.json", "lock" : true }
1y
"extractor" : {
"json": {}
1y
"transformers" : [
{ "merge": { "joinFieldName":"objectId", "lookup":"User.objectId" } },
{ "vertex": { "class": "User"} }
1,
"loader" : {
"orientdb": {
"dbURL": "plocal:/temp/databases/parse",
"dbuUser": "admin",
"dbPassword": "admin",
"dbAutoCreate": true,
"tx": false,
"batchCommit": 1000,
"dbType": "graph",
"classes": [
{"name": "User", "extends": "V"}
1,
"indexes": [
{"class":"User", "fields":["objectId:string"], "type":"UNIQUE_HASH_INDEX" }

See also:

Import from JSON.

Logging

OrientDB handles logs using the Java Logging Framework, which is bundled with the JVM. The specific format it uses derives from the
oLogrFormatter class, which defaults to:

<date> <level> <message> [<requester>]

e <date> Shows the date of the log entry, using the date format YYYY-MM-DD HH:MM:SS:SSS .
e <level> Shows the loglevel.
e <message> Shows the log message.

e <class> Shows the Java class that made the entry, (optional).

The supported levels are those contained in the JRE class java.util.logging.Level . From highest to lowest:

® SEVERE
® WARNING
® INFO
® CONFIG
® FINE
® FINER
® FINEST

By default, OrientDB installs two loggers:

e console : Logs to the shell or command-prompt that starts the application or the server. You can modify it by setting the
log.console.level variable.

e file : Logs to the log file. You can modify it by setting the log.file.level variable.

Configuration File

You can configure logging strategies and policies by creating a configuration file that follows the Java Logging M essages configuration

syntax. For example, consider the following from the orientdb-server-log.properties file:

Specify the handlers to create in the root logger

(all loggers are children of the root logger)

The following creates two handlers

handlers = java.util.logging.ConsoleHandler, java.util.logging.FileHandler

Set the default logging level for the root logger
.level = ALL

Set the default logging level for new ConsoleHandler instances
java.util.logging.ConsoleHandler.level = INFO

Set the default formatter for new ConsoleHandler instances
java.util.logging.ConsoleHandler.formatter = com.orientechnologies.common.log.OLogFormatter

Set the default logging level for new FileHandler instances
java.util.logging.FileHandler.level = INFO

Naming style for the output file
java.util.logging.FileHandler.pattern=../log/orient-server.log
Set the default formatter for new FileHandler instances
java.util.logging.FileHandler.formatter = com.orientechnologies.common.log.0OLogFormatter
Limiting size of output file in bytes:
java.util.logging.FileHandler.limit=10000000

Number of output files to cycle through, by appending an

integer to the base file name:
java.util.logging.FileHandler.count=10

When the log properties file is ready, you need to tell the JVM to use t, by setting java.util.logging.config.file System property.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html
http://www.javapractices.com/topic/TopicAction.do?Id=143

$ java -Djava.util.logging.config.file=mylog.properties

Setting the Log Level

To change the log level without modifying the logging configuration, set the 1log.console.level and log.file.level system variables.
These system variables are accessible both at startup and at runtime.

Configuring Log Level at Startup

You can configure log level at startup through both the orientdb-server-config.xml configuration file and by modifying the JVM
before you start the server:

Using the Configuration File

To configure log level from the configuration file, update the following elements in the <properties> section:

<properties>
<entry value="info" name="log.console.level" />
<entry value="fine" name="log.file.level" />

</properties>

Using the JVM

To configure log level from the JVM before starting the server, run the java command to configure the log.console.level and

log.file.level variables:

$ java -Dlog.console.level=INFO -Dlog.file.level=FINE

Configuring Log Level at Runtime

You can configure log level at runtime through both the Java API and by executingan HTTP posT against the remote server.

Using Java Code

Through the Java API, you can set the system variables for logging at startup through the system.setProperty() method. For instance,

public void {
System.setProperty("log.console.level", "FINE");

Using HTTP POST

Through the HTTP requests, you can update the logging system variables by executinga posT against the URL: /server/log.

<type>/<level>

e <type> Defines the logtype: console or file .

e <level> Defines the loglevel.
Examples

The examples below use cURL to execute the HTTP pPosT commands against the OrientDB server. It uses the server root user and

password.

e Enable the finest tracing level to the console:

https://en.wikipedia.org/wiki/CURL

$ curl -u root:root -X POST http://localhost:2480/server/log.console/FINEST

e Enable the finest tracing level to file:

$ curl -u root:root -X POST http://localhost:2480/server/log.file/FINEST

Install Log Formatter

OrientDB Server uses its own log formatter. In order to enable the same for your application, you need to include the following line:

OLogManager .installCustomFormatter();

The Server automatically installs the log formatter. To disable it, use orientdb.installCustomFormatter .

$ java -Dorientdb.installCustomFormatter=

Studio

Studio Home page

Studio is a web interface for the administration of OrientDB that comes in bundle with the OrientDB distribution.

If you run OrientDB in your machine the web interface can be accessed via the URL:

http://localhost:2480

This is the new Studio 2.0 Homepage.

A2
)Ov ient ah Server Management

Database | GratefulDeadConcerts :

User

Password

From here, you can :

e Connect to an existing database
e Drop an existing database
e Create a new database

e Import a public database

Go to the Server M anagement Ul

Connect to an existing database

To Login, select a database from the databases list and use any database user. By default reader/reader can read records from the

database, writer/writer can read, create, update and delete records. admin/admin has all rights.

Drop an existing database

Select a database from the databases list and click the trash icon. Studio will open a confirmation popup where you have to insert

o Server User

e Server Password

and then click the "Drop database" button. You can find the server credentials in the §ORIENTDB_HOM E/config/orientdb-server-
config.xml file:

<users>
<user name="root" password="pwd" resources="*" />
</users>

Studio

Create a new database

To create a new database, click the "New DB" button from the Home Page

er Management

New Database

Database name

Type graph

Storage plocal
Type

Server
User

Server

You can find the server credentials in
$ORIENTDB_HOME/config/orientdb-server-config.xml file:

<users>
<user name="root" password="pwd" resources="x" />
</users>

u Create database

Some information is needed to create a new database:

e Database name

e Database type (Document/Graph)
e Storage type (plocal/memory)

e Server user

e Server password

You can find the server credentials in the SORIENTDB_HOM E/config/orientdb-server-config.xml file:

<users>
<user name="root" password="pwd" resources="*" />
</users>

Once created, Studio will automatically login to the new database.

Import a public database

Studio 2.0 allows you to import databases from a public repository. These databases contains public data and bookmarked queries that
will allow you to start playing with OrientDB and OrientDB SQL. The classic bundle database 'GratefulDeadConcerts' will be moved to
this public repository.

N
@)

Studio

anagement

Import Public Databases

Server User

Server Password

Description License Download

GratefulDeadConcerts Database containing the concerts of the Grateful Dead band Creative Commons r+Y

To install a public database, you will need the Server Credentials. Then, click the download button of the database that you are
interested in. Then Studio will download and install in to your SORIENTDB_HOM E/databases directory. Once finished, Studio will
automatically login to the newly installed database.

N
Ul
N

Execute a query

Studio supports auto recognition of the language you're using between those supported: SQL and Gremlin. While writing, use the auto-

complete feature by pressing Ctrl + Space.
Other shortcuts are available in the query editor:

e Ctrl + Return to execute the query or just click the Run button
e Ctrl/Cmd + Z to undo changes

e Ctrl/Cmd + Shift + Z to redo changes

e Ctrl/Cmd + F to search in the editor

e Ctrl/Cmd + /to toggle a comment

Note: If you have multiple queries in the editor, you can select a single query with text selection and execute it with Ctrl +

Return or the Run button

»
'Oriem Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v
select from V| *
Run: Ctrl + Return ‘ Undo: Ctrl/Cmd + Z | Redo: Ctrl/Cmd + Shift + Z -
Search : Ctrl/Cmd + F \ Toggle Comment: Ctrl/Cmd +/ | Autocomplete: Ctrl + Space e W s
Search in history W W Bookmarks
select from V [} 4|
METADATA PROPERTIES IN out
@rid+ @class< @version+ name < song_type: performances< type< followed by < written_by <+ sung_by < followed by <+ written_by< sung by<
#9:10 V. 363 JACK STRAW original 473 song
[vore | [vore |
#9:0) 1
#9:2 Vv 15 IM A MAN cover 1 song
#9:3 \ 305 NOT FADE cover 531 song
AWAY
[vore | [vore |
#9:4 \" 265 BERTHA original 394 song
[vore | [vore |
#9:5) 177 GOING DOWN cover 293 song
THE ROAD
FEELING BAD

By clicking any @rid value in the result set, you will go into document edit mode if the record is a Document, otherwise you will go into

vertex edit.

You can bookmark your queries by clicking the star icon in the results set or in the editor. To browse bookmarked queries, click the

Bookmarks button. Studio will open the bookmarks list on the left, where you can edit/delete or rerun queries.

A
’Oriem @ Browse = Schema & Security O Graph </> Functions SDB & GratefulDeadConcerts (admin) v

x
Bookmarks %
trl/Cmd + Shift + Z .
d +/ | Autocomplete: Ctrl + Space (2] W e
All Users
w % Bookmarks
All vertices
Ox®
Select all
PROPERTIES IN ouT
song_type< performances< type: followed_by < written_by < sung_by < followed by < written_by:= sung_by
original 473 song
[vore | [vore |
cover il song
cover 531 song
[vore | [vore |
original 394 song
[vore | [vore |
N cover 293 song
pD
[vore | Er

Studio saves the executed queries in the Local Storage of the browser, in the query settings, you can configure how many queries studio

will keep in history. You can also search a previously executed query, delete all the queries from the history or delete a single query.

From Studio 2.0, you can send the result set of a query to the Graph Editor by clicking on the circle icon in the result set actions. This
allows you to visualize your data graphically.

Look at the JSON output

Studio communicates with the OrientDB Server using HTTP/RESt+JSON protocol. To see the output in JSON format, press the RAW
tab.

select from V limit 5 oO*x@

14

2 "result": [

"@version"
"@class": "v"

Query executed in 0.045 sec. Returned 5 record(s) Table Raw

Edit Document

g
Orientl
»

Browse = Schema curity O Graph </> Functions

& GratefulDeadConcerts (admin) v

Document:

status *

password *

name *

ACTIVE

{SHA-
256)8C6976E5B5410415BDEQ0BBDADEE15DFB167A9CB73FC4

admin

STRING

STRING

STRING

roles (ORole) ©

Edit Vertex

»
’Oriem @ Browse = Schema & Security O Graph </> Functions = & GratefulDeadConcerts (admin) v

In Edges Vertex: \/ - #9:1 - Version 25 (@) B Save Out Edges

followed_by (4) © . followed_by (5) ©
name HEY BO DIDDLEY STRING : written_by (1) ©
p sung_by (1) @
song_type cover STRING :
4
performances 5 INTEGER B .
type | song STRING s .

Schema Manager

OrientDB can work in schema-less mode, schema mode or a mix of both. Here we'll discuss the schema mode. To know more about

schema in OrientDB go here

A3
)Orient @ Browse = Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v

{ b%ﬁ}'fh class Q

Name @ SuperClass @ Alias Abstract Clusters @ Default Cluster Cluster Selection @ Records Actions

E [0] 10 round-robin ¢ | 7047 = Query Al |+ New Record | [0
Foo \Y% [13] 13 default + 0 = Query All 4 New Record
OFunction uyl 7 round-robin % | 1 = Query Al + New Record
Oldentity v -] af round-robin % 8 S Query Al + New Record
ORIDs [6] 6 round-robin ¢ | 0 = Query Al + New Record
ORestricted 11 -1 round-robin ¢ | 0 = Query All 4 New Record
ORole Oldentity [4] 4 round-robin ¢ | 5 = Query Al + New Record
OSchedule (8] 8 round-robin ¢ 0 = Query All 4 New Record
OTriggered v 1] = round-robin ¢ | 0 = Query All 4 New Record
OUser Oldentity 5] 5 round-robin ¢ | 3 [P = Query All || + New Record
Vv 91 9 round-robin ¢ | 809 = Query All 4 New Record |05/
_studio [12] 12 round-robin ¢ 4 GEUELEE = Query All |+ New Record | mfslfvly]
followed_by E 1] 11 round-robin ¢ | 7047 [= Query All || + New Record

Here you can :

e Browse all the Classes of your database

e Create anew Class

e Rename/Drop a Class

e Change the cluster selection for a Class

e FEdit aclass by clicking on a class row in the table

e View all indexes created

Create a new Class

To create a new Class, just click the New Class button. Some information is required to create the new class.

e Name

SuperClass
Alias (Optional)
Abstract

Here you can find more information about Classes

= Schema Surity rap </> Functions S DB & GratefulDeadConcerts (admin)
Schema Manager (% lew Class I iE All Indexes I Rebuild All Indexes l
Search class . Super R

Name @ SuperClass © Alias Abstrl Class

E Alias = Query All 4+ New Record

Foo \%] Fran = Query Al + New Record

OFunction = Query All + New Record

Oldentity 7 | B Query All + New Record

ORIDs 5 = Query All |+ New Record

ORestricted v | Sleee = Query All || + New Record

ORole Oldentity - ! 1] EEEtY = Query All |+ New Record

OSchedule 8] 8 round-robin % 0 S Query Al + New Record

OTriggered g 1] =l [round-robin ¢ | 0 = Query All ||+ New Record

OUser Oldentity 5] 5 round-robin + | 5 SQuery All |+ New Record

Y [9] 9 [round-robin | 809 = Query All |+ New Record

_studio [12] 12 [round-robin ¢ | 4 = Query All |+ New Record

followed by E [11] 1 [round-robin % 7047 = Query All |+ New Record

>

View all indexes

When you want to have an overview of all indexes created in your database, just click the All indexes button in the Schema UI. This

will provide quick access to some information about indexes (name, type, properties, etc) and you can drop or rebuild them from here.

@ Browse Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v

Q
Name Type Class Properties Engine Actions
dictionary DICTIONARY [undefined] SBTREE £ Rebuild

Foo.bar NOTUNIQUE Foo [bar] SBTREE £ Rebuild

ORole.name UNIQUE ORole [name] SBTREE 2 Rebuild

OUser.name UNIQUE OUser [name] SBTREE 2 Rebuild [}

Class Edit

& GratefulDeadConcerts (admin) v

OrientDB @ Browse = Schema & Security O Graph </> Functions

y

Foo (@

Properties @

+ New Property

Name Type Linked_Type Linked_Class Mandatory Read_Only Not_Null Min Max Collate Actions

bar STRING : default :

Indexes ©
+ New Index

Name Type Properties Engine Actions

Foo.bar NOTUNIQUE ["bar"] SBTREE < Rebuild faf

Property

Add Property

S DB & GratefulDeadConcerts (admin) v

Save = Query All + New Record @ Drop

E=IENE & Security O Graph </> Functions

Property:

Properties @ Type * s
Linked 5
Type
Name Type Linked_Type I.I Linked : Collate Actions
- . Class - ~
bar STRING & I | default & Rename
Min @ Drop
Indexes @ Max
M it R 1} Not Null

T _ Mandatory (| Read Only (| Not Nul

Name Type ©

Foo.bar NOTUNIQUE

Close

Indexes

Create new index

Class

Index:

Name *

Type *

Fields

260

Graph Editor

Since Studio 2.0 we have a new brand graph editor. Not only you can visualize your data in a graph way but you can also interact with

the graph and modify it.

To populate the graph area just type a query in the query editor or use the functionality Send To Graph from the Browse Ul

A3
)Oriem @ Browse = Schema & Security O Graph </> Functions DB & GratefulDeadConcerts (admin) v

Graph Editor (@ [® Save Configuration © Add Vertex I @ Clear Canvas I More v I
1 select from V limit 5|

[\‘
LY o
\ J
4"
jo &
et %,

Supported operations in the Graph Editor are:

e Add Vertices

e Save the Graph Rendering Configuration
e Clear the Graph Rendering Canvas

e Delete Vertices

e Remove Vertices from Canvas

e Edit Vertices

e Inspect Vertices

e Change the Rendering Configuration of Vertices
e Navigating Relationships

e Create Edges between Vertices

e Delete Edges between Vertices

e Inspect Edges

e Edit Edges

Add Vertices

To add a new Vertex in your Graph Database and in the Graph Canvas area you have to press the button Add Vertex. This operation is

done in two steps.

The first step you have to choose the class for the new Vertex and then click Next

& GratefulDeadConcerts (admin) v

</> Functions S DB

O Graph

= Schema & Security

A
Orient @ Browse
»

New Vertex

Graph Editor (@ Clear Canvas

1 select from V 1

Next

Qv

In the second step you have to insert the fields values of the new vertex, you can also add custom fields as OrientDB supports Schema-

Less mode. To make the new vertex persistent click to Save changes and the vertex will be saved into the database and added to the

canvas area

& GratefulDeadConcerts (admin) v

= Schema & Security

@ Browse

A
Orient
»

New Vertex

Graph Editor (@ Clear Canvas

1 select from V 1i

o

r e

Delete Vertices

Open the circular menu by clicking on the Vertex that you want to delete, open the sub-menu by passing hover the mouse to the menu

entry more (...) and then click the trash icon.

Remove Vertices from Canvas

Open the circular menu , open the sub-menu by passing hover the mouse to the menu entry more (...) and then click the eraser icon.

Edit Vertices

Open the circular menu and then click to the edit icon, Studio will open a popup where you can edit the vertex properties.

Inspect Vertices

If you want to take a quick look to the Vertex property, click to the eye icon.

A3
)Oriem @ Browse =R e & Security O Graph </> Functions SDB & GratefulDeadConcerts (admin) v

V-#9:4- Version 265 x
Save Configuration

Properties m

@rid #9:4

© Add Vertex I W Clear Canvas I More v I

@class Vv

name BERTHA

song_type original

performances 394

type song

=pB & GratefulDeadConcerts (admin) v

A
)Oriem @ Browse = Schema & Security O Graph </> Functions

V-#9:4- Version 265
Save Configuration

© Add Vertex I @ Clear Canvas I More v I

Settings m

Display

Icon

Radius

Fill

Stroke

Save configuration

Javascri pt:void(0)

Navigating Relationships
Create Edges between Vertices

Delete Edges between Vertices

Inspect Edges

Edit Edges

Functions

OrientDB allows to extend the SQL language by providing Functions. Functions can be used also to create data-driven micro services.
For more information look at Functions.

A
)Or\em @ Browse = Schema & Security O Graph </> Functions DB & GratefulDeadConcerts (admin) v
Functions
Functions Management (@ B Save W Delete
Name foo Language Javascript j Idempotent
a w
1 return aj|

Security

Studio 2.0 includes the new Security M anagement where you can manage Users and Roles in a graphical way. For detailed information

about Security in OrientDB, visit here

Users

Here you can manage the database users:

Search Users
Add Users

Delete Users

Edit User: roles can be edited in-line, for name, status and password click the Edit button

» i X i I}
}Orlem)E @ Browse Security | O Graph </> Functions & GratefulDeadConcerts (admin) v

Security Manager (@

Users Roles

‘ a [onim

Name Roles Status Actions

Add Users

To add a new User, click the Add User button, complete the information for the new user (name, password, status, roles) and then save

to add the new user to the database.

S DB & GratefulDeadConcerts (admin) v

= Schema </> Functions

@ Browse

b
Orient
»

Security Manager (@

Users Roles Password *

Status * ACTIVE :

© Add user

Search user

Name @ Roles al Actions

- [reaser] o e
reader
Prova
VS Add reader

writer

Delete

Roles

Here you can manage the database roles:

e Search Role
e Add Role
e Delete Role
e Edit Role

Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v

Security Manager (@
Users Roles
P —— e —
QNS Permissions
Name Mode Actions Name Delete Update Read Create
admin [Allow all but # database.bypassrestricted v 4 4 4
reader Deny all but #
writer Deny all but #

To add a new User, click the Add Role button, complete the information for the new role (name, parent role, mode) and then save to add

the new role to the database.

</> Functions & GratefulDeadConcerts (admin) v

S DB

@ Browse

New Role

Security Manager (@

Users Roles Inherited Role * 4
Mode * 5

Search role - © Add Rule
Name @ Inherited Role Mode Read Create
admin Allow all but % Close ™ ™
epico Prova [Allowall but ¢ | e
Prova admin | Allowall but ¢
reader | Denyallbut ¢
writer | Denyallbut ¢

Add Rule to a Role

To add a new security rule for the selected role, click the Add Rule button. This will ask you the string of the resource that you want to

secure. For a list of available resources, visit the official documentation here

Then you can configure the CRUD permissions on the newly created resource.

Security

New Rule

Add Rule

268

Database Management

This is the panel containing all the information about the current database.

Structure

Represents the database structure as clusters. Each cluster has the following information:

e 1D ,is the cluster ID
® Name , is the name of the cluster
e Records , are the total number of records stored in the cluster
e conflict Strategy , is the conflict strategy used. I empty, the database's strategy is used as default
b= — : " .
')Onent‘ 3 @ Browse = Schema & Security O Graph </> Functions & GratefulDeadConcerts (admin) v
Database Management (@
Structure Configuration Export
Clusters are sets of records grouped by a mean. Any mean you want to assign. You can use a Cluster like a Table of the Relational DBMS world, namely to group records of the same type. Or you could want
to group records by different logics.
There are two kinds of clusters: Physical and In-memory.The first one is persistent, the second one is volatile.
ID Name Records Conflict Strategy
1 index 3 version 3
5 ouser 3 :
10 e 0 +
11 followed_by 7047 +
13 foo 0 :
8 oschedule 0 :
9 v 809 +
4 orole 3 :
3 default 0 version 3
7 ofunction 1 :
12 _studio y | 3
2 manindex 1 version :
6 orids 0 :
0 internal 3 version 3
localhost:9000/#/

Configuration

Contains the database configuration and custom properties. Here you can display and change the following settings:

e dateFormat , is the date format used in the database by default. Example: yyyy-MM-dd

e dateTimeFormat is the datetime format used in the database by default. Example: yyyy-MM -dd HH:mm:ss
® localeCountry , is the country used. "NO" means no country set

® localelLanguage , is the language used. "no" means no language set

® charSet , is the charset used. Default is UTF-8

® timezone , is the timezone used. Timezone is taken on database creation

e definitionversion , is the internal version used to store the metadata

e clusterSelection , is the strategy used on selecting the cluster on creation of new record of a class

® minimumClusters , minimum number of clusters to create whenat class creation

e conflictStrategy , is the database strategy for resolving conflicts

»
')Oriem @ Browse = Schema & Security O Graph </> Functions =] & GratefulDeadConcerts (admin) v

Database Management (@

Structure Configuration Export

Save
Name Value
dateFormat yyyy-MM-dd

dateTimeFormat yyyy-MM-dd HH:mm:ss

localeCountry UK
localeLanguage EN

charSet UTF-8
timezone GMT
definitionVersion 9
clusterSelection :
minimumClusters 1
conflictStrategy version :

Export

Allows to export the current database in GZipped JSON format. To import the file into another database, use the Import Console

Command.

»
»)Orient @ Browse = Schema & Security O Graph </> Functions = & GratefulDeadConcerts (admin) v

Database Management (@)
Structure Configuration Export
Export Database OrientDB Server exports the database in JSON format. Click the Export Database button to download a gzip compressed file containing

the JSON file. You can re-import it by using OrientDB command line console

Server Management

This is the section to work with OrientDB Server as DBA/DevOps. Starting from OrientDB 2.1 Studio has been enriched of features
taken from the Enterprise Edition.

Statistics

This page summarizes all the most important information about the current server and the other servers connected in cluster if any:

® Server status

® Operations per second
® Active Connections

® Warnings

e cPU, RaM and DISK used

e Live chart with CRUD operations in real-time

»

europe eur

—
w
= 27.32% 45.39% 58%
-
—1
= o A
CPU RAM DISK CPU RAM DISK
Status: ONLINE OpsiSec: 0 Status: ONLINE Ops/Sec: 3137
Active Connections: 2 Network Requests: 0 Active Connections: 16 Network Requests: 627
Average Latency: 0 Warnings: 0 Average Latency: 35 Warnings: 0
160000 2 1 o
@ T
S 00 G
140000 4 & 5
£ 1
120000 4 o i
H &
100000 { & 2000 -
80000 -
1500 +
60000
1000
40000 -
20000 500
a4 0
T T T T T T T—T% T L s Sy e | T T T |
12:36:00 128614 125628 123642 12:36:43 12:36:46
B Create M Read M Update WM Delste M Create M Read M Update M Delete
Connections

Displays all the active connections to the server. Each connection reports the following information:

® Session ID , as the unique session number

e Client , as the unique client number

® Address , is the connection source

® Database , the database name used

e User , the database user

e Total Requests , as the total number of requests executed by the connection
e command Info , as the running command

e command Detail , as the detail about the running command

® Last Command On , is the last time a request has been executed

e Last Command Info , is the informaton about last operation executed

® Last Command Detail , is the informaton about the details of last operation executed
® Last Execution Time , is the execution time o last request

e Total Working Time , is the total execution time taken by current connection so far

http://orientdb.com/enterprise/

® Connected Since , is the date when the connection has been created
e Protocol , is the protocol between HTTP and Binary
e cClient ID, atext representing the client connection

e Driver , the driver name

Each session can be interrupted or even killed.

erver Management

Below all the active connections. Keep in mind that HTTP connections are stateless, so no database is retain

ns, instead, rarmain in life until the connection client closes it. Binary connections are used by the Orie

an ally after a short timaout (saconds) they are kiled. Binary

tool and by any Orient Java applications that uses tha native

o
-
Q
]
—1
=
Last Last Last Total
Total c c c i ing C Client
User Requests Info Detail Oon Info Last Command Detail Time Time Since Protocol 1e] Driver Commands
34 Listening 1970-01 Get static /studio/img/spinner.gif 2 13634 2015-08-05 http @intarrupt
o content 12941 K
12:59:59
i Listening 1870-01 Get static /studio/views/widget/aside.html 0 G4 2015-08-05 hitp @intarrupt
o1 content 12:15:16 ATK
12:58:59
admin 1331 Load 2015-08 Load 1 3096 2015-08-05 http @intarmupt
document 05 document 12:15:24 K
1211527
admin 1279 Listening 2015-08. Load 1 3o 2015-08-05 hitp @intarrupt
05 document 12:15:24 K
12:118:27
admin 1324 Load o 2881 2015-08-05 http @intarrupt
documeant 12:15:24 K
admin 1329 2015-08 Load 2 2966 2015-08-05 hip @intarrupt
05 dacument 12:15:24 K
1211527

Configuration

This panel shows the Server settings divided in two boxes:

e Properties , as the custom settings in config/orientdb-server-config.xml file

e Global Configuration , as all the global configuration. Only few of them can be changed at run-time with the "Save" button

ﬁ Properties
Name Value
e
L db.pool.min 1
- db.paal.max a0
=
prefiler.enabled true
log.conscle.level nfo
log file level fina
Global Configuration Save
Name Description Default Value Value
cache.local.enabled Deprecated, Levell cache cannot be disabled anymore true true
client.channel.dbReleaseWaitTimeout Delay in ms. after which data medification command will be resent if DB 10000 10000
was frozen
client channal maxPool Maximum size of pool of network channels betwean client and servar. A 100 100
channel is a TCRAP connection.
client.channel.minPool Minimum pool size 1 1
client.connectionPool. waitTimaout Maximum tima which client should wait a connaction from the pool when 5000 5000
all connection are usad g
client.session.tokenBased Request a token based session to the server false false
client.ssl.enabled Use SSL for client connections false false

Storages

client sl keyStore

client ssl kevStoraPass

Use S5L for cliant connections

Lise 881 for client connections

This panel shows the storages used by the server. Below the information reported per storage:

e Name , is the storage name
e Type , where oOLocalPaginatedstorage (plocal) means persstent and oDirectMemoryStorage (memory) is in memory only

e Path , as the path on server's file system where the storage is located

e Active Users . This infomation couldn't be updated with the real number of users that are using the database

Path Active Users

»

Name Type
Whisky OlocalPaginatedStorage /Users/luca/werk/dev/orientechnologies/orientdbi/releases/orientdb-community-2. 1-SNAPSHOT/databases/Whisky

o

(((

Auditing (Enterprise only)

Studio 2.1 includes a new functionality called Auditing. To understand how Auditing works, please read the Auditing page.

The Studio Auditing panel helps with configuring auditing by avoiding editing the auditing-config.json file manually.

»
—,Oriem Schema & Security O Graph </> Functions DB f Profiler @ Auditing & test (admin) v

Auditing log Configuration

Class Auditing

Auditing Class AuditingLog © Add Class

Class Create Read Update Delete Polymorphic
% % z %
Added new user ssag| Changing user data User removed
) % 4 Yz
\
New vertex was created essag Updated vertex lessage
2 % % %

By default all the auditing logs are saved as documents of class AuditingLog . If your account has enough privileges, you can directly

query the auditing log. Example on retrieving last 20 logs: select from AuditingLog order by @rid desc limit 20 .

However, Studio provides a panel to filter the Auditing Log messages without using SQL.

»
')Orienr 3 @ Browse Schema & Security O Graph </> Functions DB f Profiler @ Auditing & test (admin) v

Auditing log Configuration

User Operation Date from Date To
s i} (9] i 9}
Note Record Limit
100 & Clear Filter ~ QSearch
User Date Operation Record Note

admin 2015-08-05 13:19:32 Update #9:7 Updated vertex
admin 2015-08-05 13:19:32 Update #9:6 Updated vertex
admin 2015-08-05 13:19:32 Update #9:5 Updated vertex
admin 2015-08-05 13:19:32 Update #9:4 Updated vertex
admin 2015-08-05 13:19:32 Update #9:3 Updated vertex
admin 2015-08-05 13:19:32 Update #9:2 Updated vertex
admin 2015-08-05 13:19:32 Update #9:1 Updated vertex

admin 2015-08-05 13:19:32 Update #9:0 Updated vertex

Troubleshooting

This page aims to link all the guides to Problems and Troubleshooting.

Sub sections

e Troubleshooting Java API

Topics

Why can't I see all the edges?

OrientDB, by default, manages edges as "lightweight" edges if they have no properties. This means that if an edge has no properties, it's
not stored as physical record. But don't worry, your edge is still there but encoded in a separate data structure. For this reason if you
execute a select from E no edges or less edges than expected are returned. It's extremely rare the need to have the list of edges, but if

this is your case you can disable this feature by issuing this command once (with a slow down and a bigger database size):

ALTER DATABASE custom uselLightweightEdges=

Use ISO 8601 Dates

According to ISO 8601, Combined date and time in UTC: 2014-12-20T00:00:00. To use this standard change the datetimeformat in the
database:

ALTER DATABASE DATETIMEFORMAT yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

JVM crash on Solaris and other *NIX platforms.

The reason of this issue is massive usage of sun.misc.Unsafe which may have different contract than it is implemented for Linux and

Windows JDKs. To avoid this error please use following settings during server start:

java ... -Dmemory.useUnsafe=false and -Dstorage.compressionMethod=gzip ...

Error occurred while locking memory: Unable to lock JVM memory. This can result in
part of the JVM being swapped out, especially if mmapping of files enabled. Increase
RLIMIT_MEMLOCK or run OrientDB server as root(ENOMEM)

Don't be scared about it: your OrientDB installation will work perfectly, just it could be slower with database larger than memory.

This lock is needed in case of you work on OS which uses aggressive swapping like Linux. If there is the case when amount of available
RAM is not enough to cache all MM AP content OS can swap out rarely used parts of Java heap to the disk and when GC is started to
collect garbage we will have performance degradation, to prevent such situation Java heap is locked into memory and prohibited to be
flushed on the disk.

com.orientechnologies.orient.core.exception.OStorageException: Error on reading
record from file 'default.0.0da’, position 2333, size 122,14Mb: the record size is bigger
then the file itself (233,99Kb)

This usually happens because the database has been corrupted by a hw/sw crash or a hard kill of the process during the writing to disk.

If this happens on index clusters just rebuild indexes, otherwise re-import a previously exported database.

Class 'OUSER' or 'OROLE' was not found in current database

Look at: Restore admin user.

User 'admin' was not found in current database

Look at: Restore admin user.

WARNING: Connection re-acquired transparently after XXXms and Y retries: no errors
will be thrown at application level

This means that probably default timeouts are too low and server side op eration need more time to complete. Follow these Performance

Tuning,

Recordidinvalid -1:-2

This message is relative to a temporary record id generated inside a transaction. For more information look at Transactions. This means

that the record hasn't been correctly serialized.

Brand new records are created with version greater than 0

This happens in graphs. Think to this graph of records:
A->B->C->A

When OrientDB starts to serialize records goes recursively from the root A. When A is encountered again to avoid loops it saves the
record as empty just to get the RecordID to store into the record C. When the serialization stack ends the record A (that was the first of

the stack) is updated because has been created as first but empty.

Error: com.orientechnologies.orient.core.exception.OStorageException: Cannot open
local storage '/tmp/databases/demo’ with mode=rw

com.orientechnologies.common.concur.lock.OLockException: File
'/tmp/databases/demo/default.0.0oda’ is locked by another process, maybe the database is
in use by another process. Use the remote mode with a OrientDB server to allow
multiple access to the same database

Both errors have the same meaning: a "plocal" database can't be opened by multiple JVM at the same time. To fix:

e check if there's no process using OrientDB (most of the times a OrientDB Server is running i the background). Just shutdown that
server and retry
e if you need multiple access to the same database, don't use "plocal" directly, but rather start a server and access to the database by

using "remote" protocol. In this way the server is able to share the same database with multiple clients.

Caused by: java.lang.NumberFormatException: For input string: "500Mb"

You're using different version of libraries. For example the client is using 1.3 and the server 1.4. Align the libraries to the same version

(last is suggested). Or probably you've different versions of the same jars in the classpath.

Troubleshooting using Java API

OConcurrentModificationException: Cannot update record #X:Y in
storage 'Z' because the version is not the latest. Probably you are
updating an old record or it has been modified by another user
(db=vA your=vB)

This exception happens because you're running in a Multi Version Control Check (M VCC) system and another thread/user has updated

the record you're saving. For more information about this topic look at Concurrency. To fix this problem you can:

e Change the Graph consistency level to don't use transactions.

e Or write code concurrency proof.

Example:

for (int retry = 0; retry < maxRetries; ++retry) {
try {

document.field(name, "Luca");

document.save();
break;
} catch(ONeedRetryException e) {

document.reload();
}
}

The same in transactions:

for (int retry = 0; retry < maxRetries; ++retry) {
db.begin();
try {

ODocument invoiceItem = new ODocument('"InvoiceItem");

invoiceItem.field(price,)
invoiceItem.save();

Collection<ODocument> items = invoice.field(items);
items.add(invoiceItem);
invoice.save();
db.commit();
break;
} catch (OTransactionException e) {
invoice.reload();

}
}

Where maxRetries is the maximum number of attempt of reloading.

Run in OSGi context

(by Raman Gupta) OrientDB uses ServiceRegistry to load OIndexFactory and some OSGi containers might not work with it.

One solution is to set the TCCL so that the ServiceRegistry lookup works inside of OSGi:

http://docs.oracle.com/javase/7/docs/api/javax/imageio/spi/ServiceRegistry.html
http://docs.oracle.com/javase/7/docs/api/javax/imageio/spi/ServiceRegistry.html

ODatabaseObjectTx db = null;
ClassLoader origClassLoader = Thread.currentThread().getContextClassLoader();
try {
ClassLoader orientClassLoader = OIndexes.class.getClassLoader();
Thread.currentThread().setContextClassLoader (orientClassLoader);
db = objectConnectionPool.acquire(dbUrl, username, password);
} finally {
Thread.currentThread().setContextClassLoader (origClassLoader);

}

Because the ServiceLoader uses the thread context classloader, you can configure it to use the classloader of the OrientDB bundle so that
it finds the entries in M ETA-INF/services.

Another way is to embed the dependencies in configuration in the M aven pom.xml file under plugin(maven-bundle-

plugin)/configuration/instructions:

<Embed-Dependency>
orientdb-client,
orient-commons,
orientdb-core,
orientdb-enterprise,
orientdb-object,
javassist

</Embed-Dependency>

Including only the jars you need. Look at Which library do I use?

Database instance has been released to the pool. Get another
database instance from the pool with the right username and
password

This is a generic error telling that the database has been found closed while using it.

Check the stack trace to find the reason of it:

OLazyObjectIterator

This is the case when you're working with Object Database API and a field contains a collection or a map loaded in lazy. On iteration it
needs an open database to fetch linked records.

Solutions:

e assure to leave the database open while browsing the field
e or early load all the instances (just iterate the items)
o define a fetch-plan to load the entire object tree in one shoot and then work offline. If you need to save the object back to the

database then reopen the database and call db.save(object) .

Stack Overflow on saving objects

This could be due to the high deep of the graph, usually when you create many records. To fix it save the records more often.

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

Query Examples

This pages collects example of query from users. Feel free to add your own use case and query to help further users.

How to ask the graph what relationships exist between two vertices? In my case I have two known 'Person’ nodes each connected via a

'member_of' edge to a shared 'Organization’ node. Each 'Person' is also a 'member_of' other 'Organization's.

select intersect(out('member_of').org_name) from
Person where name in ["nagu", "rohit"]

This example shows how to form where clause in order to query/ filter based on properties of connected vertices.

DocElem and M odel are subclasses of V and hasM odel of E.

insert into DocElem set uri = 'domain.tdl', type = "paragraph"
insert into Model set hash = 'Oelf', model = "hello world"
create edge hasModel from #12: to #

User wishes to query those vertices filtering on certain properties of DocElem and M odel.

To fetch the M odel vertices where DocElem.type = "paragraph” and connected vertex M odel has the property model like '%world%'

select from (select expand(out('hasModel')) from DocElem where
type = "paragraph") where model like "%world%"

To find instead the DocElem vertices, use this (assuming that a DocElem is only connected to one M odel):

select * from DocElem where type = "paragraph" and
out('hasModel')[0].model like '%world%'

How to apply built-in math functions on projections? For example, to use the sum() function over 2 values returned from sub-queries

using projections, the following syntax may be used:

select sum($a[0].count,$b[0].count)
let $a = (select count(*) from e),
$b = (select count(*) from v)

Given the following schema: Vertices are connected with Edges of type RELATED which have property count. 2 vertices can have

connection in both ways at the same time.
V1--RELATED(count=17)-->V2
V2--RELATED(count=3)-->V1

Need to build a query that, for a given vertex Vn, will find all vertices connected with RELATED edge to this Vn and also, for each pair
[Vn, Vx] will calculate SUM of in_ RELATED.count and out_ RELATED.count.

For that simple example above, this query result for V1 would be

Vertex Count

V2 20

Solution:

Query Examples

select v.name, sum(count) as cnt from (
select if(eval("in=#17:0"),out,in) as v,count from E where (
in=#17:0 or out=#17:0)
) group by v order by cnt desc

This was discussed in the google groups over here: "https:/groups.google.com/forum/#!topic/orient-database/CRR-simpmLg". Thanks
to Andrey for posing the problem.

280

https://groups.google.com/forum/#!topic/orient-database/CRR-simpmLg

Performance Tuning
This guide contains the general tips to optimize your application that use the OrientDB. Below you can find links for the specific guides
different per database type used. Look at the specific guides based on the database type you're using:

e Document Database performance tuning
e Object Database performance tuning

e Distributed Configuration tuning

I/0 benchmark

The main requirement for a fast DBM S is having good I/O. In order to understand the performance of your hw/sw configuration. If you

have a Unix derived OS (like Linux, MacOSX, etc.), the simplest way to have your raw I/O performance is running this two commands:

dd if=/dev/zero of=/tmp/output.img bs=8k count=256k
rm /tmp/output.img

This is the output on a fast SSD (1.4 GB/sec):

262144+0 records in
262144+0 records out
2147483648 bytes transferred in 1.467536 secs (1463326070 bytes/sec)

And this is what you usually get with a HD connected with a USB 3.0 (90 M B/sec):

262144+0 records in
262144+0 records out
2147483648 bytes transferred in 23.699740 secs (90612119 bytes/sec)

As you can notice the first configuration (SSD) is 16x faster than the second configuration (HD). Sensible differences can be found

between bare metal hw and Virtual M achines.

Java

OrientDB is written in Java, so it runs on top of Java Virtual M achine (JVM). OrientDB is compatible with Java 8 and we suggest to

use this version to run OrientDB. Java 8 is faster than Java 7 and previous ones.

JMX

Starting from v2.1, OrientDB exposes internal metrics through JM X Beans. Use this information to track and profile OrientDB.

Memory settings

Server and Embedded settings

These settings are valid for both Server component and the JVM where is running the Java application that use OrientDB in Embedded
Mode, by using directly plocal.

The most important thing on tuning is assuring the memory settings are correct. What can make the real difference is the right balancing
between the heap and the virtual memory used by Memory M apping, specially on large datasets (GBs, TBs and more) where the in

memory cache structures count less than raw IO.

For example if you can assign maximum 8GB to the Java process, it's usually better assigning small heap and large disk cache buffer (off-

heap memory). So rather than:

java -Xmx8g ...

You could instead try this:

java -Xmx800m -Dstorage.diskCache.bufferSize=7200 ...

The storage.diskCache.bufferSize setting (with old "local" storage it was file.mmap.maxMemory) is in M B and tells how much

memory to use for Disk Cache component. By default is 4GB.

NOTE: If the sum of maximum heap and disk cache buffer is too high, could cause the OS to swap with huge slow down.

JVM settings

JVM settings are encoded in server.sh (and server.bat) batch files. You can change them to tune the JVM according to your usage and

hw/sw settings. We found these setting work well on most configurations:

-server -XX:+PerfDisableSharedMem

This setting will disable writing debug information about the JVM. In case you need to profile the JVM, just remove this setting, For

more information look at this post: http://www.evanjones.ca/jvm-mmap-p ause.html.

High concurrent updates

OrientDB has an optimistic concurrency control system, but on very high concurrent updates on the few records it could be more
efficient locking records to avoid retries. You could synchronize the access by yourself or by using the storage API. Note that this

works only with non-remote databases.

((oStorageEmbedded)db.getStorage()).acquireWriteLock(final ORID iRid)
((ostorageEmbedded)db.getStorage()).acquireSharedLock(final ORID iRid)
((oStorageEmbedded)db.getStorage()).releaseWriteLock(final ORID iRid)
((ostorageEmbedded)db.getStorage()).releaseSharedLock(final ORID iRid)

Examp le of usage. Writer threads:

try{
((oStorageEmbedded)db.getStorage()).acquireWriteLock(record.getIdentity());

// DO SOMETHING

} finally {
((ostorageEmbedded)db.getStorage()).releaseWriteLock(record.getIdentity());

Reader threads:

try{
((0StorageEmbedded)db.getStorage()).acquireSharedLock(record.getIdentity());
// DO SOMETHING

} finally {
((0StorageEmbedded)db.getStorage()).releaseSharedLock(record.getIdentity());

Remote connections

There are many ways to improve performance when you access to the database using the remote connection.

Fetching strategy

http://www.evanjones.ca/jvm-mmap-pause.html

When you work with a remote database you've to pay attention to the fetching strategy used. By default OrientDB Client loads only
the record contained in the result set. For example if a query returns 100 elements, but then you cross these elements from the client,

then OrientDB client lazily loads the elements with one more network call to the server foreach missed record.

By specifying a fetch plan when you execute a command you're telling to OrientDB to prefetch the elements you know the client

application will access. By specifying a complete fetch plan you could receive the entire result in just one network call.

For more information look at: Fetching-Strategies.

Network Connection Pool

Each client, by default, uses only one network connection to talk with the server. M ultiple threads on the same client share the same

network connection pool.

When you've multiple threads could be a bottleneck since a lot of time is spent on waiting for a free network connection. This is the

reason why is much important to configure the network connection pool.
The configurations is very simple, just 2 parameters:

e minPool, is the initial size of the connection pool. The default value is configured as global parameters "client.channel.minPool"
(see parameters)
e maxPool, is the maximum size the connection pool can reach. The default value is configured as global parameters

"client.channel.maxPool" (see parameters)

At first connection the minPool is used to pre-create network connections against the server. When a client thread is asking for a

connection and all the pool is busy, then it tries to create a new connection until maxPool is reached.
If all the pool connections are busy, then the client thread will wait for the first free connection.

Examp le of configuration by using database properties:

database = new ODatabaseDocumentTx('"remote:localhost/demo™);
database.setProperty("minPool", 2);
database.setProperty("maxPool", 5);

database.open("admin", "admin");

Enlarge timeouts

If you see a lot of messages like:

WARNING: Connection re-acquired transparently after XXXms and Y retries: no errors will be thrown at application level

means that probably default timeouts are too low and server side op eration need more time to complete. It's strongly suggested you

enlarge your timeout only after tried to enlarge the Network Connection Pool. The timeout parameters to tune are:

® network.lockTimeout , the timeout in ms to acquire a lock against a channel. The default is 15 seconds.

® network.socketTimeout , the TCP/IP Socket timeout in ms. The default is 10 seconds.

Query
Use of indexes

The first improvement to speed up queries is to create Indexes against the fields used in WHERE conditions. For example this query:

SELECT FROM Profile WHERE name = 'Jay'

Browses the entire "profile" cluster looking for records that satisfy the conditions. The solution is to create an index against the 'name'

property with:

CREATE INDEX profile.name UNIQUE
Use NOTUNIQUE instead of UNIQUE if the value is not unique.
For more complex queries like

SELECT * FROM testClass WHERE propl = ? AND prop2 = ?

Composite index should be used

CREATE INDEX compositeIndex ON testClass (propl, prop2) UNIQUE

or via Java API:

oClass.createIndex("compositeIndex", OClass.INDEX_TYPE.UNIQUE, "propl", "prop2");

Moreover, because of partial match searching, this index will be used for optimizing query like

SELECT * FROM testClass WHERE propl = ?

For deep understanding of query optimization look at the unit test:
http://code.google.com/p/orient/source/browse/trunk/tests/src/test/java/com/orientechnologies/orient/test/database/auto/SQLSelectIndexR

euseTest.java

Avoid use of @rid in WHERE conditions (not actual from 1.3 version)

Using @rid in where conditions slow down queries. Much better to use the RecordID as target. Example:

Change this:

SELECT FROM Profile WHERE @rid = #

With this:

SELECT FROM #:

Also

SELECT FROM Profile WHERE @rid IN [#10:44, #10:45]
With this:

SELECT FROM [#10:44, #10:45]

Massive Insertion

Use the Massive Insert intent

Intents suggest to OrientDB what you're going to do. In this case you're telling to OrientDB that you're executing a massive insertion.

OrientDB auto-reconfigure itself to obtain the best performance. When done you can remove the intent just setting it to null.

Example:

http://code.google.com/p/orient/source/browse/trunk/tests/src/test/java/com/orientechnologies/orient/test/database/auto/SQLSelectIndexReuseTest.java

db.declareIntent(new OIntentMassiveInsert());

db.declareIntent(null);

Disable Journal

In case of massive insertion, specially when this operation is made just once, you could disable the journal (WAL) to improve insertion
speed:

-storage.usewWAL=false
By default WAL (Write Ahead Log) is enabled.

Disable sync on flush of pages

This setting avoids to execute a sync at OS level when a page is flushed. Disabling this setting will improve throughput on writes:

-Dstorage.wal.syncOnPageFlush=false

Massive Updates

Updates generates "holes" at Storage level because rarely the new record fits perfectly the size of the previous one. Holes are free spaces
between data. Holes are recycled but an excessive number of small holes it's the same as having a highly defragmented File System: space

is wasted (because small holes can't be easily recycled) and performance degrades when the database growth.

Oversize

If you know you will update certain type of records, create a class for them and set the Oversize (default is 0) to 2 or more.
By default the OGraphVertex class has an oversize value setted at 2. If you define your own classes set this value at least at 2.

OClass myClass = getM etadata().get Schema().createClass("Car"); my Class.setOverSize(2);

Wise use of transactions

To obtain real linear performance with OrientDB you should avoid to use Transactions as far as you can. In facts OrientDB keeps in
memory all the changes until you flush it with a commit. So the bottleneck is your Heap space and the management of local transaction

cache (implemented as a M ap).

Transactions slow down massive inserts unless you're using a "remote" connection. In that case it speeds up all the insertion because the

client/server communication happens only at commit time.

Disable Transaction Log

If you need to group operations to speed up remote execution in a logical transaction but renouncing to the Transaction Log, just disable

it by setting the property tx.useLog to false.

Via JVM configuration:

java ... -Dtx.useLog=false ...

or via API:

OGlobalConfiguration.TX_USE_LOG.setValue(false);

NOTE: Please note that in case of crash of the JVM the pending transaction OrientDB could not be able to rollback it.

Use the schema

Starting from OrientDB 2.0, if fields are declared in the schema, field names are not stored in document/vertex/edge themselves. This

improves performance and saves a lot of space on disk.

Configuration

To tune OrientDB look at the Configuration settings.

Platforms

e Performance analysis on ZFS

http://carloprad.blogspot.it/2014/03/orientdb-on-zfs-performance-analysis.html

Global Configuration

OrientDB can be configured in several ways. To know the current settings use the console with the config command.

Change settings

By command line

You can pass settings via command line when the JVM is launched. This is typically stored inside server.sh (or server.bat on Windows):

java -Dcache.size=10000 -Dstorage.keepOpen=true ...

By server configuration

Put in the <properties> section of the file orientdb-server-config.xml (or orientdb-dserver-config.xml) the entries to configure.

Example:

<properties>
<entry name='"cache.size" value="10000" />
<entry name='"storage.keepOpen" value="true" />
</properties>

At run-time

0GlobalConfiguration.MVRBTREE_NODE_PAGE_SIZE.setValue();

Dump the configuration

To dump the OrientDB configuration you can set a parameter at JVM launch:

java -Denvironment.dumpCfgAtStartup=true ...

Or via API at any time:

0GlobalConfiguration.dumpConfiguration(System.out);

Parameters

To know more look at the Java enumeration: o0GlobalConfiguration.java .

Environment

environment.dumpCfgAtS tartup

Dumps the configuration during application startup..

Setting name...: environment.dumpCfgAtStartup
Default value..: false
Set at run-time: false
Hidden.........: false

environment.concurrent

Specifies if running in multi-thread environment. Setting this to false turns off the internal lock management..

Setting name...: environment.concurrent
Default value..: true
Set at run-time: false
Hidden.........: false

environment.allowJVMS hutdown

Allows the shutdown of the JVM, if needed/requested..

Setting name...: environment.allowJVMShutdown
Default value..: true
Set at run-time: true

Hidden.........: false
Script
script.pool.maxSize

M aximum number of instances in the pool of script engines..

Setting name...: script.pool.maxSize
Default value..: 20
Set at run-time: false

Hidden.........: false
Memory
memory.useUnsafe

Indicates whether Unsafe will be used, if it is present..

Setting name...: memory.useUnsafe
Default value..: true
Set at run-time: false
Hidden.........: false

memory.directMemory.safeMode

Indicates whether to perform a range check before each direct memory update. It is true by default, but usually it can be safely set to

false. It should only be to true after dramatic changes have been made in the storage structures..

Setting name...: memory.directMemory.safeMode
Default value..: true
Set at run-time: false
Hidden.........: false

memory.directMemory.trackMode

If 'track mode' is switched on, then the following steps are performed: 1. direct memory JM X bean is registered. 2. You may check
amount of allocated direct memory as a property of the JM X bean. 3. If a memory leak is detected, then a JM X event will be fired. This

mode causes a large overhead and should be used for testing purposes only..

Setting name...: memory.directMemory.trackMode
Default value..: false
Set at run-time: false
Hidden.........: false

memory.directMemory.onlyAlignedMemoryAccess

Some architectures do not allow unaligned memory access or may suffer from speed degradation. For such platforms, this flag should be

set to true..

Setting name...: memory.directMemory.onlyAlignedMemoryAccess
Default value..: true
Set at run-time: false
Hidden.........: false

Jvim

jvm.gc.delayForOptimize

M inimal amount of time (in seconds), since the last System.gc(), when called after tree optimization..

Setting name...: jvm.gc.delayForOptimize
Default value..: 600

Set at run-time: false

Hidden.........: false

Storage

storage.diskCache.bufferSize

Size of disk buffer in megabytes..

Setting name...: storage.diskCache.bufferSize
Default value..: 4096
Set at run-time: false
Hidden.........: false

storage.diskCache.writeCachePart

Percentage of disk cache, which is used as write cache.

Setting name...: storage.diskCache.writeCachePart
Default value..: 15

Set at run-time: false

Hidden.........: false

storage.diskCache.writeCachePageTTL

M ax time until a page will be flushed from write cache (in seconds)..

Setting name...: storage.diskCache.writeCachePageTTL
Default value..: 86400
Set at run-time: false
Hidden.........: false

storage.diskCache.writeCachePageFlushInterval

Interval between flushing of pages from write cache (in ms)..

Setting name...: storage.diskCache.writeCachePageFlushInterval
Default value..: 25

Set at run-time: false

Hidden.........: false

storage.diskCache.writeCacheFlushInactivityInterval

Interval between 2 writes to the disk cache, if writes are done with an interval more than provided, all files will be fsynced before the

next write, which allows a data restore after a server crash (in ms)..

Setting name...: storage.diskCache.writeCacheFlushInactivityInterval
Default value..: 60000
Set at run-time: false
Hidden.........: false

storage.diskCache.writeCacheFlushLockTimeout

M aximum amount of time the write cache will wait before a page flushes (in ms, -1 to disable).

Setting name...: storage.diskCache.writeCacheFlushLockTimeout
Default value..: -1

Set at run-time: false

Hidden.........: false

storage.diskCache.diskFreeS paceLimit

M inimum amount of space on disk, which, when exceeded, will cause the database to switch to read-only mode (in megabytes)..

Setting name...: storage.diskCache.diskFreeSpaceLimit
Default value..: 100

Set at run-time: false

Hidden.........: false

storage.diskCache.diskFreeS paceCheckInterval

The interval (in seconds), after which the storage periodically checks whether the amount of free disk space is enough to work in write
mode.

Setting name...: storage.diskCache.diskFreeSpaceCheckInterval
Default value..: 5

Set at run-time: false

Hidden.........: false

storage.configuration.syncOnUpdate

Indicates a force sync should be performed for each update on the storage configuration..

Setting name...: storage.configuration.syncOnUpdate
Default value..: true
Set at run-time: false
Hidden.........: false

storage.compressionMethod

Record compression method used in storage. Possible values : gzip, nothing, snappy, snappy-native. Default is 'nothing' that means no

compression..

Setting name...: storage.compressionMethod
Default value..: nothing

Set at run-time: false

Hidden.........: false

storage.encryptionMethod

Record encryption method used in storage. Possible values : 'aes' and 'des'. Default is 'nothing for no encryption..

Setting name...: storage.encryptionMethod
Default value..: nothing

Set at run-time: false

Hidden.........: false

storage.encryptionKey

Contains the storage encryption key. This setting is hidden..

Setting name...: storage.encryptionkey
Default value..: null
Set at run-time: false
Hidden.........: true

storage.makeFullCheckpointAfterCreate

Indicates whether a full checkpoint should be performed, if storage was created..

Setting name...: storage.makeFullCheckpointAfterCreate
Default value..: true
Set at run-time: false
Hidden.........: false

storage.makeFullCheckpointAfterOpen

Indicates whether a full checkpoint should be performed, if storage was opened. It is needed so fuzzy checkpoints can work properly..

Setting name...: storage.makeFullCheckpointAfterOpen
Default value..: true
Set at run-time: false
Hidden.........: false

storage.makeFull CheckpointAfterClusterCreate

Indicates whether a full checkpoint should be performed, if storage was op ened.

Setting name...: storage.makeFullCheckpointAfterClusterCreate
Default value..: true
Set at run-time: false
Hidden.........: false

storage.use WAL

Whether WAL should be used in paginated storage..

Setting name...: storage.useWAL
Default value..: true
Set at run-time: false
Hidden.........: false

storage.wal.syncOnPageFlush

Indicates whether a force sync should be performed during WAL page flush..

Setting name...: storage.wal.syncOnPageFlush
Default value..: true
Set at run-time: false
Hidden.........: false

storage.wal.cacheSize

M aximum size of WAL cache (in amount of WAL pages, each page is 64k) If set to 0, caching will be disabled..

Setting name...: storage.wal.cacheSize
Default value..: 3000
Set at run-time: false
Hidden.........: false

storage.wal.maxSegmentSize

M aximum size of single WAL segment (in megabytes)..

Setting name...: storage.wal.maxSegmentSize
Default value..: 128

Set at run-time: false

Hidden.........: false

storage.wal.maxSize

M aximum size of WAL on disk (in megabytes)..

Setting name...: storage.wal.maxSize
Default value..: 4096
Set at run-time: false
Hidden.........: false

storage.wal.commitTimeout

M aximum interval between WAL commits (in ms.).

Setting name...: storage.wal.commitTimeout
Default value..: 1000
Set at run-time: false
Hidden.........: false

storage.wal.shutdownTimeout

M aximum wait interval between events, when the background flush threadreceives a shutdown command and when the background flush
will be stopped (in ms.).

Settin
Defaul

g name...:
t value..:

storage.wal.shutdownTimeout
10000

Set at run-time: false

Hidden

: false

storage.wal.fuzzyCheckpointInterval

Interval between fuzzy checkpoints (in seconds).

Setting name...:

Default value..:

storage.wal.fuzzyCheckpointInterval
300

Set at run-time: false

Hidden

: false

storage.wal.reportAfterOperationsDuringRestore

Amount of processed log operations, after which status of data restore procedure will be printed (0 or a negative value, disables the

logging)..

Setting name...:

Default value..:

storage.wal.reportAfterOperationsDuringRestore
10000

Set at run-time: false

Hidden

: false

storage.wal.restore.batchSize

Amount of WAL records, which are read at once in a single batch during a restore procedure..

Setting name...:
Default value..:
Set at run-time: false
[FEelEMo 00 0000008

storage.wal.restore.batchSize
1000

false

storage.wal.readCacheSize

Size of WAL read cache in amount of pages..

Setting name...: storage.wal.readCacheSize
Default value..: 1000
Set at run-time: false
Hidden.........: false

storage.wal.fuzzyCheckpointS hutdownWait

The amount of time the DB should wait until it shuts down (in seconds)..

Setting name...: storage.wal.fuzzyCheckpointShutdownwait
Default value..: 600

Set at run-time: false

Hidden.........: false

storage.wal.fullCheckpointS hutdownTimeout

The amount of time the DB will wait, until a checkpoint is finished, during a DB shutdown (in seconds)..

Setting name...: storage.wal.fullCheckpointShutdownTimeout
Default value..: 600

Set at run-time: false

Hidden.........: false

storage.wal.path

Path to the WAL file on the disk. By default, it is placed in the DB directory, but it is highly recommended to use a separate disk to
store log operations..

Setting name...: storage.wal.path
Default value..: null
Set at run-time: false
Hidden.........: false

storage.diskCache.pageSize

Size of page of disk buffer (in kilobytes). I'! NEVER CHANGE THIS VALUE !1!.

Setting name...: storage.diskCache.pageSize
Default value..: 64

Set at run-time: false

Hidden.........: false

storage.lowestFreeListBound

The least amount of free space (in kb) in a page, which is tracked in paginated storage..

Setting name...: storage.lowestFreelListBound
Default value..: 16

Set at run-time: false

Hidden.........: false

storage.lockTimeout

M aximum amount of time (in ms) to lock the storage..

Setting name...: storage.lockTimeout
Default value..: O

Set at run-time: false
Hidden.........: false

storage.record.lockTimeout

M aximum of time (in ms) to lock a shared record..

Setting name...: storage.record.lockTimeout
Default value..: 2000
Set at run-time: false
Hidden.........: false

storage.useTombstones

When a record is deleted, the space in the cluster will not be freed, but rather tombstoned..

Setting name...: storage.useTombstones
Default value..: false
Set at run-time: false
Hidden.........: false

storage.cluster.usecrc32

Indicates whether crc32 should be used for each record to check record integrity..

Setting name...: storage.cluster.usecrc32
Default value..: false
Set at run-time: false

Hidden.........: false
storage.keepOpen
Deprecated.

Setting name...: storage.keepOpen

Default value..: true
Set at run-time: false
Hidden.........: false

Record

record.downsizing.enabled

On updates, if the record size is lower than before, this reduces the space taken accordingly. If enabled this could increase

defragmentation, but it reduces the used disk space..

Setting name...: record.downsizing.enabled
Default value..: true
Set at run-time: false

Hidden.........: false
Object
object.saveOnlyDirty

Object Database only! It saves objects bound to dirty records..

Setting name...: object.saveOnlyDirty
Default value..: false
Set at run-time: true
Hidden.........: false

Db

db.pool.min

Default database pool minimum size..

Setting name...: db.pool.min
Default value..: 1

Set at run-time: false
Hidden.........: false

db.pool.max

Default database pool maximum size..

Setting name...: db.pool.max
Default value..: 100

Set at run-time: false
Hidden.........: false

db.pool.idleTimeout

Timeout for checking for free databases in the pool..

Setting name...: db.pool.idleTimeout
Default value..: 0

Set at run-time: false
Hidden.........: false

db.pool.idleCheckDelay

Delay time on checking for idle databases..

Setting name...: db.pool.idleCheckDelay
Default value..: 0

Set at run-time: false

Hidden.........: false

db.mvcc.throwfast

Use fast-thrown exceptions for M VCC OConcurrentM odificationExceptions. No context information will be available. Set to true,

when these exceptions are thrown, but the details are not necessary..

Setting name...: db.mvcc.throwfast
Default value..: false

Set at run-time: true
Hidden.........: false

db.validation

Enables or disables validation of records..

Setting name...: db.validation
Default value..: true
Set at run-time: true
Hidden.........: false

db.makeFullCheckpointOnIndexChange

When index metadata is changed, a full checkpoint is performed..

Setting name...: db.makeFullCheckpointOnIndexChange
Default value..: true
Set at run-time: true
Hidden.........: false

db.makeFullCheckpointOnS chemaChange

When index schema is changed, a full checkpoint is performed..

Setting name...: db.makeFullCheckpointOnSchemaChange
Default value..: true
Set at run-time: true
Hidden.........: false

db.document.serializer

The default record serializer used by the document database..

Setting name...: db.document.serializer
Default value..: ORecordSerializerBinary
Set at run-time: false

Hidden.........: false

db.mvcc

Deprecated, M VCC cannot be disabled anymore.

Setting name...: db.mvcc
Default value..: true
Set at run-time: false
Hidden.........: false

db.use.distributedVersion

Deprecated, distributed version is not used anymore.

Setting name...: db.use.distributedversion
Default value..: false
Set at run-time: false
Hidden.........: false

NonTX

nonTX.recordUpdate.synch

Executes a sync against the file-system for every record operation. This slows down record updates, but guarantees reliability on

unreliable drives..

Setting name...: nonTX.recordUpdate.synch
Default value..: false
Set at run-time: false
Hidden.........: false

nonTX.clusters.sync.immediately

List of clusters to sync immediately after update (separated by commas). Can be useful for a manual index..

Setting name...: nonTX.clusters.sync.immediately
Default value..: manindex

Set at run-time: false

Hidden.........: false

Tx

tx.trackAtomicOperations

This setting is used only for debug purposes. It creates a stack trace of methods, when an atomic operation is started..

Setting name...: tx.trackAtomicOperations
Default value..: false
Set at run-time: false
Hidden.........: false

tx.commit.synch

Synchronizes the storage after transaction commit.

Setting name...: tx.commit.synch
Default value..: false
Set at run-time: false
Hidden.........: false

tx.autoRetry

M aximum number of automatic retry if some resource has been locked in the middle of the transaction (Timeout exception).

Setting name...: tx.autoRetry
Default value..: 1

Set at run-time: false
Hidden.........: false

tx.log.fileType

File type to handle transaction logs: mmap or classic.

Setting name...: tx.log.fileType
Default value..: classic

Set at run-time: false
Hidden.........: false

tx.log.synch

Executes a synch against the file-system at every log entry. This slows down transactions but guarantee transaction reliability on

unreliable drives.

Setting name...: tx.log.synch
Default value..: false
Set at run-time: false
Hidden.........: false

tx.useLog

Transactions use log file to store temporary data to be rolled back in case of crash.

Setting name...: tx.uselLog
Default value..: true
Set at run-time: false
Hidden.........: false

Index

index.embeddedToS btreeBonsaiThreshold

Amount of values, after which the index implementation will use an sbtree as a values container. Set to -1, to disable and force using an

sbtree..

Setting name...: index.embeddedToSbtreeBonsaiThreshold
Default value..: 40

Set at run-time: true

Hidden.........: false

index.sbtreeBonsaiToEmbeddedThreshold

Amount of values, after which index imp lementation will use an embedded values container (disabled by default).

Setting name...: index.sbtreeBonsaiToEmbeddedThreshold
Default value..: -1

Set at run-time: true

Hidden.........: false

index.auto.synchronousAutoRebuild

Synchronous execution of auto rebuilding of indexes, in case of a DB crash.

Setting name...: index.auto.synchronousAutoRebuild
Default value..: true
Set at run-time: false
Hidden.........: false

index.auto.lazyUpdates

Configure the TreeMaps for automatic indexes, as buffered or not. -1 means buffered until tx.commit() or db.close() are called..

Setting name...: index.auto.lazyUpdates
Default value..: 10000
Set at run-time: false
Hidden.........: false

index.flushAfterCreate

Flush storage buffer after index creation..

Setting name...: index.flushAfterCreate
Default value..: true
Set at run-time: false
Hidden.........: false

index.manual.lazyUpdates

Configure the TreeM aps for manual indexes as buffered or not. -1 means buffered until tx.commit() or db.close() are called.

Setting name...: index.manual.lazyUpdates
Default value..: 1

Set at run-time: false

Hidden.........: false

index.durableInNonTxMode

Indicates whether index imp lementation for plocal storage will be durable in non-Tx mode (true by default)..

Setting name...: index.durableInNonTxMode
Default value..: true
Set at run-time: false
Hidden.........: false

index.txMode

Indicates the index durability level in TX mode. Can be ROLLBACK_ONLY or FULL (ROLLBACK_ONLY by default)..

Setting name...: index.txMode
Default value..: FULL
Set at run-time: false
Hidden.........: false

index.cursor.prefetchSize

Default prefetch size of index cursor..

Setting name...: index.cursor.prefetchSize
Default value..: 500000

Set at run-time: false

Hidden.........: false

index.auto.rebuildAfterNotS oftClose

Auto rebuild all automatic indexes after upon database open when wasn't closed properly.

Setting name...: index.auto.rebuildAfterNotSoftClose
Default value..: true
Set at run-time: false
Hidden.........: false

HashTable

hashTable.slitBucketsBuffer.length

Length of buffer (in pages), where buckets that were split, but not flushed to the disk, are kept. This buffer is used to minimize random
10 overhead..

Setting name...: hashTable.slitBucketsBuffer.length
Default value..: 1500
Set at run-time: false
Hidden.........: false

Sbtree

sbtree.maxDepth

M aximum depth of sbtree, which will be traversed during key look up until it will be treated as broken (64 by default).

Setting name...: sbtree.maxDepth
Default value..: 64

Set at run-time: false
Hidden.........: false

sbtree.maxKeySize

M aximum size of a key, which can be put in the SBTree in bytes (10240 by default).

Setting name...: sbtree.maxKeySize
Default value..: 10240
Set at run-time: false
Hidden.........: false

sbtree.maxEmbeddedValueSize

M aximum size of value which can be put in an SBTree without creation link to a standalone page in bytes (40960 by default).

Setting name...: sbtree.maxEmbeddedVvalueSize
Default value..: 40960
Set at run-time: false
Hidden.........: false

Sbtreebonsai

sbtreebonsai.bucketSize

Size of bucket in OSBTreeBonsai (in kB). Contract: bucketSize < storagePageSize, storagePageSize % bucketSize == 0..

Setting name...: sbtreebonsai.bucketSize
Default value..: 2

Set at run-time: false

Hidden.........: false

sbtreebonsai.linkBagCache.size

Amount of LINKBAG collections to be cached, to avoid constant reloading of data..

Setting name...: sbtreebonsai.linkBagCache.size
Default value..: 100000
Set at run-time: false
Hidden.........: false

sbtreebonsai.linkBagCache.evictionSize

The number of cached LINKBAG collections, which will be removed, when the cache limit is reached..

Setting name...: sbtreebonsai.linkBagCache.evictionSize
Default value..: 1000
Set at run-time: false
Hidden.........: false

sbtreebonsai.freeS paceReuseTrigger

How much free space should be in an sbtreebonsai file, before it will be reused during the next allocation..

Setting name...: sbtreebonsai.freeSpaceReuseTrigger
Default value..: 0.5

Set at run-time: false

Hidden.........: false

RidBag
ridBag.embeddedDefaultSize

Size of embedded RidBag array, when created (empty).

Setting name...: ridBag.embeddedDefaultSize
Default value..: 4

Set at run-time: false

Hidden.........: false

ridBag.embeddedToS btreeBonsaiThreshold

Amount of values after which a LINKBAG implementation will use sbtree as values container. Set to -1 to always use an sbtree..

Setting name...: ridBag.embeddedToSbtreeBonsaiThreshold
Default value..: 40

Set at run-time: true

Hidden.........: false

ridBag.sbtreeBonsai ToEmbeddedToThreshold

Amount of values, after which a LINKBAG implementation will use an embedded values container (disabled by default)..

Setting name...: ridBag.sbtreeBonsaiToEmbeddedToThreshold
Default value..: -1
Set at run-time: true
Hidden.........: false
Collections

collections.preferSBTreeSet

This configuration setting is exp erimental..

Setting name...: collections.preferSBTreeSet
Default value..: false
Set at run-time: false

Hidden.........: false
File
file.trackFileClose

Log all the cases when files are closed. This is needed only for internal debugging purposes..

Setting name...: file.trackFileClose
Default value..: false
Set at run-time: false
Hidden.........: false

file.lock

Locks files when used. Default is true.

Setting name...: file.lock
Default value..: true
Set at run-time: false
Hidden.........: false

file.deleteDelay

Delay time (in ms) to wait for another attempt to delete a locked file..

Setting name...: file.deleteDelay
Default value..: 10

Set at run-time: false
Hidden.........: false

file.deleteRetry

Number of retries to delete a locked file..

Setting name...: file.deleteRetry
Default value..: 50

Set at run-time: false
Hidden.........: false

Jna

jna.disable.system.library

This property disables using JNA, should it be installed on your system. (Default true) To use JNA bundled with database..

Setting name...: jna.disable.system.library
Default value..: true
Set at run-time: false
Hidden.........: false

Security

security.userPasswordS altIterations

Number of iterations to generate the salt or user password. Changing this setting does not affect stored passwords..

Setting name...: security.userPasswordSaltIterations
Default value..: 65536
Set at run-time: false
Hidden.........: false

security.userPasswordS altCacheSize

Cache size of hashed salt passwords. The cache works as LRU. Use 0 to disable the cache..

Setting name...: security.userPasswordSaltCacheSize
Default value..: 500

Set at run-time: false

Hidden.........: false

Network

network.maxConcurrentS essions

M aximum number of concurrent sessions..

Setting name...: network.maxConcurrentSessions
Default value..: 1000
Set at run-time: true
Hidden.........: false

network.socketBufferSize

TCP/IP Socket buffer size..

Setting name...: network.socketBufferSize
Default value..: 32768
Set at run-time: true
Hidden.........: false

network.lockTimeout

Timeout (in ms) to acquire a lock against a channel..

Setting name...: network.lockTimeout
Default value..: 15000

Set at run-time: true
Hidden.........: false

network.socketTimeout

TCP/IP Socket timeout (in ms)..

Setting name...: network.socketTimeout
Default value..: 15000

Set at run-time: true

Hidden.........: false

network.requestTimeout

Request completion timeout (in ms)..

Setting name...: network.requestTimeout
Default value..: 3600000

Set at run-time: true

Hidden.........: false

network.retry

Number of attempts to connect to the server on failure..

Setting name...: network.retry
Default value..: 5

Set at run-time: true
Hidden.........: false

network.retryDelay

The time (in ms) the client must wait, before reconnecting to the server on failure..

Setting name...: network.retryDelay
Default value..: 500

Set at run-time: true
Hidden.........: false

network.binary.loadBalancing.enabled

Asks for DNS TXT record, to determine if load balancing is supported..

Setting name...: network.binary.loadBalancing.enabled
Default value..: false
Set at run-time: true
Hidden.........: false

network.binary.loadBalancing.timeout

M aximum time (in ms) to wait for the answer from DNS about the TXT record for load balancing..

Setting name...: network.binary.loadBalancing.timeout
Default value..: 2000
Set at run-time: true
Hidden.........: false

network.binary.maxLength

TCP/IP max content length (in bytes) of BINARY requests..

Setting name...: network.binary.maxLength
Default value..: 32736

Set at run-time: true

Hidden.........: false

network.binary.readResponse.maxTimes

M aximum attempts, until a response can be read. Otherwise, the response will be dropped from the channel..

Setting name...: network.binary.readResponse.maxTimes
Default value..: 20

Set at run-time: true

Hidden.........: false

network.binary.debug

Debug mode: print all data incoming on the binary channel..

Setting name...: network.binary.debug
Default value..: false
Set at run-time: true
Hidden.........: false

network.http.maxLength

TCP/IP max content length (in bytes) for HTTP requests..

Setting name...: network.http.maxLength
Default value..: 1000000

Set at run-time: true

Hidden.........: false

network.http.charset

Http response charset.

Setting name...: network.http.charset
Default value..: utf-8

Set at run-time: true
Hidden.........: false

network.http.jsonResponseError

Http response error in json..

Setting name...: network.http.jsonResponseError
Default value..: true
Set at run-time: true
Hidden.........: false

network.http.jsonp

Enable the usage of JSONP, if requested by the client. The parameter name to use is 'callback'..

Setting name...: network.http.jsonp
Default value..: false
Set at run-time: true
Hidden.........: false

network.http.sessionExpire Timeout

Timeout, after which an http session is considered to have expired (in seconds)..

Setting name...: network.http.sessionExpireTimeout
Default value..: 300

Set at run-time: false

Hidden.........: false

network.http.useToken

Enable Token based sessions for http..

Setting name...: network.http.useToken
Default value..: false
Set at run-time: false
Hidden.........: false

network.token.secretyKey

Network token sercret key..

Setting name...: network.token.secretyKey
Default value..:

Set at run-time: false

Hidden.........: false

network.token.encriptionAlgorithm

Network token algorithm..

Setting name...: network.token.encriptionAlgorithm
Default value..: HmacSHA256

Set at run-time: false

Hidden.........: false

network.token.expireTimeout

Timeout, after which a binary session is considered to have expired (in minutes)..

Setting name...: network.token.expireTimeout
Default value..: 60

Set at run-time: false

Hidden.........: false

Profiler

profiler.enabled

Enables the recording of statistics and counters..

Setting name...: profiler.enabled
Default value..: false

Set at run-time: true
Hidden.........: false

profiler.config

Configures the profiler as ,,.

Setting name...: profiler.config
Default value..: null
Set at run-time: true
Hidden.........: false

profiler.autoDump.interval

Dumps the profiler values at regular intervals (in seconds)..

Setting name...: profiler.autoDump.interval
Default value..: ©

Set at run-time: true

Hidden.........: false

Log
log.console.level

Console logging level..

Setting name...: log.console.level
Default value..: info
Set at run-time: true

Hidden.........: false
log.file.level
File logging level..

Setting name...: log.file.level

Default value..: fine
Set at run-time: true
Hidden.........: false

Cache

cache.local.impl

Local Record cache implementation..

Setting name...: cache.local.impl

Default value..: com.orientechnologies.orient.core.cache.ORecordCacheWeakRefs
Set at run-time: false

Hidden.........: false

cache.local.enabled

Deprecated, Levell cache cannot be disabled anymore.

Setting name...: cache.local.enabled
Default value..: true
Set at run-time: false
Hidden.........: false

Command

command.timeout

Default timeout for commands (in ms)..

Setting name...: command.timeout
Default value..: O

Set at run-time: true
Hidden.........: false

command.cache.enabled

Enable command cache..

Setting name...: command.cache.enabled
Default value..: false
Set at run-time: false
Hidden.........: false

command.cache.evictS trategy

Command cache strategy between: [INVALIDATE_ALL,PER_CLUSTER].

Setting name...: command.cache.evictStrategy
Default value..: PER_CLUSTER

Set at run-time: false

Hidden.........: false

command.cache.minExecutionTime

M inimum execution time to consider caching the result set..

Setting name...: command.cache.minExecutionTime
Default value..: 10

Set at run-time: false

Hidden.........: false

command.cache.maxResultsetSize

M aximum resultset time to consider caching result set..

Setting name...: command.cache.maxResultsetSize
Default value..: 500

Set at run-time: false

Hidden.........: false

Query

query.parallel Auto

Auto enable parallel query, if requirements are met..

Setting name...: query.parallelAuto
Default value..: true
Set at run-time: false
Hidden.........: false

query.parallelMinimumRecords

M inimum number of records to activate parallel query automatically..

Setting name...: query.parallelMinimumRecords
Default value..: 300000
Set at run-time: false
Hidden.........: false

query.parallelResultQueueSize

Size of the queue that holds results on parallel execution. The queue is blocking, so in case the queue is full, the query threads will be in a

wait state..

Setting name...: query.parallelResultQueueSize
Default value..: 20000
Set at run-time: false
Hidden.........: false

query.scanPrefetchPages

Pages to prefetch during scan. Setting this value higher makes scans faster, because it reduces the number of I/O operations, though it
consumes more memory. (Use 0 to disable).

Setting name...: query.scanPrefetchPages
Default value..: 20

Set at run-time: false

Hidden.........: false

query.scanBatchSize

Scan clusters in blocks of records. This setting reduces the lock time on the cluster during scans. A high value mean a faster execution,

but also a lower concurrency level. Set to 0 to disable batch scanning. Disabling batch scanning is suggested for read-only databases only.

Setting name...: query.scanBatchSize
Default value..: 100000
Set at run-time: false
Hidden.........: false

query.scanThresholdTip

If the total number of records scanned in a query exceeds this setting, then a warning is given. (Use 0 to disable).

Setting name...: query.scanThresholdTip
Default value..: 50000
Set at run-time: false
Hidden.........: false

query.limitThresholdTip

If the total number of returned records exceeds this value, then a warning is given. (Use 0 to disable).

Setting name...: query.limitThresholdTip
Default value..: 10000
Set at run-time: false

Hidden.........: false
Statement
statement.cacheSize

Number of parsed SQL statements kept in cache..

Setting name...: statement.cacheSize
Default value..: 100

Set at run-time: false
Hidden.........: false

Client

client.channel.maxPool

M aximum size of pool of network channels between client and server. A channel is a TCP/IP connection..

Setting name...: client.channel.maxPool
Default value..: 100

Set at run-time: false

Hidden.........: false

client.connectionPool.waitTimeout

M aximum time, where the client should wait for a connection from the pool, when all connections busy..

Setting name...: client.connectionPool.waitTimeout
Default value..: 5000
Set at run-time: true
Hidden.........: false

client.channel.dbRelease WaitTimeout

Delay (in ms), after which a data modification command will be resent, if the DB was frozen..

Setting name...: client.channel.dbReleaseWaitTimeout
Default value..: 10000
Set at run-time: true
Hidden.........: false

client.ssl.enabled

Use SSL for client connections..

Setting name...: client.ssl.enabled
Default value..: false
Set at run-time: false
Hidden.........: false

client.ssl.keyS tore

Use SSL for client connections..

Setting name...: client.ssl.keyStore
Default value..: null
Set at run-time: false
Hidden.........: false

client.ssl.keyS torePass

Use SSL for client connections..

Setting name...: client.ssl.keyStorePass
Default value..: null
Set at run-time: false
Hidden.........: false

client.ssl.trustS tore

Use SSL for client connections..

Setting name...: client.ssl.trustStore
Default value..: null
Set at run-time: false
Hidden.........: false

client.ssl.trustS torePass

Use SSL for client connections..

Setting name...: client.ssl.trustStorePass
Default value..: null
Set at run-time: false
Hidden.........: false

client.session.tokenBased

Request a token based session to the server..

Setting name...: client.session.tokenBased
Default value..: true
Set at run-time: false
Hidden.........: false

client.channel.minPool

M inimum pool size.

Setting name...: client.channel.minPool
Default value..: 1

Set at run-time: false

Hidden.........: false

Server

server.openAllDatabasesAtS tartup

If true, the server opens all the available databases at startup. Available since 2.2.

Setting name...: server.openAllDatabasesAtStartup
Default value..: false
Set at run-time: false
Hidden.........: false

server.channel.cleanDelay

Time in ms of delay to check pending closed connections..

Setting name...: server.channel.cleanDelay
Default value..: 5000
Set at run-time: false
Hidden.........: false

server.cache.staticFile

Cache static resources upon loading..

Setting name...: server.cache.staticFile
Default value..: false
Set at run-time: false
Hidden.........: false

server.log.dumpClientExceptionLevel

Logs client exceptions. Use any level supported by Java java.util.logging Level class: OFF, FINE, CONFIG, INFO, WARNING,
SEVERE.

Setting name...: server.log.dumpClientExceptionLevel
Default value..: FINE
Set at run-time: false
Hidden.........: false

server.log.dumpClientExceptionFullS tackTrace

Dumps the full stack trace of the exception sent to the client.

Setting name...: server.log.dumpClientExceptionFullStackTrace
Default value..: false
Set at run-time: true
Hidden.........: false

Distributed

distributed.crudTaskTimeout

M aximum timeout (in ms) to wait for CRUD remote tasks..

Setting name...: distributed.crudTaskTimeout
Default value..: 3000
Set at run-time: true
Hidden.........: false

distributed.commandTaskTimeout

M aximum timeout (in ms) to wait for Command remote tasks..

Setting name...: distributed.commandTaskTimeout
Default value..: 10000

Set at run-time: true

Hidden.........: false

distributed.commandLongTaskTimeout

M aximum timeout (in ms) to wait for Long-running remote tasks..

Setting name...: distributed.commandLongTaskTimeout
Default value..: 86400000

Set at run-time: true

Hidden.........: false

distributed.deployDbTaskTimeout

M aximum timeout (in ms) to wait for database deployment..

Setting name...: distributed.deployDbTaskTimeout
Default value..: 1200000

Set at run-time: true

Hidden.........: false

distributed.deployChunkTaskTimeout

M aximum timeout (in ms) to wait for database chunk deployment..

Setting name...: distributed.deployChunkTaskTimeout
Default value..: 15000

Set at run-time: true

Hidden.........: false

distributed.deployDbTaskCompression

Compression level (between 0 and 9) to use in backup for database deployment..

Setting name...: distributed.deployDbTaskCompression
Default value..: 7

Set at run-time: true

Hidden.........: false

distributed.queueTimeout

M aximum timeout (in ms) to wait for the response in replication..

Setting name...: distributed.queueTimeout
Default value..: 5000
Set at run-time: true
Hidden.........: false

distributed.asynchQueueSize

Queue size to handle distributed asynchronous operations. The bigger is the queue, the more operation are buffered, but also more

memory it's consumed. 0 = dynamic allocation, which means up to 2A31-1 entries..

Setting name...: distributed.asynchQueueSize
Default value..: 0

Set at run-time: false

Hidden.........: false

distributed.asynchResponsesTimeout

M aximum timeout (in ms) to collect all the asynchronous responses from replication. After this time the operation is rolled back
(through an UNDO)..

Setting name...: distributed.asynchResponsesTimeout
Default value..: 15000
Set at run-time: false
Hidden.........: false

distributed.purgeResponsesTimerDelay

M aximum timeout (in ms) to collect all the asynchronous responses from replication. This is the delay the purge thread uses to check

asynchronous requests in timeout..

Setting name...: distributed.purgeResponsesTimerDelay
Default value..: 15000
Set at run-time: false
Hidden.........: false

distributed.queueMaxSize

M aximum queue size to mark a node as stalled. If the numer of messages in queue are more than this values, the node is restarted with a

remote command (0 = no maximum, which means up to 2A31-1 entries)..

Setting name...: distributed.queueMaxSize
Default value..: 100

Set at run-time: false

Hidden.........: false

distributed.backupDirectory

Directory where the copy of an existent database is saved, before it is downloaded from the cluster..

Setting name...: distributed.backupDirectory
Default value..: ../backup/databases

Set at run-time: false

Hidden.........: false

distributed.concurrentTxMaxAutoRetry

M aximum attempts the transaction coordinator should execute a transaction automatically, if records are locked. (M inimum is 1 = no

attempts).

Setting name...: distributed.concurrentTxMaxAutoRetry
Default value..: 10

Set at run-time: true

Hidden.........: false

distributed.concurrentTxAutoRetryDelay

Delay (in ms) between attempts on executing a distributed transaction, which had failed because of locked records. (0=no delay).

Setting name...: distributed.concurrentTxAutoRetryDelay
Default value..: 100

Set at run-time: true

Hidden.........: false

Oauth2

oauth2.secretkey

Http OAuth?2 secret key..

Setting name...: oauth2.secretkey
Default value..:
Set at run-time: false

Hidden.........: false
Lazyset
lazyset.workOnS tream

Deprecated, now BINARY serialization is used in place of CSV.

Setting name...: lazyset.workOnStream
Default value..: true
Set at run-time: false
Hidden.........: false

Myvrbtree

mvrbtree.timeout

Deprecated, M VRBTREE IS NOT USED ANYMORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.timeout
Default value..: O

Set at run-time: false
Hidden.........: false

mvrbtree.nodePageSize

Deprecated, M VRBTREE IS NOT USED ANYMORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.nodePageSize
Default value..: 256

Set at run-time: false
Hidden.........: false

mvrbtree.loadFactor

Deprecated, MVRBTREE IS NOT USED ANYM ORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.loadFactor
Default value..: 0.7

Set at run-time: false
Hidden.........: false

mvrbtree.optimizeThreshold

Deprecated, MVRBTREE IS NOT USED ANYM ORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.optimizeThreshold
Default value..: 100000
Set at run-time: false
Hidden.........: false

mvrbtree.entryPoints

Deprecated, MVRBTREE IS NOT USED ANYM ORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.entryPoints
Default value..: 64

Set at run-time: false
Hidden.........: false

mvrbtree.optimizeEntryPointsFactor

Deprecated, MVRBTREE IS NOT USED ANYMORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.optimizeEntryPointsFactor
Default value..: 1.0

Set at run-time: false

Hidden.........: false

mvrbtree.entryKeysInMemory

Deprecated, M VRBTREE IS NOT USED ANYMORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.entryKeysInMemory
Default value..: false
Set at run-time: false
Hidden.........: false

mvrbtree.entryValuesInMemory

Deprecated, M VRBTREE IS NOT USED ANYMORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.entryvaluesInMemory
Default value..: false
Set at run-time: false
Hidden.........: false

mvrbtree.ridBinaryThreshold

Deprecated, M VRBTREE IS NOT USED ANYMORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.ridBinaryThreshold

Default value..: -1
Set at run-time: false
Hidden.........: false

mvrbtree.ridNodePageSize

Deprecated, MVRBTREE IS NOT USED ANYMORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.ridNodePageSize
Default value..: 64

Set at run-time: false

Hidden.........: false

mvrbtree.ridNodeS aveMemory
Deprecated, M VRBTREE IS NOT USED ANYM ORE IN FAVOR OF SBTREE AND HASHINDEX.

Setting name...: mvrbtree.ridNodeSaveMemory
Default value..: false
Set at run-time: false
Hidden.........: false

NOTE: On 64-bit systems you have not the limitation of 32-bit systems with memory.

Logging

Logging is configured in a separate file, look at Logging for more information.

Storage configuration

OrientDB allows modifications to the storage configuration. Even though this will be supported with high level commands, for now it's
pretty "internal" using Java API.

To get the storage configuration for the current database:

OStorageConfiguration cfg = db.getStorage().getConfiguration();

Look at ostorageConfiguration to discover all the properties you can change. To change the configuration of a cluster get it by ID;

OStoragePhysicalClusterConfigurationLocal clusterCfg = (OStoragePhysicalClusterConfigurationLocal) cfg.clusters.get(3);

To change the default settings for new clusters get the file template object. In this example we change the initial file size from the default
500Kb down to 10Kb:

OStorageSegmentConfiguration defaultCfg = (OStorageSegmentConfiguration) cfg.fileTemplate;
defaultCfg.fileStartSize = "10Kb";

After changes call ostorageConfiguration.update() :

cfg.update();

Tuning the Graph API

This guide is specific for the TinkerPop Blueprints Graph Database. Please be sure to read the generic guide to the Performance-Tuning,

Connect to the database locally

Local connection is much faster than remote. So use "plocal" based on the storage engine used on database creation. If you need to

connect to the database from the network you can use the "Embed the server technique".

Avoid putting properties on edges

Even though supports properties on edges, this is much expensive because it creates a new record per edge. So if you need them you've

to know that the database will be bigger and insertion time will be much longer.

Set properties all together

It's much lighter to set properties in block than one by one. Look at this paragraph: Graph-Database-Tinkerpop#setting-multiple-

properties.

Set properties on vertex and edge creation

It's even faster if you set properties directly on creation of vertices and edges. Look at this paragraph: Graph-Database-

Tinkerp op#create-element-and-properties.

Massive Insertion

See Generic improvement on massive insertion. To access to the underlying database use:

database.getRawGraph().declareIntent(new OIntentMassiveInsert());
// YOUR MASSIVE INSERTION

database.getRawGraph().declareIntent(null);

Avoid transactions if you can

Use the OrientGraphNoTx implementation that doesn't use transaction for basic operations like creation and deletion of vertices and
edges. If you plan to son't use transactions change the consistency level. OrientGraphNoTx is not compatible with OrientBatchGraph

so use it plain:

OrientGraphNoTx graph = new OrientGraphNoTx("local:/tmp/mydb");

Use the schema

Even if you can model your graph with only the entities (V)ertex and (E)dge it's much better to use schema for your types extending
Vertex and Edge classes. In this way traversing will be faster and vertices and edges will be split on different files. For more information

look at: Graph Schema.

Example:

OClass account = graph.createVertexType("Account");
Vertex v = graph.addVertex("class:Account");

Use indexes to lookup vertices by an ID

If you've your own ID on vertices and you need to lookup them to create edges then create an index against it:

graph.createKeyIndex("id", Vertex.class, new Parameter('"class", "Account"));

If the ID is unique then create an UNIQUE index that is much faster and lighter:

graph.createKeyIndex("id", Vertex.class, new Parameter("type", "UNIQUE"), new Parameter('"class", "Account"));

To lookup vertices by ID:

for(Vertex v : graph.getVertices("Account.id", "23876JS2")) {
System.out.println("Found vertex: " + v);

}

Disable validation

Every time a graph element is modified, OrientDB executes a validation to assure the graph rules are all respected, that means:

e put edge in out/in collections

e put vertex in edges in/out

Now if you use the Graph API without bypassing graph element manipulation this could be turned off with a huge gain in performance:

graph.setValidationEnabled(false);

Reduce vertex objects

You can avoid the creation of a new ODocument for each new vertex by reusing it with ODocument.reset() method that clears the
instance making it ready for a new insert operation. Bear in mind that you will need to assign the document with the proper class after

resetting as it is done in the code below.

NOTE: This trick works ONLY IN NON-TRANSACTIONAL contexts, because during transactions the documents could be kept in

memory until commit.

Example:

db.declareIntent(new OIntentMassiveInsert());

ODocument doc = db.createVertex("myVertex");
for(int i =0; i< ; 1){
doc.reset();
doc.setClassName("myVertex");
doc.field("id", 1i);
doc.field("name", "Jason");
doc.save();

db.declareIntent(null);

Cache management

Graph Database, by default, caches the most used elements. For massive insertion is strongly suggested to disable cache to avoid to

keep all the element in memory. Massive Insert Intent automatically sets it to false.

graph.setRetainObjects(false);

Tuning the Document API

This guide is specific for the Document Database. Please be sure to read the generic guide to the Performance-Tuning,

Massive Insertion

See Generic improvement on massive insertion.

Avoid document creation

You can avoid the creation of a new ODocument for each insertion by using the ODocument.reset() method that clears the instance
making it ready for a new insert operation. Bear in mind that you will need to assign the document with the proper class after resetting

as it is done in the code below.

NOTE: This trick works ONLY IN NON-TRANSACTIONAL contexts, because during transactions the documents could be kept in

memory until commit.

Examp le:

import com.orientechnologies.orient.core.intent.0IntentMassiveInsert;
db.declareIntent(new OIntentMassiveInsert());

ODocument doc = new ODocument();

for(int 1 = 0; 1< ; ++i){
doc.reset();
doc.setClassName("Customer™);
doc.field("id", 1i);
doc.field("name", "Jason");
doc.save();

db.declareIntent(null);

Tuning the Object API

This guide is specific for the Object Database. Please be sure to read the generic guide to the Performance-Tuning.

Massive Insertion

See Generic improvement on massive insertion.

Profiler

OrientDB Enterprise Edition comes with a profiler that collects all the metrics about the engine and the system where is running.

Automatic dump

When you incur in problems, the best way to produce information about OrientDB is activating a regular dump of the profiler. Set this

configuration variable at start:

java ... -Dprofiler.autoDump.reset=true -Dprofiler.autoDump.interval=60 -Dprofiler.enabled=true ...

This will dump the profiler in the console every 60 seconds and resets the metrics after the dump. For more information about settings

look at Parameters.

Retrieve profiler metrics via HTTP

http://<server>[<:port>]/profiler/<command>/[<config>] | [<from>/<to>]

Where:

e server is the server where OrientDB is running
e port is the http port, OrientDB listens at 2480 by default
e command, is the command between:
o realtime to retrieve realtime information
o last to retrieve realtime information
o archive to retrieve archived profiling
o summary to retrieve summary of past profiling
o start to start profiling
o stop to stop profiling
o reset to reset the profiler (equals to stop+start)
o status to know the status of profiler
o configure to configure profiling

o metadata to retrieve metadata

Example:

http://localhost:2480/profiler/realtime

Metric type

Chrono

Chrono are recording of operation. Each Chrono has the following values:

e last, as the last time recorded

e min, as the minimum time recorded

e max, as the maximum time recorded
e average, as the average time recorded
e total, as the total time recorded

e entries, as the number of times the metric has been recorded

Counter

It's a counter as long value that records resources.

HookValues

Are generic values of any type between the supported ones: string, number, boolean or null.

A hook value is not collected in central way, but it's gathered at runtime by calling the hooks as callbacks.

Metric main categories

Follows the main categories of metrics:

e db.<db-name> : database related metrics

e db.<db-name>.cache : metrics about db's caching

e db.<db-name>.index : metrics about db's indexes

e system : system metrics like CPU, memory, OS, etc.

e system.disk : File system metrics

e process : not strictly related to database but to the process (JVM) that is running OrientDB as client, server or embedded
® process.network : network metrics

® process.runtime : process's runtime information like memory used, etc

e server :server related metrics

Example of profiler values extracted from the server after test suite is run (http:/localhost:2480/profiler/realtime):

"realtime": {

"from": 1344531312356,

"to": 9223372036854776000,

"hookValues": {
"db.0$db.cache.levell.current": 0,
"db.0$db.cache.levell.enabled": false,
"db.0$db.cache.levell.max": -1,
"db.0$db.cache.level2.current": 0,
"db.0$db.cache.level2.enabled": true,
"db.0$db.cache.level2.max": -1,
"db.0$db.data.holeSize": 0,
"db.0$db.data.holes": 0,
"db.0$db.index.dictionary.entryPointSize": 64,
"db.0%db.index.dictionary.items": 0O,
"db.0%db.index.dictionary.maxUpdateBeforeSave": 5000,
"db.0%$db.index.dictionary.optimizationThreshold": 100000,
"db.1$db.cache.levell.current": 0,
"db.1$db.cache.levell.enabled": false,
"db.1$db.cache.levell.max": -1,
"db.1$db.cache.level2.current": 0,
"db.1$db.cache.level2.enabled": true,
"db.1$db.cache.level2.max": -1,
"db.1$db.data.holeSize": 0,
"db.1$db.data.holes": 0,
"db.1$db.index.dictionary.entryPointSize": 64,
"db.1$db.index.dictionary.items": O,
"db.1$db.index.dictionary.maxUpdateBeforeSave": 5000,
"db.1$db.index.dictionary.optimizationThreshold": 100000,
"db.2%db.cache.levell.current": 0,
"db.2%db.cache.levell.enabled": false,
"db.2$db.cache.levell.max": -1,
"db.2$db.cache.level2.current": 0,
"db.2$db.cache.level2.enabled": true,
"db.2$db.cache.level2.max": -1,
"db.2$db.data.holeSize": 0,
"db.2%db.data.holes": 0,
"db.2%db.index.dictionary.entryPointSize": 64,
"db.2%db.index.dictionary.items": 0O,
"db.2%db.index.dictionary.maxUpdateBeforeSave": 5000,
"db.2%db.index.dictionary.optimizationThreshold": 100000,
"db.demo.cache.levell.current": 0,
"db.demo.cache.levell.enabled": false,
"db.demo.cache.levell.max": -1,
"db.demo.cache.level2.current": 20520,

http://localhost:2480/profiler/realtime

Profiler

"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.

demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.

cache.
cache.

level2.enabled": true,
level2.max": -1,

data.holeSize": 47553,
data.holes": 24,

index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
.ClassIndexTestCompositeTwo.items": O,
.ClassIndexTestCompositeTwo.maxUpdateBeforeSave": 5000,
.ClassIndexTestCompositeTwo.optimizationThreshold": 100000,
.ClassIndexTestDictionaryIndex.entryPointSize": 64,
.ClassIndexTestDictionaryIndex.items": 0,
.ClassIndexTestDictionaryIndex.maxUpdateBeforeSave": 5000,
.ClassIndexTestDictionaryIndex.optimizationThreshold": 100000,
.ClassIndexTestFulltextIndex.entryPointSize": 64,

index
index
index
index
index
index
index
index

index.
.ClassIndexTestFulltextIndex.maxUpdateBeforeSave": 5000,
.ClassIndexTestFulltextIndex.optimizationThreshold": 100000,
.ClassIndexTestNotUniqueIndex.entryPointSize": 64,
.ClassIndexTestNotUniqueIndex.items": 0,
.ClassIndexTestNotUniqueIndex.maxUpdateBeforeSave": 5000,
.ClassIndexTestNotUniqueIndex.optimizationThreshold": 100000,
.ClassIndexTestParentPropertyNine.entryPointSize": 64,
.ClassIndexTestParentPropertyNine.items": 0,
.ClassIndexTestParentPropertyNine.maxUpdateBeforeSave": 5000,
.ClassIndexTestParentPropertyNine.optimizationThreshold": 100000,
.ClassIndexTestPropertyByKeyEmbeddedMap.entryPointSize": 64,
.ClassIndexTestPropertyByKeyEmbeddedMap.items": ©,
.ClassIndexTestPropertyByKeyEmbeddedMap .maxUpdateBeforeSave": 5000,
.ClassIndexTestPropertyByKeyEmbeddedMap.optimizationThreshold": 100000,
.ClassIndexTestPropertyByValueEmbeddedMap.entryPointSize": 64,
.ClassIndexTestPropertyByValueEmbeddedMap.items": 0,
.ClassIndexTestPropertyByValueEmbeddedMap.maxUpdateBeforeSave": 5000,
.ClassIndexTestPropertyByValueEmbeddedMap.optimizationThreshold": 100000,
.ClassIndexTestPropertyEmbeddedMap.entryPointSize": 64,
.ClassIndexTestPropertyEmbeddedMap.items": 0,
.ClassIndexTestPropertyEmbeddedMap.maxUpdateBeforeSave": 5000,
.ClassIndexTestPropertyEmbeddedMap.optimizationThreshold": 100000,
.ClassIndexTestPropertyLinkedMap.entryPointSize": 64,
.ClassIndexTestPropertyLinkedMap.items": 0,
.ClassIndexTestPropertyLinkedMap.maxUpdateBeforeSave": 5000,
.ClassIndexTestPropertyLinkedMap.optimizationThreshold": 100000,

index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index

BaseTestClass.testParentProperty.entryPointSize": 64,
BaseTestClass.testParentProperty.items": 2,
BaseTestClass.testParentProperty.maxUpdateBeforeSave": 5000,
BaseTestClass.testParentProperty.optimizationThreshold": 100000,
ClassIndexTestCompositeEmbeddedList.entryPointSize": 64,
ClassIndexTestCompositeEmbeddedList.items": O,
ClassIndexTestCompositeEmbeddedList.maxUpdateBeforeSave": 5000,
ClassIndexTestCompositeEmbeddedList.optimizationThreshold": 100000,
ClassIndexTestCompositeEmbeddedMap.entryPointSize": 64,
ClassIndexTestCompositeEmbeddedMap.items": 0,
ClassIndexTestCompositeEmbeddedMap.maxUpdateBeforeSave": 5000,
ClassIndexTestCompositeEmbeddedMap.optimizationThreshold": 100000,
ClassIndexTestCompositeEmbeddedMapByKey.entryPointSize": 64,
ClassIndexTestCompositeEmbeddedMapByKey.items": 0,
ClassIndexTestCompositeEmbeddedMapByKey.maxUpdateBeforeSave": 5000,
ClassIndexTestCompositeEmbeddedMapByKey.optimizationThreshold": 100000,
ClassIndexTestCompositeEmbeddedMapByValue.entryPointSize": 64,
ClassIndexTestCompositeEmbeddedMapByValue.items": 0,
ClassIndexTestCompositeEmbeddedMapByValue.maxUpdateBeforeSave": 5000,
ClassIndexTestCompositeEmbeddedMapByValue.optimizationThreshold": 100000,
ClassIndexTestCompositeEmbeddedSet.entryPointSize": 64,
ClassIndexTestCompositeEmbeddedSet.items": 0,
ClassIndexTestCompositeEmbeddedSet .maxUpdateBeforeSave": 5000,
ClassIndexTestCompositeEmbeddedSet.optimizationThreshold": 100000,
ClassIndexTestCompositelLinkList.entryPointSize": 64,
ClassIndexTestCompositeLinkList.items": 0,
ClassIndexTestCompositelLinkList.maxUpdateBeforeSave": 5000,
ClassIndexTestCompositelLinkList.optimizationThreshold": 100000,
ClassIndexTestCompositelLinkMapByValue.entryPointSize": 64,
ClassIndexTestCompositelLinkMapByValue.items": 0,
ClassIndexTestCompositelinkMapByValue.maxUpdateBeforeSave": 5000,
ClassIndexTestCompositelLinkMapByValue.optimizationThreshold": 160000,
ClassIndexTestCompositeOne.entryPointSize": 64,
ClassIndexTestCompositeOne.items": 0,
ClassIndexTestCompositeOne.maxUpdateBeforeSave": 5000,
ClassIndexTestCompositeOne.optimizationThreshold": 100000,
ClassIndexTestCompositeTwo.entryPointSize": 64,

ClassIndexTestFulltextIndex.items": 0,

323

Profiler

"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.

demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.

index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.

index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index

index
index
index

index
index
index

index
index
index
index
index
index

ClassIndexTestPropertyLinkedMapByKey.entryPointSize": 64,

ClassIndexTestPropertylLinkedMapByKey.items": 0,

ClassIndexTestPropertylLinkedMapByKey.maxUpdateBeforeSave": 5000,
ClassIndexTestPropertylLinkedMapByKey.optimizationThreshold": 100000,
ClassIndexTestPropertyLinkedMapByValue.entryPointSize": 64,

ClassIndexTestPropertyLinkedMapByValue.items": 0,

ClassIndexTestPropertyLinkedMapByValue.maxUpdateBeforeSave": 5000,
ClassIndexTestPropertyLinkedMapByValue.optimizationThreshold": 100000,

ClassIndexTestPropertyOne.entryPointSize": 64,
ClassIndexTestPropertyOne.items": O,
ClassIndexTestPropertyOne.maxUpdateBeforeSave": 5000,

ClassIndexTestPropertyOne.optimizationThreshold": 100000,

Collector.stringCollection.entryPointSize": 64,
Collector.stringCollection.items": 0,
Collector.stringCollection.maxUpdateBeforeSave": 5000,

Collector.stringCollection.optimizationThreshold": 100000,

DropPropertyIndexCompositeIndex.entryPointSize": 64,
DropPropertyIndexCompositeIndex.items": 0,

DropPropertyIndexCompositeIndex.maxUpdateBeforeSave": 5000,
DropPropertyIndexCompositeIndex.optimizationThreshold": 100000,

Fruit.color.entryPointSize": 64,

Fruit.color.items": 0,
Fruit.color.maxUpdateBeforeSave": 5000,
Fruit.color.optimizationThreshold": 100000,
IndexCountPlusCondition.entryPointSize": 64,
IndexCountPlusCondition.items": 5,
IndexCountPlusCondition.maxUpdateBeforeSave": 5000,
IndexCountPlusCondition.optimizationThreshold": 100000,
IndexNotUniqueIndexKeySize.entryPointSize": 64,
IndexNotUniqueIndexKeySize.items": 5,
IndexNotUniqueIndexKeySize.maxUpdateBeforeSave": 5000,

IndexNotUniqueIndexKeySize.optimizationThreshold": 160000,

IndexNotUniqueIndexSize.entryPointSize": 64,
IndexNotUniqueIndexSize.items": 5,
IndexNotUniqueIndexSize.maxUpdateBeforeSave": 5000,
IndexNotUniqueIndexSize.optimizationThreshold": 160000,
MapPoint.x.entryPointSize": 64,

MapPoint.x.items": 9999,
MapPoint.x.maxUpdateBeforeSave": 5000,
MapPoint.x.optimizationThreshold": 100000,
.MapPoint.y.entryPointSize": 64,
.MapPoint.y.items": 10000,
.MapPoint.y.maxUpdateBeforeSave": 5000,

.MapPoint.y.optimizationThreshold": 100000,
.MyFruit.color.entryPointSize": 64,
.MyFruit.color.items": 10,
.MyFruit.color.maxUpdateBeforeSave": 5000,
.MyFruit.color.optimizationThreshold": 100000,
.MyFruit.flavor.entryPointSize": 64,
.MyFruit.flavor.items": 0,
.MyFruit.flavor.maxUpdateBeforeSave": 5000,
.MyFruit.flavor.optimizationThreshold": 100000,
.MyFruit.name.entryPointSize": 64,
.MyFruit.name.items": 5000,
.MyFruit.name.maxUpdateBeforeSave": 5000,
.MyFruit.name.optimizationThreshold": 100000,
.MyProfile.name.entryPointSize": 64,
.MyProfile.name.items": 3,
.MyProfile.name.maxUpdateBeforeSave": 5000,
.MyProfile.name.optimizationThreshold": 100000,
.Profile.hash.entryPointSize": 64,

index.
.Profile.hash.maxUpdateBeforeSave": 5000,
.Profile.hash.optimizationThreshold": 100000,
.Profile.name.entryPointSize": 64,

index.
.Profile.name.maxUpdateBeforeSave": 5000,
.Profile.name.optimizationThreshold": 100000,
.Profile.nick.entryPointSize": 64,

index.
.Profile.nick.maxUpdateBeforeSave": 5000,
.Profile.nick.optimizationThreshold": 100000,
.PropertyIndexFirstIndex.entryPointSize": 64,
.PropertyIndexFirstIndex.items": 0,
.PropertyIndexFirstIndex.maxUpdateBeforeSave": 5000,
.PropertyIndexFirstIndex.optimizationThreshold": 100000,

Profile.hash.items": 5,

Profile.name.items": 20,

Profile.nick.items": 38,

324

Profiler

"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.

demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.

index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.

index
index
index

index
index
index
index
index
index
index

index
index
index

index.
.Whiz.text.maxUpdateBeforeSave": 5000,
.Whiz.text.optimizationThreshold": 100000,
.a.entryPointSize": 64,

index.
.a.maxUpdateBeforeSave": 5000,

.a.optimizationThreshold": 100000,
.anotherproperty.entryPointSize": 64,

.anotherproperty.items": 0,
.anotherproperty.maxUpdateBeforeSave": 5000,
.anotherproperty.optimizationThreshold": 100000,
.byte-array-manualIndex-notunique.entryPointSize": 64,
.byte-array-manualIndex-notunique.items": 6,
.byte-array-manualIndex-notunique.maxUpdateBeforeSave": 5000,
.byte-array-manualIndex-notunique.optimizationThreshold": 100000,
.byte-array-manualIndex.entryPointSize": 64,
.byte-array-manualIndex.items": 11,
.byte-array-manualIndex.maxUpdateBeforeSave": 5000,
.byte-array-manualIndex.optimizationThreshold": 100000,

index
index
index

index
index
index
index
index
index
index
index
index
index
index
index
index
index

PropertyIndexSecondIndex.entryPointSize": 64,
PropertyIndexSecondIndex.items": 0,
PropertyIndexSecondIndex.maxUpdateBeforeSave": 5000,
PropertyIndexSecondIndex.optimizationThreshold": 100000,
PropertyIndexTestClass.propl.entryPointSize": 64,
PropertyIndexTestClass.propl.items": 0,
PropertyIndexTestClass.propl.maxUpdateBeforeSave": 5000,
PropertyIndexTestClass.propl.optimizationThreshold": 100000,

SQLDropClassCompositeIndex.
SQLDropClassCompositeIndex.
SQLDropClassCompositeIndex.
SQLDropClassCompositeIndex.
SQLDropIndexCompositeIndex.
SQLDropIndexCompositeIndex.
SQLDropIndexCompositeIndex.
SQLDropIndexCompositeIndex.

entryPointSize": 64,

items": 0,
maxUpdateBeforeSave": 5000,
optimizationThreshold": 100000,
entryPointSize": 64,

items": 0,
maxUpdateBeforeSave": 5000,
optimizationThreshold": 100000,

SQLDropIndexTestClass.propl.entryPointSize": 64,
SQLDropIndexTestClass.propl.items": 0,
SQLDropIndexTestClass.propl.maxUpdateBeforeSave": 5000,
SQLDropIndexTestClass.propl.optimizationThreshold": 100000,
SQLDropIndexWithoutClass.entryPointSize": 64,
SQLDropIndexWithoutClass.items": 0,
SQLDropIndexwWithoutClass.maxUpdateBeforeSave": 5000,
SQLDropIndexWithoutClass.optimizationThreshold": 100000,
SQLSelectCompositeIndexDirectSearchTestIndex.entryPointSize": 64,
SQLSelectCompositeIndexDirectSearchTestIndex.items": 0,
SQLSelectCompositeIndexDirectSearchTestIndex.maxUpdateBeforeSave": 5000,

SQLSelectCompositeIndexDirectSearchTestIndex.optimizationThreshold": 100000,

SchemaSharedIndexCompositeIndex.entryPointSize": 64,
SchemaSharedIndexCompositeIndex.items": 0,
SchemaSharedIndexCompositeIndex.maxUpdateBeforeSave": 5000,
SchemaSharedIndexCompositeIndex.optimizationThreshold": 100000,
TRPerson.name.entryPointSize": 64,

TRPerson.name.items": 4,
TRPerson.name.maxUpdateBeforeSave": 5000,
TRPerson.name.optimizationThreshold": 160000,
TRPerson.surname.entryPointSize": 64,
TRPerson.surname.items": 3,
TRPerson.surname.maxUpdateBeforeSave": 5000,
TRPerson.surname.optimizationThreshold": 100000,
TestClass.name.entryPointSize": 64,

TestClass.name.items": 2,

.TestClass.name.maxUpdateBeforeSave": 5000,
.TestClass.name.optimizationThreshold": 100000,
.TestClass.testLink.entryPointSize": 64,

index.
.TestClass.testLink.maxUpdateBeforeSave": 5000,
.TestClass.testLink.optimizationThreshold": 100000,
.TransactionUniqueIndexwWithDotTest.label.entryPointSize": 64,
.TransactionUniqueIndexwithDotTest.label.items": 1,
.TransactionUniqueIndexwithDotTest.label.maxUpdateBeforeSave": 5000,
.TransactionUniqueIndexwithDotTest.label.optimizationThreshold": 100000,
.Whiz.account.entryPointSize": 64,

index.

TestClass.testLink.items": 2,

Whiz.account.items": 1,

.Whiz.account.maxUpdateBeforeSave": 5000,
.Whiz.account.optimizationThreshold": 100000,
.Whiz.text.entryPointSize": 64,

Whiz.text.items": 275,

a.items": 0,

325

Profiler

"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.

demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.

index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
.compositeByteArrayKey.items": 4,
.compositeByteArrayKey.maxUpdateBeforeSave": 5000,
.compositeByteArrayKey.optimizationThreshold": 100000,
.compositeIndexwWithoutSchema.entryPointSize": 64,
.compositeIndexwithoutSchema.items": 0,
.compositeIndexwithoutSchema.maxUpdateBeforeSave": 5000,
.compositeIndexwithoutSchema.optimizationThreshold": 100000,
.compositeone.entryPointSize": 64,

.compositeone.items": 0,

.compositeone.maxUpdateBeforeSave": 5000,
.compositeone.optimizationThreshold": 100000,
.compositetwo.entryPointSize": 64,

.compositetwo.items": 0,

.compositetwo.maxUpdateBeforeSave": 5000,
.compositetwo.optimizationThreshold": 100000,
.curotorCompositeIndex.entryPointSize": 64,
.curotorCompositeIndex.items": 0,
.curotorCompositeIndex.maxUpdateBeforeSave": 5000,
.curotorCompositeIndex.optimizationThreshold": 100000,
.dictionary.entryPointSize": 64,

.dictionary.items": 2,

.dictionary.maxUpdateBeforeSave": 5000,
.dictionary.optimizationThreshold": 100000,
.diplomaThesisUnique.entryPointSize": 64,
.diplomaThesisUnique.items": 3,
.diplomaThesisUnique.maxUpdateBeforeSave": 5000,
.diplomaThesisUnique.optimizationThreshold": 100000,
.equalityIdx.entryPointSize": 64,

.equalityIdx.items": 0,

.equalityIdx.maxUpdateBeforeSave": 5000,
.equalityIdx.optimizationThreshold": 100000,
.idx.entryPointSize": 64,

index.
.idx.maxUpdateBeforeSave": 5000,
.idx.optimizationThreshold": 100000,

index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index

index
index

byteArrayKeyIndex.entryPointSize": 64,
byteArrayKeyIndex.items": 2,
byteArrayKeyIndex.maxUpdateBeforeSave": 5000,
byteArrayKeyIndex.optimizationThreshold": 100000,
classIndexManagerComposite.entryPointSize": 64,
classIndexManagerComposite.items": O,
classIndexManagerComposite.maxUpdateBeforeSave": 5000,
classIndexManagerComposite.optimizationThreshold": 100000,
classIndexManagerTestClass.propl.entryPointSize": 64,
classIndexManagerTestClass.propl.items": 0,
classIndexManagerTestClass.propl.maxUpdateBeforeSave": 5000,

classIndexManagerTestClass.propl.optimizationThreshold": 100000,

classIndexManagerTestClass.prop2.entryPointSize": 64,
classIndexManagerTestClass.prop2.items": 0,
classIndexManagerTestClass.prop2.maxUpdateBeforeSave": 5000,

classIndexManagerTestClass.prop2.optimizationThreshold": 100000,

classIndexManagerTestClass.prop4.entryPointSize": 64,
classIndexManagerTestClass.prop4.items": 0,
classIndexManagerTestClass.prop4.maxUpdateBeforeSave": 5000,

classIndexManagerTestClass.prop4.optimizationThreshold": 100000,

classIndexManagerTestClass.prop6.entryPointSize": 64,
classIndexManagerTestClass.prop6.items": 0,
classIndexManagerTestClass.prop6.maxUpdateBeforeSave": 5000,

classIndexManagerTestClass.prop6.optimizationThreshold": 100000,

classIndexManagerTestIndexByKey.entryPointSize": 64,
classIndexManagerTestIndexByKey.items": 0,
classIndexManagerTestIndexByKey.maxUpdateBeforeSave": 5000,

classIndexManagerTestIndexByKey.optimizationThreshold": 100000,

classIndexManagerTestIndexByValue.entryPointSize": 64,
classIndexManagerTestIndexByValue.items": 0,

classIndexManagerTestIndexByValue.maxUpdateBeforeSave": 5000,

classIndexManagerTestIndexByValue.optimizationThreshold": 100000,

classIndexManagerTestIndexValueAndCollection.
classIndexManagerTestIndexValueAndCollection.
classIndexManagerTestIndexValueAndCollection.
classIndexManagerTestIndexValueAndCollection.

entryPointSize": 64,

items": 0,
maxUpdateBeforeSave": 5000,
optimizationThreshold": 100000,

classIndexManagerTestSuperClass.prop@.entryPointSize": 64,
classIndexManagerTestSuperClass.prop@.items": 0,

classIndexManagerTestSuperClass.prop®.maxUpdateBeforeSave": 5000,
classIndexManagerTestSuperClass.prop@.optimizationThreshold": 100000,

compositeByteArrayKey.entryPointSize": 64,

idx.items": 2,

326

Profiler

"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.

demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.

index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.

index
index
index

index
index
index

index
index
index

index
index
index

index
index
index

index
index
index

index
index
index

index
index
index
index
index
index

idxTerm.entryPointSize": 64,
idxTerm.items": 1,
idxTerm.maxUpdateBeforeSave": 5000,

idxTerm.optimizationThreshold": 100000,
idxTransactionUniqueIndexTest.entryPointSize": 64,
idxTransactionUniqueIndexTest.items": 1,
idxTransactionUniqueIndexTest.maxUpdateBeforeSave": 5000,
idxTransactionUniqueIndexTest.optimizationThreshold": 100000,

idxTxAwareMultivalueGetEntriesTest.
idxTxAwareMultivalueGetEntriesTest.
idxTxAwareMultivalueGetEntriesTest.
idxTxAwareMultivalueGetEntriesTest.

entryPointSize": 64,

items": 0,
maxUpdateBeforeSave": 5000,
optimizationThreshold": 100000,

idxTxAwareMultivalueGetTest.entryPointSize": 64,

idxTxAwareMultiValueGetTest.items":

o,

idxTxAwareMultivalueGetTest.maxUpdateBeforeSave": 5000,
idxTxAwareMultivValueGetTest.optimizationThreshold": 100000,
idxTxAwareMultivalueGetValuesTest.entryPointSize": 64,

idxTxAwareMultiValueGetValuesTest.items": 0,

idxTxAwareMultivValueGetValuesTest.maxUpdateBeforeSave": 5000,

idxTxAwareMultiValueGetValuesTest.
idxTxAwareOneValueGetEntriesTest.
idxTxAwareOneValueGetEntriesTest.
idxTxAwareOneValueGetEntriesTest.
idxTxAwareOneValueGetEntriesTest.

optimizationThreshold": 100000,
entryPointSize": 64,

items": 0,

maxUpdateBeforeSave": 5000,
optimizationThreshold": 100000,

idxTxAwareOneValueGetTest.entryPointSize": 64,
idxTxAwareOneValueGetTest.items": 0,
idxTxAwareOneValueGetTest .maxUpdateBeforeSave": 5000,
idxTxAwareOneValueGetTest.optimizationThreshold": 100000,
idxTxAwareOneValueGetValuesTest.entryPointSize": 64,
idxTxAwareOneValueGetValuesTest.items": 0,
idxTxAwareOneValueGetValuesTest.maxUpdateBeforeSave": 5000,
idxTxAwareOneValueGetValuesTest.optimizationThreshold": 100000,
inIdx.entryPointSize": 64,

inIdx.items": 0,

inIdx.maxUpdateBeforeSave": 5000,
inIdx.optimizationThreshold": 100000,
indexForMap.entryPointSize": 64,

indexForMap.items": 0,

indexForMap.maxUpdateBeforeSave": 5000,
indexForMap.optimizationThreshold": 160000,
indexwithoutSchema.entryPointSize": 64,
indexWithoutSchema.items": 0,

.indexwithoutSchema.maxUpdateBeforeSave": 5000,
.indexwithoutSchema.optimizationThreshold": 100000,
.indexfive.entryPointSize": 64,

index.
.indexfive.maxUpdateBeforeSave": 5000,
.indexfive.optimizationThreshold": 100000,
.indexfour.entryPointSize": 64,

index.
.indexfour.maxUpdateBeforeSave": 5000,
.indexfour.optimizationThreshold": 100000,
.indexone.entryPointSize": 64,

index.

indexfive.items": 0,

indexfour.items": 0,

indexone.items": 0,

.indexone.maxUpdateBeforeSave": 5000,
.indexone.optimizationThreshold": 100000,
.indexsix.entryPointSize": 64,

index.
.indexsix.maxUpdateBeforeSave": 5000,
.indexsix.optimizationThreshold": 100000,
.indexthree.entryPointSize": 64,

index.
.indexthree.maxUpdateBeforeSave": 5000,
.indexthree.optimizationThreshold": 100000,
.indextwo.entryPointSize": 64,

index.
.indextwo.maxUpdateBeforeSave": 5000,
.indextwo.optimizationThreshold": 100000,
.linkCollectionIndex.entryPointSize": 64,
index.
.linkCollectionIndex.maxUpdateBeforeSave": 5000,
.linkCollectionIndex.optimizationThreshold": 100000,
.1lpirtCurator.name.entryPointSize": 64,
.lpirtCurator.name.items": 0,
.1pirtCurator.name.maxUpdateBeforeSave": 5000,
.lpirtCurator.name.optimizationThreshold": 100000,

indexsix.items": 0,

indexthree.items": 0,

indextwo.items": 0,

linkCollectionIndex.items": 0,

327

Profiler

"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.

demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.

index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index.
index.
index.
index.
index.
index.

lpirtCurator.salary.entryPointSize": 64,
lpirtCurator.salary.items": 0,
lpirtCurator.salary.maxUpdateBeforeSave": 5000,
lpirtCurator.salary.optimizationThreshold": 100000,
lpirtDiploma.GPA.entryPointSize": 64,
lpirtDiploma.GPA.items": 3,
1pirtDiploma.GPA.maxUpdateBeforeSave": 5000,
lpirtDiploma.GPA.optimizationThreshold": 100000,
lpirtDiploma.thesis.entryPointSize": 64,
lpirtDiploma.thesis.items": 54,
lpirtDiploma.thesis.maxUpdateBeforeSave": 5000,
lpirtDiploma.thesis.optimizationThreshold": 100000,
lpirtGroup.curator.entryPointSize": 64,
lpirtGroup.curator.items": 0,
1pirtGroup.curator.maxUpdateBeforeSave": 5000,
1pirtGroup.curator.optimizationThreshold": 160000,
lpirtGroup.name.entryPointSize": 64,
lpirtGroup.name.items": 0,
1pirtGroup.name.maxUpdateBeforeSave": 5000,
1pirtGroup.name.optimizationThreshold": 160000,
lpirtStudent.group.entryPointSize": 64,
lpirtStudent.group.items": 0,
1pirtStudent.group.maxUpdateBeforeSave": 5000,
lpirtStudent.group.optimizationThreshold": 160000,
lpirtStudent.name.entryPointSize": 64,
lpirtStudent.name.items": 0,
1pirtStudent.name.maxUpdateBeforeSave": 5000,
lpirtStudent.name.optimizationThreshold": 100000,
manualTxIndexTest.entryPointSize": 64,
manualTxIndexTest.items": 1,
manualTxIndexTest.maxUpdateBeforeSave": 5000,
manualTxIndexTest.optimizationThreshold": 160000,
mapIndexTestKey.entryPointSize": 64,
mapIndexTestKey.items": 0O,
mapIndexTestKey.maxUpdateBeforeSave": 5000,
mapIndexTestKey.optimizationThreshold": 100000,
mapIndexTestValue.entryPointSize": 64,
mapIndexTestValue.items": 0,
mapIndexTestValue.maxUpdateBeforeSave": 5000,
mapIndexTestValue.optimizationThreshold": 100000,
newV.f_int.entryPointSize": 64,
newV.f_int.items": 3,
newV.f_int.maxUpdateBeforeSave": 5000,
newV.f_int.optimizationThreshold": 100000,
nullkey.entryPointSize": 64,

nullkey.items": 0,

nullkey.maxUpdateBeforeSave": 5000,
nullkey.optimizationThreshold": 100000,
nullkeytwo.entryPointSize": 64,
nullkeytwo.items": 0,
nullkeytwo.maxUpdateBeforeSave": 5000,
nullkeytwo.optimizationThreshold": 100000,
propOnel.entryPointSize": 64,

.propOnel.items": 0,
.propOnel.maxUpdateBeforeSave": 5000,
.propOnel.optimizationThreshold": 100000,
.propOne2.entryPointSize": 64,
.propOne2.items": 0,
.propOne2.maxUpdateBeforeSave": 5000,
.propOne2.optimizationThreshold": 100000,
.propOne3.entryPointSize": 64,
.propOne3.items": 0,
.propOne3.maxUpdateBeforeSave": 5000,
.propOne3.optimizationThreshold": 100000,
.propOne4.entryPointSize": 64,
.propOne4.items": 0,
.propOne4.maxUpdateBeforeSave": 5000,
.propOne4.optimizationThreshold": 100000,
.propertyone.entryPointSize": 64,
.propertyone.items": 0,

propertyone.maxUpdateBeforeSave": 5000,
propertyone.optimizationThreshold": 100000,
simplekey.entryPointSize": 64,
simplekey.items": 0,
simplekey.maxUpdateBeforeSave": 5000,
simplekey.optimizationThreshold": 100000,

328

Profiler

"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.
"db.

demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.
demo.

index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.
index.

simplekeytwo.entryPointSize": 64,

simplekeytwo.items": 0,

simplekeytwo.maxUpdateBeforeSave": 5000,
simplekeytwo.optimizationThreshold": 100000,
sglCreateIndexCompositeIndex.entryPointSize": 64,
sglCreateIndexCompositeIndex.items": 0,
sglCreateIndexCompositeIndex.maxUpdateBeforeSave": 5000,
sglCreateIndexCompositeIndex.optimizationThreshold": 100000,
sglCreateIndexCompositeIndex2.entryPointSize": 64,
sglCreateIndexCompositeIndex2.items": 0,
sglCreateIndexCompositeIndex2.maxUpdateBeforeSave": 5000,
sglCreateIndexCompositeIndex2.optimizationThreshold": 100000,
sglCreateIndexEmbeddedListIndex.entryPointSize": 64,
sglCreateIndexEmbeddedListIndex.items": O,
sglCreateIndexEmbeddedListIndex.maxUpdateBeforeSave": 5000,
sglCreateIndexEmbeddedListIndex.optimizationThreshold": 100000,
sglCreateIndexEmbeddedMapByKeyIndex.entryPointSize": 64,
sglCreateIndexEmbeddedMapByKeyIndex.items": 0,
sqlCreateIndexEmbeddedMapByKeyIndex.maxUpdateBeforeSave": 5000,
sqlCreateIndexEmbeddedMapByKeyIndex.optimizationThreshold": 100000,
sqlCreateIndexEmbeddedMapByValueIndex.entryPointSize": 64,
sqlCreateIndexEmbeddedMapByValueIndex.items": 0,
sqlCreateIndexEmbeddedMapByValueIndex.maxUpdateBeforeSave": 5000,
sqlCreateIndexEmbeddedMapByValueIndex.optimizationThreshold": 100000,
sqlCreateIndexEmbeddedMapIndex.entryPointSize": 64,
sqlCreateIndexEmbeddedMapIndex.items": 0,
sqlCreateIndexEmbeddedMapIndex.maxUpdateBeforeSave": 5000,
sqlCreateIndexEmbeddedMapIndex.optimizationThreshold": 100000,
sqlCreateIndexTestClass.propl.entryPointSize": 64,
sqlCreateIndexTestClass.propl.items": 0,
sqlCreateIndexTestClass.propl.maxUpdateBeforeSave": 5000,
sqlCreateIndexTestClass.propl.optimizationThreshold": 100000,
sqlCreateIndexTestClass.prop3.entryPointSize": 64,
sqlCreateIndexTestClass.prop3.items": 0,
sqlCreateIndexTestClass.prop3.maxUpdateBeforeSave": 5000,
sqlCreateIndexTestClass.prop3.optimizationThreshold": 100000,
sqlCreateIndexTestClass.prop5.entryPointSize": 64,
sqlCreateIndexTestClass.prop5.items": 0,
sqlCreateIndexTestClass.prop5.maxUpdateBeforeSave": 5000,
sqlCreateIndexTestClass.prop5.optimizationThreshold": 100000,
sqlCreateIndexwithoutClass.entryPointSize": 64,
sqlCreateIndexwithoutClass.items": 0,
sqlCreateIndexwithoutClass.maxUpdateBeforeSave": 5000,
sqlCreateIndexwithoutClass.optimizationThreshold": 100000,
sqlSelectIndexReuseTestEmbeddedList.entryPointSize": 64,
sqlSelectIndexReuseTestEmbeddedList.items": 0,
sqlSelectIndexReuseTestEmbeddedList.maxUpdateBeforeSave": 5000,
sqlSelectIndexReuseTestEmbeddedList.optimizationThreshold": 100000,
sqlSelectIndexReuseTestEmbeddedListTwoProp8.entryPointSize": 64,
sqlSelectIndexReuseTestEmbeddedListTwoProp8.items": 0,
sqlSelectIndexReuseTestEmbeddedListTwoProp8.maxUpdateBeforeSave": 5000,
sqlSelectIndexReuseTestEmbeddedListTwoProp8.optimizationThreshold": 100000,
sqlSelectIndexReuseTestEmbeddedMapByKey.entryPointSize": 64,
sqlSelectIndexReuseTestEmbeddedMapByKey.items": 0,
sqlSelectIndexReuseTestEmbeddedMapByKey.maxUpdateBeforeSave": 5000,
sqlSelectIndexReuseTestEmbeddedMapByKey.optimizationThreshold": 100000,
sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.entryPointSize": 64,
sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.items": 0,
sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.maxUpdateBeforeSave": 5000,
sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.optimizationThreshold": 100000,
sqlSelectIndexReuseTestEmbeddedMapByValue.entryPointSize": 64,
sqlSelectIndexReuseTestEmbeddedMapByvalue.items": 0,
sqlSelectIndexReuseTestEmbeddedMapByValue.maxUpdateBeforeSave": 5000,
sqlSelectIndexReuseTestEmbeddedMapByValue.optimizationThreshold": 100000,
sqlSelectIndexReuseTestEmbeddedMapByValueProp8.entryPointSize": 64,
sqlSelectIndexReuseTestEmbeddedMapByValueProp8.items": 0,
sqlSelectIndexReuseTestEmbeddedMapByValueProp8.maxUpdateBeforeSave": 5000,
sqlSelectIndexReuseTestEmbeddedMapByValueProp8.optimizationThreshold": 100000,
sqlSelectIndexReuseTestEmbeddedSetProp8.entryPointSize": 64,
sqlSelectIndexReuseTestEmbeddedSetProp8.items": 0,
sglSelectIndexReuseTestEmbeddedSetProp8.maxUpdateBeforeSave": 5000,
sglSelectIndexReuseTestEmbeddedSetProp8.optimizationThreshold": 100000,
sglSelectIndexReuseTestProp9EmbeddedSetProp8.entryPointSize": 64,
sglSelectIndexReuseTestProp9EmbeddedSetProp8.items": 0,
sglSelectIndexReuseTestProp9EmbeddedSetProp8.maxUpdateBeforeSave": 5000,
sglSelectIndexReuseTestProp9EmbeddedSetProp8.optimizationThreshold": 100000,

329

Profiler

10:0:1:451822480.receivedBytes": 513,
0:0:1:451822480. transmittedBytes": 0,

"db.demo.index.studentDiplomaAndNameIndex.entryPointSize": 64,
"db.demo.index.studentDiplomaAndNameIndex.items": 0,
"db.demo.index.studentDiplomaAndNameIndex.maxUpdateBeforeSave": 5000,
"db.demo.index.studentDiplomaAndNameIndex.optimizationThreshold": 100000,
"db.demo.index.testIdx.entryPointSize": 64,

"db.demo.index.testIdx.items": 1,

"db.demo.index. testIdx.maxUpdateBeforeSave": 5000,
"db.demo.index.testIdx.optimizationThreshold": 100000,
"db.demo.index.test_class_by_data.entryPointSize": 64,
"db.demo.index.test_class_by_data.items": 0,
"db.demo.index.test_class_by_data.maxUpdateBeforeSave": 5000,
"db.demo.index.test_class_by_data.optimizationThreshold": 100000,
"db.demo.index.twoclassproperty.entryPointSize": 64,
"db.demo.index.twoclassproperty.items": 0,

"db.demo.index. twoclassproperty.maxUpdateBeforeSave": 5000,
"db.demo.index.twoclassproperty.optimizationThreshold": 160000,
"db.demo.index.vertexA name_idx.entryPointSize": 64,
"db.demo.index.vertexA_name_idx.items": 2,

"db.demo.index.vertexA name_idx.maxUpdateBeforeSave": 5000,
"db.demo.index.vertexA name_idx.optimizationThreshold": 100000,
"db.demo.index.vertexB_name_idx.entryPointSize": 64,
"db.demo.index.vertexB_name_idx.items": 2,
"db.demo.index.vertexB_name_idx.maxUpdateBeforeSave": 5000,
"db.demo.index.vertexB_name_idx.optimizationThreshold": 100000,
"db.subTest.cache.levell.current": 0,

"db.subTest.cache.levell.enabled": false,

"db.subTest.cache.levell.max": -1,

"db.subTest.cache.level2.current": 0,

"db.subTest.cache.level2.enabled": false,

"db.subTest.cache.level2.max": -1,

"db.subTest.data.holeSize": 0,

"db.subTest.data.holes": 0,

"db.subTest.index.dictionary.entryPointSize": 64,
"db.subTest.index.dictionary.items": 0,
"db.subTest.index.dictionary.maxUpdateBeforeSave": 5000,
"db.subTest.index.dictionary.optimizationThreshold": 100000,
"db.temp.cache.levell.current": 0,

"db.temp.cache.levell.enabled": false,

"db.temp.cache.levell.max": -1,

"db.temp.cache.level2.current": 3,

"db.temp.cache.level2.enabled": true,

"db.temp.cache.level2.max": -1,

"db.temp.index.dictionary.entryPointSize": 64,
"db.temp.index.dictionary.items": 0,
"db.temp.index.dictionary.maxUpdateBeforeSave": 5000,
"db.temp.index.dictionary.optimizationThreshold": 100000,
"process.network.channel.binary./0:0:0:0:0:0:0:1:451822480.flushes": 0,
"process.network.channel.binary./0:0:0:0:0
"process.network.channel.binary./0:0:0:0:0:
"process.network.channel.binary./127.0.0.1:451282424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451282424.receivedBytes": 98,
"process.network.channel.binary./127.0.0.1:451282424.transmittedBytes": 16,
"process.network.channel.binary./127.0.0.1:451292424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451292424.receivedBytes": 72,
"process.network.channel.binary./127.0.0.1:451292424.transmittedBytes": 17,
"process.network.channel.binary./127.0.0.1:451352424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451352424.receivedBytes": 79,
"process.network.channel.binary./127.0.0.1:451352424.transmittedBytes": 134,
"process.network.channel.binary./127.0.0.1:451362424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451362424.receivedBytes": 105,
"process.network.channel.binary./127.0.0.1:451362424.transmittedBytes": 16,
"process.network.channel.binary./127.0.0.1:451382424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451382424.receivedBytes": 79,
"process.network.channel.binary./127.0.0.1:451382424.transmittedBytes": 16,
"process.network.channel.binary./127.0.0.1:451392424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451392424.receivedBytes": 79,
"process.network.channel.binary./127.0.0.1:451392424.transmittedBytes": 134,
"process.network.channel.binary./127.0.0.1:451402424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451402424.receivedBytes": 105,
"process.network.channel.binary./127.0.0.1:451402424.transmittedBytes": 16,
"process.network.channel.binary./127.0.0.1:451422424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451422424 .receivedBytes": 79,
"process.network.channel.binary./127.0.0.1:451422424.transmittedBytes": 16,
"process.network.channel.binary./127.0.0.1:451432424.flushes": 3,
"process.network.channel.binary./127.0.0.1:451432424.receivedBytes": 72,
"process.network.channel.binary./127.0.0.1:451432424 . transmittedBytes": 127,

330

Profiler

"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.
"process.

network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.
network.

channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
channel.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.
.binary.

channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel

binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.
binary.

/127.
/127.
/127.
/127.
/127.

/127
/127

/127.
/127.
/127.
/127.

/127
/127

/127.
/127.
/127.
/127.

/127
/127

/127.
/127.
/127.
/127.

/127
/127

/127.
/127.
/127.

/127
/127

/127.
/127.
/127.
/127.

/127
/127

/127.
/127.
/127.
/127.

/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127
/127

© 0O 0O O O DD DDDOOOOOOOO D
© 0000000000000 0000000000000 00000000000000000000OO00O0OO00O0O O 0
RRrFERrRRRPRRRPRRPRRREPERPRRREPERRPRRPRPEPERRPEPERRPRRRPERRRERRPRRPERRRERRRERRPERRRERRRRPERRRERRRERRRERREBERRPRRRRRRRERRBRRRRPR

451442424
451442424
451442424
451452424
451452424
451452424
451462424.
451462424
451462424 .
451472424,
451472424,
451472424,
451482424.
451482424,
451482424
451492424
451492424
451492424,
451502424,
451502424,
451502424,
451512424,
451512424,
451512424,
451522424
451522424,
451522424
451532424,
451532424,
451532424,
.flushes": 7,
451542424
451542424
451552424,
451552424,
451552424,
451562424,
451562424,
451562424,
451572424
451572424
451572424,
451582424,
451582424,
451582424,
451592424,
451592424,
.transmittedBytes": 16,
451602424,
451602424,
451602424,
451612424,
451612424,
.transmittedBytes": 17,
451622424,
.receivedBytes": 72,

.transmittedBytes": 16,
451632424,
.receivedBytes": 72,

.transmittedBytes": 17,
451642424
.receivedBytes": 72,

.transmittedBytes": 16,
451652424 .
.receivedBytes": 98,

.transmittedBytes": 16,
451672424.
.receivedBytes": 72,

.transmittedBytes": 16,
451682424 .
.receivedBytes": 98,

.transmittedBytes": 16,
451692424 .
.receivedBytes": 72,

.transmittedBytes": 17,
451702424

451542424

451592424

451612424

451622424
451622424

451632424
451632424

451642424
451642424

451652424
451652424

451672424
451672424

451682424
451682424

451692424
451692424

flushes": 3,
receivedBytes": 98,
transmittedBytes": 16,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 17,
flushes": 7,
receivedBytes": 194,
transmittedBytes": 2606,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 127,
flushes": 3,
receivedBytes": 98,
transmittedBytes": 16,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 17,
flushes": 7,
receivedBytes": 194,
transmittedBytes": 2606,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 127,
flushes": 3,
receivedBytes": 98,
transmittedBytes": 16,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 17,

receivedBytes": 194,
transmittedBytes": 2606,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 17,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 16,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 17,
flushes": 3,
receivedBytes": 72,
transmittedBytes": 17,
flushes": 3,
receivedBytes": 72,

flushes": 3,

receivedBytes": 72,

transmittedBytes": 17,

flushes": 3,

receivedBytes": 72,

flushes": 3,

flushes": 3,

flushes": 3,

flushes": 3,

flushes": 3,

flushes": 3,

flushes": 3,

flushes": 76545,

331

Profiler

"process.network.channel.binary./127.
"process.network.channel.binary./127.
"process.network.channel.binary./127.
"process.network.channel.binary./127.
"process.network.channel.binary./127.
"process.network.channel.binary./127
"process.network.channel.binary./127
"process.network.channel.binary./127.

1:451702424.receivedBytes": 4937639,

1:451702424.transmittedBytes": 53391585,

1:451712424 . flushes": 3,

1:451712424 .receivedBytes": 72,

1:451712424 . transmittedBytes": 17,

1:451762424 . flushes": 16176,

1:451762424 .receivedBytes": 435578,

1:451762424.transmittedBytes": 7744941,
"process.network.channel.binary./127. .1:451772424 . flushes": 16181,
"process.network.channel.binary./127. 1:451772424 . receivedBytes": 446949,
1:451772424 . transmittedBytes": 7932617,
1:451782424.flushes": 16103,
1:451782424.receivedBytes": 437708,
1:451782424.transmittedBytes": 7192022,
1:451792424.flushes": 15663,
1:451792424 . receivedBytes": 422013,
1:451792424.transmittedBytes": 1128841,
"process.network.channel.binary.flushes": 140851,

"process.network.channel.binary./127.
"process.network.channel.binary./127
"process.network.channel.binary./127
"process.network.channel.binary./127.
"process.network.channel.binary./127.

©® o0 0000000000 OO ®
© 00 000000000060

"process.network.channel.binary./127.
"process.network.channel.binary./127.0.0.

"process.network.channel.binary.receivedBytes": 6687263,
"process.network.channel.binary.transmittedBytes": 77419866,
"process.runtime.availableMemory": 311502288,
"process.runtime.maxMemory": 939524096,
"process.runtime.totalMemory": 442368000,
"server.connections.actives": 101,

"system.config.cpus": 8,

.freeSpace": 50445692928,

.totalSpace": 127928365056,

.usableSpace": 50445692928,

"system.disk.
"system.disk.
"system.disk.
"system.disk.D.freeSpace": 0,
"system.disk.D.usableSpace": 0,
.freeSpace": 12820815872,
.totalSpace": 500103213056,
.usableSpace": 12820815872,
"system.file.mmap.mappedPages": 177,

©
©
©
D
"system.disk.D.totalSpace": 0,
D
"system.disk.G
"system.disk.G
G

"system.disk.

"system.file.mmap.nonPooledBufferUsed": 0,
"system.file.mmap.pooledBufferCreated": 0,
"system.file.mmap.pooledBufferUsed": 0,
"system.file.mmap.reusedPages": 31698774,
"system.memory.alerts": 0,
"system.memory.stream.resize": 21154
}!
"chronos": {
"db.0$db.close": {
"entries": 4,
"last": 16,
"min": ©,
"max": 16,
"average": 4,
"total": 16
}!
"db.0$db.create": {
"entries": 1,
"last": 13,
"min": 13,
"max": 13,
"average": 13,
"total": 13
1y
"db.0$db.createRecord": {
"entries": 10,
"last": 1,
"min": ©,
"max": 1,
"average": 0,
"total": 6
}
"db.0%$db.data.createHole": {
"entries": 14,
"last": 2,
"min": ©,
"max": 2,
"average": 0,
"total": 8
}
"db.0%db.data.findClosestHole": {

332

Profiler

"entries": 11,

"last": 0,
"min": ©,
"max": O,

"average": 0,
"total": O

}

"db.0$db.data.move": {
"entries": 6,

"last": 1,
"min": 0O,
"max": 1,

"average": 0,
"total": 3

}

"db.0$db.data.recycled.notFound": {
"entries": 7,

"last": O,
"min": 0O,
"max": O,

"average": 0,
"total": ©

}

"db.0%$db.data.recycled.partial": {
"entries": 11,

"last": 0,
"min": 0O,
"max": 0,

"average": 0,
"total": O

1y

"db.0%db.data.updateHole": {
"entries": 21,

"last": 0,
"min": 0,
"max": 1,

"average": 0,
"total": 2
}I
"db.0%$db.delete": {
"entries": 1,

"last": 101,
"min": 101,
"max": 101,

"average": 101,
"total": 101

}!

"db.0$db.metadata.load": {
"entries": 3,
"last": O,

"min": 0,
"max": O,
"average": 0,
"total": O

}!

"db.0$db.open": {
"entries": 3,
"last": 0,

"min": ©,
"max": O,
"average": 0,
"total": O

1y

"db.0%db.readrRecord": {
"entries": 15,
"last": O,

"min": ©,
"max": 1,
"average": 0,
"total": 5

}

"db.0%db.updateRecord": {
"entries": 18,

"last": 2,
"min": ©,
"max": 2,

333

Profiler

"average": 0,
"total": 9

}

"db.1$db.close": {
"entries": 4,

"last": 13,
"min": 0O,
"max": 13,

"average": 3,
"total": 13

1y

"db.1%db.create": {
"entries": 1,

"last": 15,
"min": 15,
"max": 15,

"average": 15,
"total": 15

}

"db.1%db.createRecord": {
"entries": 10,

"last": 1,
"min": 0O,
"max": 1,

"average": 0,
"total": 5

1y

"db.1%db.data.createHole": {
"entries": 14,

"last": 3,
"min": 0O,
"max": 3,

"average": 0,
"total": 8

iy

"db.1$db.data.findClosestHole": {
"entries": 11,

"last": 0,
"min": 0O,
"max": O,

"average": 0,
"total": O
}!
"db.1$db.data.move": {
"entries": 6,
"last": O,
"min": 0,
"max": 1,
"average": 0,
"total": 3
}!
"db.1$db.data.recycled.notFound": {
"entries": 7,
"last": 0,
"min": 0,
"max": O,
"average": 0,
"total": O
1y
"db.1$db.data.recycled.partial": {
"entries": 11,
"last": O,
"min": ©,
"max": O,
"average": 0,
"total": O
1y
"db.1%db.data.updateHole": {
"entries": 21,
"last": 1,
"min": ©,
"max": 1,
"average": 0,
"total": 1
}
"db.1$db.delete": {

334

Profiler

}

"db.1%db.metadata.load": {

+

"entries": 1,
"last": 115,
"min": 115,
"max": 115,
"average": 115,
"total": 115

"entries": 3,

"last": 0,
"min": 0O,
"max": O,

"average": 0,
"total": O

"db.1%db.open": {

+

"entries": 3,

"last": O,
"min": 0O,
"max": O,

"average": 0,
"total": ©

"db.1$db.readrRecord": {

+

"db.1$db.updateRecord": {

}I

"entries": 15,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 4

"entries": 18,

"last": 3,
"min": 0,
"max": 3,

"average": 0,
"total": 7

"db.2$db.close": {

}/

"entries": 4,
"last": 15,
"min": ©,
"max": 15,
"average": 3,
"total": 15

"db.2%db.create": {

}/

"db.2%db.createRecord": {

}

"db.2%db.data.createHole":

}

"db.2%db.data.findClosestHole": {

"entries": 1,
"last": 17,
"min": 17,
"max": 17,
"average": 17,
"total": 17

"entries": 10,
"last": 1,
"min": 0,
"max": 1,
"average": 0,
"total": 5

"entries": 14,
"last": 1,
"min": ©,
"max": 1,
"average": 0,
"total": 5

"entries": 11,

"last": O,
"min": ©,
"max": O,

335

Profiler

"average": 0,
"total": O

}

"db.2%db.data.move": {
"entries": 6,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 1

}

"db.2%db.data.recycled.notFound": {
"entries": 7,

"last": 0O,
"min": O,
"max": 0,

"average": 0,
"total": ©

}

"db.2%db.data.recycled.partial": {
"entries": 11,

"last": O,
"min": 0,
"max": O,

"average": 0,
"total": O

1y

"db.2%db.data.updateHole": {
"entries": 21,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 1

iy

"db.2%db.delete": {
"entries": 1,

"last": 61,
"min": 61,
"max": 61,

"average": 61,
"total": 61

}!

"db.2%db.metadata.load": {
"entries": 3,
"last": O,
"min": 0,
"max": O,
"average": 0,
"total": O

}!

"db.2%db.open": {
"entries": 3,
"last": O,
"min": 0,
"max": O,
"average": 0,
"total": ©

1y

"db.2%db.readRecord": {
"entries": 15,
"last": O,
"min": ©,
"max": 1,
"average": 0,
"total": 1

}

"db.2%db.updateRecord": {
"entries": 18,
"last": 1,
"min": ©,
"max": 1,
"average": 0O,
"total": 5

}

"db.demo.close": {

336

Profiler

"entries": 1396,
"last": 0,
"min": ©,
"max": 31,
"average": 0,
"total": 51

}

"db.demo.create": {
"entries": 3,

"last": 19,
"min": 19,
"max": 40,

"average": 27,
"total": 81

}

"db.demo.createRecord": {
"entries": 35716,

"last": O,
"min": 0O,
"max": 12,

"average": 0,
"total": 1187

}

"db.demo.data.createHole": {
"entries": 58886,

"last": 0,
"min": 0O,
"max": 23,

"average": 0,
"total": 9822

1y

"db.demo.data.findClosestHole": {
"entries": 51022,

"last": 0,
"min": 0,
"max": 1,

"average": 0,
"total": 181
}I
"db.demo.data.move": {
"entries": 1327946,
"last": O,
"min": 0,
"max": 16,
"average": 0,
"total": 4091
}!
"db.demo.data.recycled.complete": {
"entries": 24,
"last": O,
"min": 0,
"max": O,
"average": 0,
"total": O
}!
"db.demo.data.recycled.notFound": {
"entries": 16070,
"last": 0,
"min": ©,
"max": 1,
"average": 0,
"total": 59
1y
"db.demo.data.recycled.partial": {
"entries": 57638,
"last": O,
"min": ©,
"max": 1,
"average": 0,
"total": 102
}
"db.demo.data.updateHole": {
"entries": 108613,

"last": O,
"min": ©,
"max": 12,

337

Profiler

"average": 0,
"total": 451

1y

"db.demo.delete": {
"entries": 2,
"last": 61,
"min": 61,
"max": 124,
"average": 92,
"total": 185

1y

"db.demo.deleteRecord": {
"entries": 12362,

"last": 0,
"min": O,
"max": 24,

"average": 0,
"total": 4626

}

"db.demo.metadata.load": {
"entries": 1423,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 49

1y

"db.demo.open": {
"entries": 1423,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 6

iy

"db.demo.readRecord": {
"entries": 476697,

"last": 0,
"min": ©,
"max": 16,

"average": 0,
"total": 3071

}!

"db.demo.synch": {
"entries": 484,
"last": 2,

"min": ©,
"max": 34,
"average": 2,
"total": 1251

}!

"db.demo.updateRecord": {
"entries": 180667,
"last": O,

"min": 0,
"max": 12,
"average": 0,
"total": 2343

1y

"db.subTest.close": {
"entries": 10,
"last": O,

"min": ©,
"max": 16,
"average": 3,
"total": 31

}

"db.subTest.create": {

"entries": 2,
"last": 44,
"min": 18,
"max": 44,
"average": 31,
"total": 62

}

"db.subTest.createRecord": {

338

Profiler

"entries": 20,

"last": 1,
"min": 0O,
"max": 1,

"average": 0,
"total": 11

}

"db.subTest.data.createHole": {
"entries": 28,

"last": 2,
"min": 0O,
"max": 2,

"average": 0,
"total": 12

}

"db.subTest.data.findClosestHole": {
"entries": 22,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 1

1y

"db.subTest.data.move": {
"entries": 12,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 4
}
"db.subTest.data.recycled.notFound": {
"entries": 14,
"last": 0,
"min": 0,
"max": O,
"average": 0,
"total": O
}I
"db.subTest.data.recycled.partial": {
"entries": 22,
"last": O,
"min": ©,
"max": O,
"average": 0,
"total": O
}!
"db.subTest.data.updateHole": {
"entries": 42,
"last": O,
"min": ©,
"max": 1,
"average": 0,
"total": 2
}!
"db.subTest.delete": {
"entries": 2,
"last": 118,
"min": 76,
"max": 118,
"average": 97,
"total": 194
1y
"db.subTest.metadata.load": {
"entries": 6,
"last": O,
"min": ©,
"max": 1,
"average": 0,
"total": 1
3
"db.subTest.open": {
"entries": 6,

"last": O,
"min": ©,
"max": O,

339

Profiler

"average": 0,
"total": O

}

"db.subTest.readRecord": {
"entries": 30,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 3

1y

"db.subTest.updateRecord": {
"entries": 36,

"last": 2,
"min": O,
"max": 2,

"average": 0,
"total": 16

}

"db.temp.createRecord": {
"entries": 10,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 2

1y

"db.temp.readRecord": {
"entries": 7,

"last": 0,
"min": 0O,
"max": 1,

"average": 0,
"total": 1

iy

"db.temp.updateRecord": {
"entries": 21,

"last": 0,
"min": ©,
"max": 1,

"average": 0,
"total": 2
}!
"process.file.mmap.commitPages": {
"entries": 2034,
"last": 1,
"min": 0,
"max": 21,
"average": 0,
"total": 1048
}!
"process.mvrbtree.clear": {
"entries": 16007,
"last": O,
"min": 0,
"max": 1,
"average": 0,
"total": 141
1y
"process.mvrbtree.commitChanges": {
"entries": 165235,
"last": O,
"min": ©,
"max": 55,
"average": 0,
"total": 5730
1y
"process.mvrbtree.entry.fromStream": {
"entries": 5408,
"last": O,
"min": ©,
"max": 1,
"average": 0,
"total": 45
}

"process.mvrbtree.entry.toStream": {

340

Profiler

"entries": 60839,
"last": 0,
"min": ©,
"max": 26,
"average": 0,
"total": 3013
}
"process.mvrbtree.fromStream": {
"entries": 7424,

"last": 0,
"min": ©,
"max": 1,

"average": 0,
"total": 54

}

"process.mvrbtree.get": {
"entries": 97863,

"last": O,
"min": 0O,
"max": 1,

"average": 0,
"total": 233

1y

"process.mvrbtree.put": {
"entries": 151070,

"last": 0,
"min": 0O,
"max": 55,

"average": 0,
"total": 5002
}
"process.mvrbtree.putAll": {
"entries": 1847,
"last": 0,
"min": 0,
"max": 8,
"average": 0,
"total": 84
}I
"process.mvrbtree.remove": {
"entries": 41000,
"last": O,
"min": ©,
"max": 10,
"average": 0,
"total": 2226
}!
"process.mvrbtree.toStream": {
"entries": 124870,
"last": O,
"min": ©,
"max": 6,
"average": 0,
"total": 543
}!
"process.mvrbtree.unload": {
"entries": 7424,
"last": 0,
"min": 0,
"max": 10,
"average": 0,
"total": 519
1y
"process.serializer.record.string.binary2string": {
"entries": 1867,
"last": O,
"min": ©,
"max": 1,
"average": 0,
"total": 18
3
"process.serializer.record.string.bool2string": {
"entries": 43,

"last": O,
"min": ©,
"max": O,

341

Profiler

+

"process.serializer.record.string.byte2string": {

+

"process.serializer.record.string.date2string": {

+

"process.serializer.record.string.datetime2string": {

+

"process.serializer.record.string.decimal2string": {

t

"process.serializer.record.string.double2string": {

}/

"process.serializer.record.string.embed2string": {

}/

"process.serializer.record.string.embedList2string": {

}

"process.serializer.record.string.embedMap2string": {

}

"process.serializer.record.string.embedSet2string": {

}

"process.serializer.record.string.float2string": {

"average": 0,
"total": O

"entries": 1143,

"last": 0,
"min": ©,
"max": O,

"average": 0,
"total": O

"entries": 114176,

"last": 0O,
"min": O,
"max": 6,

"average": 0,
"total": 464

"entries": 2,

"last": o,
"min": O,
"max": 0,

"average": 0,
"total": O

"entries": 2,

"last": 1,
"min": 0O,
"max": 1,

"average": 0,
"total": 1

"entries": 30237,
"last": O,

"min": 0O,

"max": 1,
"average": 0,
"total": 104

"entries": 122581,
"last": O,

"min": 0,

"max": 1,
"average": 0,
"total": 117

"entries": 29922,
"last": O,

"min": ©,

"max": 2,
"average": 0,
"total": 87

"entries": 3160,
"last": O,
"min": ©,

"max": 1,
"average": 0,
"total": 25

"entries": 32280,
"last": 1,

"min": ©,

"max": 8,
"average": 0,
"total": 1430

342

Profiler

}

"process.serializer.record.string.fromStream": {

+

"process.serializer.record.string.int2string": {

i

"process.serializer.record.string.link2string": {

+

"process.serializer.record.string.linkList2string": {

}I

"process.serializer.record.string.linkMap2string": {

}/

"process.serializer.record.string.linkSet2string": {

}/

"process.serializer.record.string.long2string": {

}

"process.serializer.record.string.string2string": {

}

"entries": 20640,

"last": 0,
"min": ©,
"max": 1,

"average": 0,
"total": 63

"entries": 1735665,

"last": O,
"min": 0O,
"max": 82,

"average": 0,
"total": 7174

"entries": 246700,

"last": 0,
"min": O,
"max": 1,

"average": 0,
"total": 101

"entries": 18664,

"last": o,
"min": O,
"max": 6,

"average": 0,
"total": 62

"entries": 2648,
"last": o,
"min": O,

"max": 2,
"average": 0,
"total": 52

"entries": 28,
"last": O,
"min": 0,
"max": 1,
"average": 0,
"total": 1

"entries": 1269,
"last": O,
"min": 0,

"max": 33,
"average": 0,
"total": 80

"entries": 1620,
"last": O,
"min": 0,

"max": 1,
"average": 0,
"total": 6

"entries": 358585,
"last": O,

"min": ©,

"max": 3,
"average": 0,
"total": 183

"process.serializer.record.string.toStream": {

"entries": 183912,

"last": O,
"min": ©,
"max": 34,

343

Profiler

"average": 0,
"total": 3149

}

"server.http.0:0:0:0:0:0:0:1.request": {
"entries": 2,

"last": 2,
"min": 2,
"max": 19,

"average": 10,
"total": 21

}

"statistics": {3},

"counters": {
"db.0$db.cache.level2.cache.found": 7,
"db.0$db.cache.level2.cache.notFound": 8,
"db.0%db.data.update.notReused": 11,
"db.0$db.data.update.reusedAll": 7,
"db.1$db.cache.level2.cache.found": 7,
"db.1$db.cache.level2.cache.notFound": 8,
"db.1$db.data.update.notReused": 11,
"db.1$db.data.update.reusedAll": 7,
"db.2%db.cache.level2.cache.found": 7,
"db.2$db.cache.level2.cache.notFound": 8,
"db.2$db.data.update.notReused": 11,
"db.2$db.data.update.reusedAll": 7,
"db.demo.cache.level2.cache.found": 364467,
"db.demo.cache.level2.cache.notFound": 393509,
"db.demo.data.update.notReused": 38426,
"db.demo.data.update.reusedAll": 140921,
"db.demo.data.update.reusedPartial": 100,
"db.demo.query.compositeIndexUsed": 46,
"db.demo.query.compositeIndexUsed.2": 42,
"db.demo.query.compositeIndexUsed.2.1": 20,
"db.demo.query.compositeIndexUsed.2.2": 18,
"db.demo.query.compositeIndexUsed.3": 4,
"db.demo.query.compositeIndexUsed.3.1": 1,
"db.demo.query.compositeIndexUsed.3.2": 1,
"db.demo.query.compositeIndexUsed.3.3": 2,
"db.demo.query.indexUsed": 2784,
"db.subTest.cache.level2.cache.found": 14,
"db.subTest.cache.level2.cache.notFound": 16,
"db.subTest.data.update.notReused": 22,
"db.subTest.data.update.reusedAll": 14,
"db.temp.cache.level2.cache.found": 5,
"db.temp.cache.level2.cache.notFound": 4,
"process.file.mmap.pagesCommitted": 2034,
"process.mvrbtree.entry.serializeKey": 4617509,
"process.mvrbtree.entry.serializeValue": 68620,
"process.mvrbtree.entry.unserializekey": 6127,
"process.mvrbtree.entry.unserializevValue": 225,
"process.serializer.record.string.linkList2string.cached": 19,
"server.http.0:0:0:0:0:0:0:1.requests": 3,
"server.http.0:0:0:0:0:0:0:1.timeout": 1

344

Distributed Configuration Tuning

When you run distributed on multiple servers, you could face on a drop of performance you got with single node. While it's normal that

replication has a cost, there are many ways to improve performance on distributed configuration:

e Use transactions

e Replication vs Sharding
e Scale up on writes

e Scale up on reads

e Replication vs Sharding

Generic advice

Load Balancing

Active load balancing to distribute the load across multiple nodes.

Use transactions

Even though when you update graphs you should always work in transactions, OrientDB allows also to work outside of them.
Common cases are read-only queries or massive and non concurrent op erations can be restored in case of failure. When you run on
distributed configuration, using transactions helps to reduce latency. This is because the distributed operation happens only at commit

time. Distributing one big operation is much efficient than transfering small multiple op erations, because the latency.

Replication vs Sharding

OrientDB distributed configuration is set to full replication. Having multip le nodes with the very same copy of database is imp ortant
for HA and scale reads. In facts, each server is independent on executing reads and queries. If you have 10 server nodes, the read
throughput is 10x.

With writes it's the opposite: having multiple nodes with full replication slows down operations if the replication is synchronous. In
this case Sharding the database across multiple nodes allows you to scale up writes, because only a subset of nodes are involved on

write. Furthermore you could have a database bigger than one server node HD.

Scale up on writes

If you have a slow network and you have a synchronous (default) replication, you could pay the cost of latency. In facts when
OrientDB runs synchronously, it waits at least for the writeQuorum . This means that if the writequorum is 3, and you have 5 nodes,
the coordinator server node (where the distributed operation is started) has to wait for the answer from at least 3 nodes in order to

provide the answer to the client.

In order to maintain the consistency, the writeQuorum should be set to the majority. If you have 5 nodes the majority is 3. With 4

nodes is still 3. Setting the writeQuorum to 3 instead of 4 or 5 allows to reduce the latency cost and still maintain the consistency.

Asynchronous replication

To speed up things, you can setup Asynchronous Replication to remove the latency bottleneck. In this case the coordinator server node
execute the operation locally and gives the answer to the client. The entire replication will be in background. In case the quorum is not

reached, the changes will be rollbacked transparently.

Scale up on reads

If you already set the writeQuorum to the majority to the nodes, you can leave the readquorum to 1 (the default). This speeds up all

the reads.

Distributed tuning

346

Security

OrientDB is the NoSQL implementation with the greatest focus on security.

e To connect to an existing database, you need a user and password. Users and roles are defined inside the database. For more

information on this process, see Database Security.

e In the event that you're connecting to the OrientDB Server that is hosting the database, you can access the database using the

server's user. For more information on this process, see Sever Security.

e Additionally, you can encrypt the database contents on disk. For more information on this process, see Database Encryption.

While OrientDB Server can function as a regular Web Server, it is not recommended that you expose it directly to
either the Internet or public networks. Instead, always hide OrientDB server in private networks.

See also:

e Database security

e Server security

e Database Encryption

e Secure SSL connections

o OrientDB Web Server

Database Security

OrientDB uses a security model based on well-known concepts of users and roles. That is, a database has its own users. Each User has

one or more roles. Roles are a combination of the working mode and a set of permissions.

OrientDB — Security

“Reader” Role

Mode = Deny all but

Rules:

Database = Read

Database Cluster.* = Read
Database Cluster metadata = Node
Database.Class.* = Read

“Publisher” Role

e e Mode = Deny all but
Admin®“ Role

Rules:

Mode =Allow all but Database Cluster.cars = All

For more information on security, see:

e Server security
e Database Encryption
e Secure SSL connections

e Record Level Security

Users

A user is an actor on the database. When you open a database, you need to specify the user name and the password to use. Each user

has its own credentials and permissions.

By convention, each time you create a new database OrientDB creates three default users. The passwords for these users are the same

as the usernames. That is, by default the admin user has a password of admin .

e admin This user has access to all functions on the database without limitation.
e reader This user is a read-only user. The reader can query any records in the database, but can't modify or delete them. It has
no access to internal information, such as the users and roles themselves.

e writer This user is the same as the user reader , but it can also create, update and delete records.

The users themselves are records stored inside the cluster ouser . OrientDB stores passwords in hash. From version 2.2 on, OrientDB

uses the PBKDF2 algorithm. Prior releases relied on SHA-256. For more information on passwords, see Password M anagement.

OrientDB stores the user status in the field status . It can either be SusPENDED or ACTIVE .Only ACTIVE users can login.

https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/SHA-2

Working with Users

When you are connected to a database, you can query the current users on the database by using SeLecT queries on the ouser class.

orientdb> SELECT RID, name, status FROM OUser

soofhoosoooos Posooccos Posoosoos
| @CLASS | name | status
soodhoosonoos Posooccos Posoosoos
0 | null | admin | ACTIVE
1 | null | reader | ACTIVE
2 | null | writer | ACTIVE
soofhoosonoos Pocoocoos Posooscos

3 item(s) found. Query executed in 0.005 sec(s).

Creating a New User

To create a new user, use the InNsERT command. Remember in doing so, that you must set the status to AcTIVE and give it a valid role.

orientdb> INSERT INTO OUser SET name = 'jay', password = 'JaY',6 status = 'ACTIVE',

roles = (SELECT FROM ORole WHERE name = 'reader')

Updating Users

You can change the name for the user with the uPDATE statement:

orientdb> UPDATE ouser SET name = 'jay' WHERE name = 'reader’

In the same way, you can also change the password for the user:

orientdb> UPDATE ouser SET password = 'hello' WHERE name = 'reader'

OrientDB saves the password in a hash format. The trigger ouserTrigger encrypts the password transparently before it saves the

record.

Disabling Users

To disable a user, use UPDATE to switch its status from ACTIVE to SUSPENDED . For instance, if you wanted to disable all users except

for admin :

orientdb> UPDATE ouser SET status = 'SUSPENDED' WHERE name <> 'admin’

NOTE: In the event that, due to accident or database corruption, you lose the user admin and need to restore it on the database,

see Restoring the admin User".

Roles

A role determines what operations a user can perform against a resource. M ainly, this decision depends on the working mode and the

rules. The rules themselves work differently, depending on the working mode.

Working with Roles

When you are connected to a database, you can query the current roles on the database using seLecT queries on the oORole class.

orientdb> SELECT RID, mode, name, rules FROM ORole

| null | 1 | admin | {database.bypassRestricted=15}
| null | @ | reader | {database.cluster.internal=2, database.cluster.orole=0...
| null | @ | writer | {database.cluster.internal=2, database.cluster.orole=0...

3 item(s) found. Query executed in 0.002 sec(s).

Creating New Roles

To create a new role, use the INSERT statement.

orientdb> INSERT INTO ORole SET name = 'developer', mode =

Role Inheritance

Roles can inherit permissions from other roles in an object-oriented fashion. To let a role extend another, add the parent role in the

inheritedRole attribute. For instance, say you want users with the role appuser to inherit settings from the role writer .

orientdb> UPDATE ORole SET inheritedRole = (SELECT FROM ORole WHERE name = 'writer')

WHERE name = 'appuser'

Working with Modes

Where rules determine what users belonging to certain roles can do on the databases, working modes determine how OrientDB interprets

these rules. There are two types of working modes, designatingby 1 and o .

e Allow All But (Rules) By default is the super user mode. Specify exceptions to this using the rules. If OrientDB finds no rules for
arequested resource, then it allows the user to execute the operation. Use this mode mainly for power users and administrators.

The default role admin uses this mode by default and has no exception rules. It is written as 1 in the database.

e Deny All But (Rules) By default this mode allows nothing, Specify exceptions to this using the rules. If OrientDB finds rules for
a requested resource, then it allows the user to execute the operation. Use this mode as the default for all classic users. The default

roles reader and writer use this mode. It is written as o in the database.

Operations

The supported operations are the classic CRUD operations. That is, Create, Read, Update, Delete. Roles can have none of these

permissions or all of them. OrientDB represents each permission internally by a 4-digit bitmask flask.

NONE: #0000 -
CREATE: #0001 -
READ: #0010 -
UPDATE: #0100 -
DELETE: #1000 -
ALL: #1111 - 15

o N B O

In addition to these base permissions, you can also combine them to create new permissions. For instance, say you want to allow only

the Read and Update permissions:

READ: #0010 - 1
UPDATE : #0100 - 4
Permission to use: #0110 - 5

Resources

Resources are strings bound to OrientDB concepts.
NOTE: Resource entries are case-sensitive.

e database , checked on accessing to the database

e database.class.<class-name> , checked on accessing on specific class

e database.cluster.<cluster-name> , checked on accessing on specific cluster
e database.query , checked on query execution

e database.command , checked on command execution

e database.schema , checked to access to the schema

e database.function , checked on function execution

e database.config , checked on accessing at database configuration

® database.hook.record

e server.admin , checked on accessing to remote server administration

For instance, say you have arole motorcyclist that you want to have access to all classes except for the class car .
orientdb> UPDATE ORole PUT rules = "database.class.*", WHERE name = "motorcyclist"

orientdb> UPDATE ORole PUT rules = "database.class.Car", WHERE name = "motorcyclist"

Granting and Revoking Permissions

To grant and revoke permissions from a role, use the GRANT and REVOKE commands.

orientdb> GRANT UPDATE ON database.cluster.Car TO motorcyclist

Record-level Security

The sections above manage security in a vertical fashion at the schema-level, but in OrientDB you can also manage security in a
horizontal fashion, that is: per record. This allows you to completely separate database records as sandboxes, where only authorized

users can access restricted records.
To active record-level security, create classes that extend the oRestricted super class. In the event that you are working with a Graph
Database, set the v and E classes (that is, the vertex and edge classes) themselves to extend ORestricted .

orientdb> ALTER CLASS V SUPERCLASS ORestricted

orientdb> ALTER CLASS E SUPERCLASS ORestricted

This causes all vertices and edges to inherit the record-level security. Beginning with version 2.1, OrientDB allows you to use multiple

inheritances, to cause only certain vertex or edge calsses to be restricted.

orientdb> CREATE CLASS Order EXTENDS V, ORestricted

Whenever a class extends the class oORestricted , OrientDB uses special fields to type-set _<oIdentifiable> to store authorization on

each record.

e _allow Contains the users that have full access to the record, (that is, all CRUD operations).
e _allowRead Contains the users that can read the record.
e _allowupdate Contains the users that can update the record.

e _allowbelete Contains the users that can delete the record.

To allow full control over a record to a user, add the user's RID to the _allow set. To provide only read permissions, use _allowRead .

In the example below, you allow the user with the RID #5:10 to read record #43:22 :

orientdb> UPDATE #43:22 ADD _allowRead #5:

If you want to remove read permissions, use the following command:

orientdb> UPDATE #43:22 REMOVE _allowRead #5:

Run-time Checks

OrientDB checks record-level security using a hook that injects the check before each CRUD operation:

e Create Documents: Sets the current database's user in the _allow field. To change this behavior, see Customize on Creation.

e Read Documents: Checks if the current user, or its roles, are listed in the _allow or _allowread fields. If not, OrientDB skips
the record. This allows each query to work per user.

e Update Documents: Checks if the current user, or its roles, are listed in the _allow or _allowupdate field. If not, OrientDB
raises an OSecurityException exception.

e Delete Documents: Checks if the current user, or its roles, are listed in the _allow or _allowbelete field. If not, OrientDB

raises an OSecurityException exception.

The allow fields, (that is, _allow , _allowRead , _allowUpdate , and _allowDelete) can contain instances of ouser and ORole
records, as both classes extend o1dentity . Use the class ouser to allow single users and use the class orole to allow all users that

are a part of that role.

Using the API

In addition to managing record-level security features through the OrientDB console, you can also configure it through the Graph and

Document API's.

e Graph API

OrientVertex v = graph.addVertex("class:Invoice");
v.setProperty("amount",)
graph.getRawGraph().getMetadata().getSecurity().allowUser (

v.getRecord(), ORestrictedOperation.ALLOW_READ, "report');
v.save();

e Document API

ODocument invoice = new ODocument('"Invoice").field("amount",)8
database.getMetadata().getSecurity().allowUser (

invoice, ORestrictedOperation.ALLOW_READ, "report');
invoice.save();

Customize on Creation

By default, whenever you create a restricted record, (that is, create a class that extends the class 0ORestricted), OrientDB inserts the

current user into the _allow field. You can change this using custom properties in the class schema:

e oncreate.fields Specifies the names of the fields it sets. By default, these are _allow , but you can also specify _allowread ,
_allowUpdate , _allowDelete oOr a combination of them as an alternative. Use commas to separate multiple fields.
® onCreate.identityType Specifies whether to insert the user's object or its role (the first one). By default, it is set to user , but

you can also set it to use its role .

For instance, say you wanted to prevent a user from deleting new posts:

orientdb> ALTER CLASS Post CUSTOM onCreate.fields=_allowRead, allowUpdate

Consider another example, where you want to assign a role instead of a user to new instances of Post .

orientdb> ALTER CLASS Post CUSTOM onCreate.identityType=role

Bypassing Security Constraints

On occasion, you may need a role that can bypass restrictions, such as for backup or administrative operations. You can manage this
through the special permission database.bypassRestricted , by changing its value to Reap . By default, the role admin has this

permission.

For security reasons, this permission is not inheritable. In the event that you need to assign it to other roles in your database, y ou need

to set it on each role.

Using Security

Now that you have some familiarity with how security works in OrientDB, consider the use case of OrientDB serving as the database
for a blog-like application. The blog is accessible through the web and you need to implement various security features to ensure that it

works properly and does not grant its users access to restricted content.

To begin, the administrator connects to the database and creates the document class Post , which extends oORestricted . This ensures

that users can only see their own entries in the blog and entries that are shared with them.

orientdb> CONNECT REMOTE:localhost/blog admin admin

orientdb> CREATE CLASS Post EXTENDS ORestricted

Class 'Post' created successfully.

The user Luke is registered in ouser as 1luke , withan RID of #5:5 .He logs into the database and creates a new blog, which is an

instance of the class Post .

orientdb> CONNECT REMOTE:localhost/blog luke lukepassword

orientdb> INSERT INTO Post SET title = "Yesterday in Italy"
Created document #18:0

orientdb> SELECT FROM Post

_______ T
RID | _allow | title

_______ T
#18:0 | [#5:5] | Yesterday in Italy
_______ o o e e e meeeee el

Independent of the users admin and luke , there is the user Steve. Steve is registers with ouser as steve , he has an RID of #5:6 .

Steve logs into OrientDB and also creates a new entry on the class Post :

orientdb> CONNECT REMOTE:localhost/blog steve steve

orientdb> INSERT INTO Post SET title = "My Nutella Cake!"

Created document #18:1

orientdb> SELECT FROM Post

_______ S
RID | _allow | title

_______ Hoscooooodcoosooonoooono000s
#18:1 | [#5:6] | My Nutella Cake!
_______ e o e e e

As you can see, the users Steve and Luke can only see the records that they have access to. Now, after some editorial work, Luke is
satisfied with the state of his blog entry vesterday in Italy . He is now ready to share it with others. From the database console, he

can do so by adding the user Steve's RID to the _allow field.

orientdb> UPDATE #18:0 ADD _allow = #5:

Now, when Steve logs in, the same query from before gives him different results, since he can now see the content Luke shared with him.

orientdb> SELECT FROM Post

#18:0 | [#5:5] | Yesterday in Italy
#18:1 | [#5:6] | My Nutella Cake!

While this is an effective solution, it does have one minor flaw for Luke. By adding Steve to the _allow list, Steve can not only read
posts Luke makes, but he can also modify them. While Luke may find Steve a reasonable person, he begins to have second thoughts

about this blanket permission and decides to remove Steve from the _allow field and instead add him to the _allowread field:

orientdb> UPDATE #18:0 REMOVE _allow =

orientdb> UPDATE #18:0 ADD _allowRead = #5:

For the sake of argument, assume that Luke's misgivings about Steve have some foundation. Steve decides that he does not like Luke's

entry Yesterday in Italy and would like to remove it from the database. He logs into OrientDB, runs seLecT to find its RID, and

attempts to DELETE the record:

orientdb> SELECT FROM Post

#18:0 | [#5:5] | Yesterday in Italy
#18:1 | [#5:6] | My Nutella Cake!

orientdb> DELETE FroM #

IError: Cannot delete record #18:0 because the access to the resource is restricted.

As you can see, OrientDB blocks the DpeELETE operation, given that the current user, Steve, does not have permission to do so on this

resource.

Password Management

OrientDB stores user passwords in the ouser records usingthe PBKDF2 HASH algorithm with a 24-bit length Salt per user for a
configurable number of iterations. By default, this number is 65,536 iterations. You can change this account through the

security.userPasswordSaltIterations global configuration. Note that while a higher iteration count can slow down attacks, it also
slows down the authentication process on legitimate OrientDB use.

In order to speed up password hashing, OrientDB uses a password cache, which it implements as an LRU with a maximum of five
hundred entries. You can change this setting through the security.userPasswordsaltCachesize global configuration. Giving this global
configuration the value of o disables the cache.

NOTE: In the event that attackers gain access to the Java virtual machine memory dump, he could access this map, which would

give them access to all passwords. You can protect your database from this attack by disabling the in memory password cache.

https://en.wikipedia.org/wiki/PBKDF2

Server Security

Individual OrientDB servers can manage multiple databases at a time and each database can have its own set of users. When using
OrientDB through the HTTP protocol, the OrientDB server uses one realm per database.

While OrientDB can function as a regular Web Server, it is not recommended that you expose it directly to the
internet or to public networks. Instead, always hide the OrientDB server within a private network.

Server users are stored in the config/orientdb-server-config.xml configuration file, in the <users> element.

<users>
<user name="root" password="{SHA-256}55F95B91628EF3E679628ACB23AE" resources="*" />

<user name="guest" password="guest" resources="connect, server.listDatabases, server.dblist" />
</users>

When the OrientDB server starts for the first time, it creates the user root automatically, by asking you to give the password in the
terminal. In the event that you do not specify a password, OrientDB generates a random password. Beginning with version 2.2,
OrientDB hashes the passwords using SHA-256 algorithm.

For more information on security in Orientdb, see:

e Database security
e Database Encryption

o Secure SSL connections

Configuration

While the default users and passwords are fine while you are setting y our system up, it would be inadvisable to leave them in
production. To help restrict untrusted users from accessing the OrientDB server, add a new user and change the passwords in the

config/orientdb-server-config.xml server configuration file.

To restrict unauthorized users from giving themselves privileges on the OrientDB server, disable write-access to the configuration file.
To help prevent them from viewing passwords, disable read-access as well. Note that even if the passwords are hashed, there are many

techniques available to crack the hash or otherwise guess the real password.

It is strongly recommended that you allow read/write access to the entire config directory only to the
user that starts the OrientDB server.

Managing Users

Beginning with version 2.2, the OrientDB console provides a series of commands for managing users:

® LIST SERVER USERS : Displays all users.
® SET SERVER USER : Creates or modifies a user.

® DROP SERVER USER : Drops a user.

Server Resources

https://en.wikipedia.org/wiki/SHA-2

Each user can declare which resources have access. The wildcard * grants access to any resource. By default, the user root has all

privileges, so it can access all the managed databases.

Resources Description
server.info Retrieves server information and statistics.
server.listDatabases Lists available databases on the server.
database.create Creates a new database in the server
database.drop Drops a database
database.passthrough Allows access to all managed databases.

For example,

<user name="replicator" password="repl" resources="database.passthrough"/>

Securing Connections with SSL

Beginning with version 1.7, you can further improve security on your OrientDB server by securing connections with SSL. For more

information on implementing this, see Using SSL.

Restoring the User admin

In the event that something happens and you drop the class ouser or the user admin , you can use the following procedure to restore

the user to your database.
1. Ensure that the database is in the OrientDB server database directory, $ORIENTDB_HOME/database/ folder .
2. Launch the console or studio and log into the database with the user root .
$ SORIENTDB_HOME/bin/console.sh
OrientDB console v.X.X.X (build ©) www.orientdb.com
Type 'HELP' to display all the commands supported.

Installing extensions for GREMLIN language Vv.X.X.X

orientdb> CONNECT remote:localhost/my database root rootpassword

3. Check that the class ouser exists:

orientdb> SELECT FROM OUser WHERE name = 'admin'

o In the event that this command fails because the class ouser doesn't exist, create it:

orientdb> CREATE CLASS OUser EXTENDS OIdentity

o In the event that this command fails because the class "Oldentity doesn't exist, create it first:

orinetdb> CREATE CLASS OIdentity

Then repeat the above command, creating the class ouser

4. Check that the class oORole exists.

orientdb> SELECT FROM ORole WHERE name = 'admin'

o Inthe event that the class orRole doesn't exist, create it:

orientdb> CREATE CLASS ORole EXTENDS OIdentity

5. In the event that the user or role admin doesn't exist, run the following commands:

o Inthe event that the role admin doesn't exist, create it:

orientdb> INSERT INTO ORole SET name = 'admin', mode = 1,

rules = { "database.bypassrestricted": 15 }

o Intheevent that the user admin doesn't exist, create it:

orientdb> INSERT INTO OUser SET name = 'admin',
password = 'my-admin_password', status = 'ACTIVE',

rules = (SELECT FROM ORole WHERE name = 'admin')

The user admin is now active again on your database.

Database Encryption

Beginning with version 2.2, OrientDB can encrypt records on disk. This prevents unauthorized users from accessing database content or
even from bypassing OrientDB security. OrientDB does not save the encryption key to the database. You must provide it at run-time.
In the event that you lose the encryption key, the database, (or at least the parts of the database you have encrypted), you lose access

to its content.
NOTE: As of 2.2 this feature is in beta. It will be final with 2.2 GA.
Encryption works through the encryption interface. It acts at the cluster (collection) level. OrientDB supports two algorithms for

encryption:

e aes algorithm, which uses AES
e des algorithm, which uses DES

The AES algorithm is preferable to DES, given that it's stronger.

Encryption in OrientDB operates at the database-level. You can have multiple databases, each with different encryption interfaces,
running under the same server, (or, JVM, in the event that you run OrientDB embedded). That said, you can use global configurations to

define the same encryption rules for all databases open in the same JVM. For instance, you can define rules through the Java API:

0GlobalConfiguration.STORAGE_ENCRYPTION_METHOD.setValue("aes");
0GlobalConfiguration.STORAGE_ENCRYPTION_KEY.setValue("T1JJRUSUREJFSVNFQOIPTA==");

You can enable this at startup by passing these settings as JVM arguments:

$ java ... -Dstorage.encryptionMethod=aes \

-Dstorage.encryptionKey="T1JJRUSUREJfSVNFQOIPTA=="

For more information on security in OrientDB, see the following pages:

e Database security
e Server security

o Secure SSL connections

Creating Encrypted Databases

You can create an encrypted database using either the console or through the Java API. To create an encrypted database, use the -
encryption option through the creATE DATABASE command. However, before you do so, you must set the encryption key by defining

the storage.encryptionkey value through the conFic command.

orientdb> CONFIG SET storage.encryptionKey T1JJRUSUREJFSVNFQOOPTA==
orientdb> CREATE DATABASE plocal:/tmp/db/encrypted-db admin my_admin_password

plocal document -encryption=aes

To create an encrypted database through the Java API, define the encryption algorithm and then set the encryption key as database

properties:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/tmp/db/encrypted™);
db.setProperty(0GlobalConfiguration.STORAGE_ENCRYPTION_METHOD.getKey(), "aes");
db.setProperty(0GlobalConfiguration.STORAGE_ENCRYPTION_KEY.getKey(), "T1JJRUSUREJTSVNTQOOPTA==");
db.create();

Whether you use the console or the Java API, these commands encrypt the entire database on disk. OrientDB does not store the

encryption key within the database. You must provide it at run-time.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard

Encrypting Clusters
In addition to the entire database, you can also only encrypt certain clusters on the database. To do so, set the encryption to the default
of nothing when you create the database, then configure the encryption per cluster through the ALTER cLUSTER command.

To encrypt the cluster through the Java API, create the database, then alter the cluster to use encryption:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/tmp/db/encrypted");
db.setProperty(0GlobalConfiguration.STORAGE_ENCRYPTION_KEY.getKey(), "T1JJRUSUREJFSVNTQOOPTA==");
db.create();

db.command(new OCommandSQL("ALTER CLUSTER Salary encryption aes')).execute();

Bear in mind that the key remains the same for the entire database. You cannot use different keys per cluster. If you attempt to apply

encryption or an encryption setting on a cluster that is not empty, it raises an error.

To accomplish the same through the console, set the encryption key through storage.encryptionkey then define the encryption
algorithm for the cluster:

orientdb> CONFIG SET storage.encryptionkey T1JJRUSUREJFSVNFQOIPTA==

orientdb> ALTER CLUSTER Salary encryption aes

Opening Encrypted Databases

You can access an encrypted database through either the console or the Java API. To do so through the console, set the encryption key

with storage.encryptionkey then open the database.

orientdb> CONFIG SET storage.encryptionkey T1JJRUSUREJFSVNFQOOPTA==

orientdb> CONNECT plocal:/tmp/db/encrypted-db admin my_admin_password

When opening through the Java API, given that the encryption settings are stored with the database, you do not need to define the

encryption algorithm when you open the database, just the encryption key.

db.setProperty(0GlobalConfiguration.STORAGE_ENCRYPTION_KEY.getKey(), "T1JJRUSUREJFSVNFQOOPTA==");
db.open("admin", "my_admin_password");

In the event that you pass a null or invalid key when you open the database, OrientDB raises an 0SecurityException exception.

SSL

Beginning with version 1.7, OrientDB provides support for securing its HTTP and BINARY protocols through SSL. For distributed

SSL, see the HazelCast documentation.
For more information on securing OrientDB, see the following pages:

e Database security
e Server security

e Database Encryption

Setting up the Key and Trust Stores

In order to set up and manage certificates, OrientDB uses the Java Keytool. Using certificates signed by a Certificate Authority (CA) is

beyond the scope of this tutorial. For more information on using the Java Keytool, see the Documentation.
To create key and trust stores that reference a self-signed certificate, use the following guide:
1. Using Keytool, create a certificate for the server:

keytool -genkey -alias server -keystore orientdb.ks \

-keyalg RSA -keysize 2048 -validity 3650

2. Export the server certificate to share it with client:

keytool -export -alias server -keystore orientdb.ks \

-file orientdb.cert

3. Create a certificate/keystore for the console/clients:

keytool -genkey -alias console -keystore orientdb-console.ks \

-keyalg RSA -keysize 2048 -validity 3650

4. Create a trust-store for the client, then import the server certificate.

keytool -import -alias server -keystore orientdb-console.ts \

-file orientdb.cert

This establishes that the client trusts the server.

You now have a self-signed certificate to use with OrientDB. Bear in mind that for each remote client JVM you want to connect to the

server, you need to repeat steps three and four. Remember to change the alias, keystore and trust-store filenames accordingly.

Configuring OrientDB for SSL

Server Configuration

The server configuration file, $ORIENTDB_HOME/config/orientdb-server-config.xml , does not use SSL by default. To enable SSL on a
protocol listener, you must change the socket attribute to the <listener> value from default to one of your configured <socket>

definitions.

There are two default definitions available: ss1 and https . For most use cases this is sufficient, however you can define more if y ou
want to secure different listeners with their own certificates or would like to use a custom factory implementations. When using the

ssl implementation, bear in mind that the default port for OrientDB SSL is 2434 . You need to change your port range to 2434-

http://docs.oracle.com/javase/7/docs/technotes/tools/index.html#security

2440

By default, the OrientDB server looks for its keys and trust-stores in $0RIENTDB_HOME/config/cert . You can configure it using the
<socket> parameters. Be sure that all the key and trust-stores created in the previous setup are in the correct directory and that the

passwords used are correct.

NOTE: Paths are relative to $0oRIENTDB_HOME . OrientDB also supports absolute paths.

<sockets>
<socket implementation="com.orientechnologies.orient.server.network.0ServerSSLSocketFactory" name="ssl1">
<parameters>

<parameter value="false" name="network.ssl.clientAuth"/>

<parameter value="config/cert/orientdb.ks" name="network.ssl.keyStore"/>

<parameter value="password" name="network.ssl.keyStorePassword"/>

<!-- NOTE: We are using the same store for keys and trust.
This will change if client authentication is enabled. See Configuring Client section -->

<parameter value="config/cert/orientdb.ks" name="network.ssl.trustStore"/>
<parameter value="password" name="network.ssl.trustStorePassword"/>
</parameters>
</socket>

<listener protocol="binary" ip-address="0.0.0.0" port-range="2424-2430" socket="default"/>
<listener protocol="binary" ip-address="0.0.0.0" port-range="2434-2440" socket="ssl"/>

Console Configuration
For remote connections using the console, you need to make a few changes to to console.sh , enable SSL:

1. Confirm that your KEYSTORE , TRUSTSTORE and respective PASSWORD variables are correctly set.

2. Inthe ssL_opTs definition, set client.ssl.enabled System property to true .

Client Configuration

To configure remote clients, use the standard Java system property patterns:

e client.ssl.enabled : Use this to enable/disable SSL. The property accepts true or false . You only need to define this when
using remote binary client connections.

e javax.net.ssl.keystore : Define the path to the keystore.

® javax.net.ssl.keyStorePassword : Defines the password to the keystore.

e javax.net.ssl.trustStore : Defines the path to the trust-store.

® javax.net.ssl.trustStorePassword : Defines the password to the trust-store.

Use the third and fourth steps from Setting up the Key and Trust Stores section above to create the client certificates and server trust.

The paths to the stores are client specific, but do not need to be the same as the server.

Note, if you would like to use key and/ore trust-stores other than that of the default JVN, you need to define the following variables as

well:

e client.ssl.keyStore : Defines the path to the keystore.
e client.ssl.keyStorePass : Defines the keystore password.
e client.ssl.trustStore : Defines the path to the trust-store.

e client.ssl.trustStorePass : Defines the password to the trust-store.

Consider the following example, configuring SSL from the command-line through Java:

$ java -Dclient.ssl.enabled= \
-Djavax.net.ssl.keyStore= \
-Djavax.net.ssl.keyStorePassword= \
-Djavax.net.ssl.trustStore= \

-Djavax.net.ssl.trustStorePassword=

As an alternative, you can define these variables through the Java API:

System.setProperty("client.ssl.enabled", <"true"|"false">); # This will only be needed for remote binary clients
System.setProperty("javax.net.ssl.keyStore", </path/to/keystore>);
System.setProperty("javax.net.ssl.keyStorePassword", <keystorepass>);
System.setProperty("javax.net.ssl.trustStore", </path/to/truststore>);
System.setProperty("javax.net.ssl.trustStorePassword", <truststorepass>);

To verify or authenticate client certificates, you need to take a few additional steps on the server:

1. Export the client certificate, so that you can share it with the server:

keytool -export -alias \

-keystore -file client_cert

Alternatively, you can do this through the console:

keytool -export -alias console -keystore orientdb-console.ks \

-file orientdb-console.cert

2. If you do not have a trust-store for the server, create one and import the client certificate. This establishes that the server trusts the

client:

keytool -import -alias -keystore orientdb.ts \

-file client_cert

Alternatively, you can manage the same through the console:

keytool -import -alias console -keystore orientdb.ts \

-file orientdb-console.cert

In the server configuration file, ensure that you have client authentication enabled for the <socket> and that the trust-store path and

password are correct:

<sockets>
<socket implementation="com.orientechnologies.orient.server.network.0ServerSSLSocketFactory" name="ssl">
<parameters>
<parameter value="true" name="network.ssl.clientAuth"/>
<parameter value="config/cert/orientdb.ks" name="network.ssl.keyStore"/>
<parameter value="password" name="network.ssl.keyStorePassword"/>

<!-- NOTE: We are using the trust store with the imported client cert. You can import as many client as you would like
==
<parameter value="config/cert/orientdb.ts" name="network.ssl.trustStore"/>
<parameter value="password" name="network.ssl.trustStorePassword"/>
</parameters>
</socket>

</sockets>

Manage a remote Server instance

Introduction

A remote server can be managed via API using the OServerAdmin class. Create it using the URL of the remote server as first parameter

of the constructor.

0ServerAdmin serverAdmin = new OServerAdmin('"remote:localhost:2480");

You can also use the URL of the remote database:

0ServerAdmin serverAdmin = new OServerAdmin('"remote:localhost:2480/GratefulDeadConcerts");

Connect to a remote server

0ServerAdmin serverAdmin = new OServerAdmin('"remote:localhost:2480").connect("admin", "admin");

User and password are not the database accounts but the server users configured in orientdb-server-config.xml file.

When finished call the oserveradmin.close() method to release the network connection.

Create a database

To create a new database in a remote server you can use the console's create database command or via API using the

0ServerAdmin.createDatabase() method.

// ANY VERSION: CREATE A SERVER ADMIN CLIENT AGAINST A REMOTE SERVER
0ServerAdmin serverAdmin = new OServerAdmin("remote:localhost/GratefulDeadConcerts").connect("admin", "admin");
serverAdmin.createDatabase("graph", "local);

// VERSION >= 1.4: CREATE A SERVER ADMIN CLIENT AGAINST A REMOTE SERVER
OServerAdmin serverAdmin = new OServerAdmin('"remote:localhost").connect("admin", "admin");
serverAdmin.createDatabase("GratefulDeadConcerts", "graph", "local);

The iStorageM ode can be memory or plocal.

Drop a database

To drop a database from a server you can use the console's drop database command or via API using the oserverAdmin.dropbatabase()

method.

// CREATE A SERVER ADMIN CLIENT AGAINST A REMOTE SERVER
OServerAdmin serverAdmin = new OServerAdmin('"remote:localhost/GratefulDeadConcerts").connect("admin", "admin");
serverAdmin.dropDatabase("GratefulDeadConcerts");

Check if a database exists

To check if a database exists in a server via API use the o0ServerAdmin.existsDatabase() method.

https://github.com/orientechnologies/orientdb/wiki/plocal-storage-engine

Server M anagement

// CREATE A SERVER ADMIN CLIENT AGAINST A REMOTE SERVER
OServerAdmin serverAdmin = new OServerAdmin('"remote:localhost/GratefulDeadConcerts").connect("admin", "admin");
serverAdmin.existsDatabase("local");

36

API

OrientDB supports 3 kinds of drivers:

e Native binary remote, that talks directly against the TCP/IP socket using the binary protocol
e HTTPREST/JSON, that talks directly against the TCP/IP socket using the HTTP protocol
e Java wrapped, as a layer that links in some way the native Java driver. This is pretty easy for languages that run into the JVM like

Scala, Groovy and JRuby
Look also at the available integration with Plugins and Frameworks.

This is the list of the known drivers to use OrientDB through different languages:

Language Name Type Description
Java (native) API Native Native implementation.
IDBC driver Native For legacy and reporting/Business Intelligence ap plications

and JCA integration for J2EE containers

Orient]S Native Binary protocol, new branch that has been updated with
the latest functionality. Tested on 1.7.0, 2.0.x and 2.1-rc*.
n d c S node-orientdb-http HTTP RESTful HTTP protocol. Tested on 1.6.1

To execute Gremlin queries against a remote OrientDB
server

Gremlin-Node

PhpOrient Binary Official Driver

This was the first PHP driver for OrientDB, but doesn't
OrientDB-PHP Binary support all OrientDB features and it's slow to support
new versions of driver protocol.

Uses
Doctrine ODM OrientDB- High level framework to use OrientDB from PHP
PHP
.NET driver for . r q
OrientDB Binary Official Driver
. . Community driver for Python, compatible with OrientDB
PyOrient Binary 1.7 and further.
"i pqthon Uses Rexter Graph HTTP Server to access to OrientDB
Bulbflow project HTTP database
Configure Rexster for OrientDB
Compass HTTP
OrientDB-C i Binary protocol compatibles with C++ and other
THE languages that supports C calls
PROGRAMMING
LANGUAGE
LANGUAGE LibOrient Binary As another Binary protocol driver
Javascript Driver HTTP This driver is the simpler way to use OrientDB from JS
This driver mimics the [Blueprints]
Javascript Graph HTTP (https://github.com/orientechnologies/orientdb/wiki/Graph-

Driver Database-Tinkerpop) interface. Use this driver if you're
working against graphs.

Use OrientDB to persistently store dynamic Ruby-

Active-Orient HTTP Objects and use database queries to manage even very large

https://github.com/nuvolabase/orientdb/wiki/Network-Binary-Protocol
https://github.com/nuvolabase/orientdb/wiki/OrientDB-REST
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://github.com/kirpi4ik/orientdb-jca
http://nodejs.org
https://github.com/orientechnologies/orientjs
https://github.com/Havelaer/node-orientdb-http
https://github.com/entrendipity/gremlin-node
http://www.php.net/
https://github.com/orientechnologies/PhpOrient
https://github.com/AntonTerekhov/OrientDB-PHP
https://github.com/doctrine/orientdb-odm
https://github.com/AntonTerekhov/OrientDB-PHP
http://www.microsoft.com
https://github.com/orientechnologies/OrientDB-NET.binary
http://www.python.org
https://github.com/orientechnologies/pyorient
http://bulbflow.com
https://github.com/tinkerpop/rexster/wiki
https://github.com/tinkerpop/rexster/wiki/Rexster-Configuration
https://github.com/emehrkay/Compass
https://en.wikipedia.org/wiki/C_%28programming_language%29
http://github.com/tglman/orientdb-c
https://github.com/dam2k/liborient
http://en.wikipedia.org/wiki/JavaScript
https://github.com/orientechnologies/orientdb/wiki/Javascript-Driver
https://github.com/orientechnologies/orientdb-js
https://github.com/topofocus/active-orient

datasets.

OrientDB-JRuby Native Through Java driver
OrientDB Client Binary
OrientDB4R HTTP

This project contains Groovy AST Transformations
trying to mimic grails-entity style. All useful information

OrientDB Groovy ijr\;a or you can find in Spock tests dir. Document API and Graph
PP API with gremlin are supported. Built with OrientDB
2.1.0 and Apache Groovy 2.4.4.
Any Java driver Native Scala runs on top of JVM and it's fully compatible with

Java applications like OrientDB
! Scala Scala Page Native Offers suggestions and examples to use it without pains

Scala utilities and tests Native To help Scala developers using OrientDB
R driver HTTP R Bridge to execute queries against OrientDB Server

This driver allows Elixir application to interact with
.. M arcoPolo Elixir . OrlentDB. Elixir language }evgrages the Erlang VM, known
L Binary for running low-latency, distributed and fault-tolerant
e I X | r driver . . .
systems, while also being successfully used in web
development and the embedded software domain.

Clojure binding Native Through Java driver

Clojure binding of
Blueprints API

. . . . OrientDB-Android is a port/fork of OrientDB for the
\éTleﬂTDB Clilent))s: Al Porting Android platform by David Wu

OrientDB Perl driver Binary PlOrient is a Perl binary interface for OrientDB

Supported standards

This is the list of the library to use OrientDB by using such standard:

TinkerPop Blueprints

TinkerPop Blueprints, the standard for Graph Databases. OrientDB is 100% comp liant with the latest version.

All the trademarks are property of their legal owners.

http://www.ruby-lang.org
https://github.com/aemadrid/orientdb-jruby
https://github.com/ryanfields/orient_db_client
https://github.com/veny/orientdb4r
http://www.groovy-lang.org/
https://github.com/eugene-kamenev/orientdb-groovy
https://en.wikipedia.org/wiki/Scala_%28programming_language%29
http://www.orientechnologies.com/docs/last/orientdb.wiki/Scala-Language.html
https://github.com/eptx/OrientDBScala
https://www.r-project.org/
https://github.com/retrography/OrientR
http://elixir-lang.org/
https://github.com/MyMedsAndMe/marco_polo
http://clojure.org
https://github.com/eduardoejp/clj-orient
https://github.com/eduardoejp/clj-blueprints
http://wuman.github.com/orientdb-android
http://wuman.github.com/orientdb-android
http://blog.wu-man.com/
https://github.com/a8wright/plorient
https://github.com/a8wright/plorient
http://www.tinkerpop.com
https://github.com/tinkerpop/blueprints/wiki

L3
Functions
A Function is an executable unit of code that can take parameters and return a result. Using Functions you can perform Functional
programming where logic and data are all together in a central place. Functions are similar to the Stored Procedures of RDBMS.
NOTE: This guide refers to the last available release of OrientDB. For past revisions look at Compatibility.
OrientDB Functions features:

e are persistent

e can be written in SQL or Javascript (Ruby, Scala, Java and other languages are coming)
e can be executed via SQL, Java, REST and Studio

e can call each other

e supports recursion

e have automatic mapping of parameters by position and name

e plugins can inject new objects to being used by functions

Create your first function

To start using Functions the simplest way is using the Studio. Open the database and go to the "Functions" panel. Then write as name

"sum", add 2 parameters named "a" and "b" and now write the following code in the text area:

return (a) + (b);

Click on the "Save" button. Your function has been saved and will appear on the left between the available functions.

Now let's go to test it. On the bottom you will find 2 empty boxes. This is where you can insert the parameters when invoking the

function. Write 3 and 5 as parameters and click "Execute" to see the result. "8.0" will appear in the output box below.

Janagement ? IIIIHHHI @ Dalete

Mame sym Language |avascript % # Idempotent

a 7] b

return parselnt(a) + parselnt{b);

: "wvalue=d"

Why using parselnt() and not just a + b ? because HTTP protocol passes parameters as strings.

http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Stored_procedure
https://github.com/orientechnologies/orientdb-studio/wiki
https://github.com/orientechnologies/orientdb-studio/wiki

Where are my functions saved?

Functions are saved in the database using the orFunction class and the following properties:

e name , as the name of the function

e code , as the code to execute

® parameters , as an optional EMBEDDEDLIST of String containing the parameter names if any

e idempotent , tells if the function is idempotent , namely if it changes the database. Read-only functions are idempotent . This is

needed to avoid calling non- idempotent functions usingthe HTTP GET method

Concurrent editing

Since OrientDB uses 1 record per function, the M VCC mechanism is used to protect against concurrent record updates.

Usage

Usage via Java API

Using OrientDB's functions from Java is straightforward. First get the reference to the Function M anager, get the right function and

execute it passing the parameters (if any). In this example parameters are passed by position:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"local:/tmp/db");
db.open("admin", "admin");

OFunction sum = db.getMetadata().getFunctionLibrary().getFunction("sum");
Number result = sum.execute(3, 5);

If you're using the Blueprints Graph API get the reference to the Function in this way:

OFunction sum = graph.getRawGraph().getMetadata().getFunctionLibrary().getFunction("sum");

You can execute functions passing parameters by name:

Map<String, Object> params = new HashMap<String,Object>();
params.put("a", 3);

params.put("b", 5);

Number result = sum.execute(params);

Usage via HTTP REST

Each function is exposed as a REST service allowing the receiving of parameters. Parameters can be passed by position in the URL, or

starting from 2.1 can be passed in the request payload as JSON. In this case the mapping is not positional, but by name.

Example to execute the sum function created before passing 3 and 5 as parameters in the URL, so positional:

http://localhost:2480/function/demo/sum/3/5

Since 2.1, parameters can be passed also in the request's payload in a JSON, so by name:
£ a3, "b: 5}

Both calls will return an HTTP 202 OK with an envelope containing the result of the calculation:

{"result":[{"@type":"d", "@version":0, "value":2}]}

You can call with HTTP GET method only functions declared as "idempotent". Use HTTP POST to call any functions.

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

If you're executing the function using HTTP POST method, encode the content and set the HTTP request header to: "Content-Type:

application/json" .

For more information, see HT TP REST protocol. To learn how to write server-side function for web applications, see Server-Side

functions.

Function return values in HTTP calls

When calling a function as a REST service, OrientDB encapsulates the result in a JSON and sends it to the client via HTTP. The result

can be slightly different depending on the return value of the function. Here are some details about different cases:

e a function that returns a number:

return 31;

result:

{"result":[{"@type":"d", "@version":@, "value":31}]}

e a function that returns a JS object

return {"a":1, "b":"foo"}

result:

{"result":[{"@type":"d", "@version":@, "value":{"a":1,"b": "fo0"}}]}

e a function that returns an array

return [1, 2, 3]

result:

{"result":[{"@type":"d", "@version":0, "value":[1,2,3]}]}

e a function that returns a query result

return db.query("select from OUser")

result:

"result": [
{

"@type": "d",
"@rid": "#6:0",
"@version": 1,
"@class": "OUser",
"name": "admin",
"password": "...",
"status": "ACTIVE",
"roles": [

"#4:0"
1,
"@fieldTypes": "roles=n"

H
{
"@type": "d",
"@rid": "#6:1",
"@version": 1,
"@class": "Ouser",
"name": "reader",
"password": "...",
"status": "ACTIVE",
"roles": [
"#4:1"
1,
"@fieldTypes": "roles=n"
3

Access to the databases from Functions

OrientDB always binds a special variable orient to use OrientDB services from inside the functions. The most important methods

are:

e orient.getGraph() , returns the current transactional graph database instance
® orient.getGraphNoTx() , returns the current non-transactional graph database instance

® orient.getDatabase() , returns the current document database instance

Execute a query

Query is an idempotent command. To execute a query use the query() method. Example:

return orient.getDatabase().query('"select name from ouser");

Execute a query with external parameters

Create a new function with name getyuserRoles with the parameter user . Then write this code:

return orient.getDatabase().query("select roles from ouser where name = ?", name);
The name parameter is bound as variable in Javascript. You can use this variable to build y our query.

Execute a command

Commands can be written in any language supported by JVM. By default OrientDB supports "SQL" and "Javascript".

SQL Command

var gdb = orient.getGraph();
var results = gdb.command("sql", "select from Employee where company = ?", ["Orient Technologies"]);

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraphNoTx.html
http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/db/document/ODatabaseDocumentTx.html

The result of command is an array of objects, where objects can be:

e Orient Vertex instances if vertices are returned
e OrientEdge instances if edges are returned

e Oldentifiable, or any subclasses of it, instances if records are returned

Write your own repository classes

Functions are the perfect place to write the logic for your application to access to the database. You could adopt a DDD approach
allowing the function to work as a Repository ora DAO.

This mechanism provides a thin (or thick if you prefer) layer of encapsulation which may protect you from database changes.

Furthermore each function is published and reachable via HTTP REST protocol allowing the automatic creation of a RESTful service.

Example

Below an example of functions to build a repository for ouser records.

function user_getAll(){

return orient.getDatabase().query("select from ouser");

function user_getByName(name){

return orient.getDatabase().query("select from ouser where name = ?", name);

function user_getAdmin(){

return user_getByName("admin");

function user_create(name, role){

var db = orient.getDatabase();
var role = db.query("select from ORole where name = ?", roleName);
if(role ==){
response.send(, "Role name not found", "text/plain", "Error: role name not found");
} else {

db.begin();
try{
var result = db.save({ "@class" : "OUser", name : "Luca", password : "Luc4", status: "ACTIVE", roles : role});
db.commit();
return result;
Jcatch (err){
db.rollback();
response. send(, "Error on creating new user", "text/plain", err.toString());

http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
http://en.wikipedia.org/wiki/Data_access_object

Name |serCreate Language javascript & # Idempotentm

name " roleName |8l

var db = orient.getDatabase();
! var role = db.gquery(“select from ORole where name 2", roleMName);
if(role == null

response.send(404, "Role name not found", “text/plain”, "Error: role name not found");
} else {

db.begin();
ey
| var result = db.save({ "f@class" : "OUser", name : "Luca", password : "Lucd4", status: "ACTIVE", roles :
role});
db. commit(};
11 return result;
12 }eatech { err){
i dib.rollback();
response.send({500, "Error on creating new user”, "text/plain", err.toString{)):

userCreata| tast2 admin] m

"name": "Luca",
"password": "{5HA-256}BCIZFS832CF157FDS2361249CT7721B96TF780422668180663F2D51A6TSDTASGCL",
9 "status®: "ARCTIVE",

Recursive calls
Create the new function with name "factorial" with the parameter "n". Then write this code:

if (num === 0)
return 1,
else
return num * factorial(num - 1);

Name factorial Language javascript % & Idampmsnt

num W
if (num === 0}
2 return 1;

alsa
| return num * factorial{ num = 1 };

factorial(10)

E {
"Btype”:
"Bwersion":
"value®™: 3628800
"BfieldTypes": "valuesd"
}

This function calls itself to find the factorial number for <num> as parameter. The result is 3628800.0 .

Server-Side functions

Server-Side functions can be used as Servlet replacement. To know how to call a Server-Side function, see Usage via HTTP REST. When

server-side functions are called via HTTP REST protocol, OrientDB embeds a few additional variables:

e request, as the HTTP request and implemented by oHttpRequestwrapper class
e response, as the HTTP request response implemented by oHttpResponsewrapper class

e util, as an utility class with helper functions to use inside the functions. It's implemented by oFunctionutilwrapper class

Request object

Refer to this object as "request". Example:

var params = request.getParameters();

Method signature Description Return type
getContent () Returns the request's content String
getUser () Gets the request's user name String
getContentType() Returns the request's content type String
getHttpVersion() Return the request's HTTP version String
getHttpMethod() Return the request's HTTP method called String
getIfMatch() Return the request's IF-M ATCH header String
isMultipart() Returns if the requests has multipart boolean
getArguments() Returns the request's arguments passed in REST form. Example: /2012/10/26 String(]
getArgument (<position>) Returns the request's argument by position, or null if not found String
getParameters() Returns the request's parameters String
getParameter (<name>) Returns the request's parameter by name or null if not found String
hasParameters(<name>*) Returns the number of parameters found between those passed Integer
getSessionId() Returns the session-id String
getURL() Returns the request's URL String

Response object

Refer to this object as "response". Example:

var db = orient.getDatabase();
var roles = db.query('"select from ORole where name = ?", roleName);
|| roles.length == 0){
response. send(, "Role name not found", "text/plain", "Error: role name not found");
} else {

if(roles ==

db.begin();
try{
var result = db.save({ "@class" : "OUser", name : "Luca", password : "Luc4", "roles" : roles});
db.commit();
return result;
Ycatch (err){
db.rollback();
response. send(, "Error on creating new user", "text/plain", err.toString());

Method signature

getHeader ()

setHeader (String header)
getContentType()

setContentType(String contentType)
getCharacterSet ()
setCharacterSet(String characterSet)
getHttpVersion()

writeStatus(int httpCode, String reason)
writeStatus(int httpCode, String reason)

writeHeaders(String contentType)

writeHeaders(String contentType, boolean
keepAlive)

writeLine(String content)
writeContent(String content)

writeRecords(List<OIdentifiable> records)

writeRecords(List<OIdentifiable> records, String
fetchPlan)

writeRecord(ORecord record)

writeRecord(ORecord record, String fetchPlan)

send(int code, String reason, String contentType,
Object content)

send(int code, Strina reason, String contentType,
Object content, String headers)

send(int code, Strina reason, Strina contentType,
Object content, String headers, boolean
keepAlive)

sendStream(int code, String reason, Strina
contentType, InputStream content, long size)

flush()

Util object

Refer to this object as util . Example:

if(util.exists(year)){
print("\nYes, the year was passed!");

Description

Returns the response's additional headers

Sets the response's additional headers to send back. To
specify multiple headers use the line breaks

Returns the response's content type. If null will be
automatically detected

Sets the response's content type. If null will be
automatically detected

Returns the response's character set used

Sets the response's character set

Sets the response's status as HTTP code and reason

Sets the response's status as HTTP code and reason

Sets the response's headers using the keep-alive

Sets the response's headers specifying when using the
keep-alive or not

Writes a line in the response. A line feed will be appended
at the end of the content

Writes content directly to the response

Writes records as response. The records are serialized in
JSON format

Writes records as response specifying a fetch-plan to
serialize nested records. The records are serialized in
JSON format

Writes a record as response. The record is serialized in
JSON format

Writes a record as response. The record is serialized in
JSON format

Sends the complete HTTP response in one call

Sends the complete HTTP response in one call specifying
additional headers. Keep-alive is set

Sends the complete HTTP response in one call specifying
additional headers

Sends the complete HTTP response in one call specifying
a stream as content

Flushes the content to the TCP/IP socket

Return
type

String

Request
object

String

Request
object

String

Request
object

String

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Request
object

Return

Method signature Description
type

Returns trues if any of the passed variables are defined. In JS, for example, a variable is

exists(<variable>) ’ o X
defined if it's not null and not equals to "undefined"

Boolean

Native functions

OrientDB's SQL dialect supports many functions written in native language. To obtain better performance you can write you own
native functions in Java language and register them to the engine.

Compatibility

1.5.0 and before

OrientDB binds the following variables:

e db , that is the current document database instance

e gdb , that is the current graph database instance

Available Plugins and Tools

Plugins

If you're looking for drivers or JDBC connector go to Programming-Language-Bindings.

play

Play Framework 2.1 PLAY-WITH-ORIENTDB plugin

Play Framework 2.1 ORIGAMI plugin

Play Framework 1.x ORIENTDB plugin

Frames-OrientDB Plugin Play Framework 2.x Frames-OrientDB plugin is a Java O/G mapper for the OrientDB with the Play!

framework 2. It is used with the TinkerPop Frames for O/G mapping.

LIQUISBASE

With prop er mark-up/logic separation, a POJO data model, and a refreshing lack of XM L, Apache Wicket makes developing web-apps
simple and enjoy able again. Swap the boilerplate, complex debugging and brittle code for powerful, reusable components written with
plain Java and HTM L.

Guice (pronounced ‘juice’) is a lightweight dependency injection framework for Java 6 and above, brought to you by Google. OrientDB

Guice plugin allows to integrate OrientDB inside Guice. Features:

e Integration through guice-persist (UnitOfWork, PersistService, @Transactional, dynamic finders supported)
e Support for document, object and graph databases
e Database types support according to classpath (object and graph db support activated by adding jars to classpath)

377

http://www.playframework.org
https://github.com/ratcashdev/play-with-orientdb
https://github.com/sgougi/play21-origami-plugin
http://www.playframework.org/modules/orientdb
https://github.com/sgougi/play21-frames-orientdb-plugin
https://github.com/faizod/orientdb-liquibase-plugin
https://github.com/PhantomYdn/wicket-orientdb
https://github.com/xvik/guice-persist-orient

e Auto mapping entities in package to db scheme or using classpath scanning to map annotated entities

Auto db creation

Hooks for schema migration and data initialization extensions

All three database types may be used in single unit of work (but each type will use its own transaction)

VERT.X

Vert.x is a lightweight, high performance application platform for the JVM that's designed for modern mobile, web, and enterprise

applications. Vert.x Persistor M odule for Tinkerpop-compatible Graph Databases like OrientDB.

(¢ Gephi

"lﬂo makes graphs h:

Gephi Visual tool usage with OrientDB and the Blueprints importer

spring-orientdb is an attempt to provide a PlatformTransactionM anager for OrientDB usable with the Spring Framework, in particular

with @Transactional annotation. Apache 2 license

OrientDB session store for Connect

Puppet module

Chef

http://vertx.io/
https://github.com/aschrijver/mod-tinkerpop-persistor
https://gephi.org
https://github.com/datablend/gephi-blueprints-plugin/wiki
http://www.springsource.org
https://github.com/megadix/orientdb-spring
https://github.com/ffissore/connect-orientdb
http://forge.puppetlabs.com
https://github.com/example42/puppet-orientdb
https://supermarket.chef.io/cookbooks/orientdb

Available Plugins and Tools

™

Apache Tomcat realm plugin by Jonathan Tellier

Shibboleth

Shibboleth connector by Jonathan Tellier. The Shibboleth System is a standards based, open source software package for web single

sign-on across or within organizational boundaries. It allows sites to make informed authorization decisions for individual access of

protected online resources in a privacy-preserving manner

9

Griffon plugin, Apache 2 license

JCA connectors

e OPS4J Orient provides a JCA resource adapter for integrating OrientDB with Java EE 6 servers
e OrientDB JCA connector to access to OrientDB database via JCA API + XA Transactions

Pacer plugin by Paul Dlug, Pacer is a JRuby graph traversal framework built on the Tinkerpop stack. This plugin enables full OrientDB
graph support in Pacer.

«i AxonFramework
CORS FRAMEWORK FOR JAVA

EventStore for Axonframework, which uses fully transactional (full ACID support) NoSQL database OrientDB. Axon Framework
helps build scalable, extensible and maintainable applications by supporting developers apply the Command Query Responsibility
Segregation (CQRS) architectural pattern

@ Slick

Accessing OrientDB using Slick

http://tomcat.apache.org
http://wiki.apache.org/tomcat/OrientDBRealm
mailto:jonathan.tellier@gmail.com
http://shibboleth.net
https://wiki.shibboleth.net/confluence/display/SHIB2/OrientDB+Connector
http://shibboleth.net
http://media.xircles.codehaus.org
https://github.com/griffon/griffon-orientdb-plugin
http://team.ops4j.org/wiki/display/ORIENT/JCA+Resource+Adapter
https://github.com/kirpi4ik/orientdb-jca
https://github.com/pdlug/pacer-orient
https://github.com/pangloss/pacer
http://jruby.org/
http://www.axonframework.org
http://www.axonframework.org/
http://www.axonframework.org/
https://github.com/mproch/slick-orientdb#readme

Apache Jackrabbit

Jackrabbit module to use OrientDB as backend.

O o PHP

Plugin for FuelPHP framework.

orientgb

orientgb is a builder for OSQL query language written in Java. orientgb has been thought to help developers in writing comp lex queries
dynamically and aims to be simple but powerful.

https://github.com/eiswind/jackrabbit-orient
https://github.com/sakuraiyuta/fuel-orientdb
http://fuelphp.com
https://github.com/raymanrt/orientqb

Java API

Java API

OrientDB is written 100% in Java. You can use the native Java APIs without any driver or adapter. Here is the Javadocs.

Architecture of components

B User application
[user level API
[E—— Internal components

User Application

OrientDB provides 3 different Java APIs to work with OrientDB. Each one has pros and cons.

Which API to choose between Graph and Document? Look also at Grap h-or-Document-APT?.

Graph API

Use OrientDB as a Graph Database working with Vertices and Edges. Graph API is 100% compliant with TinkerPop standard.

API: Graph API

Document API

Handles records as documents. Documents are comprised of fields. Fields can be any of the types supported. Does not need a Java

domain POJO, as required for the Object Database. Can be used as schema-less or schema-base modes.

API: Document API

Object API

It's the JPA like interface where POJO are automatically bound to the database as documents. Can be used in schema-less or schema-
based modes. This API hasn't been improved since OrientDB v1.5. Please consider using Document or Graph API by writing an
additional layer of mapping with your POJO. While you can use both Graph and Document APIs at the same time, the Object API is
compatible with Document API, but it doesn't work very well with the Graph API. The main reason is that you should create POJOs
that mimic the Vertex and Edge classes with sub optimal p erformance in comparison with direct Graph API. For this reason we don't
suggest to work with Object API with a Graph domain. You could evaluate using Object M apping on top of OrientDB Blueprints

Graph API, such as TinkerPop Frames, Ferma and Totorom.

API: Object Database

381

http://www.orientechnologies.com/javadoc/latest/
http://www.tinkerpop.com
https://github.com/tinkerpop/frames/wiki
https://github.com/Syncleus/Ferma
https://github.com/BrynCooke/totorom

What to use? Feature Matrix

API

Use this
if

Easy to
switch
from

Java
class

Query

Schema
Less

Schema
full

Speed *

Graph

Graph API

You work with graphs and want

your code to be portable across
TinkerPop Blueprints
implementations

Other GraphDBs like Neo4J or
Titan. If you used TinkerPop
standard OrientDB is a drop-in
rep lacement

OrientGraph

Yes

Yes

Yes

90%

Document
Document API

Your domain fits better the
Document Database use
case with schema-less
structures

Other DocumentDB like
MongoDB and CouchDB

ODatabaseDocumentTx

Yes

Yes

Yes

100%

Object
Object Database

If you need a full Object Oriented
abstraction that binds all the database
entities to POJO (Plain Old Java
Object)

JPA applications

OObjectDatabaseTx

Yes

Yes

Yes

50%

* Speed comparison for generic CRUD operations such as query, insertion, update and deletion. Larger is better. 100% is fastest. In

general the price of a high level of abstraction is a speed penalty, but remember that Orient is orders of magnitude faster than the classic

RDBMS. So using the Object Database gives you a high level of abstraction with much less code to develop and maintain.

Which library do I use?

OrientDB comes with some jar files contained in the lib directory

JAR name

orientdb-
core-*.jar

orientdb-
client-
*.jar

orientdb-
enterprise-
*.jar

orientdb-
server -
*.jar

orientdb-
tools-*.jar

orientdb-
object-
*.jar

orientdb-
graphdb-
*.jar

orientdb-
distributed-
*.jar

Description

Core library

Remote client

Deprecated since v2.2. Base

package with the protocol and

network classes shared by
client and server

Server comp onent

Contain the console and
console commands

Contain the Object Database
interface

Contain the GraphDB
interface

Contain the distributed plugin

When required

Always

When your application talks with a
remote server

When your application talks with a
remote server

It's used by the server component.
Include it only if you're embedding
a server

Never, unless you want to execute
console command directly by your
application. Used by the console
application

Include it if you're using this
interface

Include it if you're using this
interface

Include it if you're working with a
server cluster

Depends on 3rd party jars
snappy-*.jar as optional,

performance pack: orientdb-

nativeos-*.iar , jna-*.jar and
jna-platform-*.jar

javassist.jar , persistence-
api-1.0.jar

blueprints-core-*.jar

hazelcast-*.jar

https://github.com/orientechnologies/orientdb/blob/master/graphdb/src/main/java/com/tinkerpop/blueprints/impls/orient/OrientGraph.java
http://www.orientechnologies.com/javadoc/latest/index.html?com/orientechnologies/orient/core/db/document/ODatabaseDocumentTx.html
http://www.orientechnologies.com/javadoc/latest/index.html?com/orientechnologies/orient/object/db/OObjectDatabaseTx.html

Java Tutorial

In the event that you are used only to Relation database systems, you may find OrientDB a very unfamiliar system to work with.
Given that it also supports Document, Graph and Object-Oriented modes, it requires different Java API's. But, there are some

similarities between them too.

Similar to JDBC, a Blueprints API exists, made by Tinkerpop, which supports the basic operations on a graph database. There is an
OrientDB driver, (or, to be more accurate, an adapter), which makes it possible to operate without having to deal with OrientDB

classes. This means that the resulting code is more portable, given that Blueprints offers adapters to other graphing database sy stems.

If you need to tweak the database configuraiton, you need to use OrientDB APT's directly. It is recommend that in these situations you

use a mix: Bluepringts when you can, the OrientDB API's where necessary.

OrientDB Java APIs

There are three different API's that OrientDB ships with. Choose one based on your mode.

e Graph API (suggested)
o Document API
e Object API

OrientDB comes with 3 different APIs. Pick your based on your model (for more information look at Java APT):

For more information on the API's in general, see Java API

Graph API

Connecting to a Graph Database

The first object you need is a orientGraph :

import com.tinkerpop.blueprints.impls.orient.OrientGraph;

OrientGraph graph = new OrientGraph("local:test", "username", "password");

Inserting Vertices and Edges

While OrientDB can work with the generic v class for verticies and E class for edges, you gain much more power by defining custom

types for both vertices and edges.

odb.createVertexType("Person");
odb.createVertexType("Address");

The Blueprint adapter for OrientDB is thread-safe and automatically creates a transaction where necessary. That is, it creates a
transaction at the first operation, in the event that a transaction has not yet explicitly been started. You have to specify where

transactions end, for commits or rollbacks.

To add vertices into the database with the Blueprints API:

Vertex vPerson = graph.addVertex('"class:Person");
VvPerson.setProperty("firstName", "John");
vPerson.setProperty("lastName", "Smith");

Vertex vAddress = graph.addVertex('"class:Address");
VAddress.setProperty('"street", "Van Ness Ave.");
VvAddress.setProperty('city", "San Francisco");
VAddress.setProperty("state", "California");

https://github.com/tinkerpop/blueprints

Bear in mind, the specific syntax with Blueprint is class:<class name> . You must use this syntax in creating an object to specify its
class. This is not mandatory. It is also possible to specify a null value, (which means a vertex is created with the class v, as its the

superclass for all vertices in OrientDB).

Vertex vPerson = graph.addvertex(null);
In consequence of this is that you cannot distinguish null vertices from other vertices in a query.
Use a similar API in adding an edge:

OrientEdge elLives = graph.addEdge(null, vPerson, vAddress, "lives");

In OrientDB, the Blueprints label concept is bound to an edge's class. You can create an edge of the class lives by passingit as a label

or as a class name.

OrientEdge elLives = graph.addEdge('class:lives", vPerson, vAddress, null);

You have now created:

[John Smith:Person] --[lives]--> [Van Ness Ave:Address]

Bear in mind that, in this example, you have used a partially schema-full mode, as you defined the vertex types, but not their properties.

By default, OrientDB dynamically accepts everything working in a schema-less mode.

SQL queries

The Tinkerpop interfaces allow you to execute fluent queries or Germlin queries, but you can still use the power of OrientDB SQL
through the .command() method.

for (Vertex v : (Iterable<Vertex>) graph.command(
new OCommandSQL ("SELECT EXPAND(OUT('bough')) FROM Customer WHERE name='Jay'")).execute()) {
System.out.println("- Bought: " + v);

In addition to queries, you can also execute any SQL command, such as CREATE VERTEX, Update, or DELETE VERTEX.

Along with queries, you can execute any SQL command like CREATE VERTEX, UPDATE, or DELETE VERTEX. For example,

int modified = graph.command(
new OCommandSQL ("UPDATE Customer SET local = true WHERE 'Rome' IN out('lives').name")).execute());

This sets a new property called local to true on all instances in the customer class that live in Rome.

Graph API

OrientDB adheres to the TinkerPop Blueprints standard and uses it as default Graph Java API.

Requirements

To use the Graph API include the following jars in your classpath:

orientdb-core-*.jar
blueprints-core-*.jar
orientdb-graphdb-*.jar

Also include the following 3rd party jars:

jna-*.jar
jna-platform-*.jar
concurrentlinkedhashmap-1ru-*.jar

If you're connected to a remote server (not local/plocal/memory modes) include also:

orientdb-client-*.jar
orientdb-enterprise-*.jar

To also use the TinkerPop Pipes tool include also:

pipes-*.jar

To also use the TinkerPop Gremlin language include also:

gremlin-java-*.jar

gremlin-groovy-*.jar

groovy-*.jar

NOTE: Starting from v2.0, Lightweight Edges are disabled by default when new database are created.

Introduction

Tinkerpop is a complete stack of projects to handle Graphs:

Blueprints provides a collection of interfaces and implementations to common, complex data structures. In short, Blueprints
provides a one stop shop for implemented interfaces to help developers create software without being tied to particular underly ing
data management sy stems.

Pipes is a graph-based data flow framework for Java 1.6+. A process graph is composed of a set of process vertices connected to
one another by a set of communication edges. Pipes supports the splitting, merging, and transformation of data from input to
output.

Gremlin is a Turing-comp lete, graph-based programming language designed for key/value-p air multi-relational graphs. Gremlin
makes use of an XPath-like syntax to support complex graph traversals. This language has application in the areas of graph query,
analysis, and manipulation.

Rexster is a RESTful graph shell that exposes any Blueprints graph as a standalone server. Extensions support standard traversal
goals such as search, score, rank, and, in concert, recommendation. Rexster makes extensive use of Blueprints, Pipes, and Gremlin.
In this way its possible to run Rexster over various graph systems. To configure Rexster to work with OrientDB follow this guide:
configuration.

Sail Ouplementation to use OrientDB as a RDF Triple Store.

https://github.com/tinkerpop/blueprints
http://wiki.github.com/tinkerpop/pipes
http://wiki.github.com/tinkerpop/gremlin
http://www.tinkerpop.com
http://wiki.github.com/tinkerpop/blueprints
http://pipes.tinkerpop.com
http://wiki.github.com/tinkerpop/gremlin
http://rexster.tinkerpop.com
https://github.com/tinkerpop/blueprints/wiki/Sail-Ouplementation

Get started with Blueprints

OrientDB supports different kind of storages and depends by the Database URL used:

e Persistent embedded GraphDB. OrientDB is linked to the application as JAR (No network transfer). Use plocal as prefix.
Example "plocal:/tmp/graph/test"

e In-Memory embedded GraphDB. Keeps all the data only in memory. Use memory as prefix. Example "memory :test"

e Persistent remote GraphDB. Uses a binary protocol to send and receive data from a remote OrientDB server. Use remote as
prefix. Example "remote:localhost/test". It requires a OrientDB Server instance is up and running at the specified address (localhost

in this case). Remote database can be persistent or in-memory as well.

Working with the GraphDB

Before working with a graph you need an instance of OrientGraph class. The constructor gets a URL that is the location of the database.
If the database already exists, it will be opened, otherwise it will be created. However a new database can only be created in plocal or
memory mode, not in remote mode. In multi-threaded applications use one OrientGraph instance per thread. Also all the graph

components (Vertices and Edges) are not thread-safe, so sharing them between threads could cause unpredictable errors.
Remember to always close the graph once done using the .shutdown() method.

Examp le:

OrientGraph graph = new OrientGraph('"plocal:C:/temp/graph/db");
try {

} finally {
graph.shutdown();
}

Use the factory

Starting from v1.7 the best way to get a Graph instance is through the OrientGraphFactory. To know more: Use the Graph Factory.

Example:

// AT THE BEGINNING
OrientGraphFactory factory = new OrientGraphFactory("plocal:C:/temp/graph/db").setupPool(1,10);

// EVERY TIME YOU NEED A GRAPH INSTANCE

OrientGraph graph = factory.getTx();
try {

} finally {
graph.shutdown();

Transactions

Before v2.1.7, every time the graph is modified an implicit transaction is started automatically if no previous transaction was running.
Transactions are committed automatically when the graph is closed by calling the shutdown() method or by explicit commit() . To

rollback changes call the rollback() method.
After v2.1.7, you can setup the consistency level.

Changes inside a transaction will be temporary until the commit or the close of the graph instance. Concurrent threads or external clients

can see the changes only when the transaction has been fully committed.

Full example:

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraphFactory.html

try{
Vertex luca = graph.addVertex(null); // 1st OPERATION: IMPLICITLY BEGIN A TRANSACTION
luca.setProperty("name", "Luca");
Vertex marko = graph.addVertex(null);
marko.setProperty("name", "Marko");
Edge lucaknowsMarko = graph.addedge(null, luca, marko, "knows");
graph.commit();
} catch(Exception e) {
graph.rollback();
3

Surrounding the transaction between a try/catch assures that any errors will rollback the transaction to the previous status for all the

involved elements. For more information, look at Concurrency.

NOTE: Before v2.1.7, to work against a graph always use transactional OrientGraph instances and never non-transactional ones to avoid
graph corruption from multi-threaded changes. A non-transactional graph instance created with orientGraphNoTx graph =

factory.getNoTx(); is only useful if you don't work with data but want to define the database schema or for bulk inserts.

Optimistic approach

OrientDB supports optimistic transactions, so no lock is kept when a transaction is running, but at commit time each graph element
version is checked to see if there has been an update by another client. This is the reason why you should write your code to be

concurrency-proof by handling the concurrent updating case:

for (int retry = 0; retry < maxRetries; ++retry) {
try {
// LOOKUP FOR THE INVOICE VERTEX
Iterable<Vertex> invoices = graph.getVertices("invoiceId",)8
Vertex invoice = invoices.iterator().next();

// CREATE A NEW ITEM

Vertex invoiceItem = graph.addVertex('class:InvoiceItem");
invoiceItem.field("price",)

// ADD IT TO THE INVOICE

invoice.addEdge(invoiceItem);

graph.commit();

// OK, EXIT FROM RETRY LOOP
break;
} catch(ONeedRetryException e) {
// SOMEONE HAVE UPDATE THE INVOICE VERTEX AT THE SAME TIME, RETRY IT

Working with Vertices and Edges

Create a vertex

To create a new Vertex in the current Graph call the Vertex OrientGraph.add Vertex(Object id)) method. Note that the id parameter is

ignored since OrientDB implementation assigns a unique-id once the vertex is created. To return it use Vertex.getld()). Example:

Vertex v = graph.addVertex(null);
System.out.println("Created vertex: " + v.getId());

Create an edge

An Edge links two vertices previously created. To create a new Edge in the current Graph call the Edge OrientGraph.addEdge(Object id,
Vertex out Vertex, Vertex inVertex, String label)) method. Note that the id parameter is ignored since OrientDB imp lementation assigns a
unique-id once the Edge is created. To return it use Edge.getId()). outvertex is the Vertex instance where the Edge starts and invertex

is the Vertex instance where the Edge ends. label is the Edge's label. Specify null to not assign it. Example:

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#addVertex(java.lang.Object
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getId(
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#addEdge(java.lang.Object,-Vertex,-Vertex,-java.lang.String
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getId(

Vertex luca = graph.addVertex(null);
luca.setProperty("name", "Luca");

Vertex marko = graph.addVertex(null);
marko.setProperty('"name", "Marko");

Edge lucaknowsMarko = graph.addeEdge(null, luca, marko, "knows");
System.out.println("Created edge: " + lucaKnowsMarko.getId());

If you're interested on optimizing creation of edges by concurrent threads/clients, look at Concurrency on adding edges.

Retrieve all the Vertices

To retrieve all the vertices use the getvertices() method:

for (Vertex v : graph.getVertices()) {
System.out.println(v.getProperty("name"));

Retrieve all the Edges

To retrieve all the vertices use the getEdges()) method:

for (Edge e : graph.getEdges()) {
System.out.println(e.getProperty("age"));
}

NOTE: When Lightweight Edges are enabled (starting from v2.0 are disabled by default), edges are stored as links not as records. This is
to improve performance. As a consequence, gettdges() will only retrieve records of class E. With useLightweightEdges=true, records
of class E are only created under certain circumstances (e.g. if the Edge has properties) otherwise they will be links on the in and out
vertices. If you really want getEdges() to return all edges, disable the Lightweight Edges feature by executing this command once:
alter database custom useLightweightEdges=false . This will only take effect for new edges so you'll have to convert the links to actual

edges before getEdges will return all edges. For more information look at: Troubleshooting: Why can't T see all the edges.

Removing a Vertex

To remove a vertex from the current Graph call the OrientGrap h.removeVertex(Vertex vertex)) method. The vertex will be disconnected

from the graph and then removed. Disconnection means that all the vertex's edges will be deleted as well. Example:

graph.removeVertex(luca);

Removing an Edge

To remove an edge from the current Graph call the OrientGrap h.removeEdge(Edge edge)) method. The edge will be removed and the two

vertices will not be connected anymore. Example:

graph.removeEdge (lucaKnowsMarko) ;

Set and get properties

Vertices and Edges can have multiple properties where the key is a String and the value can be any supported OrientDB types.

e To set a property use the method setProperty (String key, Object value)).
e To get a property use the method Object getProperty(String key)).

To get all the properties use the method Set<String> getProperty Keys()).

e To remove a property use the method void removeProperty (String key)).

Example:

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#getEdges(
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#removeVertex(Vertex
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#removeEdge(Edge
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#setProperty(java.lang.String,-java.lang.Object
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getProperty(java.lang.String
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientVertex.html#getPropertyKeys(
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#removeProperty(java.lang.String

vertex2.setProperty("x", M
vertex2.setProperty("y", ((float) vertexl.getProperty("y")) / 2);

for (String property : vertex2.getPropertyKeys()) {
System.out.println("Property: " + property + "=" + vertex2.getProperty(property));

vertex1.removeProperty("y");

Setting Multiple Properties

Blueprints Extension OrientDB Blueprints imp lementation supports setting of multiple properties in one shot against Vertices and

Edges. This improves performance avoiding to save the graph element at every property set: setProperties(Object ...)). Example:

vertex.setProperties("name", "Jill", "age", , "city", "Rome", "born", "Victoria, TX");

You can also pass a Map of values as first argument. In this case all the map entries will be set as element properties:

Map<String, Object> props = new HashMap<String, Object>();
props.put("name", "Jill");

props.put("age", B

props.put("city", "Rome");

props.put("born", "Victoria, TX");
vertex.setProperties(props);

Creating Element and Properties all together

If you want to create a vertex or an edge while setting the initial properties, the OrientDB Blueprints imp lementation offers new

methods to do it:

graph.addvertex("class:Customer", "name", "Jill", "age", , "city", "Rome", "born", "Victoria, TX");

This creates a new Vertex of class customer with the properties: name , age , city ,and born . The same is for Edges:
personl.addEdge("class:Friend", person2, null, null, "since", "2013-07-30");
This creates a new Edge of class Friend between vertices personi and person2 with the property since .

Both methods accept a Map<String, Object> as a parameter to set one property per map entry (see above for the example).

These methods are especially useful if you've declared constraints in the schema. For example, a property cannot be null, and only using

these methods will the validation checks succeed.

Using Indices

OrientDB allows execution of queries against any field of vertices and edges, indexed and not-indexed. The first rule to speed up queries
is to setup indices on the key properties you use in the query. For example, if you have a query that is looking for all the vertices with

the name 'OrientDB' you do this:

graph.getVertices("name", "OrientDB");

Without an index against the property "name" this execution could take a lot of time. So let's create a new index against the "name"

property:

graph.createKeyIndex('"name", Vertex.class);

If the name M UST be unique you can enforce this constraint by setting the index as "UNIQUE" (this is an OrientDB only feature):

graph.createKeyIndex('"name", Vertex.class, new Parameter("type", "UNIQUE"));

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#setProperties(java.lang.Object...

This constraint will be applied to all the Vertex and sub-type instances. To specify an index against a custom type like the "Customer"

vertices use the additional parameter "class":

graph.createKeyIndex('"name", Vertex.class, new Parameter('class", "Customer"));

You can also have both UNIQUE index against custom types:

graph.createKeyIndex(''name", Vertex.class, new Parameter('"type", "UNIQUE"), new Parameter('class", "Customer"));

To create a case insensitive index use the additional parameter "collate":

graph.createKeyIndex(''name", Vertex.class, new Parameter("type", "UNIQUE"), new Parameter('class'", "Customer"),new Parameter("
collate", "ci"));

To get a vertex or an edge by key prefix use the class name before the property. For the example above use customer.name in place of
only name to use the index created against the field name of class customer :

for (Vertex v : graph.getVertices("Customer.name", "Jay")) {
System.out.println("Found vertex: " + v);

If the class name is not passed, then "V" is taken for vertices and "E" for edges:

graph.getVertices('"name", "Jay");
graph.getEdges("age", 20);

For more information about indices look at Index guide.

Using Non-Transactional Graphs

To speed up operations like on massive insertions you can avoid transactions by using a different class than OrientGraph:
OrientGraphNoTx. In this case each operation is atomic and data is updated at each operation. When the method returns, the

underlying storage is updated. Use this for bulk inserts and massive operations or for schema definition.

NOTE: Using non-transactional graphs could create corruption in the graph if changes are made in multiple threads at the same time. So

use non-transactional graph instances only for non multi-threaded operations.

Configure the Graph

Starting from v1.6 OrientDB supports configuration of the graph by setting all the properties during construction:

Name

blueprints.orientdb.url
blueprints.orientdb.username

blueprints.orientdb.password
blueprints.orientdb.saveOriginallds

blueprints.orientdb.keep InM emory References

blueprints.orientdb.useCustomClassesForEdges

blueprints.orientdb.useCustomClassesForVertex

blueprints.orientdb.useVertexFieldsForEdgeLabels

blueprints.orientdb.lightweight Edges

blueprints.orientdb.autoStartTx

Gremlin usage

Description

Database URL

User name

User password

Saves the original element IDs by using the property id.
This could be useful on import of a graph to preserve
original ids.

Avoids keeping records in memory by using only RIDs

Uses the Edge's label as OrientDB class. If it doesn't exist
create it under the hood.

Uses Vertex's label as OrientDB class. If it doesn't exist
create it under the hood.

Stores the Edge's relationships in the Vertex by using the
Edge's class. This allows using multiple fields and makes
faster traversal by edge's label (class).

Uses Lightweight Edges. This avoids creating a physical
document per edge. Documents are created only when the
Edges have properties.

Auto starts a transaction as soon as the graph is changed by
adding/remote vertices and edges and properties.

If you use GREM LIN language with OrientDB remember to initialize it with:

0GremlinHelper.global().create()

Look at these pages about GREM LIN usage:

e How to use the Gremlin language with OrientDB

e Gettingstarted with Gremlin

e Usage of Gremlin through HTTP/RESTful API using the Rexter project.

Multi-Threaded Applications

Default
value

admin

admin

false

false

true

true

true

false

true

Multi-threaded applications must use one OrientGraph instance per thread. For more information about multi-threading look at Java

Multi Threading. Also all the graph components (Vertices and Edges) are not thread-safe, so sharing them between threads could cause

unpredictable errors.

Blueprints Extensions

OrientDB is a Graph Database on steroids because it merges the graph, document, and object-oriented worlds together. Below are some

of the features exclusive to OrientDB.

Custom types

OrientDB supports custom types for vertices and edges in an Object Oriented manner. Even if this isn't supported directly by

Blueprints there are some tricks to use them. Look at the Graph Schema page to know how to create a schema and work against types.

OrientDB added a few variants to the Blueprints methods to work with types.

Creating vertices and edges in specific clusters

http://github.com/tinkerpop/gremlin/wiki/Getting-Started
https://github.com/tinkerpop/rexster/wiki/Using-Gremlin

By default each class has one cluster with the same name. You can add multiple clusters to the class to allow OrientDB to write vertices

and edges on multiple files. Furthermore working in Distributed M ode each cluster can be configured to be managed by a different server.

Example:

// SAVE THE VERTEX INTO THE CLUSTER 'PERSON_USA' ASSIGNED TO THE NODE 'USA'
graph.addVertex("class:Person,cluster:Person_usa");

Retrieve vertices and edges by type

To retrieve all the vertices of Person class use the special getverticesofClass(String className) method:

for (Vertex v : graph.getVerticesOfClass("Person")) {
System.out.println(v.getProperty('"name"));

All the vertices of class Person and all subclasses will be retrieved. This is because by default polymorphism is used. If you're interested
ONLY into person vertices (excluding any sub-types) use the getverticesofClass(String className, boolean polymorphic) method

specifying false in the second argument polymorphic :
for (Vertex v : graph.getVerticesOfClass("Person", false)) {

System.out.println(v.getProperty('"name"));

The same variants also apply to the getedges() method as:

® getEdgesOfClass(String className) and

® getEdgesOfClass(String className, boolean polymorphic)

Ordered Edges

OrientDB, by default, uses a set to handle the edge collection. Sometimes it's better having an ordered list to access the edge by an

offset. Example:

person.createEdgeProperty(Direction.OUT, "Photos").setOrdered(true);

Every time you access the edge collection the edges are ordered. Below is an example to print all the photos in an ordered way.

for (Edge e : loadedPerson.getEdges(Direction.OUT, "Photos")) {
System.out.println("Photo name: " + e.getVertex(Direction.IN).getProperty("name"));

}

To access the underlying edge list you have to use the Document Database API. Here's an example to swap the 10th photo with the last.

// REPLACE EDGE Photos
List<ODocument> photos = loadedPerson.getRecord().field("out_Photos");
photos.add(photos.remove(9));

To have the same result by using SQL, execute the following commands:

create property out_Photos LINKLIST
alter property User.out_Photos custom ordered=

Working on detached elements

When you work with web applications, it’s very common to query elements and render them to the user to let him apply some changes.

Once the user updates some fields and presses the “save” button, what happens?

Before now the developer had to track the changes in a separate structure, load the vertex/edge from the database, and apply the changes

to the element.
Starting with OrientDB v1.7 we added two new methods to the Graph API on the OrientElement and OrientBaseGraph classes:

® OrientElement.detach()
® OrientElement.attach()
® OrientBaseGraph.detach(OrientElement)

® OrientBaseGraph.attach(OrientElement)

Detach

Detach methods fetch all the record content in RAM and reset the connection to the Graph instance. This allows you to modify the

element off-line and to re-attach it once finished.

Attach

Once the detached element has been modified, to save it back to the database you need to call the attach() method. It restores the

connection between the Graph Element and the Graph Instance.

Example

The first step is load a vertex and detach it.

OrientGraph g = OrientGraph("plocal:/temp/db");
try {
Iterable<OrientVertex> results = g.query().has("name", EQUALS, "fast");
for (OrientVertex v : results)
v.detach();
} finally {
g.shutdown();

After a while the element is updated (from GUI or by application)

v.setProperty("name", "super fast!");

On “save” re-attach the element and save it to the database.

OrientGraph g = OrientGraph("plocal:/temp/db");
try {

v.attach(g);

v.save();
} finally {

g.shutdown();

FAQ

Does detach go recursively to detach all connected elements? No, it works only at the current element level.

Can I add an edge against detached elements? No, you can only get/set/remove a property while is detached. Any other operation

that requires the database will throw an IllegalStateException.

Execute commands

The OrientDB Blueprints implementation allows you to execute commands using SQL, Javascript, and all the other supported

languages.

SQL queries

for (Vertex v : (Iterable<Vertex>) graph.command(
new OCommandSQL("SELECT EXPAND(out('bought')) FROM Customer WHERE name = 'Jay'")).execute()) {
System.out.println("- Bought: " + v);

It is possible to have parameters in a query using prepared queries.

To execute an asynchronous query:

graph.command (
new OSQLAsynchQuery<Vertex>("SELECT FROM Member",
new OCommandResultListener() {

int resultCount =0;

@override

public boolean result {
resultCount++;
Vertex doc = graph.getVertex(iRecord);
return resultCount <

}

}).execute();

’

SQL commands

Along with queries, you can execute any SQL command like CREATE VERTEX , UPDATE , or DELETE VERTEX . In the example below it sets
anew property called "local" to true on all the Customers that live in Rome:

int modified = graph.command(
new OCommandSQL("UPDATE Customer SET local = true WHERE 'Rome' IN out('lives').name")).execute());

If the command modifies the schema (like create/alter/drop class and create/alter/drop property commands), remember to force
updating of the schema of the database instance you're using by calling reload() :

graph.getRawGraph().getMetadata().getSchema().reload();

For more information look at the available SQL. commands.

SQL batch

To execute multiple SQL commands in a batch, use the OCommandScript and SQL as the language. This is recommended when creating

edges on the server side, to minimize the network roundtrip:

String cmd = "BEGIN\n";

cmd += "LET a = CREATE VERTEX SET script = true\n";

cmd += "LET b = SELECT FROM V LIMIT 1\n";

cmd += "LET e = CREATE EDGE FROM $a TO $b RETRY 100\n";
cmd += "COMMIT\n";

cmd += "return $e";

OIdentifiable edge = graph.command(new OCommandScript("sqgl", cmd)).execute();
For more information look at SQL Batch.

Database functions

To execute a database function it must be written in Javascript or any other supported languages. In the example below we imagine
having written the function updateAllTheCustomersInCity(cityName) that executes the same update like above. Note the Rome' attribute

passed in the execute() method:

graph.command (
new OCommandFunction("updateAllTheCustomersInCity")).execute("Rome"));

Code

To execute code on the server side you can select between the supported language (by default Javascript):

graph.command (
new OCommandScript("javascript", "for(var i=0;i<10;++i){ print('\nHello World!'); }")).execute());

This prints the line "Hello World!" ten times in the server console or in the local console if the database has been opened in "plocal"

mode.

Access to the underlying Graph

Since the TinkerPop Blueprints API is quite raw and doesn't provide ad-hoc methods for very common use cases, you might need to

access the underlying ODatabaseGraphTx object to better use the graph-engine under the hood. Commons operations are:

e Count incoming and outgoing edges without browsing them all
e Get incoming and outgoing vertices without browsing the edges

e Execute a query using SQL-like language integrated in the engine
The OrientGraph class provides the method .getRawGraph() to return the underlying database: [Document Database].

Examp le:

final OrientGraph graph = new OrientGraph("plocal:C:/temp/graph/db");
try {
List<ODocument> result = graph.getRawGraph().query(
new 0SQLSynchQuery("SELECT FROM V WHERE color = 'red'"));
} finally {
graph.shutdown();
}

Security

If you want to use OrientDB security, use the constructor that retrieves the URL, user and password. To know more about OrientDB

security visit Security. By default the "admin" user is used.

Tuning

Look at the Performance Tuning Blueprints page.

https://github.com/orientechnologies/orientdb/blob/master/graphdb/src/main/java/com/tinkerpop/blueprints/impls/orient/OrientGraph.java

Graph Factory

TinkerPop Blueprints standard doesn’t define a proper "Factory" to get graph instances. For this reason OrientDB users that wanted to

use a pool of instances had to mix 2 different API: Graph and Document one. Examp le:

ODatabaseDocumentPool pool = new ODatabaseDocumentPool('"plocal:/temp/mydb");
OrientGraph g = new OrientGraph(pool.acquire());

Now everything is simpler, thanks to the new OrientGraphFactory class to manage graphs in easy way. These are the main features:

e by default acts as a factory by creating new database instances every time

e can be configured to work as a pool, by recycling database instances

o if the database doesn’t exist, it’s created automatically (but in "remote" mode)
e returns transactional and non-transactional instances

e on graph.shutdown() the pooled instance is returned to the pool to be reused

This is the basic way to create the factory, by using the default "admin" user (with "admin" password by default):

OrientGraphFactory factory = new OrientGraphFactory('"plocal:/temp/mydb");

But you can also pass user and password:

OrientGraphFactory factory = new OrientGraphFactory('"plocal:/temp/mydb", "jayminer", "amigarocks");

To work with a recy clable pool of instances with minimum 1, maximum 10 instances:

OrientGraphFactory factory = new OrientGraphFactory("plocal:/temp/mydb").setupPool(1,),

Once the factory is configured you can get a Graph instance to start working, OrientGraphFactory has 2 methods to retrieve a

Transactional and Non-Transactional instance:

OrientGraph txGraph = factory.getTx();
OrientGraphNoTx noTxGraph = factory.getNoTx();

Or again you can configure in the factory the instances you want and use the get() method every time:

factory.setTransactional(false);
OrientGraphNoTx noTxGraph = (OrientGraphNoTx) factory.get();

To return the Graph instance to the pool, call the shutdown method on graph instance. shutdown() will not close the graph instance,

but will keep open and available for the next requester:

graph.shutdown();

To release all the instances and free all the resources (in case of pool usage), call the close():

factory.close();

https://github.com/tinkerpop/blueprints/wiki

Graph Schema

Although OrientDB can work in schema-less mode, sometimes you need to enforce your data model using a schema. OrientDB supports
schema-full or schema-hybrid solutions where the second one means to set such constraints only for certain fields and leave the user to
add custom fields to the records. This mode is at class level, so you can have the "Employee" class as schema-full and

"Employ eeInformation" class as schema-less.

e Schema-Full: enable the strict-mode at class level and set all the fields as mandatory
e Schema-Less: create classes with no properties. Default mode is non strict-mode so records can have arbitrary fields
e Schema-Hybrid, called also Schema-Mixed is the most used: create classes and define some fields but leave the record to define

own custom fields
NOTE: Changes to the schema are not transactional, so execute them outside a transaction.
To access to the schema, you can use SQL or API. Will follow examples using Java API.
For a tutorial look at the following links:

e Orient Technologies's Blog post about Using Schema with Graphs

Class

A Class, or type, is a concept taken from the Object Oriented paradigm. In OrientDB defines a type of record. It's the closest concept to
a Relational DBM S Table. Class can be schema-less, schema-full or mixed. A class can inherit from another shaping a tree of classes.

Inheritance means that the sub-class extends the parent one inheriting all the attributes as they was own.

A class must have at least one cluster defined (as its default cluster), but can support multiple ones. In this case By default OrientDB
will write new records in the default cluster, but reads will always involve all the defined clusters. When you create a new class by

default a new physical cluster is created with the same name of the class in lower-case.

The Graph structure is based on two classes: "V" for Vertices and "E" for Edges. These class are automatically built once a database is

built using the mode "graph". If you don't have these classes just create them (see below).

You can build a graph using V and E instances but it's strongly suggested to use custom types for vertices and edges.

Working with custom vertex and edge types

To create a custom Vertex class (or type) use the createvertexType(<name>) :

OrientGraph graph = new OrientGraph("local:/temp/db");
OrientVertexType account = graph.createVertexType("Account");

To create a vertex of type "Account" pass a string with the format "class:<name>" as vertex id:

Vertex v = graph.addVertex("class:Account");

Since classes are polymorphic if you look for generic Vertices also "Account" instances are returned:

Iterable<Vertex> allVertices = graph.getVertices();

To retrieve only the vertices of "Account" class:

Iterable<Vertex> accountVertices = graph.getVerticesOfClass("Account");

In Blueprints Edges has the concept of "label" to distinguish between edge types. In OrientDB we binds the concept of Edge label to

Edge class. To create an Edge custom type use the similar method createedgeType(<name>) :

http://orientechnologies.blogspot.it/2013/08/orientdb-using-schema-with-graphs.html

OrientGraph graph = new OrientGraph("local:/temp/db");
OrientVertexType accountVertex = graph.createVertexType("Account");
OrientVertexType addressVertex = graph.createVertexType("Address");
// CREATE THE EDGE TYPE

OrientEdgeType livesEdge = graph.createEdgeType("Lives");

Vertex account = graph.addVertex("class:Account");
Vertex address = graph.addVertex('"class:Address");

// CREATE THE EDGE
Edge e = account.addEdge("Lives", address);

Inheritance tree

Classes can extends other classes. Starting from 2.1 OrientDB supports also multiple inheritance. To create a class that extends a class

different by "V" (Vertex) and E (Edge) types, pass the class name on construction:

graph.createVertexType(<class-name>, <super-class>); // VERTEX TYPE
graph.createEdgeType(<class-name>, <super-class>); // EDGE TYPE

Example to create a base class "Account” and two sub-classes "Provider" and "Customer":

graph.createVertexType("Account");
graph.createVertexType("Customer", "Account");
graph.createVertexType("Provider", "Account");

Get custom types

To retrieve such custom classes use the methods graph.getvertexType(<name>) and graph.getEdgeType(<name>) . Example:

OrientVertexType accountVertex = graph.getVertexType("Account");
OrientEdgeType livesEdge = graph.getEdgeType('"Lives");

Drop persistent types

To drop a persistent class use the dropvertexType(<name>) and dropvertexType(<name>) methods.

graph.dropVertexType("Address");
graph.dropEdgeType("Lives");

Property
Properties are the fields of the class. In this guide Property is synonym of Field.

Create a property

Once the class has been created, you can define fields (properties). Below an example:

OrientVertexType accountVertex = graph.getVertexType("Account");
accountVertex.createProperty("id", OType.INTEGER);
accountVertex.createProperty("birthDate", OType.DATE);

Please note that each field must belong to one of [Types supported types].

Drop the Class property

To drop a persistent class property use the oclass.dropProperty(String) method.

accountVertex.dropProperty("name");

The dropped property will not be removed from records unless you explicitly delete them using the [SQLUpdate SQL UPDATE +
REM OVE statement]. Example:

accountVertex.dropProperty("name");
database.command(new OCommandSQL("UPDATE Account REMOVE name")).execute();

Constraints

Constraints with distributed databases could cause problems because some operations are executed at 2 steps: create +

@ update. For examp le in some circumstance edges could be first created, then updated, but constraints like
MANDATORY and NOTNULL against fields would fail at the first step making the creation of edges not possible on
distributed mode.

OrientDB supports a number of constrains for each field:

e Minimum value, accepts a string because works also for date ranges setMin()
e Maximum value, accepts a string because works also for date ranges setMax()
e Mandatory, it must be specified setMandatory()

e Readonly, it may not be updated after record is created setReadonly()

e Not Null, can't be NULL setNotNull()

e Unique, doesn't allow duplicates and speedup searches.

e Regexp, it must satisfy the Regular expression.

e Ordered, specify if edge list must be ordered, so a List will be used in place of Set. The method is setordered()

Example:

profile.createProperty("nick", OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);
profile.createIndex("nickIdx", OClass.INDEX_TYPE.UNIQUE, "nick"); // Creates unique constraint

profile.createProperty("name", OType.STRING).setMin("3").setMax("30");
profile.createProperty("surname", OType.STRING).setMin("3").setMax("30");
profile.createProperty("registeredon", OType.DATE).setMin("2010-01-01 00:00:00");
profile.createProperty("lastAccessOn", OType.DATE).setMin("2010-01-01 00:00:00");

Indexes as constrains

To let to a property value to be UNIQUE use the UNIQUE index as constraint by passing a Parameter object with key "type":

graph.createKeyIndex("id", Vertex.class, new Parameter("type", "UNIQUE"));

This constraint will be applied to all the Vertex and sub-types instances. To specify an index against a custom type use the additional

parameter "class":

graph.createKeyIndex('"name", Vertex.class, new Parameter('class", '"Member"));

You can also have both UNIQUE index against custom types:

graph.createKeyIndex("id", Vertex.class, new Parameter("type", "UNIQUE"), new Parameter('class", "Member"));

To get a vertex or an edge by key prefix the class name to the field. For the example above use "M ember.name" in place of only "name"

to use the index created against the field "name" of class "M ember":

for(Vertex v : graph.getVertices("Member.name", "Jay")) {
System.out.println("Found vertex: " + v);

}

http://en.wikipedia.org/wiki/Regular_expression

If the class name is not passed, then "V" is taken for vertices and "E" for edges:

graph.getVertices("name", "Jay");
graph.getEdges("age", 20);

For more information about indexes look at Index guide.

(Go back to Graph-Database-Tinkerpop)

Partitioned graphs

This tutorial explains step-by-step how to create partitioned graphs using the Record Level Security feature introduced in OrientDB
1.2.0. This feature is so powerful we can totally separate database's records as sand-boxes where each "Restricted" records can't be
accessed by non authorized users. This tutorial demonstrates this sand-boxes works well also with the GraphDB API and the

TinkerPop stack. Partitioning graphs allows to build real M ulti-tenant applications in a breeze.
Requirements:

e OrientDB 1.2.0-SNAPSHOT or higher
e TinkerPop Blueprints 2.2.0 or higher.

Create a new empty graph database

First open the console of the GraphDB Edition and create the new database "blog" of type "graph" against the local file-system:

$ cd $ORIENTDB_HOME/bin

$ console.sh

OrientDB console v.1.2.0-SNAPSHOT www.orientechnologies.com

Type 'help' to display all the commands supported.

Installing extensions for GREMLIN language Vv.2.2.0-SNAPSHOT

orientdb> CREATE DATABASE local::../databases/blog admin admin local graph
Creating database [local:../databases/blog] using the storage type [local]...

Database created successfully.

Current database is: local:../databases/blog

Enable graph partitioning

Now turn on partitioning against graph by letting classes V (Vertex) and E (Edge) to extend the éORestricted* class. In this way any
access to Vertex and Edge instances can be restricted:

ALTER CLASS V superclass orestricted

Class updated successfully

ALTER CLASS E superclass orestricted

Class updated successfully

Create 2 users

Now let's go creating 2 users: "luca" and "steve". First ask the current roles in database to know the "writer" role's rid:

http://en.wikipedia.org/wiki/Multitenancy

SELECT FROM orole

R T D T — tammmaa Feemmeeeeeeeeeeeeeeeeemesee-eseemeseeeesmeeesmeeeeeeemeeee—————— Fommmcmme e eeeaaa
| RID | name | mode | rules | inheritedRole
e T B TR — tammmaa Feemmemeeeeeeeeeeeeeeeemee-eseemeseeeesmeeesmeeeeeeemeeee—————— Fommmmmee e
O | #4:0 | admin | 1 | {3 | null
#4:1 | reader | 0 | {database=2, database.schema=2, database.cluster.internal=2, | null
|

| {database.cluster.orole=2, database.cluster.ouser=2,
| | | database.class.*=2, database.cluster.*=2, database.command=2,
| | | database.hook.record=2

|
|
|
|
|
2 | #4:2 |writer {database=2, database.schema=7, database.cluster.internal=2,
|
|
|
+

[I
| database.cluster.orole=2, database.cluster.ouser=2,

| database.class.*=15, database.cluster.*=15,

| database.command=15, database.hook.record=15}

+ +

3 item(s) found. Query executed in 0.045 sec(s).

Found it, it's the #4:2. Not create 2 users with as first role #4:2 (writer):

INSERT INTO ouser SET name = 'luca', status = 'ACTIVE', password = 'luca', roles = [#4:2]

Inserted record 'OUser#5:4{name:luca, password:{SHA-256}D70F47790F689414789EEFF231703429C7F88A10210775906460EDBF38589D90, roles:
[1]} vi' in 0,001000 sec(s).

INSERT INTO ouser SET name = 'steve', status = 'ACTIVE',6 password = 'steve', roles = [#4:2]

Inserted record 'OUser#5:3{name:steve, password: {SHA-256}F148389D080CFE85952998A8A367E2F7EAF35F2D72D2599A5B0412FE4094D65C, roles
:[1]} vi1' in 0,001000 sec(s).

Create a simple graph as user 'Luca’

Now it's time to disconnect and reconnect to the blog database using the new "luca" user:

DISCONNECT

Disconnecting from the database [blog]...OK

CONNECT local:../databases/blog luca luca
Connecting to database [local:../databases/blog] with user 'luca'...O0K

Now create 2 vertices: a Restaurant and a Pizza:

CREATE VERTEX SET label = 'food', name = 'Pizza'

Created vertex 'V#9:0{label:food,name:Pizza,_allow:[1]} vO' in 0,001000 sec(s).

CREATE VERTEX SET label = 'restaurant', name = "Dante's Pizza"

Created vertex 'V#9:1{label:restaurant,name:Dante's Pizza,_allow:[1]} v@' in 0,000000 sec(s).

Now connect these 2 vertices with an edge labelled "menu":

CREATE EDGE FROM #9:0 TO #9:1 SET label = 'menu'

Created edge '[E#10:0{out:#9:0,in:#9:1,label:menu,_allow:[1]} v1]' in 0,003000 sec(s).

To check if everything is ok execute a select against vertices:

SELECT FROM V

R T Fommmcemeaa D TR toemmemme e
| RID | label | name | _allow | out
B T L T B Fommm - Fommm o
| #9:0 | food | Pizza | [1] | [1]
| #9:1 | restaurant | Dante's Pizza | [1] | null
R T Fecmmcemmmaa E TP tacmmmaa- tecmmmaa-

2 item(s) found. Query executed in 0.034 sec(s).

Create a simple graph as user 'Steve'

Now let's connect to the database using the 'Steve' user and check if there are vertices:

DISCONNECT
Disconnecting from the database [blog]...O0K

CONNECT local:../databases/blog steve steve
Connecting to database [local:../databases/blog] with user 'steve'...OK

SELECT FROM V

item(s) found. Query executed in sec(s).

Ok, no vertices found. Try to create something:

CREATE VERTEX SET label = 'car', name = 'Ferrari Modena'

Created vertex 'V#9:2{label:car,name:Ferrari Modena, allow:[1]} v@' in 0, sec(s).
CREATE VERTEX SET label = 'driver', name = 'steve'

Created vertex 'V#9:3{label:driver,name:steve, allow:[1]} vO' in 0, sec(s).

CREATE EDGE FROM #9:2 TO #9:3 SET label = 'drive'

Created edge '[E#10:1{out:#9:2,in:#9:3,label:drive,_allow:[1]} v1]' in 0, sec(s).

Now check the graph just created:

SELECT FROM V

cooifococoo Doccooooo Pococcccocoocooooo Foccoccoo Fooocooo
| RID | label | name | _allow | out
cooifhococoo Poccoccoo Pococcccocoocooooo Foccocooo Fococooo
| #9:2 | car | Ferrari Modena | [1] | [1]
| #9:3 | driver | steve | [1]
B CECEET e Tocoooooooaconooo Focoooooo B R
item(s) found. Query executed in sec(s)

The "Steve" user doesn't see the vertices and edges creates by other users!

What happen if we try to connect 2 vertices of different users?

CREATE EDGE FROM #9:2 TO #9:0 SET label = 'security-test'
Error: com.orientechnologies.orient.core.exception.0CommandExecutionException: Error on execution of command: OCommandSQL [

=create edge from #9:2 to #9:0 set label = 'security-test']
Error: java.lang.IllegalArgumentException: Source vertex '#9:0' does not exist

4 D]

The partition is totally isolated and OrientDB thinks the vertex doesn't exist while it's present, but invisible to the current user.

TinkerPop Stack

Record Level Security feature is very powerful because acts at low level inside the OrientDB engine. This is why everything works like

a charm, even the TinkerPop stack.

Now try to display all the vertices and edges using Gremlin:

gremlin g.Vv

[v[#9:2], v[#9:3]]

Script executed in 0,448000 sec(s).
gremlin g.E
e[#10:1][#9:2-drive->#9:3]

Script executed in 0,123000 sec(s).

The same is using other technologies that use the !TinkerPop Blueprints: TinkerPop Rexter, TinkerPop Pipes, TinkerPop Furnace,

TinkerPop Frames and ThinkAurelius Faunus.

https://github.com/tinkerpop/rexster/wiki
https://github.com/tinkerpop/pipes/wiki
https://github.com/tinkerpop/furnace/wiki
https://github.com/tinkerpop/frames/wiki
http://thinkaurelius.github.com/faunus/

Graph Database Comparison

This is a comparison page between GraphDB projects. To know more about the comparison of DocumentDBs look at this comparison.

We want to keep it always updated with the new products and more features in the matrix. If any information about any product is not

updated or wrong, please change it if you've the permissions or send an email to any contributors with the link of the source of the right

information.

Feature matrix

Feature
Release
Product
Web Site
License
Query
languages

Transaction
support

Protocols

Replication

Custom
types

Self loops

OrientDB

1.0-SNAPSHOT

http://www.orientdb.org

Open Source Apache 2

Extended SQL, Gremlin

ACID

Embedded via Java API,
remote as Binary and
REST

Multi-M aster

Supports

custom types and
polymorphism

Blueprints support

Neodj

1.7M03
http ://www.neo4j.org

Open Source GPL,
Open Source AGPL
and Commercial

Cypher Gremlin

ACID

Embedded via Java
API and remote via
REST

M aster-Slave

1%

DEX
4.5.1
http:/www.sparsity -
technologies.com

Commercial

Not available, only
via API

InfiniteGraph

2.1

http://objectivity.com/INFINIT
Commercial

Gremlin, Java API

ACID

Embedded via Java API, Remot:
access via TCP

o

Supports custom types
polymorphism

The products below all support the TinkerPop Blueprints APT at different level of compliance. Below the supported ones. As you can

see OrientDB is the most compliant implementation of TinkerPop Blueprints!

http://www.orientdb.org
http://www.neo4j.org
http://www.sparsity-technologies.com
http://objectivity.com/INFINITEGRAPH
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/agpl-3.0.html
http://objectivity.com/support
https://github.com/tinkerpop/gremlin/wiki
http://docs.neo4j.org/chunked/1.4/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
https://github.com/tinkerpop/blueprints/wiki/
http://www.tinkerpop.com

Feature

Release
Product Web Site

Implementation details

allowsDuplicateEdges

allowsSelfLoops

isPersistent

supportsVertexIteration

supportsEdgelteration

supports VertexIndex

supportsEdgelndex

ignoresSuppliedIds

supportsTransactions

allowSerializableObjectProperty

allowBooleanProperty

allowDoubleProperty

allowFloatProperty

allowIntegerProperty

allowPrimitiveArray Property

allowUniformListProperty

allowM ixedListProperty

allowLongProperty

allowM apProperty

allowStringProperty

OrientDB

1.0-SNAPSHOT

http://www.orientdb.org

OrientDB impl

Neodj

1.7M03

http ://www.neo4j.org

Neo4j impl

DEX
4.5.1

http ://www.sparsity -
technologies.com

DEX impl

2.1

http://objec

InfiniteGra

http://www.orientdb.org
http://www.neo4j.org
http://www.sparsity-technologies.com
http://objectivity.com/INFINITEGRAPH
https://github.com/tinkerpop/blueprints/wiki/OrientDB-Implementation
https://github.com/tinkerpop/blueprints/wiki/Neo4j-Implementation
https://github.com/tinkerpop/blueprints/wiki/Dex-Implementation
https://github.com/tinkerpop/blueprints/wiki/InfiniteGraph-Implementation

Micro benchmark

The table below reports the time to complete the Blueprints Test Suite. This is not a benchmark between GraphDBs and

unfortunately doesn't exist a public benchmark shared by all the vendors :-(

So this table is just to give an idea about the performance of each implementation in every single module it supports. The support is
based on the compliance level reported in the table above. For the test default settings were used. To run these tests on your own

machine follow these simple instructions.

Lower means faster. In bold the fastest implementation for each module.

Module OrientDB Neod4j DEX I
Release 1.4 1.9.M05 4.8.0 2.1

http:/www.sparsity-

Product Web Site http://www.orientdb.org http://www.neo4j.org tachnologies,com http://objectiv
VertexTestSuite 1,524.06 1,595.27 4,488.28 ?
EdgeTestSuite 1,252.21 1,253.73 3,865.85 ?
GraphTestSuite 1,664.75 2,400.34 4,680.80 ?
Query TestSuite 306.58 188.52 612.73 ?
IndexableGrap hTestSuite 4,620.61 11,299.02 1070.75 ?
IndexTestSuite 2,072.23 5,239.92 not supported ?
TransactionalGrap hTestSuite 1,573.93 3,579.50 not supported ?
KeyIndexableGraphTestSuite 571.42 845.84 not supported ?
GM LReaderTest Suite 778.08 682.83 not supported ?
GraphM LReaderTestSuite 814.38 864.70 2,316.79 ?
GraphSONReaderTestSuite 424.77 480.81 1223.24 ?

All the tests are executed against the same HW/SW configuration: MacBook Pro (Retina) 2013 - 16 GB Ram - MacOSX 12.3.0 - SDD

7200rpm. Similar results executed on Linux CentOS.

Run the tests

To run the Blueprints Test Suite you need java6+, Apache M aven and Git. Follow these simple steps:

1. > git clone git://github.com/tinkerpop/blueprints.git

2. > mvn clean install

http://wiki.infinitegraph.com/2.1/w/index.php?title=Understanding_InfiniteGraph_Blueprints_Capabilities_and_Limitations
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model-Test-Suite
http://www.orientdb.org
http://www.neo4j.org
http://www.sparsity-technologies.com
http://objectivity.com/INFINITEGRAPH
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model-Test-Suite

Lightweight Edges

OrientDB supports Lightweight Edges as regular edges, but without an identity on database. Lightweight edges can be used only when

no properties are defined on edge.

By avoiding the creation of the underlying Document, Lightweight Edges have the same impact on speed and space as with Document
LINKs, but with the additional bonus to have bidirectional connections. This means you can use the MOVE VERTEX command to
refactor your graph with no broken LINKs.

Regular Edge representation

Look at the figure below. With Regular Edges both vertices (#10:33 and #10:12) are connected through an Edge Document (#17:11). The
outgoing out_Friend property in #10:33 document is a set of LINKs with #17:11 as item. Instead, in document #10:12 the relationship
is as incoming, so the property in_Friend is used with the LINK to the same Edge #17:11.

When you cross this relationship, OrientDB loads the Edge document #17:11 to resolve the other part of the relationship.

o + B LT + LR EETTEEEEEEREEEE +
| Account Vertex | | Friend Edge | | Account Vertex
| #10:33 | | #17:11 | | #10:12 |
D EE T T + B EEE LT + R LT +
|out_Friend: [#17:11] |<-->|out: [#10:33] | |
B e T + | in: [#10:12]|<-->|in_Friend: [#17:11]

D EEE LT + R L L TP +

Lightweight Edge representation

With Lightweight Edge, instead, there is no Edge document, but both vertices (#10:33 and #10:12) are connected directly to each other.
The outgoing out_Friend property in #10:33 document contains the direct LINK to the vertex#10:12. The same happens on Vertex

document #10:12, where the relationship is as incoming and the property in_Friend contains the direct LINK to vertex #10:33.

When you cross this relationship, OrientDB doesn't need to load any edge to resolve the other part of the relationship. Furthermore no

edge document is created.

Ao + mm e +
| Account Vertex | | Account Vertex |
| #10:33 | | #10:12 |
Ao + mm e +
|out_Friend: [#10:12] |<-->|in_Friend: [#10:33] |
e + mm e +

Starting from OrientDB v2.0, Lightweight Edges are disabled by default with new databases. This is because having regular edges
makes easier to act on edges from SQL. Many issues from beginner users were on Lightweight Edges. If you want to use Lightweight

Edges, enable it via API:

OrientGraph g = new OrientGraph("mygraph™);
g.setUseLightweightEdges(true);

Or via SQL.:

ALTER DATABASE custom uselLightweightEdges=

Changing useLightweightEdges settingto true , will not transform previous edges, but all new edges could be Lightweight Edges if

they meet the requirements.

When use Lightweight Edges?

These are the PROS and CONS of Lightweight Edges vs Regular Edges:
PROS:

e faster in creation and traversing, because don't need an additional document to keep the relationships between 2 vertices
CONS:

e cannot store properties

e harder working with Lightweight edges from SQL, because there is no a regular document under the edge

Document API

To use the Document API include the following jars in your classpath:

orientdb-core-*.jar

If you're using the Document Database interface connected to a remote server (not local/embedded mode) include also:

orientdb-client-*.jar
orientdb-enterprise-*.jar

Introduction

The Orient Document DB is the base of higher-level implementation like Object-Database and Graph-Database. The Document

Database API has the following features:

e supports Multi threads access
e supports Transactions

e supports Queries

e supports Traverse

e very flexible: can be used in schema-full, schema-less or schema-hybrid mode.

This is an example to store 2 linked documents in the database:

// OPEN THE DATABASE
ODatabaseDocumentTx db = new ODatabaseDocumentTx('remote:localhost/petshop™).open("admin", "admin');

// CREATE A NEW DOCUMENT AND FILL IT

ODocument doc = new ODocument('Person');

doc.field("name", "Luke");

doc.field("surname", "Skywalker");

doc.field("city", new ODocument("City").field('"name","Rome").field("country", "Italy"));

// SAVE THE DOCUMENT
doc.save();

db.close();

This is the very first example. While the code is pretty clear and easy to understand please note that we haven't declared the type
"Person" before now. When an ODocument instance is saved, the declared type "Person" will be created without constraints. To declare

persistent classes look at the Schema management.

Use the database

Before to execute any operation you need an opened database instance. You can open an existent database or create a new one.

Databases instances aren't thread safe, so use one database per thread.

Before to open or create a database instance you need a valid URL. URL is where the database is available. URL says what kind of
database will be used. For example memory: means in-memory only database, plocal: is for embedded ones and remote: to use a remote

database hosted on an up & running DBServer OrientDB Server instance. For more information look at Database URL.

Database instances must be closed once finished to release precious resources. To assure it the most common usage is to enclose all the

database operations inside a try/finally block:

ODatabaseDocumentTx db = new ODatabaseDocumentTx('"plocal:/temp/test");
db.open("admin", "admin");

try {
// YOUR CODE

} finally {
db.close();
3

If you are using a remote storage (url starts with "remote:") assure the server is up & running and include the orientdb-client.jar file

in your classpath.

Multi-threading

The ODatabaseDocumentTx class is non thread-safe. For this reason use different ODatabaseDocumentTx instances by multiple
threads. They will share the same Storage instance (with the same URL) and the same level-2 cache. For more information look at Multi-

Threading with Java.

Create a new database

Inlocal filesystem

ODatabaseDocumentTx db = new ODatabaseDocumentTx ("plocal:/tmp/databases/petshop").create();

On a remote server

To create a database in a remote server you need the user/password of the remote OrientDB Server instance. By default the "root" user

is created on first startup of the server. Check this in the file config/orientdb-server-config.xml, where you will also find the password.

To create a new document database called dbname on dbhost using filesystem storage (as opposed to in-memory storage):

new 0ServerAdmin("remote:dbhost™)
.connect("root", "kjhsdjfsdhi28438ejhj")
.createDatabase("dbname", "document", "local").close();

To create a graph database replace "document" with "graph".

To store the database in memory replace "local" with "memory".

Open a database

ODatabaseDocumentTx db = new ODatabaseDocumentTx ("remote:localhost/petshop").open("admin", "admin");

The database instance will share the connection versus the storage. if it's a "local" storage, then all the database instances will be

synchronized on it. If it's a "remote" storage then the network connection will be shared among all the database instances.

Use the connection Pool

One of most common use cases is to reuse the database, avoiding to create it every time. It's also the typical scenario of the Web

applications. Instead of creating a new ODatabaseDocumentTx instance all the times, get an available instance from the pool:

// OPEN THE DATABASE
ODatabaseDocumentTx db = ODatabaseDocumentPool.global().acquire("remote:localhost/petshop", "admin", "admin");
try {
// YOUR CODE
} finally {
db.close();
3

Remember to always close the database instance using the close() database method like a classic non-pooled database. In this case the
database will be not closed for real, but the instance will be released to the pool, ready to be reused by future requests. The best is to use

a try/finally block to avoid cases where the database instance remains open, just like the example above.

Global pool

By default OrientDB provide a global pool declared with maximum 20 instances. Use it with: opatabasebocumentPool.global() .

Use your pool

To create your own pool build it and call the setup(min, max) method to define minimum and maximum managed instances. Remember

to close it when the pool is not more used. Example:

// CREATE A NEW POOL WITH 1-10 INSTANCES
ODatabaseDocumentPool pool = new ODatabaseDocumentPool();
pool.setup(1,10);

pool.close();

Schema

OrientDB can work in schema-full (like RDBM S), schema-less (like many NoSQL Document databases) and in schema-hybrid mode.

For more information about the Schema look at the Schema page.

To use the schema with documents create the ODocument instance using the obocument(String className) constructor passing the
class name. If the class hasn't been declared, it's created automatically with no fields. This can't work during transaction because schema

changes can't be applied in transactional context.

Security

Few NoSQL solutions supports security. OrientDB does it. To know more about it look at Security.

To manage the security get the Security M anager and use it to work with users and roles. Example:

OSecurity sm = db.getMetadata().getSecurity();
OUser user = sm.createUser("god", "god", new String[] { "admin" });

To get the reference to the current user use:

OUser user = db.getUser();

Create a new document

ODocument instances can be saved by calling the save() method against the object itself. Note that the behaviour depends on the running

transaction, if any. See Transactions.

ODocument animal = new ODocument("Animal™);
animal.field("name", "Gaudi");
animal.field("location", "Madrid");
animal.save();

Retrieve documents

Browse all the documents in a cluster

for (ODocument doc : database.browseCluster('"CityCars")) {
System.out.println(doc.field("model™));

Browse all the records of a class

for (ODocument animal : database.browseClass('"Animal")) {
System.out.println(animal.field("name"));

Count records of a class

long cars = database.countClass('"Car'");

v= Count records of a cluster ==

long cityCars = database.countCluster('"CityCar");

Execute a query

Although OrientDB is part of the NoSQL database community, it supports a subset of SQL that allows it to process links to documents
and graphs.

To know more about the SQL syntax supported go to: SQL-Query.

Example of a SQL query:

List<ODocument> result = db.query(
new 0SQLSynchQuery<ODocument>("select * from Animal where ID = 10 and name like 'G%'"));

Asynchronous query

OrientDB supports asynchronous queries. The result is not collected and returned like synchronous ones (see above) but a callback is

called every time a record satisfy the predicates:

database.command(
new OSQLAsynchQuery<ODocument>("select * from animal where name = 'Gipsy'",
new OCommandResultListener() {

resultCount = 0;

@override

public boolean result {
resultCount++;
ODocument doc = (ODocument) iRecord;
// DO SOMETHING WITH THE DOCUMENT

return resultCount > ? false : true;

@override
public void end() {

}

})).execute();
Asynchronous queries are useful to manage big result sets because don't allocate memory to collect results.

Non-Blocking query (since v2.1)

Both Synchronous and Asynchronous queries are blocking, that means that the first instruction you have after db.query() or
db.command().execute() will be executed only after you received all the result-set or last callback was invoked. OrientDB also supports
non-blocking queries. The API is very similar to asynchronous queries (you have a callback that is invoked for every record in the
result-set), but the behavior is completely different: the execution of your current thread continues without blocking on the db.query ()
or db.command().execute(), and the callback is invoked by a different thread. That means that in the meantime you can close your db

instance and keep on receiving callbacks from the query result.

Future future = database.command(new OSQLNonBlockingQuery<Object>("select * from animal where name = 'Gipsy'",
new OCommandResultListener() {

resultCount = 0;

@override

public boolean result {
resultCount++;
ODocument doc = (ODocument) iRecord;
// DO SOMETHING WITH THE DOCUMENT

System.out.println("callback "+resultCount+" invoked");
return resultCount > ? false : true;

@override
public void end() {

3
})).execute();

System.out.println("query executed");

future.get();

the result of this snippet of code will be something like

query executed

callback 0 invoked
callback 1 invoked
callback 2 invoked
callback 3 invoked
callback 4 invoked

but it could also be

callback © invoked
callback 1 invoked
query executed

callback 2 invoked
callback 3 invoked
callback 4 invoked

depending on race conditions on the two parallel threads (the one that fires query execution and then continues with "query executed",

and the other one that invokes callbacks).

future.get(); is a blocking call that returns only after last callback invocation (you can avoid this if you don't need to know when the

query terminates).

Prepared query

Prepared query are quite similar to the Prepared Statement of JDBC. Prepared queries are pre-parsed so on multiple execution of the
same query are faster than classic SQL queries. Furthermore the pre-parsing doesn't allow SQL Injection. Note: prepared queries
(parameter substition) only works with select statements (but not select statements within other types of queries such as "create

vertex'").

Prepared query uses two kinds of markers to substitute parameters on execution:

? 1is positional parameter
:<par> is named parameter

Example of positional parameters:

0SQLSynchQuery<ODocument> query = new 0SQLSynchQuery<ODocument>("select from Profile where name = ? and surname = ?");
List<ODocument> result = database.command(query).execute("Barack", "Obama");

Examp le of named p arameters:

0SQLSynchQuery<0ODocument> query = new 0SQLSynchQuery<ODocument>("select from Profile where name = :name and
surname = :surname");

Map<String, Object> params = new HashMap<String,Object>();

params.put("name", "Barack");

params.put("surname", "Obama");

List<ODocument> result = database.command(query).execute(params);

Right usage of the graph

OrientDB is a graph database. This means that traversing is very efficient. You can use this feature to optimize queries. A common

technique is the Pivoting.

SQL Commands

To execute SQL commands use the command() method passinga OCommandSQL object:

int recordsUpdated = db.command(
new OCommandSQL("update Animal set sold = false")).execute();

If the command modifies the schema (like create/alter/drop class and create/alter/drop property commands), remember to force

updating of the schema of the database instance you're using:

db.getMetadata().getSchema().reload();

For more information look at the available SQL. commands.

Traverse records
Traversing is the operation to cross documents by links (relationships). OrientDB is a graph database so this operation is much much
more efficient than executing a JOIN in the relational databases. To know more about traversing look at the Java traverse API.

The example below traverses, for each movie, all the connected records up to the 5th depth level.

for (OIdentifiable id : new OTraverse()
.field("in").field("out™)
.target(database.browseClass('"Movie'").iterator())
.predicate(new OCommandPredicate() {

public boolean evaluate {
return ((Integer) iContext.getvariable("depth")) <= 5;

}
)L

System.out.println(id);
3

Update a document

Any persistent document can be updated by using the Java API and then by calling the db.save() method. Alternatively, you can call the
document's save() method to synchronize the changes to the database. The behaviour depends on the transaction begun, if any. See

Transactions.

animal.field("location", "Nairobi");
animal.save();

OrientDB will update only the fields really changed.
Examp le of how to increase the price of all the animals by 5%:

for (ODocument animal : database.browseClass('"Animal")) {
animal.field("price", animal.field("price") * /);
animal.save();

}

Delete a document

To delete a document call the delete() method on the document instance that's loaded. The behaviour depends on the transaction begun,

if any. See Transactions.

animal.delete();

Examp le of deletion of all the documents of class "Animal".

for (ODocument animal : database.browseClass('"Animal"))
animal.delete();

L4
‘Transactions
Transactions are a practical way to group a set of operations together. OrientDB supports ACID transactions so that all or none of the
operations succeed. The database always remains consistent. For more information look at Transactions.

Transactions are managed at the database level. Nested transactions are currently not supported. A database instance can only have one

transaction running. The database's methods to handle transactions are:

http://en.wikipedia.org/wiki/ACID

e begin() to start a new transaction. If a transaction was already running, it's rolled back and a new one is begun.
e commit() makes changes persistent. If an error occurs during commit the transaction is rolled back and an OTransactionException
exception is raised.

e rollback() aborts a transaction. All the changes will be lost.

Optimistic approach

The current release of OrientDB only supports OPTIMISTIC transactions where no lock is kept and all operations are checked at
commit time. This improves concurrency but can throw an oConcurrentModificationException exception in the case where records are

modified by concurrent clients or threads. In this scenario, the client code can reload the updated records and repeat the transaction.

Optimistic transactions keep all the changes in memory in the client. If y ou're using remote storage no changes are sent to the server
until commit() is called. All the changes will be transferred in a block. This reduces network latency, speeds-up the execution, and
increases concurrency. This is a big difference compared to most Relational DBM S where, during a transaction, changes are sent

immediately to the server.

Usage

Transactions are committed only when the commit() method is called and no errors occur. The most common usage of transactions is
to enclose all the database operations inside a try/finally block. On closing of the database ("finally" block) if a pending transaction is

running it will be rolled back automatically. Look at this example:

ODatabaseDocumentTx db = new ODatabaseDocumentTx(url);
db.open("admin", "admin");
try {
db.begin();
// YOUR CODE
db.commit();
} finally {
db.close();
}

Index API

Even though you can use Indices via SQL, the best and most efficient way is to use the Java API.

The main class to use to work with indices is the IndexM anager. To get the implementation of the IndexM anager use:

OIndexManager idxManager = database.getMetadata().getIndexManager();

The Index M anager allows you to manage the index life-cy cle for creating, deleting, and retrieving an index instance. The most common

usage is with a single index. You can get the reference to an index by using:

OIndex<?> idx = database.getMetadata().getIndexManager().getIndex("Profile.name");

Where "Profile.name" is the index name. Note that by default OrientDB assigns the name as <class>.<property> for automatic indices

created against a class's property.

The Olndex interface is similar to a Java Map and provides methods to get, put, remove, and count items. The following are examples of

retrieving records using a UNIQUE index against a name field and a NOTUNIQUE index against a gender field:

http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/index/OIndexManager.html
http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/index/OIndexManager.html
http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/index/OIndex.html

0Index<?> nameIdx = database.getMetadata().getIndexManager().getIndex("Profile.name");
// THIS IS A UNIQUE INDEX, SO IT RETRIEVES A OIdentifiable
OIdentifiable luke = nameIdx.get("Luke");
if(luke !'= null)
printRecord((ODocument) luke.getRecord());
0Index<?> genderIdx = database.getMetadata().getIndexManager().getIndex("Profile.gender");
// THIS IS A NOTUNIQUE INDEX, SO IT RETRIEVES A Set<OIdentifiable>
Set<OIdentifiable> males = genderIdx.get("male");

for(OIdentifiable male : males)
printRecord((ODocument) male.getRecord());

While automatic indices are managed automatically by OrientDB hooks, the manual indices can be used to store any value. To create a
new entry use the put() :

0Index<?> addressbook = database.getMetadata().getIndexManager().getIndex("addressbook™);

addressbook.put("Luke", new ODocument('"Contact").field("name", "Luke");

Resources

e Javadoc: JavaDoc
e OrientDB Studio Web tool.

http://www.orientechnologies.com/javadoc/latest/

Schema

Although OrientDB can work in schema-less mode, sometimes you need to enforce your data model using a schema. OrientDB supports
schema-full or schema-hybrid solutions where the latter means to set such constraints only for certain fields and to leave the user to add
custom fields on the records. This mode is at a class level, so you can have an "Employee" class as schema-full and an

"Employ eeInformation" class as schema-less.

e Schema-Full: enables the strict-mode at class level and sets all the fields as mandatory.
e Schema-Less: creates classes with no properties. Default mode is non strict-mode so records can have arbitrary fields.
e Schema-Hybrid, also called Schema-Mixed is the most used: creates classes and define some fields but allows the user to define

custom fields.
NOTE: Changes to the schema are not transactional, so execute them outside a transaction.
To access to the schema, you can use SQL or API. Will follow examples using Java API.

To gain access to the schema APIs you get the OM etadata object from database instance you're using and then call its getSchema()
method.

0Schema schema = database.getMetadata().getSchema();

Class

A Class is a concept taken from the Object Oriented paradigm. In OrientDB a class defines a type of record. It's the closest concept to a

relational database table. A Class can be schema-less, schema-full, or mixed.

A Class can inherit from another class. This [#Inheritance] means that the sub-class extends the parent class, inheriting all its attributes

as if they were its own.

Each class has its own clusters that can be logical (by default) or physical. A class must have at least one cluster defined (as its default
cluster), but can support multiple ones. In this case By default OrientDB will write new records in the default cluster, but reads will

always involve all the defined clusters.

When you create a new class, by default, a new physical cluster is created with the same name as the class (in lowercase).

Create a persistent class

Each class contains one or more properties (also called fields). This mode is similar to the classic relational DBM S ap proach where you

define tables before storing records.

Here's an example of creating an Account class. By default a new [Concepts#Physical_Cluster Physical Cluster] will be created to keep

the class instances:

OClass account = database.getMetadata().getSchema().createClass("Account");

To create a new Vertex or Edge type you have to extend the "V" and "E" classes, respectively. Example:

OClass person = database.getMetadata().getSchema().createClass("Account",
database.getMetadata().getSchema().getClass("V"));

Look at Graph Schema for more information.

Get a persistent class

To retrieve a persistent class use the getClass(string) method. If the class does not exist then null is returned.

OClass account = database.getMetadata().getSchema().getClass("Account");

Drop a persistent class
To drop a persistent class use the o0Schema.dropClass(string) method.

database.getMetadata().getSchema().dropClass("Account");

The records of the removed class will not be deleted unless you explicitly delete them before dropping the class. Example:

database.command(new OCommandSQL("DELETE FROM Account")).execute();
database.getMetadata().getSchema().dropClass("Account");

Constraints

To work in schema-full mode set the strict mode at the class level by calling the setstrictMode(true) method. In this case, all the

properties of the record must be predefined.

Property

Properties are the fields of the class. In this guide a property is synonymous with a field.

Create the Class property

Once the class has been created, you can define fields (properties). Below is an examp le:

OClass account = database.getMetadata().getSchema().createClass("Account");
account.createProperty("id", OType.INTEGER);
account.createProperty("birthDate", OType.DATE);

Please note that each field must belong to one of these Types.

Drop the Class property
To drop a persistent class property use the oclass.dropProperty(String) method.

database.getMetadata().getSchema().getClass("Account").dropProperty('"name");

The dropped property will not be removed from records unless you explicitly delete them using the [SQLUpdate SQL UPDATE +
REM OVE statement]. Example:

database.getMetadata().getSchema().getClass("Account").dropProperty("name");
database.command(new OCommandSQL("UPDATE Account REMOVE name")).execute();

Define relationships

OrientDB supports two types of relationships: referenced and embedded.

Referenced relationships

OrientDB uses a direct link to the referenced record(s) without the need of a costly JOIN as does the relational world. Example:

https://github.com/orientechnologies/orientdb/wiki/Types

customer

Record A ------------- > Record B
CLASS=Invoice CLASS=Customer
RID=5:23 RID=10:2

Record A will contain the reference to the Record B in the property called "customer". Note that both records are reachable by any other
records since they have a [Concepts#RecordID RecordID].

1-1 and N-1 referenced relationships

1-1 and N-1 referenced relationships are expressed using the LINK type.

OClass customer= database.getMetadata().getSchema().createClass("Customer");
customer.createProperty("name", OType.STRING);

OClass invoice = database.getMetadata().getSchema().createClass("Invoice");
invoice.createProperty("id", OType.INTEGER);

invoice.createProperty("date", OType.DATE);
invoice.createProperty("customer", OType.LINK, customer);

In this case records of class "Invoice" will link to a record of class "Customer" using the field "customer".

1-N and N-M referenced relationships

1-N and N-M referenced relationships are expressed using the collection of links such as:

e LINKLIST as an ordered list of links
e LINKSET as an unordered set of links. It doesn't accept duplicates
e LINKMAP as an ordered map of links with String key. It doesn't accept duplicated keys

Example of a 1-N relationship between the classes Order and OrderItem:

OClass orderItem = db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id", OType.INTEGER);
orderItem.createProperty("animal", OType.LINK, animal);

OClass order = db.getMetadata().getSchema().createClass("Order");
order.createProperty("id", OType.INTEGER);
order.createProperty("date", OType.DATE);
order.createProperty("items", OType.LINKLIST, orderItem);

db.getMetadata().getSchema().save();

Embedded relationships

Embedded records, instead, are contained inside the record that embeds them. It's a kind of relationship stronger than the
[#Referenced_relationships reference]. The embedded record will not have its own [Concepts#RecordID RecordID] since it can't be
directly referenced by other records. It's only accessible via the container record. If the container record is deleted, then the embedded

record will be deleted too. Example:

address
Record A S > Record B
CLASS=Account CLASS=Address
RID=5:23 NO RID!

Record A will contain the entire Record B in the property called "address". Record B can be reached only by traversing the container

record.

Example:

SELECT FROM account WHERE address.city = 'Rome'

1-1 and N-1 embedded relationships

1-1 and N-1 embedded relationships are expressed using the EMBEDDED type.

OClass address = database.getMetadata().getSchema().createClass("Address");

OClass account = database.getMetadata().getSchema().createClass("Account");
account.createProperty("id", OType.INTEGER);
account.createProperty("birthDate", OType.DATE);
account.createProperty("address", OType.EMBEDDED, address);

In this case, records of class "Account" will embed a record of class "Address".

1-N and N-M embedded relationships

1-N and N-M embedded relationships are expressed using the collection of links such as:

e EMBEDDEDLIST, as an ordered list of records.
e EMBEDDEDSET, as an unordered set of records. It doesn't accepts duplicates.
e EMBEDDEDMAP, as an ordered map with records as the value and String as the key. It doesn't accept duplicate keys.

Example of a 1-N relationship between the class Order and OrderItem:

OClass orderItem = db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id", OType.INTEGER);
orderItem.createProperty("animal", OType.LINK, animal);

OClass order = db.getMetadata().getSchema().createClass("Order");
order.createProperty("id", OType.INTEGER);
order.createProperty("date", OType.DATE);
order.createProperty("items", OType.EMBEDDEDLIST, orderItem);

Constraints

OrientDB supports a number of constraints for each field:

e Minimum value, accepts a string because it also works for date ranges setMin()
e Maximum value, accepts a string because it also works for date ranges setMmax()
e Mandatory, must be specified setMandatory()

e Readonly, may not be updated after record is created setReadonly()

o Not Null, cannot be NULL setNotNull()

e Unique, doesn't allow duplicates and speeds up searches.

e Regexp, must satisfy the Regular expression.

Example:

profile.createProperty('"nick", OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);
profile.createIndex('"nickIdx", OClass.INDEX_TYPE.UNIQUE, "nick"); // Creates unique constraint

profile.createProperty('"name", OType.STRING).setMin("3").setMax("30");
profile.createProperty("surname", OType.STRING).setMin("3").setMax("30");
profile.createProperty("registeredon", OType.DATE).setMin("2010-01-01 00:00:00");
profile.createProperty("lastAccessOn", OType.DATE).setMin("2010-01-01 00:00:00");

Indexes as constraints

To ensure that a property value is UNIQUE use the UNIQUE index as a constraint:

profile.createIndex("EmployeeId", OClass.INDEX_TYPE.UNIQUE, "id");

http://en.wikipedia.org/wiki/Regular_expression

To ensure that a group of properties is UNIQUE create a composite index made of multiple fields: Example of creating a composite

index:

profile.createIndex("compositeIdx", OClass.INDEX_TYPE.NOTUNIQUE, "name", "surname");

For more information about indexes look at Indexes.

Working with Fields

OrientDB has a powerful way to extract parts of a Document field. This applies to the Java API, SQL Where conditions, and SQL
projections.

To extract parts you have to use the square brackets.

Extract punctual items

Single item

Example: tags is an EM BEDDEDSET of Strings containing the values ['Smart', 'Geek', 'Cool'].
The expression tags[0] will return 'Smart'.

Single items

Inside square brackets put the items separated by comma ",".

>

Following the tags example above, the expression tags[0,2] will return a list with [Smart, 'Cool'].

Range items

Inside square brackets put the lower and upper bounds of an item, separated by "-".
Following the tags example above, the expression tags[1-2] returns ['Geek', 'Cool'].
Usage in SQL query
Example:

SELECT * FROM profile WHERE phones['home'] LIKE '+39%'
Works the same with double quotes.
You can go in a chain (contacts is a map of map):

SELECT * FROM profile WHERE contacts[phones][home] LIKE '+39%'

With lists and arrays you can pick an item element from a range:

SELECT * FROM profile WHERE tags[0] = 'smart'

and single items:

SELECT * FROM profile WHERE tags[0,3,5] CONTAINSALL ['smart', 'new', 'crazy']

and a range of items:

SELECT * FROM profile WHERE tags[0-5] CONTAINSALL ['smart', 'new', 'crazy']

Condition

Inside the square brackets you can specify a condition. Today only the equals condition is supported.

Example:

employees[label = 'Ferrari']

Use in graphs

non

You can cross a graph using a projection. This an example of traversing all the retrieved nodes with name "Tom". "out" is outEdges and

it's a collection. Previously, a collection couldn't be traversed with the . notation. Example:
SELECT out.in FROM v WHERE name = 'Tom'

This retrieves all the vertices connected to the outgoing edges from the Vertex with name = "Tom'.

A collection can be filtered with the equals operator. This an example of traversing all the retrieved nodes with name "Tom". The

traversal crosses the out edges but only where the linked (in) Vertex has the label "Ferrari" and then forward to the:

SELECT out[in.label = 'Ferrari'] FROM v WHERE name = 'Tom'

Or selecting vertex nodes based on class:

SELECT out[in.@class = 'Car'] FROM v WHERE name = 'Tom'

Or both:

SELECT out[label='drives'][in.@class = 'Car'] FROM v WHERE name = 'Tom'

As you can see where brackets ([]) follow brackets, the result set is filtered in each step like a Pipeline.

NOTE: This doesn't replace the support of GREMLIN. GREMLIN is much more powerful because it does thousands of things more,

but it's a simple and, at the same time, powerful tool to traverse relationships.

Future directions

In the future you will be able to use the full expression of the OrientDB SQL language inside the square brackets [], like:

SELECT out[in.label.trim() = 'Ferrari' AND in.@class='Vehicle'] FROM v WHERE name = 'Tom'

But for this you have to wait yet :-) Monitor the issue: https:/github.com/nuvolabase/orientdb/issues/513

https://github.com/nuvolabase/orientdb/issues/513

Document Database Comparison

This is a comparison page between OrientDB and other DocumentDB projects . To know more about the comparison of OrientDB
against GraphDBs look at this comparison.

NOTE: If any information about any product is outdated or wrong, please send an email to the committers with the link of the

source of the right information. Thanks!

Features matrix

Feature
Web Site
Supported models
Transactions

Query languages

OrientDB
http ://www.orientdb.org
Document and Graph
Yes, ACID

Extended SQL, Gremlin

MongoDB
http ://www.mongodb.org
Document
No

Mongo Query Language

CouchDB
http ://www.couchdb.org
Document
Yes, ACID

Non supported, JS API

http://www.orientdb.org
http://www.mongodb.org
http://www.couchdb.org
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Graph_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
https://github.com/tinkerpop/gremlin/wiki
http://www.mongodb.org/display/DOCS/Querying
http://sitr.us/2009/06/30/database-queries-the-couchdb-way.html

Object API

Object API allows to work with POJOs that bind OrientDB documents. This API is not able work on top of
@ Graph-APL If you are interested on using a Object-Graph mapping framework, look at the available ones
that work on top of Graph-API layer: Object-Graph Mapping.

Requirements

To use the Object APi include the following jars in your classpath:

orientdb-core-*.jar
orientdb-object-*.jar

If you're using the Object Database interface connected to a remote server (not local/embedded mode) include also:

orientdb-client-*.jar
orientdb-enterprise-*.jar

Introduction

The OrientDB Object Interface works on top of the Document-Database and works like an Object Database: manages Java objects
directly. It uses the Java Reflection to register the classes and Javassist tool to manage the Object-to-Document conversion. Please
consider that the Java Reflection in modern Java Virtual M achines is really fast and the discovering of Java meta data is made only at

first time.
Future imp lementation could use also the byte-code enhancement techniques in addition.

The proxied objects have a ODocument bounded to them and transparently replicate object modifications. It also allows lazy loading of
the fields: they won't be loaded from the document until the first access. To do so the object MUST implement getters and setters since

the Javassist Proxy is bounded to them. In case of object load, edit an update all non loaded fields won't be lost.

The database instance has an API to generate new objects already proxied, in case a non-proxied instance is passed it will be serialized,

wrapped around a proxied instance and returned.
Read more about the Binding between Java Objects and Records.

Quick examp le of usage:

http://wiki.syncleus.com/index.php/Ferma:Comparing_the_Alternatives
http://www.jboss.org/javassist
http://en.wikipedia.org/wiki/Mutator_method
http://www.jboss.org/javassist

// OPEN THE DATABASE
0ObjectDatabaseTx db = new OObjectDatabaseTx ("remote:localhost/petshop").open("admin", "admin");

// REGISTER THE CLASS ONLY ONCE AFTER THE DB IS OPEN/CREATED
db.getEntityManager().registerEntityClasses("foo.domain");

// CREATE A NEW PROXIED OBJECT AND FILL IT
Account account = db.newInstance(Account.class);
account.setName("Luke");

account.setSurname("Skywalker");

City rome = db.newInstance(City.class,"Rome", db.newInstance(Country.class,"Italy"));
account.getAddresses().add(new Address("Residence", rome, "Piazza Navona, 1"));

db.save(account);

// CREATE A NEW OBJECT AND FILL IT
Account account = new Account();
account.setName("Luke");

account.setSurname("Skywalker");

City rome = new City("Rome", new Country("Italy"));
account.getAddresses().add(new Address("Residence", rome, "Piazza Navona, 1"));

// SAVE THE ACCOUNT: THE DATABASE WILL SERIALIZE THE OBJECT AND GIVE THE PROXIED INSTANCE
account = db.save(account);

Connection Pool

One of most common use case is to reuse the database avoiding to create it every time. It's also the typical scenario of the Web

applications.

// OPEN THE DATABASE
OObjectDatabaseTx db= OObjectDatabasePool.global().acquire("remote:localhost/petshop", "admin", "admin");

// REGISTER THE CLASS ONLY ONCE AFTER THE DB IS OPEN/CREATED
db.getEntityManager().registerEntityClass("org.petshop.domain");

try {

} finally {
db.close();

}

The close() method doesn't close the database but release it to the owner pool. It could be reused in the future.

Database URL

In the example above a database of type Database Object Transactional has been created using the storage: remote:localhost/petshop.

This address is a URL. To know more about database and storage types go to Database URL.

In this case the storage resides in the same computer of the client, but we're using the remote storage type. For this reason we need a
OrientDB Server instance up and running. If we would open the database directly bypassing the server we had to use the local storage
type such as "plocal:/usr/local/database/petshop/petshop" where, in this case, the storage was located in the /usr/local/database/p etshop

folder on the local file system.

Multi-threading

The OObjectDatabaseTx class is non thread-safe. For this reason use different OObjectDatabaseTx instances by multiple threads. They

will share local cache once transactions are committed.

Inheritance

http://it.wikipedia.org/wiki/Uniform_Resource_Locator

Starting from the release 0.9.19 OrientDB supports the Inheritance. Using the ObjectDatabase the inheritance of Documents fully

matches the Java inheritance.
When registering a new class Orient will also generate the correct inheritance schema if not already generated.

Example:

public class Account {
private String name;
// getters and setters

}

public class Company extends Account {
private int employees;
// getters and setters

}

When you save a Company object, OrientDB will save the object as unique Document in the cluster specified for Company class. When

you search between all the Account instances with:

SELECT FROM account

The search will find all the Account and Company documents that satisfy the query.

Use the database

Before to use a database you need to open or create it:

// CREATE AN IN MEMORY DATABASE
OObjectDatabaseTx dbl = new OObjectDatabaseTx('"memory:petshop™).create();

// OPEN A REMOTE DATABASE
OObjectDatabaseTx db2 = new OObjectDatabaseTx("remote:localhost/petshop").open("admin", "admin");

The database instance will share the connection versus the storage. if it's a local storage, then all the database instances will be

synchronized on it. If it's a remote storage then the network connection will be shared among all the database instances.

To get the reference to the current user use:

Ouser user = db.getUser();

Once finished remember to close the database to free precious resources.

db.close();

Working with POJO

Please read the POJO binding guide containing all the information about the management of POJO.

Work in schema-less mode

The Object Database can be used totally in schema-less mode as long as the POJO binding guide requirements are followed. Schema less

means that the class must be created but even without properties. Take a look to this example:

0ObjectDatabaseTx db = new OObjectDatabaseTx('"remote:localhost/petshop").open("admin"”, "admin');
db.getEntityManager().registerEntityClass(Person.class);

Person p = db.newInstance(Person.class);
p.setName("Luca");

p.setSurname("Garulli");

p.setCity(new City("Rome", "Italy"));

db.save(p);
db.close();

This is the very first example. While the code it's pretty clear and easy to understand please note that we didn't declared "Person"

structure before now. However Orient has been able to recognize the new object and save it in persistent way.

Work in schema-full mode

In the schema-full mode you need to declare the classes you're using, Each class contains one or multiple properties. This mode is
similar to the classic Relational DBM S approach where you need to create tables before storing records. To work in schema-full mode
take a look at the Schema APIs page.

Create a new object

The best practice to create a Java object is to use the OObjectDatabaseTx.newInstance() API:

public class Person {
private String name;
private String surname;

public Person(){

}

public Person {
this.name = name;

}

public Person {
this.name = name;
this.surname = surname;
}
// getters and setters

}

OObjectDatabaseTx db = new OObjectDatabaseTx('"remote:localhost/petshop").open("admin", "admin');
db.getEntityManager().registerEntityClass(Person.class);

// CREATES A NEW PERSON FROM THE EMPTY CONSTRUCTOR
Person person = db.newInstance(Person.class);
person.setName("Antoni");

person.setSurname("Gaudi");

db.save(person);

// CREATES A NEW PERSON FROM A PARAMETRIZED CONSTRUCTOR
Person person = db.newInstance(Person.class, "Antoni");
person.setSurname("Gaudi");

db.save(person);

// CREATES A NEW PERSON FROM A PARAMETRIZED CONSTRUCTOR
Person person = db.newInstance(Person.class,"Antoni", "Gaudi");
db.save(person);

However any Java object can be saved by calling the db.save() method, if not created with the database API will be serialized and saved.
In this case the user have to assign the result of the db.save() method in order to get the proxied instance, if not the database will always

treat the object as a new one. Example:

db.getEntityManager().registerEntityClass(Animal.class);

Animal animal = new Animal();
animal.setName("Gaudi");
animal.setlLocation("Madrid");
animal = db.save(animal);

Note that the behaviour depends by the transaction begun if any. See Transactions.

Browse all the records in a cluster

for (Object o : database.browseCluster("CityCars")) {
System.out.println(((Car) o).getModel());

Browse all the records of a class

for (Animal animal : database.browseClass(Animal.class)) {
System.out.println(animal.getName());

Count records of a class

long cars = database.countClass('"Car'");

Count records of a cluster

long cityCars = database.countCluster('"CityCar");

Update an object

Any proxied object can be updated using the Java language and then calling the db.save() method to synchronize the changes to the

repository. Behaviour depends by the transaction begun if any. See Transactions.

animal.setLocation("Nairobi");
db.save(animal);
Orient will update only the fields really changed.

Examp le of how to update the price of all the animals by 5% more:

for (Animal animal : database.browseClass(Animal.class)) {
animal.setPrice(animal.getPrice() * /);
database.save(animal);

}

If the db.save() method is called with a non-proxied object the database will create a new document, even if said object were already

saved

Delete an object

To delete an object call the db.delete() method on a proxied object. If called on a non-proxied object the database won't do anything.

Behaviour also depends by the transaction begun if any. See Transactions.

db.delete(animal);

Example of deletion of all the objects of class "Animal".

for (Animal animal : database.browseClass(Animal.class))
database.delete(animal);
Cascade deleting

Object Database uses JPA annotations to manage cascade deleting. It can be done expliciting (orphanRemoval = true) or using the
CascadeType. The first mode works only with @OneToOne and @OneToM any annotations, the CascadeType works also with
@M anyToM any annotation.

Example:

public class JavaCascadeDeleteTestClass {

@0neToOne (orphanRemoval = true)
private JavaSimpleTestClass simpleClass;

@vanyToMany(cascade = { CascadeType.REMOVE })
private Map<String, Child> children = new HashMap<String, Child>();

@0neToMany (orphanRemoval = true)
private List<Child> list = new ArrayList<Child>();

@0neToMany (orphanRemoval = true)
private Set<Child> set = new HashSet<Child>();

// GETTERS AND SETTERS

so calling

database.delete(testClass);

or

for (JavaCascadeDeleteTestClass testClass : database.browseClass(JavaCascadeDeleteTestClass.class))
database.delete(testClass);

will also delete JavaSimpleTestClass instances contained in "simpleClass" field and all the other documents contained in "children","list"

and "test"

Attaching and Detaching

Since version 1.1.0 the Object Database provides attach(Object) and detach(Object) methods to manually manage object to document

data transfer.

Attach

With the attach method all data contained in the object will be copied in the associated document, overwriting all existing informations.

Animal animal = database.newInstance(Animal.class);
animal.name = "Gaudi" ;

animal.location = "Madrid";
database.attach(animal);

database.save(animal);

in this way all changes done within the object without using setters will be copied to the document.

There's also an attachAndSave(Object) methods that after attaching data saves the object.

Animal animal = database.newInstance(Animal.class);
animal.name = "Gaudi" ;

animal.location = "Madrid";
database.attachAndSave(animal);

This will do the same as the example before

Detach

With the detach method all data contained in the document will be copied in the associated object, overwriting all existing informations.
The detach(Object) method returns a proxied object, if there's a need to get a non proxied detached instance the detach(Object,boolean)
can be used.

Animal animal = database.load(rid);
database.detach(animal);

this will copy all the loaded document information in the object, without needing to call all getters. This methods returns a proxied

instance

Animal animal = database.load(rid);
animal = database.detach(animal, true);

this example does the same as before but in this case the detach will return a non proxied instance.

Since version 1.2 there's also the detachAll(Object, boolean) method that detaches recursively the entire object tree. This may throw a
StackOverflowError with big trees. To avoid it increase the stack size with -Xss java option. The boolean parameter works the same as
with the detach() method.

Animal animal = database.load(rid);
animal = database.detachAll(animal, true);

Lazy detachAll

(Since 2.2)

When calling detachAll(object,true) on a large object tree, the call may become slow, especially when working with remote connections.

It will recurse through every link in the tree and load all dep endencies.

To only load parts of the object tree, you can add the @OneToOne(fetch=FetchType.LAZY) annotation like so:

public class LazyParent {

@Id
private String id;

@0neToOne(fetch = FetchType.LAZY)
private LazyChild child;

public class LazyChild {

@1d
private ORID id;

private String name;

public ORID getId {

return id;

}

public void setId {
this.id = id;

}

public String getName() {
return name;

}

public void setName {
this.name = name;

}

In the above example, when calling detachAll(lazy Parent,true), the child variable (if a link is available) will contain a normal Lazy Child
object, but only with the id loaded. So the name property will be null, as will any other property that is added to the class. The id object
can be used to load the Lazy Child object in a later stage.

Execute a query

Although OrientDB is part of NoSQL databases, supports the SQL engine, or at least a subset of it with such extensions to work with
objects and graphs.

To know more about the SQL syntax supported go to: SQL-Query.

Example:

List<Animal> result = db.query(
new 0SQLSynchQuery<Animal>("select * from Animal where ID = 10 and name like 'G%'"));

Right usage of the graph

OrientDB is a graph database. This means that traversing is very efficient. You can use this feature to optimize queries. A common

technique is the Pivoting.

SQL Commands

To execute SQL commands use the command() method passinga OCommandSQL object:

int recordsUpdated = db.command(
new OCommandSQL ("UPDATE Animal SET sold = false'")).execute();

See all the SQL. Commands.

Get the ODocument from a POJO

The OObjectDatabaseTx implementation has APIs to get a document from its referencing object:

ODocument doc = db.getRecordByUserObject(animal);

In case of non-proxied objects the document will be a new generated one with all object field serialized in it.

Get the POJO from a Record

The Object Database can also create an Object from a record.

Object pojo = db.getUserObjectByRecord(record);

Schema Generation

Since version 1.5 the Object Database manages automatic S chema generation based on registered entities. This operation can be

e manual

e automatic
The ObjectDatabase will generate class properties based on fields declaration if not created yet.

Changes in class fields (as for type changing or renaming) types won't be updated, this operation has to be done manually

Manual Schema Generation
Schema can be generated manually for single classes or entire packages:

Version 1.6

db.getMetadata().getSchema().generateSchema(Foo.class); // Generates the schema for Foo class
db.getMetadata().getSchema().generateSchema('com.mycompany.myapp.mydomainpackage"); // Generates the schema for all classes c
ontained in the given package

Version 1.5

db.generateSchema(Foo.class); // Generates the schema for Foo class
db.generateSchema("com.mycompany .myapp.mydomainpackage"); // Generates the schema for all classes contained in the given packa
ge

Automatic Schema Generation

By setting the "automaticSchemaGeneration" property to true the schema will be generated automatically on every class declaration.

db.setAutomaticSchemaGeneration(true);

db.getEntityManager().registerClass(Foo.class); // Generates the schema for Foo class after registering.
db.getEntityManager().registerEntityClasses('"com.mycompany.myapp.mydomainpackage"); // Generates the schema for all classes co
ntained in the given package after registering.

class Foo could look like, generating one field with an Integer and ignoring the String field.

public class Foo {
private transient String fieldl; // ignore this field
private Integer field2; // create a Integer

Standard schema management equivalent

Having the Foo class defined as following

public class Foo{
private String text;
private Child reference;
private int number;
//getters and setters

}

schema generation will create "text", "reference" and "number" properties as respectively STRING, LINK and INTEGER types.

The default schema management API equivalent would be

OClass foo = db.getMetadata().getSchema().getClass(Foo.class);
OClass child = db.getMetadata().getSchema().getClass(Child.class)
foo.createProperty("text",0Type.STRING);
foo.createProperty('"number",0Type.INTEGER);
foo.createProperty("text",0Type.LINK, child);
db.getMetadata().getSchema().save();

Schema synchronizing

Since version 1.6 there's an API to synchronize schema of all registered entities.

db.getMetadata().getSchema().synchronizeSchema();

By calling this API the ObjectDatabase will check all registered entities and generate the schema if not generated yet. This management

is useful on multi-database enviroments

Old Implementation ODatabaseObjectTx

Until the release 1.0rc9 the Object Database was implemented as the class com.orientechnologies.orient.db.object.0ODatabaseObjectTx .

This class is deprecated, but if you want to continue to use it change the package to: com.orientechnologies.orient.object.db .

Introduction

This implementation and documentation refers to all ODatabaseObjectXXX deprecated classes.

The Orient Object DB works on top of the Document-Database and it's able to treat Java objects without the use of pre-processor, byte
enhancer or Proxy classes. It uses the simpler way: the Java Reflection. Please consider that the Java reflection in modern Java Virtual
M achines is really fast and the discovering of Java meta data is made at first time. Future imp lementation could use the byte-code

enhancement techniques in addition.
Read more about the Binding between Java Objects and Records.

Quick examp le of usage:

// OPEN THE DATABASE
ODatabaseObjectTx db = new ODatabaseObjectTx ("remote:localhost/petshop").open("admin", "admin");

db.getEntityManager().registerEntityClasses("foo.domain");
// CREATE A NEW ACCOUNT OBJECT AND FILL IT

Account account = new Account()

account.setName("Luke");

account.setSurname("Skywalker");

City rome = new City("Rome", new Country("Italy"));
account.getAddresses().add(new Address("Residence", rome, "Piazza Navona, 1"));

db.save(account);

Connection Pool

One of most common use case is to reuse the database avoiding to create it every time. It's also the typical scenario of the Web

applications.

// OPEN THE DATABASE
ODatabaseObjectTx db= ODatabaseObjectPool.global().acquire("remote:localhost/petshop"”, "admin", "admin');

db.close();

The close() method doesn't close the database but release it to the owner pool. It could be reused in the future.

Inheritance

Starting from the release 0.9.19 OrientDB supports the Inheritance. Using the ObjectDatabase the inheritance of Documents fully

matches the Java inheritance.

Example:

public class Account {
private String name;

}

public class Company extends Account {
private int employees;

}

When you save a Company object, OrientDB will save the object as unique Document in the cluster specified for Company class. When

you search between all the Account instances with:

SELECT FROM account

The search will find all the Account and Company documents that satisfy the query.

Object Binding

The ObjectDatabase implementation makes things easier for the Java developer since the binding between Objects to Records is

transparent.

How it works?

OrientDB uses Java reflection and Javassist Proxy to bound POJOs to Records directly. Those proxied instances take care about the
synchronization between the POJO and the underlying record. Every time you invoke a setter method against the POJO, the value is
early bound into the record. Every time you call a getter method the value is retrieved from the record if the POJO's field value is null.

Lazy loading works in this way too.
So the Object Database class works as wrapper of the underlying Document-Database.

NOTE: In case a non-proxied object is found it will be serialized, proxied and bounded to a corresponding Record.

Requirements

Declare persistent classes

Before to use persistent POJOs OrientDB needs to know which classes are persistent (between thousands in your classpath) by

registering the persistent packages and/or classes. Example:

database.getEntityManager().registerEntityClasses("com.orientechnologies.orient.test.domain");

This must be done only right after the database is created or opened.

Naming conventions

OrientDB follows some naming conventions to avoid writing tons of configuration files but just applying the rule "Convention over

Configuration". Below those used:

1. Java classes will be bound to persistent classes defined in the OrientDB schema with the same name. In OrientDB class names are
case insensitive. The Java class name is taken without the full package. For example registering the class Account in the package
com.orientechnologies.demo , the expected persistent class will be "Account" and not the entire
com.orientechnologies.demo.Account . This means that class names, in the database, are always unique and can't exist two class
with the same name even if declared in different packages.

2. Java class's attributes will be bound to the fields with the same name in the persistent classes. Field names are case sensitive.

Empty constructor

All the Java classes must have an empty constructor to let to OrientDB to create instances.

Getters and Setters

All your classes must have getters and setters of every field that needs to be persistent in order to let to OrientDB to manage proxy

operations. Getters and Setters also need to be named same as the declaring field: Example:

http://www.javassist.org/
http://en.wikipedia.org/wiki/Mutator_method#Java_example
http://en.wikipedia.org/wiki/Mutator_method#Java_example

public class Test {

private String textField;
private int intField;

public String getTextField() {
return textField;

3

public void setTextField {
textField = iTextField;

3

// THIS DECLARATION WON'T WORK, ORIENTDB WON'T BE ABLE TO RECOGNIZE THE REAL FIELD NAME
public int getInt(){
return intField;

}
// THIS DECLARATION WON'T WORK, ORIENTDB WON'T BE ABLE TO RECOGNIZE THE REAL FIELD NAME
public void setInt(int {
intField = iInt;
}

Collections and Maps

To avoid ClassCastExecption when the Java classes have Collections and Maps, the interface must be used rather than the Java
implementation. The classic mistake is to define in a persistent class the types ArrayList, HashSet, HashMap instead of List, Set and
Map.

Example:

public class MyClass{
// CORRECT
protected List<MyElement> correctList;

// WRONG: WILL THROW A ClassCastException
protected ArrayList<MyElement> wrongList;

// CORRECT
protected Set<MyElement> correctSet;

// WRONG: WILL THROW A ClassCastException
protected TreeSet<MyElement> wrongSet;

// CORRECT
protected Map<String, MyElement> correctMap;

// WRONG: WILL THROW A ClassCastException
protected HashMap<String, MyElement> wrongMap;

POJO binding

OrientDB manages all the POJO attributes in persistent way during read/write from/to the record, except for the fields those:

have the transient modifier

have the static modifier,

e haven't getters and setters

e are set with anonymous class types.

OrientDB uses the Java reflection to discovery the POJO classes. This is made only once during the registration of the domain classes.

Default binding

This is the default. It tries to use the getter and setter methods for the field if they exist, otherwise goes in RAW mode (see below). The
convention for the getter is the same as Java: get<field-name> where field-name is capitalized. The same is for setter but with 'set' as

prefix instead of 'get": set<field-name> . If the getter or setter is missing, then the raw binding will be used.

Example: Field ' string name '-> getName() and setName(String)

Custom binding

Since v1.2 Orient provides the possibility of custom binding extending the OObjectM ethodFilter class and registering it to the wanted
class.

e The custom implementation must provide the public boolean isHandled(Method m) to let Orient know what methods will be
managed by the ProxyHandler and what methods won't.
e The custom implementation must provide the public String getFieldName(Method m) to let orient know how to parse a field name

starting from the accessing method name. In the case those two methods are not provided the default binding will be used

The custom M ethodFilter can be registered by calling oobjectEntityEnhancer.getInstance().registerClassMethodFilter(Class<?>,
customMethodFilter);

Domain class example:

public class CustomMethodFilterTestClass {
protected String standardField;
protected String UPPERCASEFIELD;
protected String transientNotDefinedField;

// GETTERS AND SETTERS

Method filter example:

public class CustomMethodFilter extends OObjectMethodFilter {
@override
public boolean isHandled {
if (m.getName().contains("UPPERCASE")) {
return true;
} else if (m.getName().contains("Transient")) {
return false;
}

return super.isHandled(m);

@Override
public String getFieldName {
if (m.getName().startswWith("get")) {
if (m.getName().contains("UPPERCASE")) {
return "UPPERCASEFIELD";
3
return getFieldName(m.getName(), "get");
} else if (m.getName().startswWith("set")) {
if (m.getName().contains("UPPERCASE")) {
return "UPPERCASEFIELD";
3
return getFieldName(m.getName(), "set");
} else
return getFieldName(m.getName(), "is");

Method filter registration example:

0OObjectEntityEnhancer.getInstance().registerClassMethodFilter (CustomMethodFilterTestClass.class, new CustomMethodFilter());

Read a POJO

You can read a POJO from the database in two ways:

e by calling the method 1oad(0ORID)

e by executing a query query(q)

When OrientDB loads the record, it creates a new POJO by calling the empty constructor and filling all the fields available in the source
record. If a field is present only in the record and not in the POJO class, then it will be ignored. Even when the POJO is updated, any

fields in the record that are not available in the POJO class will be untouched.

Save a POJO

You can save a POJO to the database by calling the method save(pojo) . If the POJO is already a proxied instance, then the database
will just save the record bounded to it. In case the object is not proxied the database will serialize it and save the corresponded record: In
this case the object MUST be reassinged with the one returned by the database

Fetching strategies

Starting from release 0.9.20, OrientDB supports Fetching-Strategies by using the Fetch Plans. Fetch Plans are used to customize how
OrientDB must load linked records. The ODatabaseObjectTx uses the Fetch Plan also to determine how to bind the linked records to the
POJO by building an object tree.

Custom types

To let OrientDB use not supported types use the custom types. They MUST BE registered before domain classes registration, if not all
custom type fields will be treated as domain classes. In case of registering a custom type that is already register as a domain class said

class will be removed.
Important: java.lang classes cannot be managed this way
Examp le to manage an enumeration as custom type:

Enum declaration

public enum SecurityRole {
ADMIN("administrador"), LOGIN("login");
private String id;

private SecurityRole {
this.id = id;
3
public String getId() {
return id;
3
@override
public String toString() {
return id;
}
public static SecurityRole getByName {
if (ADMIN.name().equals(name)) {
return ADMIN;
} else if (LOGIN.name().equals(name)) {
return LOGIN;
}
return null;
}

public static SecurityRole[] toArray() {
return new SecurityRole[] { ADMIN, LOGIN };

Custom type management

OObjectSerializerContext serializerContext = new OObjectSerializerContext();
serializerContext.bind(new OObjectSerializer<SecurityRole, String>() {

public Object serializeFieldValue {

return role.name();

public Object unserializeFieldValue {
return SecurityRole.getByName(str);
}
b
OObjectSerializerHelper.bindSerializerContext(null, serializerContext);
// NOW YOU CAN REGISTER YOUR DOMAIN CLASSES

database.getEntityManager().registerEntityClass(User.class);

OrientDB will use that custom serializer to marshall and unmarshall special types.

ODatabaseObjectTx (old deprecated implementation)

Available since v1.0rc9

The ObjectDatabase implementation makes things easier for the Java developer since the binding between Objects to Records is

transparent.

How it works?

OrientDB uses Java reflection and doesn't require that the POJO is enhanced in order to use it according to the JDO standard and
doesn't use Proxies as do many JPA implementations such as Hibernate. So how can you work with plain POJOs?

OrientDB works in two ways:

e Connected mode

http://java.sun.com/jdo
http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://www.hibernate.org

o Detached mode

Connected mode

The ODatabaseObject Tx implementation is the gateway between the developer and OrientDB. ODatabaseObjectTx keeps track of the
relationship between the POJO and the Record.

Each POJO that's read from the database is created and tracked by ODatabaseObjectTx. If you change the POJO and call the
ODatabaseObjectTx.save(pojo) method, OrientDB recognizes the POJO bound with the underlying record and, before saving it, will
copy the POJO attributes to the loaded record.

This works with POJOs that belong to the same instance. For example:

ODatabaseObjectTx db = new ODatabaseObjectTx('"remote:localhost/demo™);
db.open("admin", "admin");

try{
List<Customer> result = db.query(new 0SQLSynchQuery<Customer>(db, "select from customer"));

for(Customer c : result){
c.setAge(B
db.save(c); // <- AT THIS POINT THE POJO WILL BE RECOGNIZED AS KNOWN BECAUSE IS
// ALWAYS LOADED WITH THIS DB INSTANCE

}

} finally {
db.close;

}

When the db.save(¢) is called, the ODatabaseObjectTx instance already knows obout it because has been retrieved by using a query

through the same instance.

Detached mode

In a typical Front-End application you need to load objects, display them to the user, capture the changes and save them back to the
database. Usually this is implemented by using a database pool in order to avoid leaving a database instance open for the entire life cycle

of the user session.

The database pool manages a configurable number of database instances. These instances are recy cled for all database operations, so the
list of connected POJOs is cleared at every release of the database pool instance. This is why the database instance doesn't know the
POJO used by the application and in this mode if you save a previously loaded POJO it will appear as a NEW one and is therefore

created as new instance in the database with a new RecordID.

This is why OrientDB needs to store the record information inside the POJO itself. This is retrieved when the POJO is saved so it is

known if the POJO already has own identity (has been previously loaded) or not (it's new).
To save the Record Identity you can use the JPA @Id annotation above the property interested. You can declare it as:

e Object, the suggested, in this case OrientDB will store the ORecordId instance
e String, in this case OrientDB will store the string representation of the ORecordId
e Long, in this case OrientDB will store the right part of the RecordID. This works only if you've a schema for the class. The left

side will be rebuilt at save time by getting the class id.

Example:

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/5/api/javax/persistence/Id.html

public class Customer{
@1d
private Object id; // DON'T CREATE GETTER/SETTER FOR IT TO PREVENT THE CHANGING BY THE USER APPLICATION,
// UNLESS IT'S NEEDED

private String name;
private String surname;

public String getName(){
return name;

}

public void setName(String name){
this.name = name;

public String getSurname(){
return name;

}

public void setSurname(String surname){
this.surname = surname;

OrientDB will save the Record Identity in the id property even if getter/setter methods are not created.

If you work with transactions you also need to store the Record Version in the POJO to allow M VCC. Use the JPA @Version

annotation above the property interested. You can declare it as:

e java.lang.Object (suggested) - a com.orientechnologies.orient.core.version.OSimple Version is used
e java.lang.Long

e java.lang.String

Example:

public class Customer{
@1d
private Object id; // DON'T CREATE GETTER/SETTER FOR IT TO PREVENT THE CHANGING BY THE USER APPLICATION,
// UNLESS IT'S NEEDED

@version
private Object version; // DON'T CREATE GETTER/SETTER FOR IT TO PREVENT THE CHANGING BY THE USER APPLICATION,
// UNLESS IT'S NEEDED

private String name;
private String surname;

public String getName(){
return name;

}

public void setName(String name){
this.name = name;

public String getSurname(){
return name;

}

public void setSurname(String surname){
this.surname = surname;

Save Mode

Since OrientDB doesn't know what object is changed in a tree of connected objects, by default it saves all the objects. This could be very
expensive for big trees. This is the reason why you can control manually what is changed or not via a setting in the ODatabaseObjectTx

instance:

db.setSaveOnlyDirty(true);

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/5/api/javax/persistence/Version.html

or by setting a global parameter (see Parameters):

0GlobalConfiguration.OBJECT_SAVE_ONLY_DIRTY.setValue(true);

To track what object is dirty use:

db.setDirty(pojo);

To unset the dirty status of an object use:

db.unsetDirty(pojo);

Dirty mode doesn't affect in memory state of POJOs, so if you change an object without marking it as dirty, OrientDB doesn't know
that the object is changed. Furthermore if you load the same changed object using the same database instance, the modified object is

returned.

Requirements

Declare persistent classes
In order to know which classes are persistent (between thousands in your classpath), you need to tell OrientDB. Using the Java API is:

database.getEntityManager().registerEntityClasses("com.orientechnologies.orient.test.domain");

OrientDB saves only the final part of the class name without the package. For example if you're using the class Account in the package
com.orientechnologies.demo , the persistent class will be only "Account" and not the entire com.orientechnologies.demo.Account . This
means that class names, in the database, are always unique and can't exist two class with the same name even if declared in different

packages.

Empty constructor

All your classes must have an empty constructor to let to OrientDB to create instances.

POJO binding

All the POJO attributes will be read/stored from/into the record except for fields with the transient modifier. OrientDB uses Java
reflection but the discovery of POJO classes is made only the first time at startup. Java Reflection information is inspected only the

first time to speed up the access to the fields/methods.
There are 2 kinds of binding:
e Default binding and

e Raw binding

Default binding

This is the default. It tries to use the getter and setter methods for the field if they exist, otherwise goes in RAW mode (see below). The
convention for the getter is the same as Java: get<field-name> where field-name is capitalized. The same is for setter but with 'set' as

prefix instead of 'get": set<field-name> . If the getter or setter is missing, then the raw binding will be used.

Example: Field ' string name '-> getName() and setName(String)

Raw binding

http://code.google.com/p/orient/wiki/PerformanceTuning#Parameters

This mode acts at raw level by accessing the field directly. If the field signature is private or protected, then the accessibility will be
forced. This works generally in all the scenarios except where a custom Security M anager is defined that denies the change to the

accessibility of the field.

To force this behaviour, use the JPA 2 @AccessType annotation above the relevant property. For example:

public class Customer{
@AccessType(FIELD)
private String name;

private String surname;
public String getSurname(){

return name;

}

public void setSurname {
this.surname = surname;
}
}

Read a POJO

You can read a POJO from the database in two ways:

e by calling the method 1oad(0RID)
e by executing a query query(q)

When OrientDB loads the record, it creates a new POJO by calling the empty constructor and filling all the fields available in the source
record. If a field is present only in the record and not in the POJO class, then it will be ignored. Even when the POJO is updated, any
fields in the record that are not available in the POJO class will be untouched.

Callbacks

You can define some methods in the POJO class that are called as callbacks before the record is read:

e @OBeforeDeserialization called just BEFORE unmarshalling the object from the source record

o @OAfterDeserialization called just AFTER unmarshalling the object from the source record

Example:

public class Account{
private String name;
transient private String status;

@OAfterDeserialization

public void init(){
status = "Loaded";

}
}

Callbacks are useful to initialize transient fields.

Save a POJO

You can save a POJO to the database by calling the method save(pojo) . If the POJO is already known to the ODatabaseObjectTx
instance, then it updates the underlying record by copying all the POJO attributes to the records (omitting those with transient

modifier).

Callbacks

You can define in the POJO class some methods called as callback before the record is written:

e (@OBeforeSerialization called just BEFORE marshalling the object to the record

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/6/api/javax/persistence/AccessType.html
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OBeforeDeserialization.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OAfterDeserialization.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OBeforeSerialization.java

e @OAfterSerialization called just AFTER marshalling the object to the record

Example:

public class Account{
private String name;
transient private Socket s;

@0AfterSerialization

public void free(){
s.close();

Callbacks are useful to free transient resources.
== Fetching strategies =v

Starting from release 0.9.20, OrientDB supports Fetching-Strategies by using the Fetch Plans. Fetch Plans are used to customize how
OrientDB must load linked records. The ODatabaseObjectTx uses the Fetch Plan also to determine how to bind the linked records to the
POJO by building an object tree.

Custom types

To let OrientDB use not supported types use the custom types. Register them before to register domain classes. Example to manage a

Biglnteger (that it's not natively supported):

OObjectSerializerContext serializerContext = new OObjectSerializerContext();
serializerContext.bind(new OObjectSerializer<BigInteger, Integer>() {

public Integer serializeFieldValue {
return iFieldvalue.intValue();

}

public BigInteger unserializeFieldValue {
return new BigInteger(iFieldvalue);

}

¥

OObjectSerializerHelper.bindSerializerContext(null, serializerContext);

// NOW YOU CAN REGISTER YOUR DOMAIN CLASSES
database.getEntityManager().registerEntityClass(Customer.class);

OrientDB will use that custom serializer to marshall and unmarshall special types.

http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OAfterSerialization.java

Traverse

OrientDB is a graph database. This means that the focal point is on relationships (links) and how they are managed. The standard SQL

language is not enough to work with trees or graphs because it lacks the recursion concept. This is the reason why OrientDB provides a

new command to traverse trees and graphs: TRAVERSE. Traversing is the operation that crosses relationships between records

(documents, vertexes, nodes, etc). This operation is much much faster than executing a JOIN in a Relational database.

The main concepts of Traversal are:

target, as the starting point where to traverse records. Can be:

o class

o cluster

o set of records, specifying its RecordID

o sub-command that returns an Iterable<oIdentifiable> . You can nest multiple select and traverse all together
fields, the fields to traverse. Use * , any() or all() to traverse all fields in a document
limit, the maximum number of records to retrieve
predicate, as the predicate to execute against each traversed document. If the predicate returns true, the document is returned,
otherwise it is skipped
strategy, indicates how the graph traversed:

o DEPTH_FIRST, the default,

o BREADTH_FIRST,

Traversing strategies

DEPTH_FIRST strategy

This is the default strategy used by OrientDB for traversal. It explores as far as possible along each branch before backtracking, It's

implemented using recursion. To know more look at Depth-First algorithm. Below the ordered steps executed while traversing the graph
using DEPTH_FIRST strategy:

BREADTH_FIRST strategy

https://github.com/orientechnologies/orientdb/wiki/Java-Traverse#depth_first-strategy
https://github.com/orientechnologies/orientdb/wiki/Java-Traverse#breadth_first-strategy
http://en.wikipedia.org/wiki/Depth-first_search

It inspects all the neighboring nodes, then for each of those neighbor nodes in turn, it inspects their neighbor nodes which were
unvisited, and so on. Compare BREADTH_FIRS T with the equivalent, but more memory-efficient iterative deepening DEPTH_FIRST
search and contrast with DEPTH_FIRST search. To know more look at Breadth-First algorithm. Below the ordered steps executed
while traversing the graph using BREADTH_FIRST strategy:

Context variables

During traversal some context variables are managed and can be used by the traverse condition:

$depth, as an integer that contain the depth level of nesting in traversal. First level is 0

$path, as a string representation of the current position as the sum of traversed nodes

$stack, as the stack current node traversed

S$history, as the entire collection of visited nodes

The following sections describe various traversal methods.

SQL Traverse

The simplest available way to execute a traversal is by using the SQL Traverse command. For instance, to retrieve all records connected

from and to Movie records up to the 5th level of depth:

for (OIdentifiable id : new 0SQLSynchQuery<ODocument>("traverse in, out from Movie while $depth <= 5")) {
System.out.println(id);
}

Look at the command syntax for more information.

Native Fluent API

Native API supports fluent execution guaranteeing compact and readable syntax. The main class is oTraverse :

® target(<iter:Iterable<OIdentifiable>>) , to specify the target as any iterable object like collections or arrays of Oldentifiable
objects.
® target(<iter:Iterator<OIdentifiable>>) ,to specify the target as any iterator object. To specify a class use
database.browseClass(<class-name>).iterator()

® target(<record:0Identifiable>, <record:0Identifiable>, ...) ,to specify the target as a var ars of Olterable objects

http://en.wikipedia.org/wiki/Breadth-first_search

e field(<field-name:string>) , to specify the document's field to traverse. To add multiple field call this method in chain. Example:
.field("in").field("out")

e fields(<field-name:string>, <field-name:string>, ...) ,to specify multiple fields in one call passing a var args of Strings

e fields(Collection<field-name:string>) , to specify multiple fields in one call passing a collection of String

e Llimit(<max:int>) , as the maximum number of record returned

e predicate(<predicate:0CommandPredicate>) , to specify a predicate to execute against each traversed record. If the predicate returns
true, then the record is returned as result, otherwise false. it's common to create an anonymous class specifying the predicate at the
fly

e predicate(<predicate:0SQLPredicate>) , to specify the predicate using the SQL syntax.

In the traverse command context iContext you can read/put any variable. Traverse command updates these variables:

e depth, as the current depth of nesting
e path, as the string representation of the current path. You can also display it. Example: select $path from (traverse * from V)
e stack, as the List of operation in the stack. Use it to access to the history of the traversal. It's a List<0TraverseAbstractProcess<?
>> where process implementations are:
o OTraverseRecordSetProcess , usually the first one it's the base target of traverse
o OTraverseRecordProcess , represent a traversed record
o OTraverseFieldProcess , represent a traversal through a record's field
o OTraverseMultivValueProcess , use on fields that are multivalue: arrays, collections and maps

e history, as the set of records traversed as a Set<ORID> .

Example using an anonymous OCommandPredicate as predicate

for (OIdentifiable id : new OTraverse()
.field("in").field("out")
.target(database.browseClass('"Movie").iterator())
.predicate(new OCommandPredicate() {

public Object {
return ((Integer) iContext.getVariable("depth")) <= 5;

}
m e

System.out.println(id);
}

Example using the OSQLPredicate as predicate

for (OIdentifiable id : new OTraverse()
.field("in").field("out")
.target(database.browseClass("Movie").iterator())
.predicate(new OSQLPredicate("$depth <= 5"))) {

System.out.println(id);
}

Other examples

OTraverse gets any Iterable, Iterator and Single/M ulti OIdentifiable. There's also the limit() clause. To specify multiple fields use
fields(). Full example:

for (OIdentifiable id : new OTraverse()
.target(new ORecordId("#6:0"), new ORecordId("#6:1"))
.fields("out", "int")
Jlimit()
.predicate(new OSQLPredicate("$depth <= 10"))) {

System.out.println(id);
3

Live Query

(Since 2.1)

Writing realtime, reactive applications is hard task with traditional query paradigm. Think about a simple use case like updating a
web page with fresh data coming from the database and keeping it updated over time; also consider that updates can be made by

different data sources (multiple applications, manual DBA operations...).

With a traditional approach, the client has to poll the database to obtain fresh data. This approach has three fundamental problems:

the client never knows whether something has changed in the DB, so it will execute polling queries even when nothing has changed.

This can be a big waste of resources, especially when the query is expensive
e if you need (near) realtime data, the client will have to poll the database very often
results arrive to the client at fixed time intervals, so if a change happens in the database at the middle of that time interval, the result

will arrive to the client only at the next query
The image below summarizes this situation

traditional query polling approach

Waste of resources

(|
. S
Client r Y ~ A A A =
=3 B R el | A gl |~
= oz = (o' = o = o =3 0
o ol ol ol o
L 4 L 4 L 4 v \ 4
DB "‘f >
£ | Delay
h=]
o
= |
Data >
Source

You have to make a choice here

e you can decide to have long polling intervals, reducing execution overhead, but having updated results later

e you can decine to have short polling intervals, having updated results sooner, but with a high execution overhead

With LiveQuery you can subscribe for changes on a particular class (or on a subset of records based on a WHERE condition);

OrientDB will push changes to the client as soon as they happen in the database.

LiveQuery approach

No resources wasted

A

——
\ 4

Client 'y yy
S
[S
S| [2 | &
= 2
=1
\ 4 \ 4 >

Immediate notification

Update

Data
Source

v

Advantages are obvious:

e you do not have to poll the database, so there is no waste of resources when data do not change

e you get notifications as soon as changes happen in the db (no matter what the data source is)

Traditional queries vs. Live Query

When executing a SELECT statement (synchronous or asynchronous), you expect the system to return results that are currently present

in the database and that match your selection criteria. You expect your result set to be finite and your query to execute in a given time.

A live query acts in a slightly different way:

e it does not return data as they are at the moment of the query execution
e it returns changes that happen to the database from that moment on and that match your criteria

e it never ends (unless you terminate it or an error occurs)
e it is asynchronous and push based: the server will send you data as soon as they are available, you just have to provide a callback.

To make the difference explicit, here is a simple example (just the flow of results in a meta-language, not a working example)

Standard query

A client executes a query on the DB

SELECT FROM PERSON

The client will receive a result that represents the current situation in the database:

RID, NAME, SURNAME
#12:0, "John", "Smith"
#12:1, "Foo", "Bar"

Number of results: 2

Another client inserts new data in the DB

INSERT INTO PERSON SET NAME = 'Jenny'

The first client will not receive this record, because the SELECT result set is closed. In short, this INSERT operation will not affect the

previous query.

LIVE query
The client executes this query:

LIVE SELECT FROM PERSON

the immediate result of this query is just the unique identifier of the query itself (no data are returned, even if data are present in the DB)

token: 1234567 // Unique identifier of this live query, needed for unsubscribe

Another client inserts new data in the DB

INSERT INTO PERSON SET name = 'Jenny'

The first client will receive a message with the following content (schematic):

content: {@rid: #12:0, name: 'Jenny'}
operation: insert

Another client updates existing data

UPDATE PERSON SET NAME = 'Kerry' WHERE NAME = 'Jenny'

The first client will receive a message with the following content (schematic):

content: {@rid: #12:0, name: 'Kerry'}
operation: update

Now the first client can decide to unsubscribe from this LiveQuery

LIVE UNSUBSCRIBE 1234567

From now on, the live query will not return any other results to the client.

When should you use LiveQuery

LiveQuery is particularly useful in the following scenarios:

e when you need continuous (realtime) updates and you have multiple clients accessing different data subsets: polling is a an
expensive op eration, having thousands of clients that execute continuous polling could crash any server; in the best case it will be a
waste of resources, especially if updates happen rarely

e when you have multiple data sources that insert/update data: if you have a single data source that populate the database, then you
can intercept it and let it directly notify the clients for changes; unfortunately it almost never happens, in the majority of the use
cases you will have multiple data sources, sometimes automatic (eg. applications) sometimes manual (your DBA that does data
cleaning) and you want all these changes to be immediately notified to the client.

e when you develop on a push-based/reactive infrastructure: if you work on a message-driven infrastructoure or with a reactive
framework, working with traditional (synchronous, blocking) queries can be a real pain; having a database that follows the same

paradigm and that provides push notifications for data change will let y ou write applications in a more consistent way.

Supported interfaces

Live Query is currently supported from the following interfaces

e Java

e Node.js (OrientJS)

https://github.com/orientechnologies/orientdb-docs/blob/master/Live-Query.md#livequery-in-java
https://github.com/orientechnologies/orientdb-docs/blob/master/Live-Query.md#livequery-in-nodejs
https://github.com/orientechnologies/orientjs

Enabling LiveQuery

Since version 2.2 the live query are enabled by default, from disable it set the property query.live.support to false.

LiveQuery in Java

To implement LiveQuery in Java you need two elements:

e astatement, to be executed by OLiveQuery

e a listener that asynchronous receives result

The listener has to implement OLiveResultListener. It just has a callback method that takes the live query token and the record that was

modified (with the operation that occurred, eg. insert, update or delete)

class MyLiveQueryListener implements OLiveResultListener {
public List<ORecordOperation> ops = new ArraylList<ORecordOperation>();
@override
public void onLiveResult(int ilLiveToken, ORecordOperation iOp) throws OException {
System.out.println("New result from server for live query "+iLiveToken);

System.out.println("operation: "+iOp.type);
System.out.println("content: "+iOp.record);

public void onError(int ilLiveToken) {
System.out.println("Live query terminate due to error");

public void onUnsubscribe(int iLiveToken) {
System.out.println("Live query terminate with unsubscribe");

To actually execute the live query, you can use the db.query() method passinga oLiveQuery object as an argument, etc.

ODatabaseDocumentTx db = ... // I suppose you have an active DB instance

// Instantiate the query listener
MyLiveQueryListener listener = new MyLiveQueryListener();

// Execute the query
List<ODocument> result = db.query(new OLiveQuery<ODocument>("live select from Test", listener));

// Get the query token, it is needed for unsubscribe
String token = result.get(0).field("token"); // 1234567

~

/ From now you will receive results from the server for every change that matches your query criteria.

// If you or someone else executes an INSERT on the server
db.command(new OCommandSQL("insert into test set name = 'foo', surname = 'bar''")).execute();

/

~

Your MyLiveQueryListener.onLiveResult() will be invoked. In this case the result will be

// New result from server for live query 1234567 <- a token generated by the server

// operation: 3 <- ORecordOperation.CREATED

// content: {@Rid: "#12:0", name: "foo", surname: "bar"}

db.command(new OCommandSQL("update test set name = 'baz' where surname = 'bar'")).execute();
// New result from server for live query 1234567

// operation: 1 <- ORecordOperation.UPDATED

// content: {@Rid: "#12:0", name: "baz", surname: "bar"}

db.command(new OCommandSQL("live unsubscribe 1234567")).execute();

/

~

From now you will not receive any other results

LiveQuery in Node.js

To use LiveQuery in Node.js you just have to import "orientjs" module with

npm install orientjs

Here is a simple example that shows how to use LiveQuery with OrientJS

var OrientDB = ('orientjs');
var server = OrientDB({host: 'localhost', port: 1)
var db = server.use({name: 'test', username: 'admin', password: 'admin'});

db.liveQuery("live select from V")
.on('live-insert', function(){
//new record inserted in the database,
var myRecord = data.content;
// your code here...
})
.on('live-delete', function(){
//record just deleted, receiving the old content
var myRecord = data.content;
// your code here...
b
.on('live-update', function(){
//record updated, receiving the new content
var myRecord = data.content;
// your code here...

1

What's next

OrientDB team is working hard to make it stable and to support it on all the clients. To make live query stable in OrientDB 2.2, the
following steps are needed:

e add tests for connection failure
e check for memory leaks
e add tests it in distributed mode

e give an additional check to the OrientJs implementation
We are also considering integrations with existing frameworks like (M eteor)

Starting from 2.2 Live Query will be released as Stable and will be covered by commercial support too.

https://www.meteor.com/

Multi-Threading

OrientDB supports multi-threads access to the database. obatabase* and orientGraph* instances are not thread-safe, so you've to get
an instance per thread and each database instance can be used only in one thread per time. For more information about how concurrency

is managed by OrientDB look at Concurrency.

attempt to manage multiple instances in the same thread must explicitly call the method

@ Since v2.1 OrientDB doesn't allow implicit usage of multiple database instances from the same thread. Any
db.activateonCurrentThread() against the database instance BEFORE you use it.

Multiple database instances point to the same storage by using the same URL. In this case Storage is thread-safe and orchestrates

requests from different obatabase* instances.

ODatabaseDocumentTx-1------ +
+----> OStorage (url=plocal:/temp/db)
ODatabaseDocumentTx-2------ +

The same as for Graph API:

OrientGraph-1------ +
+----> OStorage (url=plocal:/temp/db)
OrientGraph-2------ +

Database instances share the following objects:

e schema
e index manager

e security

These objects are synchronized for concurrent contexts by storing the current database in the ThreadLocal variable. Every time you
create, open or acquire a database connection, the database instance is automatically set into the current Threadl.ocal space, so in

normal use this is hidden from the developer.
The current database is always reset for all common operations like load, save, etc.

Examp le of using two database in the same thread:

ODocument recl = databasel.newInstance();
ODocument rec2 = database2.newInstance();

recl.field("name", "Luca");
databasel.activateOnCurrentThread();
databasel.save(recl);

rec2.field("name", "Luke");
database2.activateOnCurrentThread();
database2.save(rec2);

In version 2.0.x, method activateonCurrentThread() does not exist, you can use setCurrentDatabaseInThreadLocal() instead.

Get current database

To get the current database from the ThreadLocal use:

ODatabaseDocument database = (ODatabaseDocument) ODatabaseRecordThreadLocal.INSTANCE.get();

Manual control

http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html

Beware when you reuse database instances from different threads or then a thread handle multiple databases. In this case you can

override the current database by calling this manually:

database.activateOnCurrentThread(); //v 2.1
// for OrientDB v. 2.0.x: database.setCurrentDatabaseInThreadlLocal();

Where database is the current database instance. Example:

databasel.activateOnCurrentThread();
ODocument recl = databasel.newInstance();
recl.field("name", "Luca");

recl.save();

database2.activateOnCurrentThread();
ODocument rec2 = database2.newInstance();

rec2.field("name", "Luke");
rec2.save();

Custom database factory

Since v1.2 Orient provides an interface to manage custom database management in M ultiT hreading cases:

public interface ODatabaseThreadLocalFactory {

public ODatabaseRecord getThreadDatabase();

Examples:

public class MyCustomRecordFactory implements ODatabaseThreadlLocalFactory {
public ODatabaseRecord getDb(){

return ODatabaseDocumentPool.global().acquire(url, "admin", "admin");

}

public class MyCustomObjectFactory implements ODatabaseThreadlLocalFactory {
public ODatabaseRecord getThreadDatabase(){
return OObjectDatabasePool.global().acquire(url, "admin', "admin").getUnderlying().getUnderlying();
}

Registering the factory:

ODatabaseThreadLocalFactory customFactory = new MyCustomRecordFactory();
Orient.instance().registerThreadDatabaseFactory(customFactory);

When a database is not found in current thread it will be called the factory getDb() to retrieve the database instance.

Close a database

What happens if you are working with two databases and close just one? The Thread Local isn't a stack, so you loose the previous

database in use. Example:

ODatabaseDocumentTx dbl = new ODatabaseDocumentTx('"local:/temo/dbl").create();
ODatabaseDocumentTx db2 = new ODatabaseDocumentTx('"local:/temo/db2").create();

db2.close();

// NOW NO DATABASE IS SET IN THREAD LOCAL. TO WORK WITH DB1 SET IT IN THE THREAD LOCAL
db1.activateOnCurrentThread();

Multi Version Concurrency Control

If two threads update the same record, then the last one receive the following exception: "OConcurrentM odificationExcep tion: Cannot
update record #X:Y in storage 'Z' because the version is not the latest. Probably you are updating an old record or it has been modified

by another user (db=vA your=vB)"

This is because every time you update a record, the version is incremented by 1. So the second update fails checking the current record
version in database is higher than the version contained in the record to update.

This is an example of code to manage the concurrency properly:

Graph API

for(int retry = 0; retry < maxRetries; ++retry) {
try{
// APPLY CHANGES
vertex.setProperty("name", "Luca");
vertex.addEdge("Buy'", product);

break;

} catch(ONeedRetryException e) {
// RELOAD IT TO GET LAST VERSION
vertex.reload();
product.reload();

Document API

for(int retry = 0; retry < maxRetries; ++retry) {
try{
// APPLY CHANGES
document.field("name", "Luca");

document.save();
break;

} catch(ONeedRetryException e) {
// RELOAD IT TO GET LAST VERSION
document.reload();

The same in transactions:

for(int retry = 0; retry < maxRetries; ++retry) {
db.begin();
try{
// CREATE A NEW ITEM
ODocument invoiceItem = new ODocument('"InvoiceItem");
invoiceItem.field("price",);
invoiceItem.save();

// ADD IT TO THE INVOICE

Collection<ODocument> items = invoice.field(items);
items.add(invoiceItem);

invoice.save();

db.commit();

break;

catch(OTransactionException e) {
// RELOAD IT TO GET LAST VERSION
invoice.reload();

]

Where maxRetries is the maximum number of attempt of reloading.

What about running transaction?

Transactions are bound to a database, so if you change the current database while a tx is running, the deleted and saved objects remain

attached to the original database transaction. When it commits, the objects are committed.

Example:

ODatabaseDocumentTx dbl = new ODatabaseDocumentTx('"local:/temo/db1").create();

db1.begin();

ODocument docl = new ODocument('"Customer™);

doc1.field("name", "Luca");

docl.save(); // NOW IT'S BOUND TO DB1'S TX

ODatabaseDocumentTx db2 = new ODatabaseDocumentTx('"local:/temo/db2").create(); // THE CURRENT DB NOW IS DB2
ODocument doc2 = new ODocument("Provider™);

doc2.field("name", "Chuck");

doc2.save(); // THIS IS BOUND TO DB2 BECAUSE IT'S THE CURRENT ONE

dbl.activateOnCurrentThread();
db1.commit(); // WILL COMMIT DOC1 ONLY

Transaction Propagation

During application development there are situations when a transaction started in one method should be propagated to other method.

Lets suppose we have 2 methods.

public void methodi() {
database.begin();
try {
method2();
database.commit();
} catch(Exception e) {
database.rollback();
3
3

public void method2() {
database.begin();
try {
database.commit();
} catch(Exception e) {
database.rollback();
}
}

As you can see transaction is started in first method and then new one is started in second method. So how these transactions should

interact with each other. Prior 1.7-rc2 first transaction was rolled back and second was started so were risk that all changes will be lost.
Since 1.7-rc2 we start nested transaction as part of outer transaction. What does it mean on practice?

Lets consider example above we may have two possible cases here:

First case:

1. begin outer transaction.

2. begin nested transaction.
3. commit nested transaction.
4.

commit outer transaction.

When nested transaction is started all changes of outer transaction are visible in nested transaction and then when nested transaction is
committed changes are done in nested transaction are not committed they will be committed at the moment when outer transaction will

be committed.
Second case:

1. begin outer transaction.

2. begin nested transaction.

3. rollback nested transaction.
4.

commit outer transaction.

When nested transaction is rolled back, changes are done in nested transaction are not rolled back. But when we commit outer

transaction all changes will be rolled back and ORollbackException will be thrown.
So what instances of database should we use to get advantage of transaction propagation feature:

1. The same instance of database should be used between methods.
2. Database pool can be used, in such case all methods which asks for db connection in same thread will have the same the same

database instance.

Binary Data
OrientDB natively handles binary data, namely BLOB. However, there are some considerations to take into account based on the type
of binary data, the size, the kind of usage, etc.

Sometimes it's better to store binary records in a different path then default database directory to benefit of faster HD (like a SSD) or
just to go in parallel if the OS and HW configuration allow this.

In this case create a new cluster in a different path:

db.addCluster("physical", "binary", "/mnt/ssd", "binary");

All the records in cluster binary will reside in files created under the directory /mnt/ssd .

Techniques

Store on file system and save the path in the document

This is the simpler way to handle binary data: store them to the file system and just keep the path to retrieve them.

Example:

ODocument doc = new ODocument();
doc.field("binary", "/usr/local/orientdb/binary/test.pdf");
doc.save();

Pros:

o Fasy to write
e 100% delegated to the File System

Cons:

e Binary data can't be automatically distributed using the OrientDB cluster

Store it as a Document field

ODocument class is able to manage binary data in form of byte[] (byte array). Example:

ODocument doc = new ODocument();
doc.field("binary", "Binary data".getBytes());
doc.save();

This is the easiest way to keep the binary data inside the database, but it's not really efficient on large BLOB because the binary content

is serialized in Base64. This means a waste of space (33% more) and a run-time cost in marshalling/lunmarshalling.

Also be aware that once the binary data reaches a certain size (10 M B in some recent testing), the database's performance can decrease

significantly. If this occurs, the solution is to use the oRrecordBytes solution described below.
Pros:

e Easy to write
Cons:

e Waste of space +33%
e Run-time cost of marshalling/unmarshalling

e Significant performance decrease once the binary reaches a certain large size

Store it with ORecordBytes

The oRecordBytes class is a record implementation able to store binary content without conversions (see above). This is the faster way
to handle binary data with OrientDB but needs a separate record to handle it. This technique also offers the highest performance when

storing and retrieving large binary data records.

Example:

ORecordBytes record = new ORecordBytes('"Binary data'".getBytes());
record.save();

Since this is a separate record, the best way to reference it is to link it to a Document record. Example:

ORecordBytes record = new ORecordBytes('"Binary data'".getBytes());

ODocument doc = new ODocument();

doc.field("id", D
doc.field("binary", record);
doc.save();

In this way you can access to the binary data by traversing the binary field of the parent's document record.

ORecordBytes record = doc.field("binary");
byte[] content = record.toStream();

You can manipulate directly the buffer and save it back again by calling the setbirty() against the object:

byte[] content = record.toStream();
content[0] = 0;

record.setDirty();

record.save();

Or you can work against another byte[] :

byte[] content = record.toStream();

byte[] newContent = new byte[content*2];
System.arrayCopy(content, ©, newContent, 0, content.length);
record.fromStream(newContent);

record.setDirty();

record.save();

ORecordBytes class can work with Java Streams:

ORecordBytes record = new ORecordBytes().fromInputStream(in);
record.toOutputStream(out);

Pros:
e Fast and compact solution
Cons:

e Slightly complex management

Large content: split in multiple ORecordBytes

OrientDB can store up to 2Gb as record content. But there are other limitations on network buffers and file sizes you should tune to
reach the 2GB barrier.

However managing big chunks of binary data means having big byte[] structures in RAM and this could cause a Out Of Memory of

the JVM. Many users reported that splitting the binary data in chunks it's the best solution.

Continuing from the last example we could handle not a single reference against one orecordBytes record but multiple references. A

One-To-Many relationship. For this purpose the LINKLIST type fits perfect because maintains the order.

To avoid OrientDB caches in memory large records use the massive insert intent and keep in the collection the RID, not the entire

records.

Example to store in OrientDB the file content:

database.declareIntent(new OIntentMassiveInsert());

List<ORID> chunks = new ArrayList<ORID>();

InputStream in = new BufferedInputStream(new FileInputStream(file));
while (in.available() > 0) {

final ORecordBytes chunk = new ORecordBytes();

// READ REMAINING DATA, BUT NOT MORE THAN 8K
chunk. fromInputStream(in, M

// SAVE THE CHUNK TO GET THE REFERENCE (IDENTITY) AND FREE FROM THE MEMORY
database.save(chunk);

// SAVE ITS REFERENCE INTO THE COLLECTION

chunks.add(chunk.getIdentity());

// SAVE THE COLLECTION OF REFERENCES IN A NEW DOCUMENT
ODocument record = new ODocument();

record.field("data", chunks);

database.save(record);

database.declareIntent(null);

Example to read back the file content:

record.setLazylLoad(false);

for (OIdentifiable id : (List<OIdentifiable>) record.field("data")) {
ORecordBytes chunk = (ORecordBytes) id.getRecord();
chunk. toOutputStream(out);
chunk.unload();

Pros:
e Fastest and compact solution
Cons:

e More complex management

Conclusion

What to use?

e Have you short binary data? Store them as document's field
e Do you want the maximum of performance and better use of the space? Store it with oRecordBytes

e Have you large binary objects? Store it with ORecordBytes but split the content in multiple records

Web Applications

The database instances are not thread-safe, so each thread needs a own instance. All the database instances will share the same

connection to the storage for the same URL. For more information look at Java M ulti threads and databases.
Java WebApp runs inside a Servlet container with a pool of threads that work the requests.
There are mainly 2 solutions:

e Manual control of the database instances from Servlets (or any other server-side technology like Apache Struts Actions, Spring
MVC, etc.)

e Automatic control using Servlet Filters

Manual control

Graph API

package com.orientechnologies.test;
import javax.servlet.*;

public class Example extends HttpServlet {
public void doGet

throws IOException, ServletException

{

OrientBaseGraph graph = new OrientGraph('plocal:/temp/db", "admin", "admin');

try {
// USER CODE

} finally {
graph.shutdown();
}
}
}

Document API

package com.orientechnologies.test;
import javax.servlet.*;

public class Example extends HttpServlet {
public void doGet

throws IOException, ServletException

{

ODatabaseDocumentTx database = new ODatabaseDocumentTx('"plocal:/temp/db").open("admin", "admin");

try {
// USER CODE

} finally {
database.close();
3
3
3

Automatic control using Servlet Filters

Servlets are the best way to automatise database control inside WebApps. The trick is to create a Filter that get a reference of the graph
and binds it in the current ThreadLocal before to execute the Servlet code. Once returned the ThreadLocal is cleared and graph instance

released.

JaveEE Servlets

Create a Filter class

Filter with Graph API

In this example a new graph instance is created per request, opened and at the end closed.

package com.orientechnologies.test;
import javax.servlet.*;

public class OrientDBFilter implements Filter {

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) {
OrientBaseGraph graph = new OrientGraph('"plocal:/temp/db", "admin", "admin");
try{
chain.doFilter(request, response);
} finally {
graph.shutdown();

Filter with Document API

In this example a new graph instance is created per request, opened and at the end closed.

package com.orientechnologies.test;
import javax.servlet.*;

public class OrientDBFilter implements Filter {

public void doFilter(ServletRequest request, ServletResponse response
FilterChain chain) {
ODatabaseDocumentTx database = new ODatabaseDocumentTx('"plocal:/temp/db").open("admin", "admin");
try{
chain.doFilter(request, response);
} finally {
database.close();

Register the filter

Now we've create the filter class it needs to be registered in the web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">
<filter>
<filter-name>OrientDB</filter-name>
<filter-class>com.orientechnologies.test.OrientDBFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>OrientDB</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>
<session-config>
<session-timeout>30</session-timeout>
</session-config>
</web-app>

http://www.oracle.com/technetwork/java/javaee/servlet/index.html

JDBC Driver

The JDBC driver for OrientDB allows to connect to a remote server using the standard and consolidated way of interacting with

database in the Java world.

Include in your projects

To be used inside your project, simply add the dependency to your pom:

<dependency>
<groupId>com.orientechnologies</groupId>
<artifactId>orientdb-jdbc</artifactId>
<version>0RIENTDB_VERSION</version>
</dependency>

NOTE: to use SNAPSHOT version remember to add the Snapshot repository to your pom.xml .

How can be used in my code?

The driver is registered to the Java SQL DriverM anager and can be used to work with all the OrientDB database types:

e memory,
e plocal and

e remote

The driver's class is com.orientechnologies.orient.jdbc.OrientJdbcDriver . Use your knowledge of JDBC API to work against
OrientDB.

First get a connection

Properties info = new Properties();
info.put("user", "admin");
info.put("password", "admin");

Connection conn = (OrientJdbcConnection) DriverManager.getConnection("jdbc:orient:remote:localhost/test"”, info);

Then execute a Statement and get the ResultSet:

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT stringKey, intKey, text, length, date FROM Item");

rs.next();

-

s.getInt("@version");

-

s.getString("@class");

-

s.getString("@rid");

-

s.getString("stringkey");

-

s.getInt("intKey");
rs.close();

stmt.close();

The driver retrieves OrientDB metadata (@rid,@class and @version) only on direct queries. Take a look at tests code to see more

detailed examples.

Advanced features

Connection pool

By default a new database instance is created every time you ask for a JDBC connection. OrientDB JDBC driver provides a Connection

Pool out of the box. Set the connection pool parameters before to ask for a connection:

Properties info = new Properties();
info.put("user", "admin");
info.put("password", "admin");

info.put("db.usePool", "true"); // USE THE POOL
info.put("db.pool.min", "3"); // MINIMUM POOL SIZE
info.put("db.pool.max", "30"); // MAXIMUM POOL SIZE

Connection conn = (OrientJdbcConnection) DriverManager.getConnection("jdbc:orient:remote:localhost/test", info);

Spark compatibility (from 2.1.21)

Apache Spark allows reading and writing of DataFrames from JDBC data sources. The driver offers a compatibility mode to enable load
of data frame from an OrientDb's class or query.

Map<String, String> options = new HashMap<String, String>() {{
put("url", "jdbc:orient:remote:localhost/sparkTest");
put("user", "admin");
put("password", "admin");
put("spark", "true"); // ENABLE Spark compatibility
put("dbtable", "Item");

13

SQLContext sqlCtx = new SQLContext(ctx);

DataFrame jdbcDF = sglCtx.read().format("jdbc").options(options).load();

http://spark.apache.org/

JPA

There are two ways to configure OrientDB JPA

Configuration

The first - do it through /M ETA-INF/persistence.xml Folowing OrientDB properties are supported as for now:
javax.persistence.jdbc.url, javax.persistence.jdbc.user, javax.persistence.jdbc.password, com.orientdb.entityClasses
You can also use <class> tag

Example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="appJpaUnit">
<provider>com.orientechnologies.orient.object.jpa.0JPAPersistenceProvider</provider>

<!-- JPA entities must be registered here -->
<class>com.example.domain.MyP0JO</class>

<properties>
<property name="javax.persistence.jdbc.url" value="remote:localhost/test.odb" />
<property name="javax.persistence.jdbc.user" value="admin" />
<property name="javax.persistence.jdbc.password" value="admin" />
<!-- Register whole package.
See com.orientechnologies.orient.core.entity.OEntityManager.registerEntityClasses(String) for mor
e details -->
<property name="com.orientdb.entityClasses" value="com.example.domains" />
</properties>
</persistence-unit>
</persistence>

Programmatic

The second one is programmatic:

Guice example

com.google.inject.persist.jpa.JpaPersistModule.properties(Properties)

Jx*
* triggered as soon as a web application is deployed, and before any requests
* begin to arrive
*/
@WebListener
public class GuiceServletConfig extends GuiceServletContextListener {
@override
protected Injector getInjector() {
return Guice.createInjector(
new JpaPersistModule("appJpaUnit").properties(orientDBProp),
new ConfigFactoryModule(),
servletModule);

protected static final Properties orientDBProp = new Properties(){{
setProperty("javax.persistence.jdbc.url", "remote:localhost/test.odb");
setProperty("javax.persistence.jdbc.user", "admin");
setProperty("javax.persistence.jdbc.password", "admin");
setProperty('"com.orientdb.entityClasses", '"com.example.domains");

1

protected static final ServletModule servletModule = new ServletModule() {
@override
protected void configureServlets() {

filter("/*").through(PersistFilter.class);
/7

H

Native example

// OPEN THE DATABASE
OObjectDatabaseTx db = new OObjectDatabaseTx ("remote:localhost/petshop").open("admin", "admin");

// REGISTER THE CLASS ONLY ONCE AFTER THE DB IS OPEN/CREATED
db.getEntityManager().registerEntityClasses("foo.domain");

DB properties, that were passed programmatically, will overwrite parsed from XML ones

Note

Config parser checks persistence.xml with validation schemes (XSD), so configuration file must be valid.

1.0, 2.0 and 2.1 XSD schemes are supported.

https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_1_0.xsd
https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_2_0.xsd
https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_2_1.xsd

JMX

Read Cache

JM X bean name: com.orientechnologies.orient.core.storage.cache.local:type=02QCacheMxBean
It has following members:

e usedMemory , usedMemoryInMB , usedMemoryInGB which is amount of direct memory consumed by read cache in different units of
measurements

e cacheHits is percent of cases when records will be downloaded not from disk but from read cache

e clearCacheStatistics() method may be called to clear cache hits statics so we always may start to gather cache hits statistic from
any moment of time

e amSize , alOutSize , alInSize is the size of LRU queues are used in 2Q algorithm

Write Cache

JM X bean name: com.orientechnologies.orient.core.storage.cache.local:type=OWOWCacheMXBean, name=<storage name>, id=<storage id>

Write cache alike read cache is not JVM wide, it is storage wide, but one JVM may run several servers and each server may contain

storage with the same name, that is why we need such complex name.
JM X bean of write cache has following members:

® writeCacheSize , writeCacheSizeInMB , writeCacheSizeInGB provides size of data in different units which should be flushed to
disk in background thread
® exclusiveWriteCacheSize , exclusiveWriteCacheSizeInMB , exclusiveWriteCacheSizeInGB provides size of data which should be

flushed to disk but contained only in write cache

More about memory model and data flow

At first when we read page we load it from disk and put it in read cache. Then we change page and put it back to read cache and write
cache, but we do not copy page from read to write cache we merely send pointer to the same memory to write cache. Write cache
flushes "dirty write page" in background thread. That is what property "writeCachSize" shows us amount of data in dirty pages which
should be flushed. But there are very rare situations when page which is rarely used still is not flushed on disk and read cache has not
enough memory to keep it. In such case this page is removed from read cache , but pointer to this page still exists in write cache, that is

what property "exclusiveWriteCacheSize" shows us. Please not that this value is more than 0 only during extremely high load.
The rest properties of write cache JM X bean are following;

® lastFuzzyCheckpointDate
® lastAmountOfFlushedPages

® durationOfLastFlush

Gremlin API

Gremlin is a language specialized to work with Property Graphs. Gremlin is part of TinkerPop Open Source products. For more

information:

e Gremlin Documentation
e Gremlin WiKi
e OrientDB adapter to use it inside Gremlin

e OrientDB implementation of TinkerPop Blueprints

To know more about Gremlin and TinkerPop's products subscribe to the Gremlin Group.

Get Started

Launch the gremlin.sh (or gremlin.bat on Windows OS) console script located in the bin directory:

> gremlin.bat

A
(0 0)

Open the graph database
Before playing with Gremlin you need a valid OrientGraph instance that points to an OrientDB database. To know all the database
types look at Storage types.

When you're working with a local or an in-memory database, if the database does not exist it's created for you automatically. Using the

remote connection you need to create the database on the target server before using it. This is due to security restrictions.

Once created the OrientGraph instance with a proper URL is necessary to assign it to a variable. Gremlin is written in Groovy, so it

supports all the Groovy syntax, and both can be mixed to create very powerful scripts!

Examp le with a local database (see below for more information about it):

gremlin> g = new OrientGraph("plocal:/home/gremlin/db/demo");
==>orientgraph[plocal:/home/gremlin/db/demo]

Some useful links:

o All Gremlin methods

e All available steps

Working with local database

This is the most often used mode. The console opens and locks the database for exclusive use. This doesn't require starting an OrientDB

server.

gremlin> g = new OrientGraph("plocal:/home/gremlin/db/demo");
==>orientgraph[plocal:/home/gremlin/db/demo]

Working with a remote database

http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph
http://gremlindocs.com
http://www.tinkerpop.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/blueprints/wiki/OrientDB-Implementation
http://gremlindocs.com
http://www.tinkerpop.com
http://groups.google.com/forum/#!forum/gremlin-users
http://gremlindocs.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Methods
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps

To open a database on a remote server be sure the server is up and running first. To start the server just launch server.sh (or server.bat

on Windows OS) script. For more information look at OrientDB Server

gremlin> g = new OrientGraph('"remote:localhost/demo");
==>orientgraph[remote:localhost/demo]

Working with in-memory database

In this mode the database is volatile and all the changes will be not persistent. Use this in a clustered configuration (the database life is

assured by the cluster itself) or just for test.

gremlin> g = new OrientGraph('"memory:demo");
==>orientgraph[memory:demo]

Use security

OrientDB supports security by creating multiple users and roles associated with certain privileges. To know more look at Security. To

open the graph database with a different user than the default, pass the user and password as additional parameters:

gremlin> g = new OrientGraph("memory:demo", "reader", "reader");
==>orientgraph[memory:demo]

Create a new Vertex

To create a new vertex, use the addVertex() method. The vertex will be created and a unique id will be displayed as the return value.

g.addvertex();
==>Vv[#5:0]

Create an edge

To create a new edge between two vertices, use the addEdge(v1, v2, label) method. The edge will be created with the label specified.

In the example below two vertices are created and assigned to a variable (Gremlin is based on Groovy), then an edge is created between

them.

gremlin> vl = g.addVertex();
==>V[#5:0]

gremlin> v2 = g.addVertex();
==>v[#5:1]

gremlin> e = g.addEdge(vl, v2, 'friend');
==>e[#6:0][#5:0-friend->#5:1]

Save changes

OrientDB assigns a temporary identifier to each vertex and edge that is created. To save them to the database
stop Transaction(SUCCESS) should be called

gremlin> g.stopTransaction(SUCCESS)

Retrieve a vertex

To retrieve a vertex by its ID, use the v(id) method passing the RecordId as an argument (with or without the prefix '#'). This example

retrieves the first vertex created in the above example.
gremlin> g.v('5:0")

==>V[#5:0]

Get all the vertices

To retrieve all the vertices in the opened graph use .V (V in upper-case):

gremlin> g.V
==>V[#5:0]
==>V[#5:1]

Retrieve an edge

Retrieving an edge is very similar to retrieving a vertex. Use the e(id) method passing the RecordId as an argument (with or without the

prefix '#). This example retrieves the first edge created in the previous example.

gremlin> g.e('6:0')
==>e[#6:0] [#5:0-friend->#5:1]

Get all the edges

To retrieve all the edges in the opened graph use .E (E in upper-case):

gremlin> g.E
==>e[#6:0] [#5:0-friend->#5:1]

Traversal

The power of Gremlin is in traversal. Once you have a graph loaded in your database you can traverse it in many different ways.

Basic Traversal

To display all the outgoing edges of the first vertex just created append the .outE at the vertex. Example:

gremlin> v1.outE
==>e[#6:0][#5:0-friend->#5:1]

To display all the incoming edges of the second vertex created in the previous examples append the .inE at the vertex. Example:

gremlin> v2.inE
==>e[#6:0][#5:0-friend->#5:1]

In this case the edge is the same because it's the outgoing edge of 5:0 and the incoming edge of 5:1.

For more information look at the Basic Traversal with Gremlin.

Filter results

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

This example returns all the outgoing edges of all the vertices with label equal to 'friend'.

gremlin> g.V.outE('friend')
==>e[#6:0] [#5:0-friend->#5:1]

Close the database

To close a graph use the shutdown() method:

gremlin> g.shutdown()
==>null

This is not strictly necessary because OrientDB always closes the database when the Gremlin console quits.

Create complex paths

Gremlin allows you to concatenate expressions to create more complex traversals in a single line:

v1.0utE.inV

Of course this could be much more complex. Below is an example with the graph taken from the official documentation:

g = new OrientGraph('memory:test')

// calculate basic collaborative filtering for vertex 1
m=[:]
g.v(1).out('likes").in('likes").out('likes').groupCount(m)
m.sort{a,b -> a.value <=> b.value}

// calculate the primary eigenvector (eigenvector centrality) of a graph
m=[:]; c=0;

g.V.out.groupCount(m).loop(2){c++ < 3

m.sort{a,b -> a.value <=> b.value}

Passing input parameters

Some Gremlin expressions require declaration of input parameters to be run. This is the case, for example, of bound variables, as
described in JSR223 Gremlin Script Engine. OrientDB has enabled a mechanism to pass variables to a Gremlin pipeline declared in a

command as described below:

Map<String, Object> params = new HashMap<String, Object>();

params.put("mapl", new HashMap());

params.put("map2", new HashMap());

db.command(new OCommandSQL("select gremlin('
current.as('id').outE.label.groupCount(mapl).optional('id"').sideEffect{map2=it.map();map2+=mapl;}
')")).execute(params);

GremlinPipeline

You can also use native Java GremlinPipeline like:

new GremlinPipeline(g.getVertex(1)).out("knows").property("name").filter(new PipeFunction<String,Boolean>() {
public Boolean compute {
return argument.startswith("j");

3
}).back(2).out("created");

http://gremlindocs.com
http://gremlindocs.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Using-Gremlin-through-Java
http://gremlindocs.com

For more information: Using Gremlin through Java

Declaring output

In the simplest case, the output of the last step (https:/github.com/tinkerpop/gremlin/wiki/Gremlin-Steps) in the Gremlin pipeline
corresponds to the output of the overall Gremlin expression. However, it is possible to instruct the Gremlin engine to consider any of

the input variables as output. This can be declared as:

Map<String, Object> params = new HashMap<String, Object>();

params.put("mapl", new HashMap());

params.put("map2", new HashMap());

params.put("output", "map2");

db.command(new OCommandSQL("select gremlin('
current.as('id').outE.label.groupCount(mapl).optional('id').sideEffect{map2=it.map();map2+=mapl;}
')")).execute(params);

There are more possibilities to define the output in the Gremlin pipelines. So this mechanism is expected to be extended in the future.

Please, contact OrientDB mailing list to discuss customized outputs.

Conclusions

Now you've learned how to use Gremlin on top of OrientDB. The best place to go in depth with this powerful language is the Gremlin
WiKi.

https://github.com/tinkerpop/gremlin/wiki/Using-Gremlin-through-Java
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps
http://gremlindocs.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki

Javascript

OrientDB supports server-side scripting, All the JVM languages are supported. By default JavaScript is installed.

Scripts can be executed on the client and on the server-side. On the client-side, the user must have READ privilege against the

database.command resource. On the server-side, the scripting interpreter must be enabled. It is disabled by default for security reasons.

In order to return the result of a variable, put the variable name as last statement. Example:

var r = db.query('select from ouser');
print(r);
>

Will return the resultset.

See also

o SQL-batch

Usage

Via Java API

Executes a command like SQL but uses the class ocommandscript passing in the language to use. JavaScript is installed by default.

Example:

db.command(new OCommandScript("Javascript", "print('hello world')")).execute();

Via console

JavaScript code can be executed on the client-side, the console, or server-side:

e Use js toexecute the script on the client-side running it in the console
e use jss to execute the script on the server-side. This feature is disabled by default. To enable it look at Enable Server side

scripting,

Since the semi-colon ; character is used in both console and JavaScript languages to separate statements, how can we execute multiple

commands on the console and with JavaScript?
The OrientDB console uses a reserved keyword end to switch from JavaScript mode to console mode.

Example:

orientdb> connect remote:localhost/demo admin admin; js for(i = 0; i < 10; i++){ db.query('select from MapPoint') };end; exi
t

This line connects to the remote server and executes 10 queries on the console. The end command switches the mode back to the

OrientDB console and then executes the console exit command.
Below is an example to display the results of a query on the server and on the client.

1. connects to the remote server as admin
2. executes a query and assigns the result to the variable r , then displays it server-side and returns it to be displayed on the client
side too

3. exits the console

http://en.wikipedia.org/wiki/List_of_JVM_languages
http://en.wikipedia.org/wiki/JavaScript

Interactive mode

$./console.sh

OrientDB console v.1.5 www.orientechnologies.com
Type 'help' to display all the commands supported.

orientdb> connect remote:localhost/demo admin admin
Connecting to database [remote:localhost/demo] with user 'admin'...OK

orientdb> jss var r = db.query('select from ouser');print(r);r

soodisoooooooo Pooooooooooooooo00000 drocoooooooooooconoooo drooocooocoooooooonooo0 roocooocoosooocoosoo0
#| RID | name | password | status |roles
soodisoooooooo Pooooooooooooooo00000 drocoooooooooooconoooo drooocooocoooooooonooo0 roocooocoosooocoosoo0
(o] #4:0|admin | {SHA-256}8C6976E5B5410415BDE9O8BDADEE15DFB167A9C873FC4BB8A81F6F2AB448A918 | ACTIVE
[[1]
1| #4:1|reader | {SHA-256}3D0941964AA3EBDCBOOCCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30 | ACTIVE
[[1]
2| #4:2|writer | {SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBA5 | ACTIVE
[[1]
- . e e S

Script executed in 0,073000 sec(s). Returned 3 records

orientdb> exit

Batch mode

The same example above is executed in batch mode:

$./console.sh "connect remote:localhost/demo admin admin;jss var r = db.query('select from ouser');print(r);r;exit"
OrientDB console v.1.0-SNAPSHOT (build 11761) www.orientechnologies.com
Type 'help' to display all the commands supported.

Connecting to database [remote:localhost/demo] with user 'admin'...OK

e GECETEEE o B L E R R LT EEE R o
#| RID |name | password | status |roles
e ECETEEE o B L E R R LT EEE R R EEEEE
0] #4:0|admin | {SHA-256}8C6976E5B5410415BDE9O8BD4DEE15DFB167A9C873FC4BBBAS1F6F2AB448A918 | ACTIVE
[[1]
1] #4:1|reader | {SHA-256}3D0941964AA3EBDCBOOCCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30 | ACTIVE
[[1]
2| #4:2|writer | {SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBAS | ACTIVE
[[1]
R LT o B R T T R LT TEFE R R LT T

Script executed in 0,099000 sec(s). Returned 3 records

Examples of usage

Insert 1000 records

orientdb> js for(i = 0; i < 1000; i++){ db.query('insert into jstest (label) values ("test'+i+'")'); }

Create documents using wrapped Java API

orientdb> js new com.orientechnologies.orient.core.record.impl.ODocument('Profile').field('name', 'Luca').save()

Client side script executed in 0,426000 sec(s). Value returned is: Profile#11:52{name:Luca} v3

Enable Server-side scripting

For security reasons server-side scripting is disabled by default on the server. To enable it change the enable field to true in the
orientdb-server-config.xml file:

Javascript

<!-- SERVER SIDE SCRIPT INTERPRETER. WARNING! THIS CAN BE A SECURITY HOLE: ENABLE IT ONLY IF CLIENTS ARE TRUSTED, TO TURN ON S
ET THE 'ENABLED' PARAMETER TO 'true' -->
<handler class="com.orientechnologies.orient.server.handler.0ServerSideScriptInterpreter">
<parameters>
<parameter name="enabled" value="true" />
</parameters>
</handler>

NOTE: this will allow clients to execute any code inside the server. Enable it only if clients are trusted.

478

Javascript API

This driver wraps the most common use cases in database usage. All parameters required by methods or constructor are Strings. This
library works on top of HTTP REST ful protocol.

Note: Due to cross-domain XMLHttpRequest restriction this API works, for now, only placed in the server deployment. To use it with

cross-site look at Cross-site scripting.

The full source code is available here: oriendb-api.js.

See also

e Javascript-Command

Example

var database = new ODatabase('http://localhost:2480/demo');
databaseInfo = database.open();
queryResult = database.query('select from Address where city.country.name = \'Italy\'');

if (queryResult["result"].length == 0){

commandResult = database.executeCommand('insert into Address (street,type) values (\'via test 1\',6\'Tipo test\')');
} else {

commandResult = database.executeCommand('update Address set street = \'Via test 1\' where city.country.name = \'Italy\'');
3

database.close();

API

ODatabase object

ODatabase object requires server URL and database name:
Syntax: new ODatabase(http://:/)

Example:

var orientServer = new ODatabase('http://localhost:2480/demo");

Once created database instance is ready to be used. Every method return the operation result when it succeeded, null elsewhere.

In case of null result the database instance will have the error message obtainable by the getErrorM essage() method.

Open

M ethod that connects to the server, it returns database information in JSON format.

Browser Authentication

Syntax: <databaseInstance>.open()

Note: This implementation asks to the browser to provide user and password.

Example:

orientServer = new ODatabase('http://localhost:2480/demo');
databaseInfo = orientServer.open();

Javascript Authentication

https://github.com/nuvolabase/orientdb/blob/master/server/src/site/js/orientdb-api.js

Javascript API

Syntax: <databaseInstance>.open(username,userpassword)

Example:

orientServer = new ODatabase('http://localhost:2480/demo');

databaseInfo = orientServer.open('admin', 'admin');

Return Example:

{"classes": [

{

1
1

nid": @
O,

"name": "ORole",
"clusters": [3],

"defaultCluster": 3, "records": 3,

"properties": [

}

{
nid": @

O,
"name": "mode",
"type": "BYTE"

: ’
"mandatory": false,
"notNull": false,
"min": null,
"max": null,
"indexed": false

{

"id": 1,

"name": "rules",
"linkedType": "BYTE",
"type": "EMBEDDEDMAP",
"mandatory": false,
"notNull": false,
"min": null,

"max": null,
"indexed": false

"dataSegments": [

{"id": -1, "name": "default", "size": 10485760,

al"}
1

"clusters": [

{"id": o,

1

"txSegment": [

{"totalLogs": 0,

1, "users": [
{"name": "admin", "roles": "[admin]"},
{"name": "reader", "roles": "[reader]"},
{"name": "writer", "roles": "[writer]"}

1,

"roles": [

{"name": "admin", "mode": "ALLOW_ALL_BUT",

3
{"name": "reader", "mode": "DENY_ALL_BUT",

"rules": []

"rules": [{
"name": "database", '"create": false, "read": true, "update": false, "delete": false

oA

"name": "database.cluster.internal",

A

"filled": 1380391, "maxSize": "@", "files": "[${STORAGE_PATH}/default.0.od

"name": "internal", "type": "PHYSICAL", "records": 4, "size": 1048576, "filled": 60, "maxSize": "@", "files": "[
${STORAGE_PATH}/internal.0.ocl1]"},

"size": 1000000, "filled": O, "maxSize": "5@mb", "file": "${STORAGE_PATH}/txlog.otx"}

"create": false, "read": true, "update": false, "delete": false

"name": "database.cluster.orole", "create": false, "read": true, "update": false, '"delete": false

A

"name": "database.cluster.ouser", "create": false, "read": true, "update": false, "delete": false

A

"name": "database.class.*", '"create": false, "read": true, "update": false, "delete": false

Ao

"name": "database.cluster.*", "create": false, "read": true, "update": false, "delete": false

480

Javascript API

Ao

"name": "database.query", '"create": false, "read": true, "update": false, "delete": false
3 {
"name": "database.command", '"create": false, "read": true, "update": false, "delete": false
3 {
"name": "database.hook.record", "create": false, "read": true, "update": false, "delete": false
3
3
1,

"config":{

"values": [
{"name": "dateFormat", "value": "yyyy-MM-dd"},
{"name": "dateTimeFormat", "value": "yyyy-MM-dd hh:mm:ss"},
{"name": "localeCountry", "value": ""},
{"name": "localelLanguage", "value": "en"},
{"name": "definitionVersion", "value": 0}

]!

"properties": [

]

Query

Method that executes the query, it returns query results in JSON format.
Syntax: <databaseInstance>.query(<queryText>, [limit], [fetchPlan])
Limit and fetchPlan are optional.

Simple Example:

queryResult = orientServer.query('select from Address where city.country.name = \'Italy\'');

Return Example:

{ "result": [{
"@rid": "12:0", "@class": "Address",

"street": "Piazza Navona, 1",
"type": "Residence",
"city": "#13:0"

A
"@rid": "12:1", "@class": "Address",
"street": "Piazza di Spagna, 111",
"type": "Residence",
"city": "#13:0"

}

]
}

Fetched Example: fetching of all fields except "type"

queryResult = orientServer.query('select from Address where city.country.name = \'Italy\'', null,'*:-1 type:0');

Return Example 1:

481

{ "result": [{
"@rid": "12:0", "@class": "Address",
"street": "Piazza Navona, 1",
"city":{
"@rid": "13:0", "@class": "City",
"name": "Rome",
"country":{
"@rid": "14:0", "@class": "Country",
"name": "Italy"

3
A
"@rid": "12:1", "@version": 1, "@class": "Address",
"street": "Piazza di Spagna, 111",
"city":{
"@rid": "13:0", "@class": "City",
"name": "Rome",
"country":{
"@rid": "14:0", "@class": "Country",
"name": "Italy"

Fetched Example: fetching of all fields except "city" (Class)

queryResult = orientServer.query('select from Address where city.country.name = \'Italy\'',null,'*:-1 city:0');

Return Example 2:

{ "result": [{
"@rid": "12:0", "@class": "Address",

"street": "Piazza Navona, 1",
"type": "Residence"
A
"@rid": "12:1", "@version": 1, "@class": "Address",
"street": "Piazza di Spagna, 111",
"type": "Residence"

Fetched Example: fetching of all fields except "country" of City class

queryResult = orientServer.query('select from Address where city.country.name = \'Italy\'', null,'*:-1 City.country:0');

Return Example 3:

{ "result": [{
"@rid": "12:0", "@class": "Address",
"street": "Piazza Navona, 1",
"type": "Residence",
"city":{
"@rid": "13:0", "@class": "City",
"name": "Rome"

Execute Command

Method that executes arbitrary commands, it returns command result in text format.

Syntax: <databaseInstance>.executeCommand(<commandText>)

Example 1 (insert):

commandResult = orientServer.executeCommand('insert into Address (street,type) values (\'via test 1\', \'Tipo test\')');

Return Example 1 (created record):

Address@14: {street:Vvia test 1,type:Tipo test}

Example 2 (delete):

commandResult = orientServer.executeCommand('delete from Address where street = \'via test 1\' and type = \'Tipo test\'');

Return Example 2 (records deleted):

{ "value" : }

Note: Delete example works also with update command

Load

Method that loads a record from the record ID, it returns the record informations in JSON format.
Syntax: ".load(, [fetchPlan]);

Simple Example:

queryResult = orientServer.load('12:0");

Return Example:

{

"@rid": "12:0", "@class": "Address",
"street": "Piazza Navona, 1",
"type": "Residence",

"city": "#13:0"

Fetched Example: all fields fetched except "type"

queryResult = orientServer.load('12:0', '*:-1 type:0');

Return Example 1:

{

"@rid": "12:0", "@class": "Address",
"street": "Piazza Navona, 1",
"city":{

"@rid": "13:0",
"name": "Rome",
"country": {
"@rid": "14:0",
"name": "Italy"
3
3
3
Class Info

M ethod that retrieves information of a class, it returns the class informations in JSON format.

Syntax: <databaseInstance>.classInfo(<className>)

Example:

addressInfo = orientServer.classInfo('Address');

Return Example:

{ "result": [{
"@rid": "14:0", "@class": "Address",
"street": "WA 98073-9717",
"type": "Headquarter",
"city": "#12:1"
3 {
"@rid": "14:1", "@class": "Address",
"street": "WA 98073-9717",
"type": "Headquarter",
"city": "#12:1"

Browse Cluster

Method that retrieves information of a cluster, it returns the class informations in JSON format.
Syntax: <databaseInstance>.browseCluster (<className>)

Example:

addressInfo = orientServer.browseCluster('Address');

Return Example:

{ "result": [{
"@rid": "14:0", "@class": "Address",
"street": "WA 98073-9717",
"type": "Headquarter",
"city": "#12:1"
A
"@rid": "14:1", "@class": "Address",
"street": "WA 98073-9717",
"type": "Headquarter",
"city": "#12:1"

Server Information

M ethod that retrieves server informations, it returns the server informations in JSON format.

Note: Server information needs root username and password.
SyntaX: <databaseInstance>.serverInfo()

Example:

serverInfo = orientServer.serverInfo();

Return Example:

Javascript API

"connections": [{
"id": "e4",
"id": "e4",
"remoteAddress": "127.0.0.1:51459",
"db": "-",
"user": "-",
"protocol": "HTTP-DB",
"totalRequests": "1",
"commandInfo": "Server status",
"commandDetail": "-",
"lastCommandOn": "2010-12-23 12:53:38",
"lastCommandInfo": "-",
"lastCommandDetail": "-",
"lastExecutionTime": "@",
"totalWorkingTime": "@",
"connectedon": "2010-12-23 12:53:38"
3,

"dbs": [{
"db": "demo",
"user": "admin",
"open": "open",
"storage": "OStorageLocal"
N

"storages": [{
"name": "temp",
"type'": "OStorageMemory",
"path": "",
"activeUsers": "@"
A
"name": "demo",
"type'": "OStorageLocal",

"path": "/home/molino/Projects/Orient/releases/0.9.25-SNAPSHOT/db/databases/demo",

"activeUsers": "1"

by
"properties": [
{"name": "server.cache.staticResources", "value": "false"

}

{"name": "log.console.level", "value": "info"

h

{"name": "log.file.level", "value": "fine"

}

Schema

Method that retrieves database Schema, it returns an array of classes (JSON parsed Object).

SyntaX: <databaseInstance>.schema()

Example:

schemaInfo = orientServer.schema();

Return Example:

48

{"classes": [
{
"id": o,
"name": "ORole",
"clusters": [3],
"defaultCluster": 3, "records": 3,
"properties": [
{
"id": o,
"name": "mode",
"type": "BYTE",
"mandatory": false,
"notNull": false,
"min": null,
"max": null,
"indexed": false
+
{
"id": 1,
"name": "rules",
"linkedType": "BYTE",
"type": "EMBEDDEDMAP",
"mandatory": false,
"notNull": false,
"min": null,
"max": null,
"indexed": false

getClass()

Return a schema class from the schema.
Syntax: <databaseInstance>.getClass(<className>)

Example:

var customerClass = orientServer.getClass('Customer');

Return Example:

"id": o,
"name": "Customer"
"clusters": [3],
"defaultCluster": 3, "records": 3,
"properties": [
{
"id": o,
"name": "name",
"type": "STRING",

"id": 1,
"name": "surname",
"type": "STRING",

Security

Roles

Method that retrieves database Security Roles, it returns an array of Roles (JSON parsed Object).

Syntax: <databaseInstance>.securityRoles()

Example:

roles = orientServer.securityRoles();

Return Example:

{ "roles": [
{"name": "admin", "mode": "ALLOW_ALL_BUT",
"rules": []
1y
{"name": "reader", "mode": "DENY_ALL_BUT",
"rules": [{
"name": "database", "create": false, "read": true, "update": false, "delete": false
A
"name": "database.cluster.internal", '"create": false, "read": true, "update": false, "delete": false
A
"name": "database.cluster.orole", "create": false, "read": true, "update": false, "delete": false
A
"name": "database.cluster.ouser", "create": false, "read": true, "update": false, "delete": false
A
"name": "database.class.*", "create": false, "read": true, "update": false, "delete": false
A
"name": "database.cluster.*", "create": false, "read": true, "update": false, "delete": false
A
"name": "database.query", '"create": false, "read": true, "update": false, "delete": false
A
"name": "database.command", "create": false, "read": true, "update": false, "delete": false
A
"name": "database.hook.record", "create": false, "read": true, "update": false, "delete": false
1
3
]
3
Users

Method that retrieves database Security Users, it returns an array of Users (JSON parsed Object).
Syntax: <databaseInstance>.securityUsers()

Example:

users = orientServer.securityUsers();

Return Example:

{ "users": [

{"name": "admin", "roles": "[admin]"},
{"name": "reader", "roles": "[reader]"},
{"name": "writer", "roles": "[writer]"}
]
}
close()

Method that disconnects from the server.
Syntax: <databaseInstance>.close()

Example:

orientServer.close();

Change server URL

Method that changes server URL in the database instance.

You'll need to call the open method to reconnect to the new server.
Syntax: <databaseInstance>.setDatabaseUrl(<newDatabaseUrl>)

Example:

orientServer.setDatabaseUrl('http://localhost:3040")

Change database name

Method that changes database name in the database instance.

You'll need to call the open method to reconnect to the new database.
Syntax: <databaseInstance>.setDatabaseName(<newDatabaseName>)

Example:

orientServer.setDatabaseName('demo2');

Setting return type

This API allows you to chose the return type, Javascript Object or JSON plain text. Default return is Javascript Object.

Important: the javascript object is not always the evaluation of JSON plain text: for each document (identified by its Record ID) the
JSON file contains only one expanded object, all other references are just its Record ID as String, so the APT will reconstruct the real

structure by re-linking all references to the matching javascript object.
Syntax: orientServer.setEvalResponse(<boolean>)

Examples:

orientServer.setEvalResponse()

Return types will be Javascript Objects.

orientServer.setEvalResponse()

Return types will be JSON plain text.

Cross-site scripting

To invoke OrientDB cross-site you can use the query command in GET and the JSONP protocol. Example:

<script type="text/javascript" src='http://127.0.0.1:2480/query/database/sql/select+from+XXXX?jsoncallback=var datajson='></sc
ript>

This will put the result of the query select from Xxxx</code> into the <code>datajson</code> variable.

Errors

In case of errors the error message will be stored inside the database instance, retrievable by getErrorM essage() method.
Syntax: <databaseInstance>.getErrorMessage()

Example:

if (orientServer.getErrorMessage() !=)
//write error message

Scala API

OrientDB is a NoSQL database writen in Java, we can use it in scala easily. Look also at Scala utilities and tests project for Scala high

level classes built on top of OrientDB.
using SBT
Use the following configuration:

fork := true

Java method invocation problems

Usually the main problems are related to calling conventions between Scala and Java.

Parameters

Be careful to pass parameters to methods with varargs like db.query(...) . You need to convert it to java's repeated args correctly.
Look at these links:

http ://stackoverflow.com/questions/3022865/calling-java-vararg-method-from-scala-with-primitives

http ://stackoverflow.com/questions/1008783/using-varargs-from-scala

http ://stackoverflow.com/questions/3856536/how-to-pass-a-string-scala-vararg-to-a-java-method-using-scala-2-8

Collections

You can only use java collections when define pojos. If you use scala collections, they can be persisted, but can't be queried.

This's not a problem, if you imported:

import scala.collection.JavaConverters._
import scala.collection.JavaConversions._

You don't need to convert Java and Scala collections manually (even don't need to invoke .asJava or .asScala) You can treat these

java collections as scala's.

models.scala

https://github.com/eptx/OrientDBScala
http://stackoverflow.com/questions/3022865/calling-java-vararg-method-from-scala-with-primitives
http://stackoverflow.com/questions/1008783/using-varargs-from-scala
http://stackoverflow.com/questions/3856536/how-to-pass-a-string-scala-vararg-to-a-java-method-using-scala-2-8

package models
import javax.persistence.{Version, Id}

class User {
@Id var id: String = _
var name: String = _
var addresses: java.util.List[Address] = new java.util.ArrayList()
@version var version: String = _

override def toString = "User: " + this.id + ", name: " + this.name + ", addresses: " + this.addresses

class Address {
var city: String = _
var street: String = _

override def toString = "Address: " + this.city + ", " + this.street

class Question {
@Id var id: String = _
var title: String = _
var user: User =

@version var version: String = _

override def toString = "Question: " + this.id + ", title: " + this.title + ", belongs: " + user.name

test.scala

package models

import com.orientechnologies.orient.core.id.ORecordId

import com.orientechnologies.orient.core.sql.query.0SQLSynchQuery

import scala.collection.JavaConverters._

import scala.collection.JavaConversions._

import com.orientechnologies.orient. object’.db.{0ObjectDatabaseTx,00bjectDatabasePool}
import com.orientechnologies.orient.core.db. object™.0ODatabaseObject

object Test {
implicit def dbwrapper(db: OObjectDatabaseTx) = new {
def queryBySql[T](sql: String, params: AnyRef*): List[T] = {
val params4java = params.toArray
val results: java.util.List[T] = db.query(new 0SQLSynchQuery[T](sql), params4java: _*)
results.asScala.tolList

}

}

def main(args: Array[String]) = {
N ==mmm—m———m CERIEE @) s
var uri: String = "plocal:test/orientdb"

var db: OObjectDatabaseTx = new OObjectDatabaseTx(uri)
if (!db.exists) {

db.create()
} else {

db.open("admin", "admin")

=== [FEEPSEET (RS
db.getEntityManager.registerEntityClasses("models")

I = CIEEEE SUR CRIf s
var user: User = new User

user.name = "aaa"

db.save(user)

var addressl = new Address
addressl.city = "NY"
addressl.street = "roadl"
var address2 = new Address
address2.city = "sST"

address2.street = "road2"

user.addresses += addressi
user.addresses += address2
db.save(user)

var gl = new Question

gl.title = "How to use orientdb in scala?"
gl.user = user

db.save(q1l)

var g2 = new Question
g2.title = "Show me a demo"
g2.user = user

db.save(q2)

N~ GEUIE HiEl) ==
val userCount = db.countClass(classOf[User])
println("User count: " + userCount)

val questionCount = db.countClass(classOf[Question])
println("Question count: " + questionCount)

val users = db.queryBySql[User]("select from User'")
for (user <- users) {

println(" - user: " + user)
}
N = get the first user ~~~~~~~—
val firstUser = db.queryBySql[User]("select from User limit 1").head
println("First user: " + firstUser)

// query by id
val userById = db.queryBySql[User]("select from User where @rid = ?", new ORecordId(user.id))
println("User by id: " + userById)

// query by field
val userByField = db.queryBySgl[User]("select from User where name = ?", user.name)
println("User by field: " + userByField)

// query by city
val userByCity = db.queryBySql[User]("select from User where addresses contains (city = ?)", "NY")
println("User by city: " + userByCity)

// query questions of the user
val questions = db.queryBySql[Question]("select from Question where user = ?", user)
for (q <- questions) {

println(" - question: " + Q)

db.drop()
db.close()

HTTP Protocol

OrientDB RESTful HTTP protocol allows to talk with a OrientDB Server instance using the HTTP protocol and JSON. OrientDB

supports also a highly optimized Binary protocol for superior performances.

Available Commands

. class cluster
allocation batch Operations on schema Operations on
DB's defragmentation Batch of commands pe P
classes clusters
database .
command connect . disconnect
. Information about . .
Executes commands Create the session Disconnect session
database
document .
. documentbyclass function
COpemlioms @n e by 11D Operations on documents export Executes a server-side
GET - HEAD - POST - PUT - P by Class Exports a database function
DELETE - PATCH y
. . t
index listDatabases property query
. . . Operations on schema
Operations on indexes Available databases . Query
properties

server
Information about the server

HTTP Methods

This protocol uses the four methods of the HTTP protocol:

e GET, to retrieve values from the database. It's idempotent that means no changes to the database happen. Remember that in IE6
the URL can be maximum of 2,083 characters. Other browsers supports longer URLs, but if you want to stay compatible with all
limit to 2,083 characters

e POST, to insert values into the database

e PUT, to change values into the database

o DELETE, to delete values from the database

When using POST and PUT the following are important when preparing the contents of the post message:

e Always have the content type set to “application/json” or "application/xml"
e Where data or data structure is involved the content is in JSON format

e For OrientDB SQL or Gremlin the content itself is just text

Headers

All the requests must have these 2 headers:

'Accept-Encoding': 'gzip,deflate'’
'Content-Length': <content-length>

Where the <content-length> is the length of the request's body.

Syntax

The REST API is very flexible, with the following features:

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/JSON

e Data returned is in JSON format

e JSONP callback is supported

e Support for http and https connections

e The API itself is case insensitive

e API can just be used as a wrapper to retrieve (and control) data through requests written in OrientDB SQL or Gremlin
e You can avoid using # for RecordIDs in URLSs, if you prefer. Just drop the # from the URL and it will still work

The REST syntax used is the same for all the four HTTP methods:
Syntax: http://<server>:<port>/<command>/[<database>/<arguments>]

Results are always in JSON format. Support for 'document’ object types is through the use of the attribute @type : 'd' . This also

applies when using inner document objects. Example:

{
"@type" : "d",
""Name" : "Test",
"Data" : { "@type": "d",
"value": By
"@class" : "SimpleEntity"
}

JSONP is also supported by adding a callback parameter to the request (containing the callback function name).
Syntax: http://<server>:<port>/<command>/[<database>/<arguments>]?callback=<callbackFunctionName>
Commands are divided in two main categories:

e Server commands, such as to know server statistics and to create a new database

e Database commands, all the commands against a database

Authentication and security

All the commands (but the Disconnect need a valid authentication before to get executed. The OrientDB Server checks if the

Authorization HTTP header is present, otherwise answers with a request of authentication (HTTP error code: 401).

The HTTP client (or the Internet Browser) must send user and password using the HT TP Base authentication. Password is encoded
using Base64 algorithm. Please note that if you want to encrypt the password using a safe mode take in consideration to use SSL

connections.

Server commands use the realm "OrientDB Server", while the database commands use a realm per database in this form: "orientps db-
<database>" , where <database> is the database name. In this way the Browser/HTTP client can reuse user and password inserted

multiple times until the session expires or the "Disconnect" is called.

On first call (or when the session is expired and a new authentication is required), OrientDB returns the OSESSIONID parameter in
response's HTTP header. On further calls the client should pass this OSESSIONID header in the requests and OrientDB will skip the
authentication because a session is alive. By default sessions expire after 300 seconds (5 minutes), but you can change this configuration

by setting the global setting: network.http.sessionExpireTimeout

JSON data type handling and Schema-less mode

Since OrientDB supports also schema-less/hybrid modes how to manage types? JSON doesn't support all the types OrientDB has, so

how can I pass the right type when it's not defined in the schema?

The answer is using the special field " @fieldTypes" as string containing all the field types separated by comma. Example:

{ "@class":"Account", "date": , "amount": .
"@fieldTypes": "date=t,amount=c" }

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSONP

The supported special types are:

o 'f' for float

e 'c' for decimal

e 'I'for long

e 'd' for double

e 'b' for byte and binary
e '3 for date

e 't' for datetime

e 's' for short

e ‘e for Set, because arrays and List are serialized as arrays like [3,4,5]
e 'X for links

e 'n' for linksets

o 'z' for linklist

e 'm' for linkmap

e 'g for linkbag

e 'u' for custom

Keep-Alive
Attention: OrientDB HTTP API utilizes Keep-Alive feature for better performance: the TCP/IP socket is kept open avoiding the

creation of a new one for each command. If you need to re-authenticate, open a new connection avoiding to reuse the already open one.

To force closing put "Connection: close" in the request header.

HTTP commands

Connect

GET - Connect

Connect to a remote server using basic authentication.

Syntax: http://<server>:[<port>]/connect/<database>

Example

HTTP GET request: http://localhost:2480/connect/demo HTTP response: 204 if ok, otherwise 401.

Database

GET - Database

HTTP GET request: http://localhost:2480/database/demo HTTP response:

{
"server": {
"version": "1.1.0-SNAPSHOT",
"osName": "Windows 7",
"osVersion": "6.1",
"osArch": "amdé4",
"javaVendor": "Oracle Corporation",

"javaVersion": "23.0-b21"
}, "classes": [],

http://en.wikipedia.org/wiki/HTTP_persistent_connection

POST - Database

Create a new database.
Syntax: http://<server>:[<port>]/database/<database>/<type>
HTTP POST request: http://localhost:2480/database/demo/plocal

HTTP response: { "classes" : [], "clusters": [], "users": [], "roles": [], "config":[], "properties":{} }

Class

GET - Class

Gets informations about requested class.
Syntax: http://<server>:[<port>]/class/<database>/<class-name>

HTTP response:

{ "class": {
"name": '"<class-name>"
"properties": [

{ "name": <property-name>,
"type": <property-type>,
"mandatory": <mandatory>,
"notNull": <not-null>,
"min": <min>,

"max": <max>

For more information about properties look at the supported types, or see the SQL Create property page for text values to be used

when getting or posting class commands

Example

HTTP GET request: http://localhost:2480/class/demo/OFunction HTTP response:

HTTP API

"name": "OFunction"
"superClass": "",
"alias": null,
"abstract": false,
"strictmode": false,
"clusters": [
7
1,
"defaultCluster": 7,
"records": 0O,
"properties": [
{
"name": "language",
"type": "STRING",
"mandatory": false,
"readonly": false,
"notNull": false,
"min": null,
"max": null,
"collate": "default"

"name": "name",
"type": "STRING",
"mandatory": false,
"readonly": false,
"notNull": false,
"min": null,

"max": null,
"collate": "default"

"name": "idempotent",
"type": "BOOLEAN",
"mandatory": false,
"readonly": false,
"notNull": false,
"min": null,

"max": null,
"collate": "default"

"name": "code",
"type": "STRING",
"mandatory": false,
"readonly": false,
"notNull": false,
"min": null,

"max": null,
"collate": "default"

"name": "parameters",
"linkedType": "STRING",
"type": "EMBEDDEDLIST",
"mandatory": false,
"readonly": false,
"notNull": false,
"min": null,

"max": null,

"collate": "default"

POST - Class

Create a new class where the schema of the vertexes or edges is known. OrientDB allows (encourages) classes to be derived from other
class definitions — this is achieved by using the COM M AND call with an OrientDB SQL command. Returns the id of the new class

created.

Syntax: http://<server>:[<port>]/class/<database>/<class-name>

496

HTTP POST request: http://localhost:2480/class/demo/Address2 HTTP response: 9

Property

POST - Property

Create one or more properties into a given class. Returns the number of properties of the class.

Single property creation
Syntax: http://<server>:[<port>]/property/<database>/<class-name>/<property-name>/[<property-type>]

Creates a property named <property-name> in <class-name> . If <property-type> is not specified the property will be created as
STRING.

Multiple property creation

Syntax: http://<server>:[<port>]/property/<database>/<class-name>/

Requires a JSON document post request content:

{
"fieldName": {
"propertyType": "<property-type>"
1y
"fieldName": {
"propertyType": "LINK",
"linkedClass": "<linked-class>"
iy
"fieldName": {
"propertyType": "<LINKMAP|LINKLIST|LINKSET>",
"linkedClass": "<linked-class>"
iy
"fieldName": {
"propertyType": "<LINKMAP|LINKLIST|LINKSET>",
"linkedType": "<linked-type>"
}
}
Example
Single property:

String Property Example: HTTP POST request: http://localhost:2480/class/demo/simpleField HTTP response: 1
Type Property Example: HTTP POST request: http://localhost:2480/class/demo/dateField/DATE HTTP response: 1
Link Property Example: HTTP POST request: http://localhost:2480/class/demo/linkField/LINK/Person HTTP response: 1

Multiple properties: HTTP POST request: http://localhost:2480/class/demo/ HTTP POST content:

"name": {
"propertyType": "STRING"
H
"father": {
"propertyType": "LINK",
"linkedClass": "Person"
iy

"addresses": {
"propertyType": "LINKMAP",
"linkedClass": "Address"

H

"examsRatings": {
"propertyType": "LINKMAP",
"linkedType": "INTEGER"

}

"events": {
"propertyType": "LINKLIST",
"linkedType": "DATE"

3

"family": {
"propertyType": "LINKLIST",
"linkedClass": "Person"

3

HTTP response: 6

Cluster

GET - Cluster

Where the primary usage is a document db, or where the developer wants to optimise retrieval using the clustering of the database, use

the CLUSTER command to browse the records of the requested cluster.
Syntax: http://<server>:[<port>]/cluster/<database>/<cluster-name>/

Where <limit> is optional and tells the maximum of records to load. Default is 20.

Example
HTTP GET request: http://localhost:2480/cluster/demo/Address

HTTP response:

{ "schema": {

"id":
"name": "Address"
i
"result": [{
"_id": "11:0",
"_ver": o,
"@class": "Address",
"type": "Residence",
"street": "Piazza Navona, 1",
"city": "12:0"
3
Command

POST - Command

Execute a command against the database. Returns the records affected or the list of records for queries. Command executed via POST can

be non-idempotent (look at Query).

Syntax: http://<server>:[<port>]/command/<database>/<language>[/<command-text>[/limit[/<fetchPlan>]]]
The content can be <command-text> or starting from v2.2 a json containing the command and parameters:

[} by parameter name: {"command":<command-text>, "parameters":{'"<param-name>":<param-value>} }

[} by parameter position: {"command":<command-text>, "parameters":[<param-value>] }
Where:

e <language> is the name of the language between those supported. OrientDB distribution comes with "sgl" and GraphDB
distribution has both "sql" and "gremlin"

e command-text is the text containing the command to execute

e limit is the maximum number of record to return. Optional, default is 20

e rfetchplan is the fetching strategy to use. For more information look at Fetching Strategies. Optional, default is *:1 (1 depth level
only)

The command-text can appear in either the URL or the content of the POST transmission. Where the command-text is included in the
URL, it must be encoded as per normal URL encoding. By default the result is returned in JSON. To have the result in CSV, pass
"Accept: text/csv" in HTTP Request.

Starting from v2.2, the HTTP payload can be a JSON with both command to execute and parameters. Example:

Execute a query passing parameters by name:

{
"command": "select from V where name = :name and city = :city",
"parameters": {
"name": "Luca",
"city": "Rome"
}
}

Execute a query passing parameters by position:

"command": "select from V where name = ? and city = ?",
"parameters": ["Luca", "Rome"]

}
Read the SQL section or the Gremlin introduction for the type of commands.

Example

HTTP POST request: http://localhost:2480/command/demo/sql content: update Profile set online = false
HTTP response: 10

Or the same:

HTTP POST request: http://localhost:2480/command/demo/sql/update Profile set online = false

HTTP response: 10
Extract the user list in CSV format using curl

curl --user admin:admin --header "Accept: text/csv" -d "select from ouser" "http://localhost:2480/command/GratefulDeadConcerts
/sql"

Batch

POST - Batch

Executes a batch of operations in a single call. This is useful to reduce network latency issuing multiple commands as multiple requests.

Batch command supports transactions as well.

Syntax: http://<server>:[<port>]/batch/<database>

Content: { "transaction" :, "operations" : [{ "type" :"" }* 1}
Returns: the result of last operation.

Where: type can be:

e 'c for create, record' field is expected.
e 'u' for update, record' field is expected.
e 'd' for delete. The '@rid' field only is needed.
e 'cmd' for commands (Since v1.6). The expected fields are:
o 'language', between those supported (sql, gremlin, script, etc.)
o 'command' as the text of the command to execute
e 'script' for scripts (Since v1.6). The expected fields are:
o 'language', between the language installed in the JVM. Javascript is the default one, but you can also use SQL (see below)
o 'script' as the text of the script to execute

Example
{ "transaction" : ,
"operations" : [
{ "type" : "u",
"record" : {
"@rid" : "#14:122",
"name" : "Luca",
"vehicle" : "Car"
}
hoA
"type" : "d",
"record" : {
"@rid" : "#14:100"
}
1Rt
"type" : "c",
"record" : {
"@class" : "City",
"name" : "Venice"
}
ho{
"type" : "cmd",
"language" : "sqgl",
"command" : "create edge Friend from #10:33 to #11:33"
ho{
"type" : "script",
"language" : "javascript",
"script" : "orient.getGraph().createVertex('class:Account')"
}
]
}
SQL batch
{ "transaction" : 0
"operations" : [
{
"type" : "script",
"language" : "sql",

"script" : ["LET account = CREATE VERTEX Account SET name = 'Luke'",
"LET city = SELECT FROM City WHERE name = 'London'",
"CREATE EDGE Lives FROM $account TO $city RETRY 100"]

Function

POST and GET - Function

Executes a server-side function against the database. Returns the result of the function that can be a string or a JSON containing the

document(s) returned.

The difference between GET and POST method calls are if the function has been declared as idempotent. In this case can be called also
by GET, otherwise only POST is accepted.

Synta;c http://<server>:[<port>]/function/<database>/<name>[/<argument>*]<server>
Where

o <name> is the name of the function

e <argument> , optional, are the arguments to pass to the function. They are passed by position.
Creation of functions, when not using the Java API, can be done through the Studio in either Orient DB SQL or Java — see the OrientDB
Functions page.

Example

HTTP POST request: http://localhost:2480/function/demo/sum/3/5

HTTP response: 8.0

Database

GET - Database

Retrieve all the information about a database.

Syntax: http://<server>:[<port>]/database/<database>

Example
HTTP GET request: http://localhost:2480/database/demo

HTTP response:

{"classes": [
{
"id":
"name": "ORole",
"clusters": [3],

"defaultCluster": 3, "records": 0},
{

g

"name": "OUser",

"clusters": [4],
"defaultCluster": 4, "records": 0},

POST - Database

Create a new database. Requires additional authentication to the server.
Syntax for the url “http://:

e storage can be
e ‘plocal for disk-based database

e 'memory' for in memory only database.

e type, is optional, and can be document or graph. By default is a document.

Example

HTTP POST request: http://localhost:2480/database/demo2/local HTTP response:

{ "classes": [
{

"id":
"name": "ORole",
"clusters": [3],
"defaultCluster": 3, "records": 0},
Taeltg 4,
"name": "OUser",
"clusters": [4],
"defaultCluster": 4, "records": 0},

DELETE - Database

Drop a database. Requires additional authentication to the server.

Syntax http://<server>:[<port>]/database/<databaseName>
Where:

e databaseName is the name of database

Example

HTTP DELETE request: http://localhost:2480/database/demo2 HTTP response code 204

Export

GET - Export
Exports a gzip file that contains the database JSON export.
Syntax: http://:[1/export/

HTTP GET request: http://localhost:2480/export/demo2 HTTP response: demo2.gzip file

Import

POST - Import

Imports a database from an uploaded JSON text file.
Synta)c http://<server>:[<port>]/import/<database>

Important: Connect required: the connection with the selected database must be already established

Example

HTTP POST request: http://localhost:2480/import/ HTTP response: returns a JSON object containing the result text Success:

{

"responseText": "Database imported correctly"

}

_Fail:

{
"responseText": "Error message"
3
List Databases

GET - List Databases

Retrieves the available databases.
Syntax: http://<server>:<port>/listDatabases

To let to the Studio to display the database list by default the permission to list the database is assigned to guest. Remove this

permission if you don't want anony mous user can display it.
For more details see Server Resources

Examp le of configuration of "guest" server user: al5b5e6bb7d06bd5d6c35db97e51400b

Example

HTTP GET request: http://localhost:2480/1listDatabases HTTP response:

{
"@type": "d", "@version": 0,
"databases": ["demo", "temp"]
}
Disconnect

GET - Disconnect

Syntax: http://<server>:[<port>]/disconnect

Example

HTTP GET request: http://localhost:2480/disconnect HTTP response: empty.

Document

GET - Document

This is a key way to retrieve data from the database, especially when combined with a <fetchplan> . Where a single result is required

then the RID can be used to retrieve that single document.
SyntaX: http://<server>:[<port>]/document/<database>/<record-id>[/<fetchPlan>]
Where:

® <record-id> See Concepts: RecordID
e <fetchPlan> Optional, is the fetch plan used. 0 means the root record, -1 infinite depth, positive numbers is the depth level. Look

at Fetching Strategies for more information.

Example

HTTP GET request: http://localhost :2480/document/demo/9:0

HTTP response can be:

e HTTP Code 200, with the document in JSON format in the payload, such as:
{

"id": "9:e",

"_ver": 2,

"@class": "Profile",
"nick": "GGaribaldi",
"followings": [],
"followers": [],
"name": "Giuseppe",
"surname": "Garibaldi",
"location": "11:0",
"invitedBy": 7
"sex": "male",
"online":
}
e HTTP Code 404, if the document was not found
The example above can be extended to return all the edges and vertices beneath #9:0

HTTP GET request: http://localhost:2480/document/demo/9:0/*: -1

HEAD - Document

Check if a document exists
Syntax: http://<server>:[<port>]/document/<database>/<record-id>
Where:

e <record-id> See Concepts: RecordID

Example

HTTP HEAD request: http://localhost:2480/document/demo/9:0
HTTP response can be:

e HTTP Code 204, if the document exists
e HTTP Code 404, if the document was not found

POST - Document

Create a new document. Returns the document with the new @rid assigned. Before 1.4.x the return was the @rid content only.

Syntax: http://<server>:[<port>]/document/<database>

Example

HTTP POST request: http://localhost:2480/document/demo

content:

{
"@class": "Profile",
"nick": "GGaribaldi",

"followings": [],
"followers": [],

"name": "Giuseppe",
"surname": "Garibaldi",
"location": "11:0",
"invitedBy": 0
"sex": "male",
"online":

HTTP response, as the document created with the assigned RecordID as @rid:

"@rid": "#11:4456",
"@class": "Profile",
"nick": "GGaribaldi",
"followings": [],
"followers": [],
"name": "Giuseppe",
"surname": "Garibaldi",
"location": "11:0",
"invitedBy": null,
"sex": "male",
"online": true

PUT - Document

Update a document. Remember to always pass the version to update. This prevent to update documents changed by other users
(MVCQ).

SyIHaX: http://<server>: [<port>]/document/<database>[/<record-id>][?updateMode=full |partial] Where

e updateMode can be full (default) or partial. With partial mode only the delta of changes is sent, otherwise the entire document is
replaced (full mode)

Example

HTTP PUT request: http://localhost:2480/document/demo/9:0

content:

{
"@class": "Profile",
"@version":
"nick": "GGaribaldi",

"followings": [],
"followers": [],
"name": "Giuseppe",
"online":

HTTP response, as the updated document with the updated @version field (Since v1.6):

content:

{
"@class": "Profile",
"@version":
"nick": "GGaribaldi",

"followings": [],
"followers": [],
"name": "Giuseppe",
"online":

PATCH - Document

Update a document with only the difference to apply. Remember to always pass the version to update. This prevent to update

documents changed by other users (M VCC).

SyrHaX: http://<server>: [<port>]/document/<database>[/<record-id>] Where

Example

This is the document 9:0 before to apply the patch:

"@class": "Profile",
"@version":
"name": "Jay"

: ’
"amount":

HTTP PATCH request: http://localhost:2480/document/demo/9:0

content:

{
"@class": "Profile",
"@version":

"amount":

HTTP response, as the updated document with the updated @version field (Since v1.6):

content:
"@class": "Profile",
"@version": 5,
"name": "Jay",
"amount":

DELETE - Document

Delete a document.

Syntax: http://<server>:[<port>]/document/<database>/<record-id>

Example

HTTP DELETE request: http://localhost:2480/document/demo/9:0

HTTP response: empty

Document By Class

GET Document by Class

Retrieve a document by cluster name and record position.
Syntax: http://<server>:[<port>]/documentbyclass/<database>/<class-name>/<record-position>[/fetchPlan]
Where:

® <class-name> is the name of the document's class
e <record-position> is the absolute position of the record inside the class' default cluster
e <fetchplan> Optional, is the fetch plan used. 0 means the root record, -1 infinite depth, positive numbers is the depth level. Look

at Fetching Strategies for more information.

Example

HTTP GET request: http://localhost:2480/documentbyclass/demo/Profile/0

HTTP response:

"_id": "9:0",
"_ver": 2,

"@class": "Profile",
"nick": "GGaribaldi",
"followings": [],

"followers": [],

"name": "Giuseppe",
"surname": "Garibaldi",
"location": "11:0",
"invitedBy": 0
"sex": "male",
"online":

HEAD - Document by Class

Check if a document exists
Syntax: http://<server>:[<port>]/documentbyclass/<database>/<class-name>/<record-position>
Where:

® <class-name> is the name of the document's class

e <record-position> is the absolute position of the record inside the class' default cluster

Example
HTTP HEAD request: http://localhost:2480/documentbyclass/demo/Profile/0

HTTP response can be:

e HTTP Code 204, if the document exists
e HTTP Code 404, if the document was not found

Allocation

GET - Allocation

Retrieve information about the storage space of a disk-based database.

Syntax: http://<server>:[<port>]/allocation/<database>

Example

HTTP GET request: http://localhost:2480/allocation/demo

HTTP response: { "size": 61910, "segments": [{"type": "d", "offset": ©, "size": 33154}, {"type": "h", "offset": 33154, "size":
4859}, {"type": "h", "offset": 3420, "size": 9392}, {"type": "d", "offset": 12812, "size": 49098}], "dataSize": 47659,
"dataSizePercent": 76, "holesSize": 14251, "holesSizePercent": 24 }

Index

NOTE: Every single new database has the default manual index called "dictionary".

GET - Index

Retrieve a record looking into the index.

SyntaX: http://<server>:[<port>]/index/<index-name>/<key>

Example

HTTP GET request: http://localhost:2480/dictionary/test HTTP response:

{
"name" : "Jay",
"surname" : "Miner"

PUT - Index

Create or modify an index entry.

Syntax: http://<server>:[<port>]/index/<index-name>/<key>

Example

HTTP PUT request: http://localhost:2480/dictionary/test content: { "name" : "Jay", "surname" : "Miner" }

HTTP response: No response.

DELETE - Index

Remove an index entry.

Syntax: http://<server>:[<port>]/index/<index-name>/<key>

Example

HTTP DELETE request: http://localhost:2480/dictionary/test HTTP response: No response.

Query

GET - Query

Execute a query against the database. Query means only idempotent commands like SQL. SELECT and TRAVERSE. Idemp otent means
the command is read-only and can't change the database. Remember that in IE6 the URL can be maximum of 2,083 characters. Other

browsers supports longer URLs, but if you want to stay compatible with all limit to 2,083 characters.
Syntax: http://<server>:[<port>]/query/<database>/<language>/<query-text>[/<limit>][/<fetchPlan>]
Where:

e <language> is the name of the language between those supported. OrientDB distribution comes with "sql" only. Gremlin language
cannot be executed with query because it cannot guarantee to be idempotent. To execute Gremlin use command instead.

® query-text is the text containingthe query to execute

e limit is the maximum number of record to return. Optional, default is 20

e fetchrlan is the fetching strategy to use. For more information look at Fetching Strategies. Optional, default is *:1 (1 depth level

only)
Other key points:

e To use commands that change the database (non-idempotent), see the POST — Command section
e The command-text included in the URL must be encoded as per a normal URL
e See the SQL section for the type of queries that can be sent

Example

HTTP GET request: http://localhost:2480/query/demo/sql/select from Profile

HTTP response:

{ "result": [

{
"_id": "-3:1",
"_ver": o,
"@class": "Address",
"type": "Residence",
"street": "Piazza di Spagna",
"city": "-4:0"

H

{
"_id": "-3:2",
"_ver": o,
"@class": "Address",
"type": "Residence",
"street": "test",
"city": "-4:1"

31}

The same query with the limit to maximum 20 results using the fetch plan *:-1 that means load all recursively:

HTTP GET request: http://localhost:2480/query/demo/sql/select from Profile/20/*:-1

Server

GET - Server

Retrieve information about the connected OrientDB Server. Requires additional authentication to the server.

Syntax: http://<server>:[<port>]/server

Example

HTTP GET request: http://localhost:2480/server HTTP response:

"connections": [{
"id": "4",
"id": "4",
"remoteAddress": "0:0:0:0:0:0:0:1:52504",
"db": "-",
"user": "-",
"protocol": "HTTP-DB",
"totalRequests": "1",

"commandInfo": "Server status",
"commandDetail": "-",

"lastCommandOn": "2010-05-26 05:08:58",
"lastCommandInfo": "-",
"lastCommandDetail": "-",
"lastExecutionTime": "Q@",

"totalWorkingTime": "@",

POST - Server

Changes server configuration. Supported configuration are:

e any setting contained in OGlobalConfiguation class, by using the prefix configuration in setting-name

e logging level, by using the prefix log in setting-name

Syntax: http://<server>:[<port>]/server/<setting-name>/<setting-value>
Example

Example on changing the server log level to FINEST

localhost:2480/server/log.console/FINEST

Example on changing the default timeout for query to 10 seconds

localhost :2480/server/configuration.command. timeout/10000

Connection

POST - Connection
Syntax: http://<server>:[<port>]/connection/<command>/<id>
Where:

e command can be:
o kill to kill a connection
o interrupt to interrupt the operation (if possible)

e id, as the connection id. To know all the con