
1

This documentation is also available in PDF format.

Past releases:

v1.7.8

Welcome to OrientDB - the first Multi-Model Open Source NoSQL DBMS that brings
together the power of graphs and the flexibility of documents into one scalable, high-
performance operational database. OrientDB is sponsored by Orient Technologies, LTD.

OrientDB has features of both Document and Graph DBMSs. Written in Java and
designed to be exceptionally fast: it can store up to 220,000 records per second on
common hardware. Not only can it embed documents like any other Document
database, but it manages relationships like Graph Databases with direct connections
among records. You can traverse parts of or entire trees and graphs of records in a few
milliseconds.

OrientDB supports schema-less, schema-full and schema-mixed modes and it has a
strong security profiling system based on users and roles. Thanks to the SQL layer,
OrientDB query language is straightforward and easy to use, especially for those skilled
in the relational DBMS world.

To learn some key advantages of using OrientDB, take a look at Why OrientDB?

OrientDB Manual - version 2.0

2

http://www.orientechnologies.com/docs/1.7.8/
http://en.wikipedia.org/wiki/NoSQL
http://www.orientechnologies.com
http://en.wikipedia.org/wiki/Document_database
http://en.wikipedia.org/wiki/Graph_database
http://www.orientechnologies.com/why-orientdb/

OrientDB is free for any use including commercial with its Apache 2 Open Source
License.

Orient Technologies, the company behind OrientDB, offers optional Professional
Services such as Developer and Production Support, Training and Consultancy with
transparent and competitive pricing. These options are available to ensure you’re
maximizing OrientDB’s capabilities for your particular needs and use case.

Is OrientDB really FREE?

3

http://www.apache.org/licenses/LICENSE-2.0.html
http://orientechnologies.com/support.htm
http://orientechnologies.com/training.htm
http://www.orientechnologies.com/consulting/

Start learning about OrientDB with the OrientDB Manual. For any questions, visit the
OrientDB Community Group. Need help? Go to Online Support. Do you want to hear
about OrientDB at a conference or meetup? Take a look at Events.

OrientDB Community

4

http://orientechnologies.com/docs
http://www.orientdb.org/community-group.htm
https://gitter.im/orientechnologies/orientdb
http://www.orientechnologies.com/events/
http://mac.softpedia.com/get/Developer-Tools/Orient.shtml

If you have any questions or need assistance with OrientDB, please let us know. Check
out our Get in Touch page for different ways of getting in touch with us.

Every effort has been made to ensure the accuracy of this manual. However, Orient
Technologies, LTD. makes no warranties with respect to this documentation and

disclaims any implied warranties of merchantability and fitness for a particular purpose.
The information in this document is subject to change without notice.

Need Further Assistance?

5

In the last few years, there's been an explosion of many NoSQL solutions and products.
The meaning of the word "NoSQL" is not a campaign against the SQL language. In fact,
OrientDB allows for SQL syntax! NoSQL is probably best described by the following:

NoSQL, meaning "not only SQL", is a movement encouraging developers and
business people to open their minds and consider new possibilities beyond the
classic relational approach to data persistence.

Alternatives to relational database management systems have existed for many years,
but they have been relegated primarily to niche use cases such as telecommunications,
medicine, CAD and others. Interest in NoSQL alternatives like OrientDB is increasing
dramatically. Not surprisingly many of the largest web companies like Google, Amazon,
Facebook, Foursquare, and Twitter are using NoSQL based solutions in production
environments.

What motivates companies to leave the comfort of a well established relational database
world? It all surrounds the fact that you can better solve today's data problems with a
modern database. Specifically, there are a few key areas:

Performance
Scalability (often extreme)
Smaller footprint
Developer productivity
Schema flexibility

Most of these areas also happen to be requirements of modern web applications. A few
years ago, developers designed systems that could handle hundreds of concurrent
users. Today it is not uncommon to have a potential target of thousands or millions of
users connected and served at the same time.

Changing technology requirements have been taken into account on the application front
by creating frameworks, introducing standards and leveraging best practices. However,
in the database world, the situation has remained more or less the same for over 30
years. From the 1970s until recently, relational DBMSs have played the dominant role.
Programming languages and methodologies have evolved, but the concept of data
persistence and DBMS have remained unchanged for the most part: tables, records and
joins.

Getting Started

6

NoSQL-based solutions in general provide a powerful, scalable, and flexible way to
solve data needs and use cases which have previously been managed by relational
databases. To summarize the NoSQL options, we'll examine the most common models
or categories:

Key / Value databases: data model is reduced to a simple hash table which
consists of key / value pairs. It is often easily distributed across multiple servers.
The most recognized products of this group include Redis, Dynamo, and Riak.
Column-oriented databases: data is stored in sections of columns offering more
flexibility and easy aggregation. Facebook's Cassandra, Google's BigTable, and
Amazon's SimpleDB are some examples of column-oriented databases.
Document databases: data model consists of document collections where
individual documents can have multiple fields without necessarily defining a
schema. The best known products of this group are MongoDB and CouchDB.
Graph databases: domain model consists of vertices interconnected by edges
creating a rich graph structure. The best known products of this group are OrientDB
and Neo4j.

OrientDB is a document-graph database, meaning it has full native graph
capabilities coupled with features normally only found in document databases.

Each of these categories or models has its own peculiarities, strengths and limitations.
There is not a single category or model which is better than all the others, however
certain types of databases are better at solving specific problems. This leads to the
motto of NoSQL: choose the best tool for your specific use case.

The goal of Orient Technologies in building OrientDB was to create a robust, highly
performant database that can perform optimally in the widest possible set of use cases.
Our product is designed to be the best "go to" solution for data persistence. In the
following parts of this tutorial, we will look closely at OrientDB, the original open-source,
multi-model, next generation NoSQL product.

NoSQL Models

7

The OrientDB engine supports Graph, Document, Key/Value, and Object models, so
you can use OrientDB as a replacement for a product in any of these categories.
However the main reason why users choose OrientDB is its ability to act as a true Multi-
Model DBMS by combining all the features of the four models into one. These are not
just interfaces to the database engine, but the engine, itself, was built to support all four
models. This is also the main difference with other DBMSs that claim to be Multi-Model
since they just implement an additional layer with an API that mimics additional models,
but under the hood they're truly one model therefore limiting speed and scalability.

Multi-Model

8

The data in this model is stored inside documents. A document is a set of key/value
pairs (also referred to as fields or properties) where a key allows access to its value.
Values can hold primitive data types, embedded documents, or arrays of other values.
Documents are not typically forced to have a schema which can be a benefit because
they remain flexible and easy to modify. Documents are stored in collections enabling
developers to group data as they decide. OrientDB uses the concepts of "classes" and
"clusters" instead of "collections" for grouping documents. This provides several benefits
that we will discuss in further sections of the documentation. OrientDB's Document
model adds the concept of a "LINK" as a relationship between documents. With
OrientDB you can decide whether to embed documents or link to them directly. When
you fetch the document all the links are automatically resolved by OrientDB. This is the
most important difference with any other Document Database like MongoDB.

The table below illustrates the comparison between the relational model, the document
model, and the OrientDB document model:

Relational Model Document Model OrientDB Document Model

Table Collection Class or Cluster

Row Document Document

Column Key/value pair Document field

Relationship not available Link

Document Model

9

A graph represents a network-like structure consisting of Vertices (also known as
Nodes) interconnected by Edges (also known as Arcs). OrientDB's graph model is
represented by the concept of a property graph, which defines the following:

Vertex - an entity that can be linked with other Vertices and has the following
mandatory properties:

unique identifier
set of incoming Edges
set of outgoing Edges

Edge - an entity that links two Vertices and has the following mandatory properties:
unique identifier
link to incoming Vertex (also known as head)
link to outgoing Vertex (also known as tail)
label that defines the type of connection/relationship between head and tail
vertex

In addition to mandatory properties, each vertex or edge can also hold a set of custom
properties. These properties can be defined by users, which can make vertices and
edges appear similar to documents. In the table below, you can find a comparison
between the graph model, the relational data model, and the OrientDB graph model:

Relational
Model Graph Model OrientDB Graph Model

Table Vertex and Edge
Class

Class that extends "V" (for Vertex) and
"E" (for Edges)

Row Vertex Vertex

Column Vertex and Edge
property Vertex and Edge property

Relationship Edge Edge

Graph Model

10

This is the simplest model of the three. Everything in the database can be reached by a
key, where the values can be simple and complex types. OrientDB supports Documents
and Graph Elements as values allowing a richer model than the classic Key/Value one.
The Key/Value model provides "buckets" to group key/value pairs in different containers.
The most classic use cases with Key/Value Model are:

POST the value as payload of the HTTP call -> 	/<bucket>/<key>	
GET the value as payload from the HTTP call -> 	/<bucket>/<key>	
DELETE the value by Key, by calling the HTTP call -> 	/<bucket>/<key>	

The table below illustrates the comparison between the relational model, the Key/Value
model, and the OrientDB Key/Value model:

Relational
Model

Key/Value
Model OrientDB Key/Value Model

Table Bucket Class or Cluster

Row Key/Value pair Document

Column not available Document field or Vertex/Edge
property

Relationship not available Link

Key/Value Model

11

This model has been inherited by Object Oriented programming and supports
Inheritance between types (sub-types extends the super-types), Polymorphism when
you refer to a base class, and Direct binding from/to Objects used in programming
languages.

The table below illustrates the comparison between the relational model, the Object
model, and the OrientDB Object model:

Relational Model Object Model OrientDB Object Model

Table Class Class or Cluster

Row Object Document or Vertex

Column Object property Document field or Vertex/Edge property

Relationship Pointer Link

Object Model

12

http://en.wikipedia.org/wiki/Object-oriented_programming

OrientDB is available in two editions:

Community Edition This edition is released as an open source project under the
Apache 2 license. This license allows unrestricted free usage for both open source
and commercial projects.
Enterprise Edition OrientDB Enterprise edition is commercial software built on top
of the Community Edition. Enterprise is developed by the same team that developed
the OrientDB engine. It serves as an extension of the Community Edition by
providing Enterprise features such as:

Query Profiler
Distributed Clustering configuration
Metrics Recording
Live Monitoring with configurable Alerts

An Enterprise Edition license is included without charge if you purchase Support.

Both editions run on every operating system that has an implementation of the Java
Virtual Machine (JVM), for example:

All Linux distributions, including ARM (Raspberry Pi, etc.)
Mac OS X
Microsoft Windows from 95/NT or later
Solaris
HP-UX
IBM AIX

This means the only requirement for using OrientDB is to have Java version 1.6 or
higher installed.

The easiest and fastest way to start using OrientDB is to download binaries from the
Official OrientDB Download Page.

Installation

Prerequisites

Download Binaries

Compile Your Own Community Edition

13

http://www.orientechnologies.com/orientdb/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/support/
http://www.java.com/en/download
http://www.orientechnologies.com/download/

Alternatively, you can clone the Community Edition project from GitHub and compile it.
This allows you access to the latest functionality without waiting for a distribution binary.
To build the Community Edition, you must first install the Apache Ant tool and follow
these steps:

>	git	clone	git@github.com:orientechnologies/orientdb.git
>	cd	orientdb
>	ant	clean	install

After the compilation, all the binaries are placed under the 	../releases	 directory.

The Mac OS X, Linux, and UNIX based operating systems typically require you to
change the permissions to execute scripts. The following command will apply the
necessary permissions for these scripts in the 	bin	 directory of the OrientDB distribution:

>	chmod	755	bin/*.sh
>	chmod	-R	777	config

OrientDB uses a ConcurrentLinkedHashMap implementation provided by
https://code.google.com/p/concurrentlinkedhashmap/ to create the LRU based cache.
This library actively uses the sun.misc package which is usually not exposed as a
system package. To overcome this limitation you should add property
	org.osgi.framework.system.packages.extra	 with value 	sun.misc	 to your list of framework
properties. It may be as simple as passing an argument to the VM starting the platform:

>	java	-Dorg.osgi.framework.system.packages.extra=sun.misc

To learn more about how to install OrientDB on specific environments, please refer to
the guides below:

Install as service on Unix, Linux and MacOSX
Install as service on Windows

Change Permissions

Use inside of OSGi container

Other Resources

14

https://github.com/orientechnologies/orientdb
http://ant.apache.org/bindownload.cgi
https://code.google.com/p/concurrentlinkedhashmap/

Install with Docker
Install on Linux Ubuntu
Install on JBoss AS
Install on GlassFish
Install on Ubuntu 12.04 VPS (DigitalOcean)
Install on Vagrant

15

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps
https://bitbucket.org/nuspy/vagrant-orientdb-with-tinkerpop/overview

After you have downloaded the binary distribution of OrientDB and unpacked it, you are
now able to start the server. This is done by executing 	server.sh	 (or 	server.bat	 on
Windows) located in 	bin	 directory:

>	cd	bin
>	./server.sh

You should now see the following output:

											.
										.`								`
										,						`:.
									`,`				,:`
									.,.			:,,
									.,,		,,,
				.				.,.:::::		````
				,`			.::,,,,::.,,,,,,`;;																						.:
				`,.		::,,,,,,,:.,,.`		`																							.:
					,,:,:,,,,,,,,::.			`								`									``					.:
						,,:.,,,,,,,,,:	`::,	,,			::,::`			:	:,::`		::::
							,:,,,,,,,,,,::,:			,,		:.				:			::				:			.:
								:,,,,,,,,,,:,::			,,		:						:		:					:			.:
		`					:,,,,,,,,,,:,::,		,,	.::::::::		:					:			.:
		`,...,,:,,,,,,,,,:	.:,.	,,	,,									:					:			.:
				.,,,,::,,,,,,,:		`:	,	,,		:					`			:					:			.:
						...,::,,,,::..	`:		.,,		:,				:			:					:			.:
											,::::,,,.	`:			,,			:::::				:					:			.:
											,,:`	`,,.
										,,,				.,`
									,,.					`,																						S	E	R	V	E	R
							``								`.
																	``
																	`

2012-12-28	01:25:46:319	INFO	Loading	configuration	from:	config/orientdb-server-config.xml...	[OServerConfigurationLoaderXml]
2012-12-28	01:25:46:625	INFO	OrientDB	Server	v1.6	is	starting	up...	[OServer]
2012-12-28	01:25:47:142	INFO	->	Loaded	memory	database	'temp'	[OServer]
2012-12-28	01:25:47:289	INFO	Listening	binary	connections	on	0.0.0.0:2424	[OServerNetworkListener]
2012-12-28	01:25:47:290	INFO	Listening	http	connections	on	0.0.0.0:2480	[OServerNetworkListener]
2012-12-28	01:25:47:317	INFO	OrientDB	Server	v1.6	is	active.	[OServer]

The log messages explain what happens when the server starts:

1. The server configuration is loaded from 	config/orientdb-server-config.xml	 file. To

Run the server

16

know more about this step, look into OrientDB Server
2. By default, a "temp" database is always loaded into memory. This is a volatile

database that can be used to store temporary data
3. Binary connections are listening on port 2424 for all configured networks (0.0.0.0). If

you want to change this configuration edit the 	config/orientdb-server-config.xml	 file
and modify port/ip settings

4. HTTP connections are listening on port 2480 for all configured networks (0.0.0.0). If
you want to change this configuration edit the 	config/orientdb-server-config.xml	 file
and modify port/ip settings

OrientDB server listens on 2 different ports by default. Each port is dedicated to binary
and HTTP connections respectively:

binary port is used by the console and clients/drivers that support the network
binary protocol
HTTP port is used by OrientDB Studio web tool and clients/drivers that support the
HTTP/REST protocol or tools like CURL

17

http://www.orientechnologies.com/docs/last/orientdb-studio.wiki/Home-page.html
http://en.wikipedia.org/wiki/CURL

OrientDB provides a command line interface. It can be used to connect to and work with
remote or local OrientDB servers.

You can start the command line interface by executing 	console.sh	 (or 	console.bat	 on
Windows) located in the 	bin	 directory:

>	cd	bin
>	./console.sh

You should now see a welcome message:

OrientDB	console	v.1.6	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.

orientdb>

Type the "help" or "?" command to see all available console commands:

orientdb>	help

AVAILABLE	COMMANDS:

*	alter	class	<command-text>				Alter	a	class	in	the	database	schema
...
*	help																										Print	this	help
*	exit																										Close	the	console

Some console commands such as 	list	databases	 or 	create	database	 can be run while
only connected to a server instance (you do not have to be connected to a database).
Other commands require you to be connected to a database. Before you can connect to
a fresh server instance and fully control it, you need to know the root password. The root
password is located in 	config/orientdb-server-config.xml	 (just search for the users
element). If you want to change it, modify the XML file and then restart the server.

If you have the required credentials, you should now be able to connect using the
following command:

Run the console

Connecting to server instance

18

orientdb>	connect	remote:localhost	root	someUglyPassword
Connecting	to	remote	Server	instance	[remote:localhost]	with	user	'root'...OK

Next, you can (for example) list databases using the command:

orientdb>	list	databases

Found	1	databases:

*	GratefulDeadConcerts	(plocal)

To connect to another database we can again use the 	connect	 command from the
console and specify the server URL, username, and password. By default each
database has an "admin" user with password "admin" (change the default password on
your real database). To connect to the GratefulDeadConcerts database on the local
server execute the following:

orientdb>	connect	remote:localhost/GratefulDeadConcerts	admin	admin
Connecting	to	database	[remote:localhost/GratefulDeadConcerts]	with	user	'admin'...OK

Let's analyze the URL we have used: 	remote:localhost/GratefulDeadConcerts	. The first part
is the protocol, "remote" in this case, which contacts the server using the TCP/IP
protocol. "localhost" is the host name or IP address where the server resides; in this
case it is on the same machine. "GratefulDeadConcerts" is the name of the database to
which we want to connect.

The OrientDB distribution comes with the bundled database GratefulDeadConcerts
which represents the Graph of the Grateful Dead's concerts. This database can be used
by anyone to start exploring the features and characteristics of OrientDB.

For more detailed information about the commands see the console page.

19

http://en.wikipedia.org/wiki/Grateful_Dead

It's easier to introduce OrientDB's basic concepts by outlining the Document Database
API. It is more similar to Relational DBMS concepts and therefore a little more natural to
follow for many developers. These basic concepts are shared between all of OrientDB's
APIs: Document, Object, and Graph.

As with the relational DBMS, OrientDB has the concept of records as an element of
storage. There are different types of records, but for the next examples we will always
use the document type. A document is composed of attributes and can belong to one
class. Going forward we will also refer to the attributes with the terms "fields" and
"properties".

The concept of class is well known to those who program using object-oriented
languages. Classes are also used in OrientDB as a type of data model according to
certain rules. To learn more about Classes in general take a look at Wikipedia.

To list all the configured classes, type the 	classes	 command in the console:

orientdb>	classes

CLASSES:
--+---------------------+-----------+
	NAME																																									|	CLUSTERS												|	RECORDS			|
--+---------------------+-----------+
	AbstractPerson																															|	-1																		|									0	|
	Account																																						|	11																		|						1126	|
	Actor																																								|	91																		|									3	|
	Address																																						|	19																		|							166	|
	Animal																																							|	17																		|									0	|
																																									|																|						|
	Whiz																																									|	14																		|						1001	|
--+---------------------+-----------+
	TOTAL																																																																				22775	|
--+

To create a new class, use the 	create	class	 command:

orientdb>	create	class	Student

Class	created	successfully.	Total	classes	in	database	now:	92

OrientDB allows you to work in a schema-less mode, without defining properties.

Classes

20

http://en.wikipedia.org/wiki/Class_in_object-oriented_programming

However, properties are mandatory if you define indexes or constraints. To create a new
property use the 	create	property	 command. Here is an example of creating three
properties against the 	Student	 class:

orientdb>	create	property	Student.name	string

Property	created	successfully	with	id=1

orientdb>	create	property	Student.surname	string

Property	created	successfully	with	id=2

orientdb>	create	property	Student.birthDate	date

Property	created	successfully	with	id=3

To display the class 	Student	, use the 	info	class	 command:

orientdb>	info	class	Student

Class................:	Student
Default	cluster......:	student	(id=96)
Supported	cluster	ids:	[96]
Properties:
-------------------------------+-------------+-------------------------------+-----------+----------+----------+-----------+-----------+
	NAME																										|	TYPE								|	LINKED	TYPE/CLASS													|	MANDATORY	|	READONLY	|	NOT	NULL	|				MIN				|				MAX				|
-------------------------------+-------------+-------------------------------+-----------+----------+----------+-----------+-----------+
	birthDate																					|	DATE								|	null																										|	false					|	false				|	false				|											|											|
	name																										|	STRING						|	null																										|	false					|	false				|	false				|											|											|
	surname																							|	STRING						|	null																										|	false					|	false				|	false				|											|											|
-------------------------------+-------------+-------------------------------+-----------+----------+----------+-----------+-----------+

To add a constraint, use the 	alter	class	 command. For example, let's specify that the
	name	 field should be at least 3 characters:

orientdb>	alter	property	Student.name	min	3

Property	updated	successfully

To see all the records in a class, use the 	browse	class	 command:

>	browse	class	OUser

21

In this case we are listing all of the users of the database. This is not particularly secure.
You should further deepen the OrientDB security system, but for now 	OUser	 is a class
like any other. For each query the console always shows us the number of the records in
the result set and the record's ID.

---+---------+--------------------+--------------------+--------------------+--------------------
		#|	RID					|name																|password												|status														|roles
---+---------+--------------------+--------------------+--------------------+--------------------
		0|					#5:0|admin															|{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918|ACTIVE														|[1]
		1|					#5:1|reader														|{SHA-256}3D0941964AA3EBDCB00CCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30|ACTIVE														|[1]
		2|					#5:2|writer														|{SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBA5|ACTIVE														|[1]
---+---------+--------------------+--------------------+--------------------+--------------------

The first column is a number used as an identifier to display the record's detail. To show
the first record in detail, it is necessary to use the 	display	record	 command with the
number of the record, in this case 0:

orientdb>	display	record	0
--
ODocument	-	Class:	OUser			id:	#5:0			v.0
--
																name	:	admin
												password	:	{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918
														status	:	ACTIVE
															roles	:	[#4:0=#4:0]

22

We've already talked about classes. A class is a logical concept in OrientDB. Clusters
are also an important concept in OrientDB. Records (or documents/vertices) are stored
in clusters.

Clusters

23

A cluster is a place where a group of records are stored. Perhaps the best equivalent in
the relational world would be a Table. By default, OrientDB will create one cluster per
class. All the records of a class are stored in the same cluster which has the same name
as the class. You can create up to 32,767 (2^15-1) clusters in a database.

Understanding the concepts of classes and clusters allows you to take advantage of the
power of clusters while designing your new database.

Even though the default strategy is that each class maps to one cluster, a class can rely
on multiple clusters. You can spawn records physically in multiple places, thereby
creating multiple clusters. For example:

The class "Customer" relies on 2 clusters:

USA_customers, containing all USA customers. This is the default cluster as
denoted by the red star.
China_customers, containing all Chinese customers.

The default cluster (in this case, the USA_customers cluster) is used by default when the
generic class "Customer" is used. Example:

What is a cluster?

24

When querying the "Customer" class, all the involved clusters are scanned:

If you know the location of a customer you're looking for you can query the target cluster
directly. This avoids scanning the other clusters and optimizes the query:

25

To add a new cluster to a class, use the ALTER CLASS command. To remove a cluster
use REMOVECLUSTER in ALTER CLASS command. Example to create the cluster
"USA_Customers" under the "Customer" class:

ALTER	CLASS	Customer	ADDCLUSTER	USA_Customers

The benefits of using different physical places to store records are:

faster queries against clusters because only a sub-set of all the class's clusters
must be searched
good partitioning allows you to reduce/remove the use of indexes
parallel queries if on multiple disks
sharding large data sets across multiple disks or server instances

There are two types of clusters:

Physical Cluster (known as local) which is persistent because it writes directly to
the file system
Memory Cluster where everything is volatile and will be lost on termination of the
process or server if the database is remote

For most cases physical clusters are preferred because the database must be

26

persistent. OrientDB creates physical clusters by default so you don't have to worry too
much about it for now.

To view all clusters, from the console run the 	clusters	 command:

orientdb>	clusters

CLUSTERS:
--+------+---------------------+-----------+
	NAME																																									|		ID		|	TYPE																|	RECORDS			|
--+------+---------------------+-----------+
	account																																						|				11|	PHYSICAL												|						1107	|
	actor																																								|				91|	PHYSICAL												|									3	|
	address																																						|				19|	PHYSICAL												|							166	|
	animal																																							|				17|	PHYSICAL												|									0	|
	animalrace																																			|				16|	PHYSICAL												|									2	|
																																									|	|																|						|
--+------+---------------------+-----------+
	TOTAL																																																																											23481	|
---+

Since by default each class has its own cluster, we can query the database's users by
class or by cluster:

orientdb>	browse	cluster	OUser

---+---------+--------------------+--------------------+--------------------+--------------------
		#|	RID					|name																|password												|status														|roles
---+---------+--------------------+--------------------+--------------------+--------------------
		0|					#5:0|admin															|{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918|ACTIVE														|[1]
		1|					#5:1|reader														|{SHA-256}3D0941964AA3EBDCB00CCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30|ACTIVE														|[1]
		2|					#5:2|writer														|{SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBA5|ACTIVE														|[1]
---+---------+--------------------+--------------------+--------------------+--------------------

The result is identical to 	browse	class	ouser	 executed in the classes section because
there is only one cluster for the OUser class in this example.

The strategy where OrientDB selects the cluster when inserts a new record is
configurable and pluggable. For more information take a look at Cluster Selection.

27

In OrientDB each record has its own self-assigned unique ID within the database called
Record ID or RID. It is composed of two parts:

#<cluster-id>:<cluster-position>

cluster-id is the id of the cluster. Each database can have a maximum of 32,767
clusters (2^15-1)
cluster-position is the position of the record inside the cluster. Each cluster can
handle up to 9,223,372,036,854,780,000 (2^63) records, namely 9,223,372 Trillion
of records!

So the maximum size of a database is 2^78 records = 302,231,454,903 Trillion of
records. We have never tested such high numbers due to the lack of hardware
resources, but we most definitely have users working with OrientDB databases in the
billions of records.

A RID (Record ID) is the physical position of the record inside the database. This means
that loading a record by its RID is blazing fast, even with a growing database. With
document and relational DBMS the more data you have, the slower the database will be.
Joins have a heavy runtime cost. OrientDB handles relationships as physical links to the
records. The relationship is assigned only once when the edge is created O(1). Compare
this to an RDBMS that “computes“ the relationship every single time you query a
database O(LogN). Traversing speed is not affected by the database size in OrientDB. It
is always constant, whether for one record or 100 billion records. This is critical in the
age of Big Data!

To load a record directly via the console, use the 	load	record	 command. Below, we load
the record #12:4 of the "demo" database.

orientdb>	load	record	#12:4
--
ODocument	-	Class:	Company			id:	#12:4			v.8
--
											addresses	:	[NOT	LOADED:	#19:159]
														salary	:	0.0
											employees	:	100004
																		id	:	4
																name	:	Microsoft4
									initialized	:	false

Record ID

28

													salary2	:	0.0
										checkpoint	:	true
													created	:	Sat	Dec	29	23:13:49	CET	2012

The 	load	record	 command returns some useful information about this record:

It's a document. OrientDB supports different types of records. This tutorial covers
documents only.
The class is "Company"
The current version is 8. OrientDB has a MVCC system. It will be covered at a later
point. Just know that every time you update a record its version is incremented by 1.
We have different field types: "salary" and "salary2" are floats, "employees" and "id"
are integers, "name" is a string, "initialized" and "checkpoint" are booleans and
"created" is a date-time
The field "addresses" has been NOT LOADED. It is also a LINK to another record
#19:159. This is a relationship. (More explanation to follow)

29

Most NoSQL products have a custom query language. OrientDB focuses on standards
when it comes to query languages. Instead of inventing "Yet Another Query Language",
we started from the widely used and well understood SQL. We then extended it to
support more complex graph concepts like Trees and Graphs. Why SQL? SQL
ubiquitous in the database developer world, it is familiar. Also, it is more readable and
concise than Map Reduce scripts.

To start, let's write a query that returns the same result as the previous 	browse	cluster
ouser	 and 	browse	class	ouser	:

select	from	OUser

Starting from this simple query, we can notice 2 interesting things:

This query has no projections. This stands for "the entire record" like using the star
(*).
OUser is a class. By default queries are executed against classes.

The target can also be:

a cluster, by prefixing with "cluster:". Example: 	select	from	cluster:OUser	
one or more Record IDs, by using the RecordID directly. For example: 	select	from
#10:3	 or 	select	from	[#10:1,	#10:3,	#10:5]	
an index, by prefixing with "index:". For example: 	select	value	from	index:dictionary
where	key	=	'Jay'	

Similar to standard SQL, OrientDB supports WHERE conditions to filter the returning
records by specifying one or more conditions. For example:

select	from	OUser	where	name	like	'l%'

Returns all OUser records where the name starts with 'l'. For more information, look at all
the supported operators and functions: SQL-Where.

SQL

Select

30

OrientDB also supports the 	ORDER	BY	 clause to order the result set by one or more fields.
For example:

select	from	Employee	where	city	=	'Rome'	order	by	surname	asc,	name	asc

This will return all of the Employees who live in Rome, ordered by surname and name in
ascending order. You can also use the 	GROUP	BY	 clause to group results. For example:

select	sum(salary)	from	Employee	where	age	<	40	group	by	job

This returns the sum of the salaries of all the employees with age under 40 grouped by
job type. To limit the result set you can use the 	LIMIT	 keyword. For example, to limit the
result set to maximum of 20 items:

select	from	Employee	where	gender	=	'male'	limit	20

Thanks to the SKIP keyword you can easily manage pagination. Use SKIP to pass over
records from the result set. For example, to divide the result set in 3 pages you could do
something like:

select	from	Employee	where	gender	=	'male'	limit	20
select	from	Employee	where	gender	=	'male'	skip	20	limit	20
select	from	Employee	where	gender	=	'male'	skip	40	limit	20

Now that we have the basic skills to execute queries, let's discuss how to manage
relationships.

OrientDB supports ANSI-92 syntax:

insert	into	Employee	(name,	surname,	gender)	values	('Jay',	'Miner',	'M')

And the simplified:

Insert

31

insert	into	Employee	set	name	=	'Jay',	surname	=	'Miner',	gender	=	'M'

Since OrientDB was created for the web, it can natively ingest JSON data:

insert	into	Employee	content	{name	:	'Jay',	surname	:	'Miner',	gender	:	'M'}

The ANSI-92 syntax is supported. Example:

update	Employee	set	local	=	true	where	city	=	'London'

Also using JSON with the "merge" keyword to merge the input JSON with current record:

update	Employee	merge	{	local	:	true	}	where	city	=	'London'

This also respects the ANSI-92 compliant syntax:

delete	from	Employee	where	city	<>	'London'

Update

Delete

32

The most important feature of a graph database is the management of relationships.
Many users come to OrientDB from MongoDB or other document databases because
they lack efficient support of relationships.

Relationships

33

http://www.mongodb.org

The relational model (and RDBMS - relational database management systems) has long
been thought to be the best way to handle relationships. Graph databases suggest a
more modern approach to this topic.

Most database developers are familiar with the relational model given it's 30+ years of
dominance, spreading over generations of developers. Let's review how these systems
manage relationships. As an example, we will use the relationships between the
Customer and Address tables.

RDBMSs store the value of the target record in the "address" column of the Customer
table. This is called a foreign key. The foreign key points to the primary key of the
related record in the Address table:

To retrieve the address pointed to by customer "Luca", the query in a RDBMS would be:

SELECT	B.location	FROM	Customer	A,	Address	B	WHERE	A.name	=	'Luca'	AND	A.address	=	B.id

Relational Model

1-to-1 relationship

34

This is a JOIN! A JOIN is executed at run-time every time you retrieve a relationship.

Since RDBMS have no concept of collections the Customer table cannot have multiple
foreign keys. The way to manage a 1-to-Many relationship is by moving the foreign key
to the Address table.

To extract all addresses of Customer 'Luca', the query in RDBMS reads:

SELECT	B.location	FROM	Customer	A,	Address	B	WHERE	A.name	=	'Luca'	AND	B.customer	=	A.id

The most complex case is the Many-to-Many relationship. To handle this type of
association, RDBMSs need a separate, intermediary table that matches both Customer
and Addresses in all required combinations. This results in a double JOIN per record at
runtime;

1-to-Many relationship

Many-to-Many relationship

35

To extract all addresses of Customer 'Luca's the query in RDBMS becomes:

SELECT	B.location	FROM	Customer	A,	Address	B,	CustomerAddress	C	WHERE	A.name	=	'Luca'	AND	B.id	=	A.id	

With document and relational DBMS, the more data you have, the slower the database
will perform. Joins have heavy runtime costs. In comparison, OrientDB handles
relationships as physical links to the records, assigned only once when the edge is
created O(1). Compare this to an RDBMS that “computes“ the relationship every single
time you query a database O(LogN). With OrientDB, speed of traversal is not affected by
the database size. It is always constant regardless if it has one record or 100 billion
records. This is critical in the age of Big Data.

Searching for an ID at runtime each time you execute a query, for every record could be
very expensive! The first optimization with RDMS is using indexes. Indexes speed up
searches but they slow down 	INSERT	, 	UPDATE	 and 	DELETE	 operations. In addition, they
occupy substantial space on disk and in memory. You also need to qualify - are you sure
the lookup into an index is actually fast? Let's try to understand how indexes work.

The problem with JOINS

Do indexes solve the problem with JOIN?

36

The database industry has plenty of indexing algorithms. The most common in both
Relational and NoSQL DBMS is the B+Tree. All balanced trees work in similar ways.
Here is and example of how it would work when you're looking for "Luca": after only 5
hops the record is found.

But what if there were millions or billions of records? There would be many, many more
hops. And this operation is executed on every JOIN per record! Imagine joining 4 tables
with thousands of records: the number of JOINS could be in the millions!

37

http://en.wikipedia.org/wiki/B%2B_tree

OrientDB doesn't use JOINs. Instead it uses LINKs. A LINK is a relationship managed by
storing the target RID in the source record. It's much like storing a pointer between 2
objects in memory. When you have Invoice -> Customer, then you have a pointer to
Customer inside Invoice as an attribute. It's exactly the same. In this way it's like your
database was in memory, a memory of several exabytes.

What about 1-to-N relationships? These relationships are handled as a collection of
RIDs, like you would manage objects in memory. OrientDB supports different kinds of
relationships:

LINK, to point to one record only
LINKSET, to point to several records. Like Java Sets, the same RID can only be
included once. The pointers also have no order
LINKLIST, to point to several records. Like Java Lists, they are ordered and can
contain duplicates
LINKMAP, to point to several records with a key stored in the source record. The
Map values are the RIDs. Works like the Java 	Map<?,Record>	.

Relations in OrientDB

38

We already met the Graph Model a few pages ago. Now we have all the basic
knowledge needed to work with OrientDB as a GraphDB! This requires the graph edition
of OrientDB. Connect to the 	GratefulDeadConcerts	 database for experimentation. It
contains the concerts performed by the "Grateful Dead" band.

OrientDB comes with a generic Vertex persistent class called "V" (OGraphVertex in
previous releases) and "E" (OGraphEdge in the past) for Edge. You can create a new
Vertex with:

orientdb>	insert	into	V	set	name	=	'Jay'
create	record	with	RID	#9:0

In effect, the GraphDB model works on top of the underlying Document model, so all the
stuff you have learned until now (Records, Relationships, etc.) remains valid. But in
order to simplify the management of the graph we've created special commands, so
don't use the SQL Insert command anymore to create a new vertex. Instead, use the ad-
hoc "create vertex" command:

orientdb>	create	vertex	V	set	name	=	'Jay'
create	vertex	with	RID	#9:1

By using graph commands, OrientDB takes care of ensuring that the graph remains
always consistent. All the Graph commands are:

CREATE VERTEX
DELETE VERTEX
CREATE EDGE
DELETE EDGE

Even though you can work with Vertices and Edges, OrientDB provides the possibility to
extend the 	V	 and 	E	 classes. The pros of this approach are:

Working with Graphs

Create Vertexes and Edges

Create custom Vertices and Edges classes

39

http://en.wikipedia.org/wiki/Grateful_Dead

better understanding about meaning of entities
optional constraints at class level
performance: better partitioning of entities
object-oriented inheritance among graph elements

So from now on, we will avoid using plain 	V	 and 	E	 and will always create custom
classes. Let's develop an example graph to model a social network based on
restaurants:

orientdb>	create	class	Person	extends	V
orientdb>	create	class	Restaurant	extends	V

Now that the schema has been created let's populate the graph with some vertices:

orientdb>	create	vertex	Person	set	name	=	'Luca'
create	record	with	RID	#11:0

orientdb>	create	vertex	Person	set	name	=	'Bill'
create	record	with	RID	#11:1

orientdb>	create	vertex	Person	set	name	=	'Jay'
create	record	with	RID	#11:2

orientdb>	create	vertex	Restaurant	set	name	=	'Dante',	type	=	'Pizza'
create	record	with	RID	#12:0

orientdb>	create	vertex	Restaurant	set	name	=	'Charlie',	type	=	'French'
create	record	with	RID	#12:1

Before we connect them using edges, let's go create a new Edge type:

orientdb>	create	class	Eat	extends	E

This will represent the relationship from Person to Restaurant. The orientation is
important when you create an edge because it gives the meaning of the relationship. If
we wanted to model the edge in the opposite orientation, from Restaurant to Person, we
might call the Edge class "Attendee", or something similar.

Now let's create a connection between person "Luca" and restaurant "Dante":

orientdb>	create	edge	Eat	from	(select	from	Person	where	name	=	'Luca')	to	(select	from	Restaurant	where	name	=	'Dante')

40

If you know the RID of vertices you can connect them with a shorter and faster
command. Below we will connect "Bill" with the same "Dante" Restaurant and 'Jay' to
'Charlie' Restaurant:

orientdb>	create	edge	Eat	from	#11:1	to	#12:0
orientdb>	create	edge	Eat	from	#11:2	to	#12:1

Now that our small graph has been created let's play with queries. To cross edges we
can use special graph functions like:

	out()	, to retrieve the adjacent outgoing vertices
	in()	, to retrieve the adjacent incoming vertices
	both()	, to retrieve the adjacent incoming and outgoing vertices

To know all the people who eat in the "Dante" restaurant (RID = #12:0), we can get
Dante's record and then traverse the incoming edges to discover the Person records
connected:

orientdb>	select	in()	from	Restaurant	where	name	=	'Dante'

+-------+----------------+
|	@RID		|	in													|
+-------+----------------+
|	#-2:1	|	[#11:0,	#11:1]	|
+-------+----------------+

Those are the RIDs of the Person instances connected. In these cases the 	expand()	
special function becomes very useful to transform the collection of vertices in the
resultset by expanding it:

orientdb>	select	expand(in())	from	Restaurant	where	name	=	'Dante'

+-------+-------------+-------------+---------+
|	@RID		|	@CLASS						|	Name								|	out_Eat	|
+-------+-------------+-------------+---------+
|	#11:0	|	Person						|	Luca								|	#12:0			|
|	#11:1	|	Person						|	Bill								|	#12:0			|
+-------+-------------+-------------+---------+

Much better! Now let's create the new relationship "Friend" to connect people:

41

orientdb>	create	class	Friend	extends	E

And connect "Luca" with "Jay":

orientdb>	create	edge	Friend	from	#11:0	to	#11:2

"Friend" relationship is one of these edge types where the orientation is not important: if
"Luca" is a friend of "Jay" the opposite is usually true, so the orientation looses
importance. To discover Luca's friends, we should use the 	both()	 function:

orientdb>	select	expand(both('Friend'))	from	Person	where	name	=	'Luca'

+-------+-------------+-------------+---------+-----------+
|	@RID		|	@CLASS						|	Name								|	out_Eat	|	in_Friend	|
+-------+-------------+-------------+---------+-----------+
|	#11:2	|	Person						|	Jay									|	#12:1			|	#11:0					|
+-------+-------------+-------------+---------+-----------+

In this case I've passed the Edge's class "Friend" as argument of the 	both()	 function to
cross only the relationships of kind "Friend" (so skip the "Eat" this time). Note also in the
result set that the relationship with "Luca" (RID = #11:0) is in the "in_" field.

Now let's make things more complicated. Get all the restaurants where Luca's friends
go.

orientdb>	select	expand(both('Friend').out('Eat'))	from	Person	where	name	=	'Luca'

+-------+-------------+-------------+-------------+---------+
|	@RID		|	@CLASS						|	Name								|	Type								|	in_Eat		|
+-------+-------------+-------------+-------------+---------+
|	#12:1	|	Restaurant		|	Charlie					|	French						|	#11:2			|
+-------+-------------+-------------+-------------+---------+

Cool, isn't it?

42

Starting from OrientDB v1.4.x edges, by default, are managed as lightweight edges:
they don't have own identities as record, but are physically stored as links inside
vertices. OrientDB automatically uses Lightweight edges only when edges have no
properties, otherwise regular edges are used. From the logic point of view, lightweight
edges are edges at all the effects, so all the graph functions work correctly. This is to
improve performance and reduce the space on disk. But as a consequence, since
lightweight edges don't exist as separate records in the database, the following query will
not return the lightweight edges:

SELECT	FROM	E

In most of the cases Edges are used from Vertices, so this doesn't cause any particular
problem. In case you need to query Edges directly, even those with no properties,
disable lightweight edge feature by executing this command once:

ALTER	DATABASE	CUSTOM	useLightweightEdges=false

This will only take effect for new edges. For more information look at:
https://github.com/orientechnologies/orientdb/wiki/Troubleshooting#why-i-cant-see-all-
the-edges.

For more information look at Graph API.

Lightweight edges

43

https://github.com/orientechnologies/orientdb/wiki/Troubleshooting#why-i-cant-see-all-the-edges

OrientDB is a Graph Database "on steroids" because it supports concepts taken from
both the Document Database and Object-Oriented worlds. This Tutorial step shows the
power of Graphs used in conjunction with schema and constraints.

Take a look at this use case: Creating a graph to map the relationships between Person
and Cars.

Let's open a shell (or command prompt in Windows) and launch the OrientDB Console
(use 	console.bat	 on Windows):

>	cd	$ORIENTDB_HOME/bin
>	./console.sh

Now we're going to use the console to create a brand new local database:

orientdb>	create	database	plocal:../databases/cars	admin	admin	plocal

Ok, now let's create the first graph schema with "Person" and "Car" as 2 new Vertex
types and "Owns" as an Edge type:

orientdb>	create	class	Person	extends	V
orientdb>	create	class	Car	extends	V
orientdb>	create	class	Owns	extends	E

And let's go populate the database with the first Graph elements:

orientdb>	create	vertex	Person	set	name	=	'Luca'

Created	vertex	'Person#11:0{name:Luca}	v1'	in	0,012000	sec(s).

orientdb>	create	vertex	Car	set	name	=	'Ferrari	Modena'

Created	vertex	'Car#12:0{name:Ferrari	Modena}	v1'	in	0,001000	sec(s).

orientdb>	create	edge	Owns	from	(select	from	Person)	to	(select	from	Car)

Created	edge	'[e[#11:0->#12:0][#11:0-Owns->#12:0]]'	in	0,005000	sec(s).

Using Schema with Graphs

44

Ok, now we can traverse vertices. For example, what is Luca's car? Traverse from Luca
vertex to the outgoing vertices following the "Owns" relationships:

orientdb>	select	name	from	(select	expand(out('Owns'))	from	Person	where	name	=	'Luca')

----+-----+--------------
#			|@RID	|name
----+-----+--------------
0			|#-2:1|Ferrari	Modena
----+-----+--------------

Perfect. Now we want to have the location of each Person. We need another Vertex type
called "Country" to connect to the Person with a new "Lives" Edge type:

orientdb>	create	class	Country	extends	V
orientdb>	create	class	Lives	extends	E

orientdb>	create	vertex	Country	set	name	=	'UK'

Created	vertex	'Country#14:0{name:UK}	v1'	in	0,004000	sec(s).

Next, let's associate Luca with the UK Country:

orientdb>	create	edge	Lives	from	(select	from	Person)	to	(select	from	Country)

Created	edge	'[e[#11:0->#14:0][#11:0-Lives->#14:0]]'	in	0,006000	sec(s).

So far so good. Our graph has been extended. Now, try to search the country where
there are "Ferrari" cars in our database.

orientdb>	select	name	from	(select	expand(in('Owns').out('Lives'))	from	Car	where	name	like	'%Ferrari%')

----+-----+----
#			|@RID	|name
----+-----+----
0			|#-2:1|UK
----+-----+----

45

Now we've modeled our graph using a schema without any constraints. But it would be
useful to require an Owns relationship to exist only between the Person and Car
vertices. So, let's create these constraints:

orientdb>	create	property	Owns.out	LINK	Person
orientdb>	create	property	Owns.in	LINK	Car

The 	MANDATORY	 setting against a property prevents OrientDB from using a lightweight
edge (no physical document is created). Be sure to pay attention and not put spaces
between 	MANDATORY=true	.

orientdb>	alter	property	Owns.out	MANDATORY=true;
orientdb>	alter	property	Owns.in	MANDATORY=true;

If we want to prohibit a Person vertex from having 2 edges against the same Car vertex,
we have to define a UNIQUE index against out and in properties.

orientdb>	create	index	UniqueOwns	on	Owns(out,in)	unique

Created	index	successfully	with	0	entries	in	0,023000	sec(s).

Unfortunately, the index tells us 0 entries are indexed. Why? We have already created
the Owns relationships between "Luca" and "Ferrari Modena." In that case, OrientDB
had already created a lightweight edge before we set the rule to force creation
documents for Owns instances. So, you need to drop and recreate the edge.

orientdb>	delete	edge	from	#11:0	to	#12:0
orientdb>	create	edge	Owns	from	(select	from	Person)	to	(select	from	Car)

Now check that the record has been created.

orientdb>	select	from	Owns

----+-----+-----+-----
#			|@RID	|out		|in
----+-----+-----+-----

Setting constraints on Edges

46

0			|#13:0|#11:0|#12:0
----+-----+-----+-----

So far so good. The constraints works. Now try to create a "Owns" edge between Luca
and UK (Country vertex):

orientdb>	create	edge	Owns	from	(select	from	Person)	to	(select	from	Country)

Error:	com.orientechnologies.orient.core.exception.OCommandExecutionException:	Error	on	execution	of	command:	sql.create	edge	Owns	from	(select	from	Person)	to	(sel...
Error:	com.orientechnologies.orient.core.exception.OValidationException:	The	field	'Owns.in'	has	been	declared	as	LINK	of	type	'Car'	but	the	value	is	the	document	#14:0	of	class	'Country'

Now we have a typed graph with constraints.

For more information look at Graph Schema.

47

OrientDB can run in a Distributed Architecture by sharing a database across multiple
server instances.

For the purpose of this tutorial we're going to run 2 servers. There are 2 ways to share
the same database across multiple nodes:

Prior to startup, the database directory must be copied to all the servers. Copy &
Paste-ing the database directory under the "databases" folder is enough.
Alternately, keep the database on the first node running. The default configuration
automatically shares the database with new servers that join.

Setup a Distributed Database

48

To start OrientDB in distributed mode, don't use 	bin/server.sh	 (or 	.bat	 on Windows),
but rather the 	bin/dserver.sh	 (or 	bin/dserver.bat) script:

>	cd	bin
>	./dserver.sh

INFO	OrientDB	Server	v1.6	(build	897)	is	starting	up...	[OServer]
INFO	Databases	directory:	./databases	[OServer]
INFO	Listening	binary	connections	on	0.0.0.0:2424	(protocol	v.18)	[OServerNetworkListener]
INFO	Listening	http	connections	on	0.0.0.0:2480	(protocol	v.10)	[OServerNetworkListener]
INFO	Installing	dynamic	plugin	'studio-1.6.zip'...	[OServerPluginManager]
INFO	Installing	GREMLIN	language	v.2.5.0-SNAPSHOT	-	graph.pool.max=20	[OGraphServerHandler]

Note that the configuration file isn't 	orientdb-server-config.xml	 but the distributed version
of it: 	orientdb-dserver-config.xml	. For more information, look at Distributed Configuration.

The rest of the server startup log is below:

INFO	Starting	distributed	server	'node1383734730415'...	[OHazelcastPlugin]
INFO	Configuring	Hazelcast	from	./config/hazelcast.xml'.	[FileSystemXmlConfig]
INFO	[10.1.28.101]:2434	[orientdb]
Members	[1]	{
				Member	[10.1.28.101]:2434	this
}
[MulticastJoiner]
WARN	[node1383734730415]	opening	database	'GratefulDeadConcerts'...	[OHazelcastPlugin]
INFO	[node1383734730415]	loaded	database	configuration	from	disk:	./config/default-distributed-db-config.json	[OHazelcastPlugin]
----------	[OHazelcastPlugin]
INFO	[node1383734730415]	adding	node	'node1383734730415'	in	partition:	GratefulDeadConcerts.*.0	[OHazelcastDistributedDatabase]
INFO	updated	distributed	configuration	for	database:	GratefulDeadConcerts:

{
		"replication":true,	"autoDeploy":true,	"hotAlignment":true,	"resyncEvery":15,
		"clusters":{
				"internal":{	"replication":false	},
				"index":{	"replication":false	},
				"*":{	"replication":true,
						"readQuorum":1,
						"writeQuorum":2,
						"failureAvailableNodesLessQuorum":false,
						"readYourWrites":true,
						"partitioning":{
								"strategy":"round-robin",
								"default":0,
								"partitions":["<NEW_NODE>","node1383734730415"]("<NEW_NODE>","node1383734730415".md)
						}
				}

Start the first server node

49

		}
}

By reading the last piece of log we should notice that by default the 	nodeId	 is empty in
	config/orientdb-dserver-config.xml	, so it's automatically assigned to random value:
"node1383734730415" in this case. You should set a more familiar name like "europe0"
or "production1".

Upon starting, OrientDB loads all the databases in the "databases" directory and
configures them to run in distributed mode. For this reason, on the first load the default
distributed configuration contained in 	config/default-distributed-db-config.json	 is copied
into the database's directory. On subsequent starts, the file
	databases/GratefulDeadConcerts/default-distributed-db-config.json	 will be used instead of
default configuration. This is because the shape of the cluster of servers changes every
time nodes join or leave, and the configuration is kept updated by OrientDB on each
server node.

To know more about the meaning of the configuration contained in the 	config/default-
distributed-db-config.json	 file look at Distributed Configuration.

50

Now start the second server like the first one. Make sure that both servers have the
same Hazelcast's credentials to join the same cluster in the 	config/hazelcast.xml	 file. The
fastest way to do this is to copy & paste the OrientDB directory from the first node to the
other ones. If you run multiple server instances in the same host (makes sense only for
testing purpose) remember to change the port in 	config/hazelcast.xml	.

Once the other node is online, both nodes see each other and dump a message like this:

WARN	[node1384014656983]	added	new	node	id=Member	[192.168.1.179]:2435	name=null	[OHazelcastPlugin]
INFO	[192.168.1.179]:2434	[orientdb]	Re-partitioning	cluster	data...	Migration	queue	size:	135	[PartitionService]
INFO	[192.168.1.179]:2434	[orientdb]	All	migration	tasks	has	been	completed,	queues	are	empty.	[PartitionService]
INFO	[node1384014656983]	added	node	configuration	id=Member	[192.168.1.179]:2435	name=node1384015873680,	now	2	nodes	are	configured	[OHazelcastPlugin]
INFO	[node1384014656983]	update	configuration	db=GratefulDeadConcerts	from=node1384015873680	[OHazelcastPlugin]
INFO	updated	distributed	configuration	for	database:	GratefulDeadConcerts:

{
		"replication":true,
		"autoDeploy":true,
		"hotAlignment":true,
		"resyncEvery":15,"clusters":{
				"internal":{
		"replication":false
},
				"index":{
		"replication":false
},
				"*":{
		"replication":true,
		"readQuorum":1,
		"writeQuorum":2,
		"failureAvailableNodesLessQuorum":false,
		"readYourWrites":true,"partitioning":{
				"strategy":"round-robin",
				"default":0,
				"partitions":["<NEW_NODE>","node1383734730415","node1384015873680"]("<NEW_NODE>","node1383734730415","node1384015873680".md)
				}
}
				},
		"version":1
}
----------	[OHazelcastPlugin]
WARN	[node1383734730415]->[node1384015873680]	deploying	database	GratefulDeadConcerts...	[ODeployDatabaseTask]
WARN	[node1383734730415]->[node1384015873680]	sending	the	compressed	database	GratefulDeadConcerts	over	the	network,	total	339,66Kb	[ODeployDatabaseTask]

In this case 2 server nodes were started on the same machine (ip=10.37.129.2), but with
2 different ports (2434 and 2435 where the current is "this"). The rest of the log is relative

Start the second server node

51

to the distribution of the database to the second server.

On the second server node output you'll see these messages:

WARN	[node1384015873680]<-[node1383734730415]	installing	database	GratefulDeadConcerts	in	databases/GratefulDeadConcerts...	[OHazelcastPlugin]
WARN	[node1384015873680]	installed	database	GratefulDeadConcerts	in	databases/GratefulDeadConcerts,	setting	it	online...	[OHazelcastPlugin]
WARN	[node1384015873680]	database	GratefulDeadConcerts	is	online	[OHazelcastPlugin]
WARN	[node1384015873680]	updated	node	status	to	'ONLINE'	[OHazelcastPlugin]
INFO	OrientDB	Server	v1.6.1-SNAPSHOT	is	active.	[OServer]

This means that the database "GratefulDeadConcerts" has been correctly installed from
the first node (node1383734730415) through the network.

52

Once a server has joined the distributed cluster, all the clients are constantly notified
about it so that in case of failure they will switch transparently to the next available
server. Check this by using the console. When OrientDB runs in distributed
configuration, the current cluster shape is visible with the 	info	 command.

$	cd	bin
$./console.sh

OrientDB	console	v.1.6	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.
Installing	extensions	for	GREMLIN	language	v.2.5.0-SNAPSHOT

orientdb>	connect	remote:localhost/GratefulDeadConcerts	admin	admin
Connecting	to	database	[remote:localhost/GratefulDeadConcerts]	with	user	'admin'...OK
orientdb>	info

Current	database:	GratefulDeadConcerts	(url=remote:localhost/GratefulDeadConcerts)

Cluster	configuration:

{
		"members":[{
				"name":"node1384015873680",
				"listeners":[{"protocol":"ONetworkProtocolBinary","listen":"192.168.1.179:2425"},{"protocol
				"id":"3bba4280-b285-40ab-b4a0-38788691c4e7",
				"startedOn":"2013-11-09	17:51:13",
				"databases":[]
				},{
				"name":"node1383734730415",
				"listeners":[{"protocol":"ONetworkProtocolBinary","listen":"192.168.1.179:2424"},{"protocol
				"id":"5cb7972e-ccb1-4ede-bfda-c835b0c2e5da",
				"startedOn":"2013-11-09	17:30:56",
				"databases":[]
				}],
		"localName":"_hzInstance_1_orientdb",
		"localId":"5cb7972e-ccb1-4ede-bfda-c835b0c2e5da"
}

Now let's create a new vertex by connecting with the console against Node1:

orientdb>	create	vertex	V	set	node	=	1
Created	vertex	'V#9:815{node:1}	v1'	in	0,013000	sec(s).

Working with Distributed Graphs

53

Now from another shell (Command Prompt on Windows) connect to the node2 and
execute this command:

orientdb>	select	from	v	where	node	=	1
----+------+----
#			|@RID		|node
----+------+----
0			|#9:815|1
----+------+----
1	item(s)	found.	Query	executed	in	0.19	sec(s).

The vertex has been correctly replicated on Node2. Cool! Now kill the node1 process.
You will see these messages in the console of node2:

INFO	[192.168.1.179]:2435	[orientdb]	Removing	Member	[192.168.1.179]:2434	[ClusterService]
INFO	[192.168.1.179]:2435	[orientdb]
Members	[1]	{
				Member	[192.168.1.179]:2435	this
}
	[ClusterService]
WARN	[node1384015873680]	node	removed	id=Member	[192.168.1.179]:2434	name=node1384014656983	[OHazelcastPlugin]
INFO	[192.168.1.179]:2435	[orientdb]	Partition	balance	is	ok,	no	need	to	re-partition	cluster	data...		[PartitionService]

Node2 recognizes that Node1 is unreachable. Let's see if the console connected to the
node1 reports the failure. Test it by executing a query:

orientdb>	select	from	V	limit	2

WARN	Caught	I/O	errors	from	/192.168.1.179:2425	(local	socket=0.0.0.0/0.0.0.0:51512),	trying	to	reconnect	(error:	java.io.IOException:	Stream	closed)	[OStorageRemote]
WARN	Connection	re-acquired	transparently	after	30ms	and	1	retries:	no	errors	will	be	thrown	at	application	level	[OStorageRemote]
----+----+--------------+---------+------------+----+---------------+--------------+-----------+--------------
#			|@RID|name										|song_type|performances|type|out_followed_by|out_written_by|out_sung_by|in_followed_by
----+----+--------------+---------+------------+----+---------------+--------------+-----------+--------------
1			|#9:1|HEY	BO	DIDDLEY|cover				|5											|song|[5]												|#9:7										|#9:8							|[4]
2			|#9:2|IM	A	MAN						|cover				|1											|song|[2]												|#9:9										|#9:9							|[2]
----+----+--------------+---------+------------+----+---------------+--------------+-----------+--------------

Wow! The console auto switched to the next available node2. The warning reports that
everything happens in a transparent way, so the application doesn't need to manage
this.

Now, from the console connected to the Node2, create a new vertex:

54

orientdb>	create	vertex	V	set	node	=	2
Created	vertex	'V#9:816{node:2}	v1'	in	0,014000	sec(s).

The operation has been journaled to be synchronized to the Node1 once it comes online
again. Now let's restart Node1 and see if auto re-alignment succeeds. Connect with the
console against Node1 to check if the node has been aligned after the restart:

orientdb>	select	from	v	where	node	=	2
----+------+----
#			|@RID		|node
----+------+----
0			|#9:816|2
----+------+----
1	item(s)	found.	Query	executed	in	0.209	sec(s).

Aligned! You can do the same with N servers where every server is a Master. There are
no limits on the number of running servers. With many servers across a not-fast network,
you could tune the network timeouts to be more permissive and let a big, distributed
cluster of servers do the work properly.

For more information look at Distributed Architecture.

55

If you're only used to working with traditional RDBMS databases, you'll find that
OrientDB is a very different beast. Since OrientDB is able to support document mode,
graph mode, and object-oriented mode, different Java APIs are required. But there are
some similarities too: in a roughly similar way to JDBC, a Blueprints API exists, made by
Tinkerpop, which supports the basic operations on a graph database. There is an
OrientDB "driver" (or, better, "adapter") which makes it possible to operate without
having to deal with OrientDB classes, and the resulting code should be mainly portable
(Blueprints offers more adapters for other graph database products).

In any case, if you need to tweak the database configuration, you need to use the
OrientDB APIs directly. It's a good idea to use a mix: Blueprints when you can and the
OrientDB APIs when you need them.

OrientDB comes with 3 different APIs. Pick your based on your model (for more
information look at Java API):

Graph API
Document API
Object API

The first object you need is a 	Graph	 or a 	TransactionalGraph	 (which supports transaction
demarcation):

import	com.tinkerpop.blueprints.TransactionalGraph;
import	com.tinkerpop.blueprints.impls.orient.OrientGraph;

TransactionalGraph	graph	=	new	OrientGraph("local:test",	"username",	"password");
//	or	TransactionalGraph	graph	=	new	OrientGraph("remote:localhost/test",	"username",	"password");

In the following examples, until we introduce transactions, 	TransactionalGraph	 and 	Graph	
are used interchangeably.

Java Tutorial

OrientDB Java APIs

Graph API

Connecting to a database

56

https://github.com/tinkerpop/blueprints/

Another possibility is to create the database connection with the OrientDB APIs (this
would make it possible to call tuning APIs, for instance), and then "wrap" it into an
	OrientGraph	:

import	com.orientechnologies.orient.core.db.graph.OGraphDatabase;
import	com.tinkerpop.blueprints.TransactionalGraph;
import	com.tinkerpop.blueprints.impls.orient.OrientGraph;

OGraphDatabase	odb	=	new	OGraphDatabase("local:test").create();
TransactionalGraph	graph	=	new	OrientGraph(odb);

In any case, from a 	TransactionalGraph	 (or a 	Graph) it's always possible to get a
reference to the OrientDB API:

import	com.tinkerpop.blueprints.impls.orient.OrientGraph;
import	com.orientechnologies.orient.core.db.graph.OGraphDatabase;

OGraphDatabase	odb	=	((OrientGraph)graph).getRawGraph();

Even though OrientDB can work with the generic class "V" for Vertices and "E" for
Edges, it's much more powerful to define custom types for both Vertices and Edges:

odb.setUseCustomTypes(true);
odb.createVertexType("Person");
odb.createVertexType("Address");

The Blueprint adapter is thread-safe and will automatically create a transaction when
needed (e.g. at the first operation if a transaction hasn't been explicitly started). You
have to specify where the transaction ends (commit or rollback) - see below for more
details.

To add vertices into the database with the Blueprints API:

import	com.tinkerpop.blueprints.Graph;
import	com.tinkerpop.blueprints.Vertex;

Vertex	vPerson	=	graph.addVertex("class:Person");
vPerson.setProperty("firstName",	"John");
vPerson.setProperty("lastName",	"Smith");

Inserting vertices and edges

57

Vertex	vAddress	=	graph.addVertex("class:Address");
vAddress.setProperty("street",	"Van	Ness	Ave.");
vAddress.setProperty("city",	"San	Francisco");
vAddress.setProperty("state",	"California");

Note the specific Blueprints syntax 	"class:<class	name>"	 that you must use in the creation
of an object to specify its class. It is not mandatory: it is also possible to specify a 	null	
value, which means that a vertex will be created with the class 	OGraphVertex	, as it's the
superclass of all vertices in OrientDB):

Vertex	vPerson	=	graph.addVertex(null);

A consequence is that we won't be able to distinguish it from other vertices in a query.

To add an edge a similar API is used:

import	com.tinkerpop.blueprints.Graph;
import	com.tinkerpop.blueprints.Edge;

Edge	eLives	=	graph.addEdge(null,	vPerson,	vAddress,	"lives");

We passed 	null	 to 	addEdge()	, so we created an edge with the 	OGraphEdge	 class, which
is the superclass of all edges in OrientDB. A consequence is that in a query we won't be
able to distinguish it from other edges (except for its label).

The Blueprints adapter automatically saves changes to the database (in contrast to
the native OrientDB API, which requires an explicit call to 	save()). Please remember
that saving is a different operation than committing.

Now we have created

[John	Smith:Person]	--[lives]-->	[Van	Ness	Ave.	…:Address]

Please note that, in this example, we have used a partially schema-full mode, as we
defined the vertex types, but not their properties. OrientDB will dynamically accept
everything.

58

This is a collection of tutorials about OrientDB.

Video tutorials

Getting Started with OrientDB by Petter Graff

More on Tutorials

59

http://pettergraff.blogspot.it/2014/01/getting-started-with-orientdb.html

Graph databases OrientDB to the rescue
Graph in PHP through OrientDB
GraphDB with flexible model

Step-by-step tutorial about the usage of OrientDB:

Guida all'uso di OrientDB: introduzione al mondo NoSQL
Guida all'uso di OrientDB: primo utilizzo
Guida all'uso di OrientDB: i concetti di RecordID e Cluster
Guida all'uso di OrientDB: Query SQL su un database NoSQL
Guida all'uso di OrientDB: Comandi SQL
Guida all'uso di OrientDB: Java API

HTML.it guide to OrientDB:

http://java.html.it/articoli/leggi/4039/nosql-in-java-introduzione-ad-orientdb/

Tecnicume blog by Marco Berri:

OrientDB - primi passi di Embedding in java
Metodi di scrittura: ODocument e Pojo (Embedding in java)
Import da csv relazionali, relazioni, archiviare file e query

Try to manipulate the OrientDB from java (Part RawGraphDatabase):

http://d.hatena.ne.jp/tm8r/20120416/1334581009

Make GraphDB OrientDB app deployment experience:

1. Part 1: http://fungoing.jp/2011/08/379

Step-by-step tutorial by Junji Takakura:

External tutorials

Miscellaneous

Italian

Japanese

60

http://www.odino.org/327/graph-databases-orientdb-to-the-rescue
http://www.odino.org/328/graph-in-php-through-orientdb
http://www.odino.org/346/orientdb-the-graph-db-for-the-web
http://www.programmazione.it/index.php?entity=eitem&idItem=46035
http://www.programmazione.it/index.php?entity=eitem&idItem=46036
http://www.programmazione.it/index.php?entity=eitem&idItem=46310
http://www.programmazione.it/index.php?entity=eitem&idItem=46790
http://www.programmazione.it/index.php?entity=eitem&idItem=47075
http://www.programmazione.it/index.php?entity=eitem&idItem=47585
http://java.html.it/articoli/leggi/4039/nosql-in-java-introduzione-ad-orientdb/
http://tecnicume.blogspot.com/2011/04/orientdb-primi-passi-di-embedding-in.html
http://tecnicume.blogspot.com/2011/05/orientdb-metodi-di-scrittura-odocument.html
http://tecnicume.blogspot.com/2011/05/orientdb-import-da-csv-relazionali.html
http://d.hatena.ne.jp/tm8r/20120416/1334581009
http://fungoing.jp/2011/08/379

Part 1: http://snakemanshow.blogspot.com/2010/09/nosql-orientdb-1.html
Part 2: http://snakemanshow.blogspot.com/2010/09/nosql-orientdb-2.html
Part 3: http://snakemanshow.blogspot.com/2011/04/nosql-orientdb-3.html

61

http://snakemanshow.blogspot.com/2010/09/nosql-orientdb-1.html
http://snakemanshow.blogspot.com/2010/09/nosql-orientdb-2.html
http://snakemanshow.blogspot.com/2011/04/nosql-orientdb-3.html

Video Switching from relational to the graph model by Luca Garulli at All Your Base
conference on November, 23rd 2012

Slides

Video Graph databases and PHP: time for serious stuff by Alessandro Nadalin
and David Funaro at PHPcon Poland on October 21, 2011

Slides

Video: Internet Apps powered by NoSQL and JavaScript by Luca Garulli at JS
Everywhere in Paris (France) on November 17th 2012

Presentations

Videos and Presentations in English

62

http://allyourbaseconf.com
http://vimeo.com/56630862
http://www.slideshare.net/lvca/switching-from-relational-to-the-graph-model
http://www.phpcon.pl/2011/en/agenda
http://vimeo.com/53451968
http://www.slideshare.net/ingdavidino/graph-db-inphpphpconpl
http://jseverywhere.eu/

Slides

Video : Switching from the relational to the graph model by Luca Garulli at
NoSQL Matters in Barcelona (Spain) on October 6th 2012

Slides

Video : NoSQL adoption: what's the next step? by Luca Garulli at NoSQL Matters
in Cologne (Germany) on May 30th 2012

63

http://www.youtube.com/watch?v=o_7NCiTLVis
http://www.slideshare.net/lvca/a-new-collaborative-way-to-develop-internet-apps-powered-by-nosql-and-javascript
http://2012.nosql-matters.org/bcn/
https://vimeo.com/52228068
http://www.slideshare.net/lvca/switching-from-relational-to-graph-model
http://2012.nosql-matters.org/cgn/

Slides

Video : Design your applications using persistent Graphs and OrientDB by
Luca Garulli at NoSQL Matters in Cologne (Germany) on May 30th 2012

Slides (English)

Video (English): Works with persistent graphs using OrientDB by Luca Molino at
FOSDEM on February 2012 in Bruxelles (Belgium) on Video

Slides (English)

Video (pseudo-English): Interview to Luca Garulli about OrientDB by Tim
Anglade on 2010

64

https://vimeo.com/46186167
http://2012.nosql-matters.org/cgn/wp-content/uploads/2012/06/KeyNote-Luca-Garulli.pdf
http://2012.nosql-matters.org/cgn/
http://vimeo.com/47671574
http://www.slideshare.net/lvca/design-your-application-using-persistent-graphs-and-orientdb
http://www.youtube.com/watch?v=EDiIS0PH2uY
http://www.slideshare.net/graphdevroom/works-with-persistent-graphs-using-orientdb

65

http://vimeo.com/47056001

Slides (English): OrientDB distributed architecture 1.1
Slides (English): OrientDB the database for the Web 1.1
What to select between the Document database and the Graph one?
A walk in Graph Databases

Presentations in English

66

http://www.slideshare.net/lvca/orientdb-distributed-architecture-11
http://www.slideshare.net/lvca/orientdb-the-database-for-the-web-11
http://www.slideshare.net/lvca/orientdb-document-or-graph-select-the-right-model
http://www.slideshare.net/pierredewilde/a-walk-in-graph-databases-v10

Video (Italian): Graph databases: time for the serious stuff by Alessandro
Nadalin and David Funaro at Codemotion in Rome on March 2012

Video
Slides (English)

Video (Italian): Dal modello Relazionale al Grafo: cosa cambia? by Alfonso
Focareta at Codemotion in Rome on March 2012

Video
Slides (English)

Video (Italian): Perché potresti avere bisogno di un database NOSQL anche se
non sei Google o Facebook (Italian only) by Luca Garulli at Codemotion in Rome
(Italy) on March 2011

http://www.orientdb.org/images/video-2011-codemotion-roma.png
Slides (English)

Video (Italian): OrientDB e lo sviluppo di WebApp (Italian only) by Luca Garulli at
NoSQL Day in Brescia on 2011

Slides (English)

Videos in Italian, Presentations in English

67

http://www.codemotion.it
http://www.youtube.com/watch?v=za8RNDuctNI
http://www.slideshare.net/ingdavidino/graph-db-inphp
http://www.codemotion.it
http://www.youtube.com/watch?v=DAT4_GSt9Bc
http://www.slideshare.net/Codemotion/dal-modello-relazionale-al-grafo-cosa-cambia-by-alfonso-focareta
http://www.orientdb.org/images/video-2011-codemotion-roma.png
http://www.slideshare.net/Codemotion/perch-potresti-aver-bisogno-di-un-database-nosql-anche-se-non-sei-google-o-facebook
https://vimeo.com/21595812
http://www.slideshare.net/lvca/orientdb-nosqlday

Record
RecordID
Record version

Class
Abstract Class
When to use class or cluster in queries?

Relationships
Referenced relationships

1-1 and N-1 referenced relationships
1-N and N-M referenced relationships

Embedded relationships
1-1 and N-1 embedded relationships
1-N and N-M embedded relationships

Inverse Relationships

Database
Database URL
Database Usage

Basic Concepts

68

A record is the smallest unit that can be loaded from and stored into the database.

There are several types of records.

Documents are the most flexible record available in OrientDB. They are softly typed and
are defined by schema classes with defined constraints, but can also be used in
schema-less mode. Documents handle fields in a flexible way. A Document can be
easily imported and exported in JSON format. Below is an example of a Document in
JSON format:

{
		"name":	"Jay",
		"surname":	"Miner",
		"job":	"Developer",
		"creations":	[
				{	"name":	"Amiga	1000",
						"company":	"Commodore	Inc."
				},
				{	"name":	"Amiga	500",
						"company":	"Commodore	Inc."
				}
]
}

OrientDB Documents support complex relationships. From a programmer's perspective
this can be seen as a sort of persistent Map.

Records are strings. No fields are supported, no indexing, no schema.

In OrientDB, each record has an auto assigned Unique ID. The RecordID (or RID) is
composed in this way:

Record

Record types

Document

Flat

RecordID

69

#[<cluster>:<position>]

Where:

cluster is the cluster id. Positive numbers mean persistent records. Negative
numbers mean temporary records, like those used in result sets for queries that use
projections.
position is the absolute position of the record inside a cluster.

NOTE: The prefix character # is mandatory to recognize a RecordID.

The record never loses its identity unless it is deleted. Once deleted its identity is never
recycled (but with "local" storage). You can access a record directly by its RecordID. For
this reason you don't need to create a field as a primary key like in a Relational DBMS.

Each record maintains its own version number that is incremented at every update. In
optimistic transactions the version is checked in order to avoid conflicts at commit time.

Record version

70

A Class is a concept taken from the Object Oriented paradigm. In OrientDB it defines a
type of record. It's the closest concept to a Relational DBMS Table. Classes can be
schema-less, schema-full, or mixed.

A class can inherit from another, creating a tree of classes. Inheritance means that a
sub-class extends a parent class, inheriting all its attributes.

Each class has its own clusters. A class must have at least one cluster defined (its
default cluster), but can support multiple ones. When you execute a query against a
class, it's automatically propagated to all the clusters that are part of the class. When a
new record is created, the cluster that is selected to store it is picked by using a
configurable strategy.

When you create a new class by default a new persistent cluster is created with the
same name of the class in lowercase.

If you know Object-Orientation you already know what an abstract class is. For all the
rest:

http://en.wikipedia.org/wiki/Abstract_type
http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html For our purpose, we
can sum up an abstract class as:
A class used as a foundation for defining other classes (eventually, concrete
classes)
A class that can't have instances

To create a new abstract class look at SQL Create Class.

Abstract classes are essential to support Object Orientation without the typical
spamming of the database with always empty auto-created clusters. NOTE: available
since 1.2.0

Let's use an example: Let's assume you created a class "Invoice" and two clusters
"invoice2011" and "invoice2012".

Class

Abstract Class

When do you use a class or a cluster in queries?

71

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Inheritance_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Abstract_type
http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

You can now query all the invoices by using the class as a target in the SQL select:

SELECT	FROM	Invoice

If you want to filter per year (2012) and you've created a "year" field in the Invoice class
do this:

SELECT	FROM	Invoice	where	year	=	2012

You may also query specific objects from a single cluster (so, by splitting the Class
Invoice in multiple clusters, e.g. one per year, you narrow your candidate objects):

SELECT	FROM	cluster:invoice2012

This query may be significantly faster because OrientDB can narrow the search to the
targeted cluster.

The combination of Classes and Clusters is very powerful and has many use cases.

72

OrientDB supports two kinds of relationships: referenced and embedded. OrientDB can
manage relationships in a schema-full or in schema-less scenario.

Relationships in OrientDB are managed natively without computing costly JOINs, as in a
Relational DBMS. In fact, OrientDB stores direct link(s) to the target objects of the
relationship. This boosts up the load speed of the entire graph of connected objects like
in Graph and Object DBMSs. Example:

																		customer
		Record	A					------------->				Record	B
CLASS=Invoice																	CLASS=Customer
		RID=5:23																							RID=10:2

Record A will contain the reference to Record B in the property called "customer". Note
that both records are reachable by other records since they have a RecordID.

These kinds of relationships are expressed using the LINK type.

These kinds of relationships are expressed using the collection of links such as:

LINKLIST, as an ordered list of links.
LINKSET, as an unordered set of links. It doesn't accepts duplicates.
LINKMAP, as an ordered map of links with String as the key type. A keys doesn't
accept duplicates.

Embedded records, instead, are contained inside the record that embeds them. It's a
kind of relationship that's stronger than the reference. It can be represented like the UML
Composition relationship. The embedded record will not have its own RecordID, since it
can't be directly referenced by other records. It's only accessible through the container
record. If the container record is deleted, then the embedded record will be deleted too.

Relationships

Referenced relationships

1-1 and N-1 referenced relationships

1-N and N-M referenced relationships

Embedded relationships

73

http://en.wikipedia.org/wiki/Class_diagram#Composition

Example:

																			address
		Record	A					<>---------->			Record	B
CLASS=Account															CLASS=Address
		RID=5:23																					NO	RID!

Record A will contain the entire Record B in the property called "address". Record B
can be reached only by traversing the container record.

Example:

SELECT	FROM	account	WHERE	address.city	=	'Rome'

These kinds of relationships are expressed using the EMBEDDED type.

These kinds of relationships are expressed using a collection of links such as:

EMBEDDEDLIST, as an ordered list of records.
EMBEDDEDSET, as an unordered set of records. It doesn't accept duplicates.
EMBEDDEDMAP, as an ordered map of records as the value and a String as the
key. It doesn't accept duplicate keys.

In OrientDB, all Graph Model edges (connections between vertices) are bi-directional.
This differs from the Document Model where relationships are always mono-directional,
thus requiring the developer to maintain data integrity. In addition, OrientDB
automatically maintains the consistency of all bi-directional relationships (aka edges).

1-1 and N-1 embedded relationships

1-N and N-M embedded relationships

Inverse relationships

74

A database is an interface to access the real Storage. The database understands high-
level concepts like Queries, Schemas, Metadata, Indices, etc. OrientDB also provides
multiple database types. Take a look at the Database types to learn more about them.

Each server or JVM can handle multiple database instances, but the database name
must be UNIQUE. So you can't manage two databases named "customer" in two
different directories at the same time. To handle this case use the 	$	 (dollar) as a
separator instead of 	/	 (slash). OrientDB will bind the entire name, so it will be unique,
but at the file system level it will convert 	$	 with 	/	 allowing multiple databases with the
same name in different paths. Example:

test$customers	->	test/customers
production$customers	=	production/customers

The database must be opened as:

test	=	new	ODatabaseDocumentTx("remote:localhost/test$customers");
production	=	new	ODatabaseDocumentTx("remote:localhost/production$customers");

OrientDB has its own URL format:

<engine>:<db-name>

Where:

db-name is the database name and depends on the engine used (see below)
engine can be:

Engine Description Example

plocal

This engine writes to the file
system to store data. There
is a LOG of changes to
restore the storage in case
of a crash.

	plocal:/temp/databases/petshop/petshop	

Database

Database URL

75

http://en.wikipedia.org/wiki/Uniform_Resource_Locator

memory Open a database
completely in memory 	memory:petshop	

remote

The storage will be opened
via a remote network
connection. It requires an
OrientDB Server up and
running. In this mode, the
database is shared among
multiple clients. Syntax:
	remote:<server>:[<port>]/db-
name	. The port is optional
and defaults to 2424.

	remote:localhost/petshop	

The database must always be closed once you've finished working with it.

NOTE: OrientDB automatically closes all opened databases when the process dies
gracefully (not by killing it by force). This is assured if the Operating System allows a
graceful shutdown.

Database usage

76

OrientDB supports several types natively. Below is the complete table.

#id Type Description Java type Minimum
Maximum

0 Boolean
Handles only
the values
True or False

	java.lang.Boolean	 or
	boolean	

0
1

1 Integer 32-bit signed
Integers

	java.lang.Integer	 or
	int	

-2,147,483,648
+2,147,483,647

2 Short
Small 16-bit
signed
integers

	java.lang.Short	 or
	short	

-32,768
32,767

3 Long
Big 64-bit
signed
integers

	java.lang.Long	 or
	long	

-263

+263-1

4 Float Decimal
numbers

	java.lang.Float	 or
	float	

2-149

(2-2-23)*2127

5 Double
Decimal
numbers with
high
precision

	java.lang.Double	 or
	double	

2-1074

(2-2-52)*21023

6 Datetime
Any date with
the precision
up to
milliseconds

	java.util.Date	 -
1002020303

7 String
Any string as
alphanumeric
sequence of
chars

	java.lang.String	 -
-

8 Binary
Can contain
any value as
byte array

	byte[]	 0
2,147,483,647

9 Embedded

The Record
is contained
inside the
owner. The
contained
Record has
no RecordId

	ORecord	 -
-

The Records
are
contained
inside the

Supported Types

77

10 Embedded
list

owner. The
contained
records have
no RecordIds
and are
reachable
only by
navigating
the owner
record

	List<Object>	
0
41,000,000
items

11 Embedded
set

The Records
are
contained
inside the
owner. The
contained
Records
have no
RecordId and
are
reachable
only by
navigating
the owner
record

	Set<Object>	
0
41,000,000
items

12 Embedded
map

The Records
are
contained
inside the
owner as
values of the
entries, while
the keys can
only be
Strings. The
contained
ords e no
RecordIds
and are
reachable
only by
navigating
the owner
Record

	Map<String,	ORecord>	
0
41,000,000
items

13 Link

Link to
another
Record. It's a
common
one-to-one
relationship

	ORID	, 	<?	extends
ORecord>	

1:-1
32767:2^63-1

14 Link list

Links to other
Records. It's
a common
one-to-many
relationship
where only
the
RecordIds
are stored

	List<?	extends
ORecord	

0
41,000,000
items

78

15 Link set

Links to other
Records. It's
a common
one-to-many
relationship

	Set<?	extends
ORecord>	

0
41,000,000
items

16 Link map

Links to other
Records as
value of the
entries, while
keys can
only be
Strings. It's a
common
One-to-Many
Relationship.
Only the
RecordIds
are stored

	Map<String,
				?	extends
Record>	

0
41,000,000
items

17 Byte

Single byte.
Useful to
store small 8-
bit signed
integers

	java.lang.Byte	 or
	byte	

-128
+127

18 Transient
Any value
not stored on
database

19 Date
Any date as
year, month
and day

	java.util.Date	 --

20 Custom

used to store
a custom
type
providing the
marshall and
unmarshall
methods

	OSerializableStream	 0
X

21 Decimal
Decimal
numbers
without
rounding

	java.math.BigDecimal	 ?
?

22 LinkBag
List of
RecordIds as
spec RidBag

	ORidBag	 ?
?

23 Any

Not
determinated
type, used to
specify
Collections of
mixed type,
and null

- -

79

OrientDB doesn't split Documents between different classes (as many OR-Mapping tools
do). Each Document will reside in the cluster of its most base class. When you execute a
query against a class that has sub-classes, OrientDB will search into the clusters of the
target class and all its sub-classes. To know more see How it works.

Inheritance

80

OrientDB needs to know the relationships between the class inheritance. Note that this
is an abstract concept that applies to both POJOs and Documents.

Example:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");
OClass	company	=	database.getMetadata().getSchema().createClass("Company")
																		.setSuperClass(account);

Declare in schema

81

By default all the queries are polymorphics. Using the example above with this SQL
query:

SELECT	FROM	account	WHERE	name	=	'Google'

Will be returned all the instances of Account and Company classes that has the property
name equals to "Google".

Polymorphic Queries

82

Consider this example. We have 3 classes, with the cluster-id between parenthesis:

Account(10)	<|---	Company	(13)	<|---	OrientTechnologiesGroup	(27)

OrientDB, by default, creates a separate cluster for each class.

This cluster is indicated by the "defaultClusterId" property in OClass class and indicates
the cluster used by default when not specified. However the OClass has the property
"clusterIds" (as int[]) that contains all the clusters able to host the records of that class.

By default "clusterIds" and "defaultClusterId" are the same.

When you execute a query against a class, OrientDB limits the result sets only to the
records of the clusters contained in the "clusterIds" property.

In this way when you execute this:

SELECT	FROM	Account	WHERE	name.toUpperCase()	=	'GOOGLE'

Will return all the records for "GOOGLE" contained in all the three classes because for
the class "Account" OrientDB searches inside the clusters 10, 13 and 27 following the
inheritance specified in the schema.

How it works

83

Although OrientDB can work in schema-less mode, sometimes you need to enforce your
data model using a schema. OrientDB supports schema-full or schema-hybrid solutions
where the second one means to set such constraints only for certain fields and leave the
user to add custom fields to the records. This mode is at class level, so you can have the
"Employee" class as schema-full and "EmployeeInformation" class as schema-less.

Schema-Full: enable the strict-mode at class level and set all the fields as
mandatory
Schema-Less: create classes with no properties. Default mode is non strict-mode
so records can have arbitrary fields
Schema-Hybrid, called also Schema-Mixed is the most used: create classes and
define some fields but leave the record to define own custom fields

NOTE: Changes to the schema are not transactional, so execute them outside a
transaction.

To gain access to the schema APIs you need in the Schema instance of the database
you're using.

OSchema	schema	=	database.getMetadata().getSchema();

Schema

84

A Class is a concept taken from the Object Oriented paradigm. In OrientDB defines a
type of record. It's the closest concept to a Relational DBMS Table. Class can be
schema-less, schema-full or mixed.

A class can inherit from another, shaping a tree of classes. This means that the sub-
class extends the parent one inheriting all the attributes.

Each class has its clusters that can be logical (by default) or physical. A class must have
at least one cluster defined (as its default cluster), but can support multiple ones. In this
case by default OrientDB will write new records in the default cluster, but reads will
always involve all the defined clusters.

When you create a new class by default a new physical cluster is created with the same
name of the class in lower-case.

Each class contains one or more properties. This mode is similar to the classic
Relational DBMS approach where you define tables before storing records.

Example of creation of Account class. By default a new [Cluster](Concepts#cluster] will
be created to keep the class instances:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

To retrieve a persistent class use the 	getClass(String)	 method. If the class not exists
NULL is returned.

OClass	account	=	database.getMetadata().getSchema().getClass("Account");

To drop a persistent class use the 	OSchema.dropClass(String)	 method.

Class

Create a persistent class

Get a persistent class

Drop a persistent class

85

database.getMetadata().getSchema().dropClass("Account");

The records of the removed class will be not deleted unless you explicitly delete them
before to drop the class. Example:

database.command(new	OCommandSQL("DELETE	FROM	Account")).execute();
database.getMetadata().getSchema().dropClass("Account");

To work in schema-full mode set the strict mode at class level by calling the
	setStrictMode(true)	 method. In this case record of that class can't have not-defined
properties.

Constraints

86

Properties are the fields of the class. In this guide Property is synonym of Field.

Once the class has been created, you can define fields (properties). Below an example:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");
account.createProperty("id",	OType.INTEGER);
account.createProperty("birthDate",	OType.DATE);

Please note that each field must belong to one of supported types.

To drop a persistent class property use the 	OClass.dropProperty(String)	 method.

database.getMetadata().getSchema().getClass("Account").dropProperty("name");

The dropped property will not be removed from records unless you explicitly delete them
using the SQL UPDATE + REMOVE statement. Example:

database.getMetadata().getSchema().getClass("Account").dropProperty("name");
database.command(new	OCommandSQL("UPDATE	Account	REMOVE	name")).execute();

OrientDB supports two types of relationships: referenced and embedded.

OrientDB uses a direct link to the referenced record(s) without the need of costly JOINs
of the Relational world. Example:

																		customer
		Record	A					------------->				Record	B

Property

Create the Class property

Drop the Class property

Define relationships

Referenced relationships

87

CLASS=Invoice																	CLASS=Customer
		RID=5:23																							RID=10:2

Record A will contain the reference to the Record B in the property called "customer".
Note that both records are reachable by any other records since they have a RecordID.

1-1 and N-1 referenced relationships are expressed using the LINK type.

OClass	customer=	database.getMetadata().getSchema().createClass("Customer");
customer.createProperty("name",	OType.STRING);

OClass	invoice	=	database.getMetadata().getSchema().createClass("Invoice");
invoice.createProperty("id",	OType.INTEGER);
invoice.createProperty("date",	OType.DATE);
invoice.createProperty("customer",	OType.LINK,	customer);

In this case records of class "Invoice" will link to a record of class "Customer" using the
field "customer".

1-N and N-M referenced relationships are expressed using the collection of links such
as:

LINKLIST as an ordered list of links
LINKSET as an unordered set of links. It doesn't accept duplicates
LINKMAP as an ordered map of links with String key. It doesn't accept duplicated
keys

Example of a 1-N relationship between the classes Order and OrderItem:

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id",	OType.INTEGER);
orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");
order.createProperty("id",	OType.INTEGER);
order.createProperty("date",	OType.DATE);
order.createProperty("items",	OType.LINKLIST,	orderItem);

1-1 and N-1 referenced relationships

1-N and N-M referenced relationships

88

Embedded records, instead, are contained inside the record that embeds them. It's a
kind of relationship stronger than the reference. The embedded record will not have a
own RecordID since it can't be directly referenced by other records. It's only accessible
via the container record. If the container record is deleted, then the embedded record will
be deleted too. Example:

																		address
		Record	A					<>---------->			Record	B
CLASS=Account															CLASS=Address
		RID=5:23																					NO	RID!

Record A will contain the entire Record B in the property called "address". Record B
can be reached only by traversing the container record.

Example:

SELECT	FROM	account	WHERE	address.city	=	'Rome'

1-1 and N-1 embedded relationships are expressed using the EMBEDDED type.

OClass	address	=	database.getMetadata().getSchema().createClass("Address");

OClass	account	=	database.getMetadata().getSchema().createClass("Account");
account.createProperty("id",	OType.INTEGER);
account.createProperty("birthDate",	OType.DATE);
account.createProperty("address",	OType.EMBEDDED,	address);

In this case, records of class "Account" will embed a record of class "Address".

1-N and N-M embedded relationships are expressed using the collection of links such
as:

EMBEDDEDLIST, as an ordered list of records
EMBEDDEDSET, as an unordered set of records. It doesn't accepts duplicates

Embedded relationships

1-1 and N-1 embedded relationships

1-N and N-M embedded relationships

89

EMBEDDEDMAP, as an ordered map of records as value with key a String. It
doesn't accepts duplicated keys

Example of a 1-N relationship between the class Order and OrderItem:

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id",	OType.INTEGER);
orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");
order.createProperty("id",	OType.INTEGER);
order.createProperty("date",	OType.DATE);
order.createProperty("items",	OType.EMBEDDEDLIST,	orderItem);

OrientDB supports a number of constrains for each field:

Minimum value, accepts a string because works also for date ranges 	setMin()	
Maximum value, accepts a string because works also for date ranges 	setMax()	
Mandatory, it must be specified 	setMandatory()	
Readonly, it may not be updated after record is created 	setReadonly()	
Not Null, can't be NULL 	setNotNull()	
Unique, doesn't allow duplicates and speedup searches.
Regexp, it must satisfy the Regular expression.

profile.createProperty("nick",	OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(
profile.createIndex("nickIdx",	OClass.INDEX_TYPE.UNIQUE,	"nick");	//	Creates	unique	constraint

profile.createProperty("name",	OType.STRING).setMin("3").setMax("30");
profile.createProperty("surname",	OType.STRING).setMin("3").setMax("30");
profile.createProperty("registeredOn",	OType.DATE).setMin("2010-01-01	00:00:00");
profile.createProperty("lastAccessOn",	OType.DATE).setMin("2010-01-01	00:00:00");

To let a property value to be UNIQUE use the UNIQUE index as constraint:

profile.createIndex("EmployeeId",	OClass.INDEX_TYPE.UNIQUE,	"id");

Constraints

Indexes as constraints

90

http://en.wikipedia.org/wiki/Regular_expression

To let to a group of properties to be UNIQUE create a composite index made of multiple
fields:

Creation of composite index:

profile.createIndex("compositeIdx",	OClass.INDEX_TYPE.NOTUNIQUE,	"name",	"surname");

For more information about indexes look at Index guide.

91

When you create a new record specifying its Class, OrientDB automatically selects the
Class where to store the physical record, by using configurable strategies.

The available strategies are:

default, uses always the Class's 	defaultClusterId	 property. This was the default
before 1.7
round-robin, put the Class's configured clusters in a ring and returns a different
cluster every time restarting from the first when the ring is completed
balanced, checks the records in all the clusters and returns the smaller cluster. This
allows the cluster to have all the underlying clusters balanced on size. On adding a
new cluster to an existent class, the new empty cluster will be filled before the
others because more empty then the others. Calculation of cluster size is made
every 5 or more seconds to avoid to slow down insertion
local. This is injected when OrientDB is running in distributed mode. With this
strategy the cluster that is the master on current node is always preferred. This
avoids conflicts and reduces network latency with remote calls between nodes.

Cluster Selection

92

To create your custom strategy follow the following steps:

The class must implements interface OClusterSelectionStrategy. Example:

package	mypackage;
public	class	RandomSelectionStrategy	implements	OClusterSelectionStrategy	{
		public	int	getCluster(final	OClass	iClass,	final	ODocument	doc)	{
				final	int[]	clusters	=	iClass.getClusterIds();

				//	RETURN	A	RANDOM	CLUSTER	ID	IN	THE	LIST
				return	new	Random().nextInt(clusters.length);
		}

		public	String	getName(){	return	"random";	}
}

Note that the method 	getCluster()	 receives also the ODocument to insert. This is useful
if you want to assign the clusterId based on the Document content.

Create a new file under META-INF/services called
	com.orientechnologies.orient.core.metadata.schema.clusterselection.OClusterSelectionStrategy	

and write your class with full package.

Example of the content:

mypackage.RandomSelectionStrategy

This is the default content in OrientDB core is:

com.orientechnologies.orient.core.metadata.schema.clusterselection.ORoundRobinClusterSelectionStrategy
com.orientechnologies.orient.core.metadata.schema.clusterselection.ODefaultClusterSelectionStrategy
com.orientechnologies.orient.core.metadata.schema.clusterselection.OBalancedClusterSelectionStrategy

Create custom strategy

1) Create the implementation in Java

2) Register the implementation as service

93

To assign your new strategy to a class, use the ALTER CLASS command. Example:

ALTER	CLASS	Employee	CLUSTERSELECTION	random

3) Assign it

94

OrientDB supports fetching strategies by using the Fetch Plans. Fetch Plans are used
to customize how OrientDB must load linked records.

Example:

Invoice
	3:100
			|
			|	customer
			+--------->	Customer
			|												5:233
			|	address												city												country
			+--------->	Address--------->	City	--------->	Country
			|												10:1													11:2													12:3
			|
			|	orders
			+--------->*	[OrderItem	OrderItem	OrderItem]
																[8:12						8:19						8:23]

By default OrientDB loads all the linked records in lazy way. So in this example the
linked "customer", "city" and "orders" fields are not loaded until are traversed. If you
need the entire tree it could be slow the lazy loading of every single linked record. In this
case it would need 7 different loads. If the database is open on a remote server they are
7 different network calls.

This is the reason why OrientDB supports custom fetching strategies using the Fetch
Plans. The aim of fetch plans is to pre-load connected records in one shot.

Where use fetch-plans?

On record loading through the remote connection
On JSON serializer to produce JSON with nested records

Fetching Strategies

95

When a client executes a query (or load directly one single record) setting a fetch plan
with level different to 0, then the server traverses all the records of the returning result
set and sends them to the client in the same call.

The client avoid to connect directly them to the record by using always the lazy
collections (i.e.: OLazyRecordList). Instead, loads all the connected records into the
local client. In this ways the collections remain lazy but when you're accessing to the
content, the record is early loaded from the local cache avoiding other connections.

Remote connection

96

The fetch plan comes in form of a String and can be used at run-time on:

query
record loading

The syntax is:

[[levels]]<fieldPath>:<depth-level>*

Where:

levels, optional, tells at which levels the rules must apply. Levels starts from 0.
Since 2.1. Supported syntax is:

level, example 	[0]	 to apply only at first level
ranges, example 	[0-3]	 form 0 to 3th level. Ranges can be also partial, like
	[-3]	 means 0-3 and 	[3-]	 means form 3rd to infinite
any, by using 	*	. Example 	[*]	 to apply at any level

fieldPath, is the field name path, expected in dot notation, starting from the root
record or the wildcard 		 for "any" field. The wildcard can be also at the end of the
path to specify all the paths that starts for a name
depth-level, is the deep level requested:

0 = Load only current record,
1-N = load only the first-Nth connected record,
-1 = unlimited,
-2 = exclude it

To express multiple rules separate them by spaces.

Examples with the record tree above:

	"*:-1"	: fetches the entire tree recursively
	"*:-1	orders:0"	: fetches all the records recursively but the "orders" field in root
class. Note that in "orders" field will be loaded only its direct content (only records
8:12,8:19,8:23, none of other records inside them will be loaded).
	"*:0	address.city.country:0"	: fetches only not-document fields in the root class and
address.city.country field (records 10:1,11:2,12:3).

Format

97

	"[*]in_*:-2	out_*:-2"	: returns all the properties, but edges (at any level)

98

OrientDB handles circular dependencies to avoid any loop while fetches linking records.

Circular dependencies

99

List<ODocument>	resultset	=	database.query(new	OSQLSynchQuery<ODocument>("select	*	from	Profile"

Export an invoice and its customer:

invoice.toJSON("fetchPlan:customer:1");

Export an invoice, its customer and orders:

invoice.toJSON("fetchPlan:customer:1	orders:2");

Export an invoice and all the connected records up to 3rd level of depth:

invoice.toJSON("fetchPlan:*:3");

From SQL:

select	@this.toJSON('fetchPlan:out_Friend:4')	from	#10:20

Export path in outgoing direction by removing all the incoming edges by using wildcards
(Since 2.0):

select	@this.toJSON('fetchPlan:in_*:-2')	from	#10:20

NOTES::

To avoid looping, the record already traversed by fetching are exported only by their

Example using the Java APIs

Execute a query with a custom fetch plan

Export a document and its nested documents in JSON

100

RIDs (RecordID) form
"fetchPlan" setting is case sensitive

for	(Account	a	:	database.browseClass(Account.class).setFetchPlan("*:0	addresses:-1"))	{
		System.out.println(a.getName());
}

NOTE: fetching Object will mean their presence inside your domain entities. So if you
load an object using fetchplan 	*:0	 all LINK type references won't be loaded.

Browse objects using a custom fetch plan

101

OrientDB supports 4 kinds of indexes:

Index
type Durable Transactional Range

queries
Best

features Description

SB-
Tree YES YES YES

Good
mix of
all

the default
one is
durable and
transactional

Hash YES YES no

Super
fast
lookup,
very
light on
disk

Works like a
HashMap so
it's faster on
punctual
lookup
(select from
xxx where
salary =
1000) and
consumes
less
resources,
but you
cannot use it
for range
queries
(select from
xxx where
salary
between
1000 and
2000)

Lucene YES YES YES

Good on
full-text
and
spatial
indexes

Lucene
indexes can
be used
only for full-
text and
spatial

Indexes

102

https://github.com/orientechnologies/orientdb-lucene

Indexes can be handled like classes (or tables for RDBMS users) using the SQL
language and prefixing with "index:" the index name. The index is like a class (or table)
with 2 properties:

key, as the index's key
rid, as the RecordId that points to the record associated with the key

What's an index?

103

Indexes can be updated:

Automatically when are bound to schema properties, example "User.id". If you
have a schema-less database and you want to create an automatic index, then you
need to create the class and the property before using indexing.
Manually, handled by the developer using Java API and SQL commands (see
below). You can use them as Persistent Maps where they entry's value are the
records pointed by index.

Index target

104

The index type cannot be changed once created. The supported index types are the
following:

SB-Tree algorithm:
UNIQUE, doesn't allow duplicates. For composite index means uniqueness of
composite keys.
NOTUNIQUE, allows duplicates
FULLTEXT, by indexing any single word of the text. It's used in query with the
operator CONTAINSTEXT
DICTIONARY, like UNIQUE but in case the key already exists replace the
record with the new one

HashIndex algorithm:
UNIQUE_HASH_INDEX, doesn't allow duplicates. For composite index means
uniqueness of composite keys.
NOTUNIQUE_HASH_INDEX, allows duplicates
FULLTEXT_HASH_INDEX, by indexing any single word of the text. It's used in
query with the operator CONTAINSTEXT
DICTIONARY_HASH_INDEX, like UNIQUE but in case the key already exists
replace the record with the new one

Lucene engine:

FULLTEXT, it uses Lucene to index the string content. Use the LUCENE
operator to retrieve it.
SPATIAL, it uses Lucene to index the geo spatial coordinates.

Any 3rd party index plugged

Every single database has a default manual index of type "DICTIONARY" called
dictionary with Strings as keys. This is very useful to:

handle root records of trees and graphs
handle singleton records used for configuration

Index types

Dictionary

105

Creates a new index. To create an automatic index bound to a schema property use
section "ON" of create index command or use as name the 	<class.property>	 notation.
But assure to have created the schema for it before the index. See the example below.

Syntax:

CREATE	INDEX	<name>	[ON	<class-name>	(prop-names)]	<type>	[<key-type>]
																				[METADATA	{<metadata>}]

Where:

name logical name of index. Can be 	<class>.<property>	 to create an automatic index
bound to a schema property. In this case class is the class of the schema and
property, is the property created into the class. Notice that in another case index
name can't contain '.' symbol
class-name name of class that automatic index created for. Class with such name
must already exist in database
prop-names comma-separated list of properties for which automatic index is
created for. Property with such name must already exist in schema. If property
belongs to one of the Map types (LINKMAP, EMBEDDEDMAP) you can specify the
keys or values used for index generation. Use "by key" or "by value" expressions for
that, if nothing will be specified keys will be used during index creation.
type, can be any index among the supported ones:

unique, uses the SB-Tree algorithm. Supports range queries.
notunique, uses the SB-Tree algorithm. Supports range queries.
fulltext, uses the SB-Tree algorithm. Supports range queries.
dictionary, uses the SB-Tree algorithm. Supports range queries.
unique_hash_index, uses the Hash algorithm. Doesn't supports range
queries. Available since 1.5.x.
notunique_hash_index, uses the Hash algorithm. Doesn't supports range
queries. Available since 1.5.x.
fulltext_hash_index, uses the Hash algorithm. Doesn't supports range
queries. Available since 1.5.x.
dictionary_hash_index, uses the Hash algorithm. Doesn't supports range
queries. Available since 1.5.x.

Operations against indexes

Create an index

106

key-type, is the type of key (Optional). On automatic indexes is auto-determined by
reading the target schema property where the index is created. If not specified for
manual indexes, at run-time during the first insertion the type will be auto
determined by reading the type of the class.
metadata is a json representing all the additional metadata as key/value

Examples of custom index:

CREATE	INDEX	mostRecentRecords	unique	date

Examples of automatic index bound to the property "id" of class "User":

CREATE	PROPERTY	User.id	BINARY
CREATE	INDEX	User.id	UNIQUE

Another index for "id" property of class "User":

CREATE	INDEX	indexForId	ON	User	(id)	unique

Examples of index for "thumbs" property of class "Movie".

CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs)	unique
CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs	by	key)	unique
CREATE	INDEX	thumbsValue	ON	Movie	(thumbs	by	value)	unique

Example of composite index

CREATE	PROPERTY	Book.author	STRING
CREATE	PROPERTY	Book.title	STRING
CREATE	PROPERTY	Book.publicationYears	EMBEDDEDLIST	INTEGER
CREATE	INDEX	books	ON	Book	(author,	title,	publicationYears)	unique

For more information look at Create index command.

Drop an index. Linked records will be not removed. Syntax:

Drop an index

107

DROP	INDEX	<name>

Where:

name of the index to drop

For more information look at Drop index command.

Returns all the records with the requested key.

select	from	index:<index-name>	where	key	=	<key>

Example:

select	from	index:dictionary	where	key	=	'Luke'

To set a case-insensitive match in index, set the COLLATE attribute of indexed
properties to "ci" (stands for Case Insensitive). Example:

create	index	OUser.name	on	OUser	(name	collate	ci)	UNIQUE

Inserts a new entry in the index with key and rid.

insert	into	index:<index-name>	(key,rid)	values	(<key>,<rid>)

Example:

insert	into	index:dictionary	(key,rid)	values	('Luke',#10:4)

Lookup

Case insensitive match

Put an entry

108

Retrieves the key ranges between min and max.

select	from	index:<index-name>	where	key	between	<min>	and	<max>

Example:

select	from	index:coordinates	where	key	between	10.3	and	10.7

Deletes all the entries with the requested key.

delete	from	index:<index-name>	where	key	=	<key>

Example:

delete	from	index:addressbook	where	key	=	'Luke'

Deletes an entry by passing key and rid. Returns true if removed, otherwise false if the
entry wasn't found.

delete	from	index:<index-name>	where	key	=	<key>	and	rid	=	<rid>

Example:

delete	from	index:dictionary	where	key	=	'Luke'	and	rid	=	#10:4

Query range

Remove entries by key

Remove an entry

Remove all references to a record

109

Removes all the entries with the rid passed.

delete	from	index:<index-name>	where	rid	=	<rid>

Example:

delete	from	index:dictionary	where	rid	=	#10:4

Returns the number of entries on that index.

select	count(*)	as	size	from	index:<index-name>

Example:

select	count(*)	as	size	from	index:dictionary

Retrieves all the keys of the index.

select	key	from	index:<index-name>

Example:

select	key	from	index:dictionary

Retrieves all the entries of the index as pairs key and rid.

select	key,	value	from	index:<index-name>

Count all the entries

Retrieve all the keys

Retrieve all the entries

110

Example:

select	key,	value	from	index:dictionary

Removes all the entries. The index will be empty after this call. This removes all the
entries of an index.

delete	from	index:<index-name>

Example:

delete	from	index:dictionary

Clear the index

111

Indexes by default ignore null values. For such reason queries against NULL value that
use indexes return no entries.

If you want to index also null values set 	{	ignoreNullValues	:	false	}	 as metadata.
Example:

CREATE	INDEX	addresses	ON	Employee	(address)	notunique
													METADATA	{ignoreNullValues	:	false}

Null values

112

You can do the same operations with composite indexes.

A composite key is a collection of values by its nature, so syntactically it is defined as a
collection. For example, if we have class book, indexed by its three fields:

author,
title and
publication year

We can use following query to look up a book:

select	from	index:books	where	key	=	["Donald	Knuth",	"The	Art	of	Computer	Programming",	1968]

Or to look up a book within a publication year range:

select	from	index:books	where	key	between	["Donald	Knuth",	"The	Art	of	Computer	Programming",	

This is a mechanism that allows searching index record by several first fields of its
composite key. In this case the remaining fields with undefined value can match any
value in result.

Composite indexes are used for partial match search only when the declared fields in
composite index are used from left to right. Using the example above, if you search only
for title, the composite index cannot be used, but it will be used if you search for author +
title.

For example, if we don't care when books have been published, we can throw away the
publication year field from the query. So, the result of the following query will be all
books with this author and title and any publication year

select	from	index:books	where	key	=	["Author",	"The	Art	of	Computer	Programming"]

Composite keys

Partial match search

113

If we also don't know title, we can keep only author field in query. Result of following
query will be all books of this author.

select	from	index:books	where	key	=	["Donald	Knuth"]

Or equivalent

select	from	index:books	where	key	=	"Donald	Knuth"

In case of range queries, the field subject to the range must be the last one. Example:

select	from	index:books
		where	key	between	["Donald	Knuth",	"The	Art	of	Computer	Programming",	1900]	
				and	["Donald	Knuth",	"The	Art	of	Computer	Programming",	2014]

Unsupported yet.

Range Queries

Direct insertion for composite indexes

114

OrientDB since release 1.0 supports custom keys for indexes. This could give a huge
improvement if you want to minimize memory used using your own serializer.

Below an example to handle SHA-256 data as binary keys without using a STRING to
represent it saving disk space, cpu and memory.

public	static	class	ComparableBinary	implements	Comparable<ComparableBinary>	{
		private	byte[]				value;

		public	ComparableBinary(byte[]	buffer)	{
				value	=	buffer;
		}

		public	int	compareTo(ComparableBinary	o)	{
				final	int	size	=	value.length;
				for	(int	i	=	0;	i	<	size;	++i)	{
						if	(value[i]	>	o.value[i])
				return	1;
						else	if	(value[i]	<	o.value[i])
								return	-1;
				}
				return	0;
		}

		public	byte[]	toByteArray()	{
				return	value;
		}
}

public	static	class	OHash256Serializer	implements	OBinarySerializer<ComparableBinary>	{

		public	static	final	OBinaryTypeSerializer	INSTANCE	=	new	OBinaryTypeSerializer();
		public	static	final	byte	ID	=	100;
		public	static	final	int	LENGTH	=	32;

		public	int	getObjectSize(final	int	length)	{
				return	length;
		}

		public	int	getObjectSize(final	ComparableBinary	object)	{
				return	object.toByteArray().length;
		}

Custom keys

Create your own type

Create your own binary serializer

115

		public	void	serialize(final	ComparableBinary	object,	final	byte[]	stream,	final	int	startPosition)
				final	byte[]	buffer	=	object.toByteArray();
				System.arraycopy(buffer,	0,	stream,	startPosition,	buffer.length);
		}

		public	ComparableBinary	deserialize(final	byte[]	stream,	final	int	startPosition)	{
				final	byte[]	buffer	=	Arrays.copyOfRange(stream,	startPosition,	startPosition	+	LENGTH);
				return	new	ComparableBinary(buffer);
		}

		public	int	getObjectSize(byte[]	stream,	int	startPosition)	{
				return	LENGTH;
		}

		public	byte	getId()	{
				return	ID;
		}
}

OBinarySerializerFactory.INSTANCE.registerSerializer(new	OHash256Serializer(),	null);
index	=	database.getMetadata().getIndexManager().createIndex("custom-hash",	"UNIQUE",	new	ORuntimeKeyIndexDefinition(OHash256Serializer.ID),	

ComparableBinary	key1	=	new	ComparableBinary(new	byte[]	{	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	0,	1,	
ODocument	doc1	=	new	ODocument().field("k",	"key1");
index.put(key1,	doc1);

Register your serializer

Usage

116

Since OrientDB 1.6:

select	expand(indexes)	from	metadata:indexmanager

Since OrientDB 1.0:

select	expand(indexes)	from	cluster:0

Before OrientDB 1.0:

select	expand(indexes)	from	#0:2

Tips and Tricks

Retrieve the list of indexes

117

Here a guide how to create a custom index engine.

Create your index engine

118

This index is based on B-Tree index with several optimizations related to data insertion
and range queries. As any other tree based indexes they have log(N) complexity, but
base of this logarithm is about 500.

There is an issue about replacement of B-Tree based index by COLA Tree based index
to avoid slowdown introduced by random I/O operations Issue #1756.

SB-Tree index

119

https://github.com/orientechnologies/orientdb/issues/1756

Hash index allows to perform index read operations for 1 (one) I/O operation, and index
write for 3 (three) I/O operations as maximum. Hash index algorithm is based on
extendible hashing Extendible Hashing algorithm. Hash index does not support range
queries, but it's noticeable faster (about 2 times on 10M records) than SB-Tree index.

NOTE: There is an issue about enhancement of hash index to avoid slowdown
introduced by random I/O operations using LSM Tree approaches: Issue #1757.

Hash Index

120

http://en.wikipedia.org/wiki/Extendible_hashing
https://github.com/orientechnologies/orientdb/issues/1757

Full Text indexes allow to index text as single word and its radix. Full text indexes are
like a search engine on your database. If you are using the Lucene engine, please refer
to Lucene Full-Text index.

Example:

create	index	City.name	on	City	(name)	FULLTEXT

This will create a FullText index on the property name of the class City, with default
configuration.

Parameter Default Description

indexRadix true
Word prefixes
will be also
index

ignoreChars 	"	 Chars to skip
when indexing

separatorChars 	\r\n\t:;,.|+*/\=!?[](.md)	

minWordLength 3 Minimum word
length to index

stopWords
"the in a at as and or for his her him this
that what which while up with be was
were is"

Stop words
escluded from
indexing

To configure fulltext index use the metadata field.

Example with SQL:

create	index	City.name	on	City	(name)	FULLTEXT	METADATA	{"indexRadix"	:	true,	"ignoreChars"	:	"&"	,	"separatorChars"	:	"	|()",	"minWordLength"	:	4	,	"stopWords"	:	['the','of']}

Full Text

Create a FullText Index

Configuration parameters of FullText Index:

Configure a FullText Index (OrientDB v. 1.7)

121

Example with Java;

OSchema	schema	=	db.getMetadata().getSchema();
OClass	city	=	schema.getClass("City");
ODocument	metadata	=	new	ODocument();
metadata.field("indexRadix",	true);
metadata.field("stopWords",	Arrays.asList(new	String[]	{	"the",	"in",	"a",	"at"	}));
metadata.field("separatorChars",	"	:;?[](.md)");
metadata.field("ignoreChars",	"$&");
metadata.field("minWordLength",	5);
city.createIndex("City.name",	"FULLTEXT",	null,	metadata,	null,	new	String[]	{	"name"	});

122

Full text index can be created using the OrientDB SQL syntax as written here. Specify
the index engine to use the lucene full text capabilities.

Syntax:

CREATE	INDEX	<name>	ON	<class-name>	(prop-names)	FULLTEXT	ENGINE	LUCENE

Example

create	index	City.name	on	City	(name)	FULLTEXT	ENGINE	LUCENE

Index can also be created on n-properties:

Example:

create	index	City.name_description	on	City	(name,description)	FULLTEXT	ENGINE	LUCENE

This will create a basic lucene index on the properties specified. If the analyzer is not
specified, the default will be the StandardAnalyzer. To use a different analyzer use the
field analyzer in the metadata JSON object in the CREATE INDEX syntax.

Example:

create	index	City.name	on	City	(name)	FULLTEXT	ENGINE	LUCENE	METADATA	{"analyzer":"org.apache.lucene.analysis.en.EnglishAnalyzer"

The Index can also be created with the Java Api. Example:

OSchema	schema	=	databaseDocumentTx.getMetadata().getSchema();
OClass	oClass	=	schema.createClass("Foo");
oClass.createProperty("name",	OType.STRING);
oClass.createIndex("City.name",	"FULLTEXT",	null,	null,	"LUCENE",	new	String[]	{	"name"});

Lucene Full Text Index

123

https://github.com/orientechnologies/orientdb/wiki/Indexes
http://lucene.apache.org/core/4_7_0/analyzers-common/org/apache/lucene/analysis/standard/StandardAnalyzer.html

The full text index can be queried using the custom operator 	LUCENE	 using the Query
Parser Syntax of Lucene. Example:

select	*	from	V	where	name	LUCENE	"test*"

will look for test, tests or tester etc..

To query multiple fields use this special syntax:

select	*	from	Class	where	[prop1,prop2]	LUCENE	"query"

If query is a plain string the engine will parse the query using MultiFieldQueryParser on
each indexed field.

To execute a more complex query on each fields surround your query with 	()	
parenthesis, to address specific field.

Example:

select	*	from	Class	where	[prop1,prop2]	LUCENE	"(prop1:foo	AND	props2:bar)"

With this syntax the engine parse the query using the QueryParser.

How to query a Full Text Index

Working with multiple field

124

http://lucene.apache.org/core/2_9_4/queryparsersyntax.html
http://lucene.apache.org/core/4_7_0/queryparser/org/apache/lucene/queryparser/classic/MultiFieldQueryParser.html
http://lucene.apache.org/core/4_7_0/queryparser/org/apache/lucene/queryparser/classic/QueryParser.html

For now the Index Engine can only index Points. Other Shapes like rectangles and
polygons will be added in the future.

Lucene Spatial

125

The index can be created on a Class that has two fields declared as Double
(latitude,longitude) that are the coordinates of the Point.

For example we have a Class 	Place	 with 2 double fields 	latitude	 and 	longitude	. To
create the spatial index on City use this syntax.

CREATE	INDEX	Place.l_lon	ON	Place(latitude,longitude)	SPATIAL	ENGINE	LUCENE

The Index can also be created with the Java Api. Example:

OSchema	schema	=	databaseDocumentTx.getMetadata().getSchema();
OClass	oClass	=	schema.createClass("Place");
oClass.createProperty("latitude",	OType.DOUBLE);
oClass.createProperty("longitude",	OType.DOUBLE);
oClass.createProperty("name",	OType.STRING);
oClass.createIndex("Place.latitude_longitude",	"SPATIAL",	null,	null,	"LUCENE",	new	String[]	{	

How to create a Spatial Index

126

Two custom operators has been added to query the Spatial Index:

1. NEAR: to find all Points near a given location (latitude, longitude)
2. WITHIN: to find all Points that are within a given Shape

Finds all Points near a given location (latitude, longitude).

select	from	Class	where	[<lat-field>,<long-field>]	NEAR	[<x>,<y>]

To specify 	maxDistance	 we have to pass a special variable in the context:

select		from	Class	where	[<lat-field>,<long-field>,$spatial]	NEAR	[<x>,<y>,{"maxDistance":	distance}]

The 'maxDistance' field has to be in kilometers, not radians. Results are sorted from
nearest to farthest.

To know the exact distance between your Point and the Points matched, use the special
variable in the context $distance.

select	*,	$distance	from	Class	where	[<lat-field>,<long-field>,$spatial]	NEAR	[<x>,<y>,{"maxDistance"

Let's take the example we have written before. We have a Spatial Index on Class 	Place	
on properties 	latitude	 and 	longitude	.

Example: How to find the nearest Place of a given point:

How to query the Spatial Index

NEAR operator

Syntax

Examples

127

select	*,$distance	from	Place	where	[latitude,longitude,$spatial]	NEAR	[51.507222,-0.1275,{"maxDistance"

Finds all Points that are within a given Shape.

The current release supports only Bounding Box
shape

select		from	Class	where	[<lat	field>,<long	field>]	WITHIN	[[<lng1>,	<lat1>]	,	[<lng2>,	<lat2>]	...]

Example with previous configuration:

select	*	from	Places	where	[latitude,longitude]	WITHIN	[[51.507222,-0.1275],[55.507222,-0.1275

This query will return all Places within the given Bounding Box.

WITHIN operator

Syntax

Examples

128

Index All types of shape
Adding more operators such as INTERSECT
Extend the WITHIN operator to support not only Bounding Box

Future Plans

129

The security model of OrientDB is based on well known concepts built on users and
roles. A database has "users". Each User has one or more "roles". Role is compound
by the mode of working (more later) and the set of permission rules.

Security

130

Database security

131

A User is an actor of the database. When you open a database you need to specify the
user name and password used. Each user has own credentials and permissions.

By convention 3 users are always created by default every time you create a new
database. Passwords are the same as the user name. Default users are:

admin, with default password "admin", has access to all the functions without
limitation
reader, with default password "reader", is the classic read-only user. Can read any
records but can't modify or delete them. Can't access to internal information such as
user and role themselves.
writer, with the default password "writer", is like the "reader" but can also create,
update and delete records.

Users are themselves records stored inside the cluster "OUser". The passwords are
stored in hash format using the strong algorithm SHA-256.

The user status is stored in the field "status" and can be: "SUSPENDED" and "ACTIVE".
Only ACTIVE users can log in.

To browse all the database's users use:

select	from	ouser

To create a new user use the SQL INSERT remembering to assign the status 'ACTIVE'
and a valid role as in this example:

insert	into	ouser	set	name	=	'jay',	password	=	'JaY',	status	=	'ACTIVE',	roles	=	(select	from

To change the user name use:

update	ouser	set	name	=	'jay'	where	name	=	'reader'

Users

Work with users

132

http://en.wikipedia.org/wiki/SHA-2

In the same way to change the user password use:

update	ouser	set	password	=	'hello'	where	name	=	'reader'

The password will be saved in hash format using the algorithm SHA-256. The trigger
"OUserTrigger" will encrypt the password transparently before the record is saved.

To disable a user change the status from 'ACTIVE' to 'SUSPENDED'. In this example we
disable all the users but "admin":

update	ouser	set	status=	'SUSPENDED'	where	name	<>	'admin'

133

A role decides if it's allowed to execute an operation against a resource. Mainly this
decision depends by the "working mode" and by the "rules". Rules work differently based
on the "working mode".

To create a new role use the SQL INSERT remembering to assign the status 'ACTIVE'
and a valid role as in this example:

insert	into	orole	set	name	=	'developer',	mode	=	0

Roles can inherit permissions from other roles in a Object Oriented fashion. To let a role
extend another one add the parent role in the "inheritedRole" attribute. Example to let
"appuser" role to inherit the "writer" role settings:

update	orole	set	inheritedRole	=	(select	from	orole	where	name	=	'writer')	where	name	=	'appuser'

The supported "working modes" are:

By default is a super user and exceptions are enlisted in the rules. If no rule is found for
the requested resource, then it's allowed to execute the operation. Use this mainly for
power users. "Admin" default role uses this mode and has no exception rules. This mode
is written as "1" in database.

By default it can't make nothing but the exceptions enlisted in the rules. This should be

Roles

Working with roles

Create a new role

Inherited roles

Working modes

1: allow all but (the rules)

0: deny all but (the rules)

134

the default mode for all classic users. "Reader" and "Writer" default roles use this mode.
This mode is written as "0" in database.

The supported operations are the classic CRUD operations:

(C)reate
(R)ead
(U)pdate
(D)elete

A role can have none or all the permissions above. Each permission is internally
represented by a flag of a 4 digit bitmask. So the above permissions are:

NONE:			#0000	-	0
CREATE:	#0001	-	1
READ:			#0010	-	2
UPDATE:	#0100	-	4
DELETE:	#1000	-	8
ALL:				#1111	-	15

Of course you could make a combination of them. For example, if you want to allow only
the Read and Update permissions, you could use

READ:															#0010	-	1
UPDATE:													#0100	-	4
Permission	to	use:		#0110	-	5

Resources are strings bound to OrientDB concepts. Note: resources are case sensitive:

	database	

	database.class	

	database.class.<class-name>	

	database.cluster	

	database.cluster.<cluster-name>	

	database.query	

	database.command	

	database.config	

Operations

Resources

135

	database.hook.record	

	server.admin	

Example:

Enable to the role "motorcyclist" the access to all the classes but the "Car" class:

update	orole	put	rules	=	"database.class.*",	15	where	name	=	"motorcyclist"
update	orole	put	rules	=	"database.class.Car",	0	where	name	=	"motorcyclist"

Note: resources are case sensitive

136

To grant and revoke permissions use the SQLGrant and SQLRevoke commands.

Grant and revoke permissions

137

This is also called "horizontal security" because it doesn't act at schema level (vertically),
but per each record. Due to this, we can totally separate the database records as sand-
boxes where each "Restricted" records can't be accessed by non authorized users.

To activate this kind of advanced security, let the classes you want extend the
ORestricted super class. If you're working with a Graph Database you should let V
(Vertex) and E (Edge) classes extend ORestricted class:

alter	class	V	superclass	ORestricted
alter	class	E	superclass	ORestricted

In this way, all the vertices and edges will inherit the record level security.

Every time a class extends the ORestricted class, OrientDB, by a hook, injects a check
before each CRUD operation:

CREATE new document: set the current database's user in the 	_allow	 field. To
change this behavior look at Customize on creation
READ a document: check if the current user or its roles are enlisted in the 	_allow	 or
	_allowRead	 fields. If not the record is skipped. This let each queries to work per user
basis
UPDATE a document: check if the current user or its roles are enlisted in the
	_allow	 or 	_allowUpdate	 field. If not a OSecurityException is thrown
DELETE a document: check if the current user or its roles are enlisted in the 	_allow	
or 	_allowDelete	 field. If not a OSecurityException is thrown

The "allow" fields (_allow	, 	_allowRead	, 	_allowUpdate	, 	_allowDelete) can contain instances
of OUser and ORole records (both classes extends OIdentity). Use OUser to allow
single users and ORole to allow all the users that are part of these roles.

By default everytime someone creates a Restricted record (when its class extends the
ORestricted class) the current user is inserted in the "	_allow	" field. This can be changed
by setting custom properties in the class schema supporting these properties:

onCreate.fields, to specify the names of the fields to set. By default is "	_allow	" but

Record level security

Customize on creation

138

you can specify here "	_allowRead	", "	_allowUpdate	" and "	_allowDelete	" or a
combination of them. Use the comma to separate multiple fields
onCreate.identityType, to specify if the user's object will be inserted or its role (the
first one). By default is set "user", but you can also use "role"

Example to avoid the user can delete a new post:

orientdb>	alter	class	Post	custom	onCreate.fields=_allowRead,_allowUpdate

Example to assign its role instead of user to the new Post instances created:

orientdb>	alter	class	Post	custom	onCreate.identityType=role

Sometimes you need to create a role that can bypass such restrictions, such as backup
or administrative operations. For such reason we've created the special permission
	database.bypassRestricted	 to READ. By default, the "admin" role has such permission.

This permission is not inheritable, so if you need to give such high privilege to other roles
set it to each role.

You want to enable this security in a BLOG like application. First create the document
class, like "Post" that extends "ORestricted". Then if the user "Luke" creates a new post
and the user "Steve" does the same, each user can't access the Post instances created
by each other.

orientdb>	connect	remote:localhost/blog	admin	admin
orientdb>	create	class	Post	extends	ORestricted
Class	'Post'	created	successfully

The user "Luke", registered as OUser "luke" having RID #5:5, logs in and create a new
Post:

orientdb>	connect	remote:localhost/blog	luke	luke
orientdb>	insert	into	Post	set	title	=	"Yesterday	in	Italy"

Bypass security constraints

Use case

139

Created	document	#18:0

orientdb>	select	from	Post
+-----+--------------+-----------------------+
|	RID	|	_allow							|	title																	|
+-----+--------------+-----------------------+
|#18:0|	[#5:5]							|	Yesterday	in	Italy				|
+-----+--------------+-----------------------+

Then the user Steve, registered as OUser "steve" having RID #5:6, logs in too and
create a new Post:

orientdb>	connect	remote:localhost/blog	steve	steve
orientdb>	insert	into	Post	set	title	=	"My	Nutella	cake"
Created	document	#18:1

orientdb>	select	from	Post
+-----+--------------+-----------------------+
|	RID	|	_allow							|	title																	|
+-----+--------------+-----------------------+
|#18:1|	[#5:6]							|	My	Nutella	cake							|
+-----+--------------+-----------------------+

Each user can see only the record where they have access. Now try to allow the user
Steve (rid #5:6) to access to the first Luke's post adding the Steve's RID in the 	_allow	
field:

orientdb>	connect	remote:localhost/blog	luke	luke
orientdb>	update	#18:0	add	_allow	=	#5:6

Now if Steve executes the same query as before, the result changes:

orientdb>	connect	remote:localhost/blog	steve	steve
orientdb>	select	from	Post
+-----+--------------+-----------------------+
|	RID	|	_allow							|	title																	|
+-----+--------------+-----------------------+
|#18:0|	[#5:5]							|	Yesterday	in	Italy				|
|#18:1|	[#5:6]							|	My	Nutella	cake							|
+-----+--------------+-----------------------+

Now we would like to let Steve only read posts by Luke, without the rights to modify
them. So we're going to remove Steve from the generic "_allow" field to insert into the
"_allowRead":

140

orientdb>	connect	remote:localhost/blog	luke	luke
orientdb>	update	#18:0	remove	_allow	=	#5:6
orientdb>	update	#18:0	add	_allowRead	=	#5:6

Now if Steve connects and displays all the Post instances he will continue to display the
Luke's post but can't update or delete them.

orientdb>	connect	remote:localhost/blog	steve	steve
orientdb>	select	from	Post
+-----+--------------+-----------------------+
|	RID	|	_allow							|	title																	|
+-----+--------------+-----------------------+
|#18:0|	[#5:5]							|	Yesterday	in	Italy				|
|#18:1|	[#5:6]							|	My	Nutella	cake							|
+-----+--------------+-----------------------+

orientdb>	delete	from	#18:0
!Error:	Cannot	delete	record	#18:0	because	the	access	to	the	resource	is	restricted

You can enable this feature even on graphs. Follow this tutorial to look how to create a
partitioned graph.

141

A single OrientDB server can manage several databases per time, each one with its
users. In HTTP protocol is handled by using different realms. This is the reason why
OrientDB Server instance has its own users to handle the server instance itself.

When the OrientDB Server starts check if there is configured the "root" user. If not
creates it into the config/orientdb-server-config.xml file with an automatic generated very
long password. Feel free to change the password, but restart the server to get the
changes.

It is in a section that should look like this:

	<users>	<user	name="root"	password="FAFF343DD54DKFJFKDA95F05A"	resources="*"	/>	</users>	

Since the passwords are in clear, who is installing OrientDB have to protect the entire
directory (not only config folder) to avoid any access to the not authorized users.

OrientDB Server security

142

This section contains all the available server's resources. Each user can declare which
resources have access. Wildcard 		 means any resources. *root server user, by default,
has all the privileges, so it can access to all the managed databases.

Resource Description

server.info Retrieves the server information and statistics

server.listDatabases Lists the available databases on the server

database.create Creates a new database in the server

database.drop Drops a database

database.passthrough

Starting from 1.0rc7 the server's user can access to all
the managed databases if has the resource
database.passthrough defined. Example:	<user
name="replicator"	password="repl"
resources="database.passthrough"	/>	

Server's resources

143

Starting from v1.7 OrientDB support secure SSL connections.

SSL Secure connections

144

If the class OUser has been dropped or the "admin" user has been deleted, you can
follow this procedure to restore your database:

1) Assure the database is under the OrientDB Server's databases directory
($ORIENTDB_HOME/databases/ folder)

2) Open the Console or Studio and login into the database using "root" and the
password contained in file $ORIENTDB_HOME/config/orientdb-server-config.xml

3) Execute this query:

select	from	OUser	where	name	=	'admin'

4) If the class OUser doesn't exist, create it by executing:

create	class	OUser	extends	OIdentity

5) If the class OIdentity doesn't exist, create it by executing:

create	class	OIdentity

And then retry to create the class OUser (5)

6) Now execute:

select	from	ORole	where	name	=	'admin'

7) If the class ORole doesn't exist, create it by executing:

create	class	ORole	extends	OIdentity

8) If the role "admin" doesn't exist, create it by executing the following command:

Restore admin user

145

insert	into	ORole	set	name	=	'admin',	mode	=	1,	rules	=	{"database.bypassrestricted":15}

9) If the user "admin" doesn't exist, create it by executing the following command:

insert	into	OUser	set	name	=	'admin',	password	=	'admin',	status	=	'ACTIVE',
																						roles	=	(select	from	ORole	where	name	=	'admin')

Now your "admin" user is active again.

146

Starting from v1.7, OrientDB provides the ability to secure is HTTP and BINARY
protocols using SSL (For Distributed SSL see the HazelCast Documentation).

SSL

147

OrientDB uses the JAVA Keytool to setup and manage certificates. This tutorial shows
how to create key and trust stores that reference a self signed cert. Use of CA signed
certs is outside the scope of this document. For more details on using the java Keytool
please visit http://docs.oracle.com/javase/7/docs/technotes/tools/index.html#security and
for more information.

1. Using keytool, create a certificate for the server:

	keytool	-genkey	-alias	server	-keystore	orientdb.ks	-keyalg	RSA	-keysize	2048	-validity
3650	

2. Export the server's certificate so it can be shared with clients:

	keytool	-export	-alias	server	-keystore	orientdb.ks	-file	orientdb.cert	

3. Create a certificate/keystore for the console/clients:

	keytool	-genkey	-alias	console	-keystore	orientdb-console.ks	-keyalg	RSA	-keysize	2048	-
validity	3650	

4. Create a trust-store for the client, and import the server's certificate. This
establishes that the client "trusts" the server:

	keytool	-import	-alias	server	-keystore	orientdb-console.ts	-file	orientdb.cert	

NOTE: You will need to repeat steps 3 and 4 for each remote client vm you wish to
connect to the server. Remember to change the alias and keystore and trust-store
filenames accordingly.

Setting up the Key and Trust Stores

148

http://docs.oracle.com/javase/7/docs/technotes/tools/index.html#security

The OrientDB server config ($ORIENTDB_HOME/config/orientdb-server-config.xml)
does not enable SSL by default. To enable SSL on a protocol listener you simply change
the "socket" attribute of the from "default" to one of your configured definitions.

There are two default definitions named "ssl" and "https". These should be sufficient for
most uses cases, however more can be defined if you want to secure different listeners
with there own certificates or want custom socket factory implementations. When using
the "ssl" implementation keep in mind that the default port for OrientDB SSL is 2434 and
that your port-range should be changed to 2434-2440.

By default, the OrientDB Server looks for its keys and trust stores in
$ORIENTDB_HOME/config/cert. This is configured using the parameters. Make sure
that all of the key and trust stores created in the previous setup are in the correct
directory and that the passwords used are also correct.

Note that paths are relative to $ORIENTDB_HOME. Absolute paths are supported.

Example Configuration

		<sockets>
				<socket	implementation="com.orientechnologies.orient.server.network.OServerSSLSocketFactory"
						<parameters>
								<parameter	value="false"	name="network.ssl.clientAuth"/>
								<parameter	value="config/cert/orientdb.ks"	name="network.ssl.keyStore"/>
								<parameter	value="password"	name="network.ssl.keyStorePassword"/>

								<!--	NOTE:	We	are	using	the	same	store	for	keys	and	trust.
												This	will	change	if	client	authentication	is	enabled.	See	Configuring	Client	section	-->

								<parameter	value="config/cert/orientdb.ks"	name="network.ssl.trustStore"/>
								<parameter	value="password"	name="network.ssl.trustStorePassword"/>
						</parameters>
				</socket>

				...

				<listener	protocol="binary"	ip-address="0.0.0.0"	port-range="2424-2430"	socket="default"/>
				<listener	protocol="binary"	ip-address="0.0.0.0"	port-range="2434-2440"	socket="ssl"/>

Configuring the Server

149

To enable SSL for remote connections using the console, a few changes to the console
script are required.

1. Confirm that your KEYSTORE, TRUSTSTORE and repective PASSWORD
variables are set correctly.

2. In the SSL_OPTS definition set the "client.ssl.enabled" system property to "true"

Configuring the Console

150

Configuring remote clients can be done using standard java system property patterns.

Properties:

	client.ssl.enabled	: Used to enable/disable SSL. Accepts "true" or "false". Only
needed when using remote binary client connections.
	javax.net.ssl.keyStore	: Path to key store
	javax.net.ssl.keyStorePassword	: Key store password
	javax.net.ssl.trustStore	: Path to trust store
	javax.net.ssl.trustStorePassword	: Trust store password

Use steps 3 and 4 from the "Setting up the Key and Trust Stores" section to create client
certificates and trust of the server. Paths to the stores will be client specific and do not
need to be the same as the server.

If you would like to use key and/or truststores other that the default JVM they should use
instead:

	client.ssl.keyStore	: Path to key store
	client.ssl.keyStorePass	: Key store password
	client.ssl.trustStore	: Path to trust store
	client.ssl.trustStorePass	: Trust store password

Example Java Command Line:

java	-Dclient.ssl.enabled=false	-Djavax.net.ssl.keyStore=</path/to/keystore>	-Djavax.net.ssl.keyStorePassword=<keystorepass>	\
				-Djavax.net.ssl.trustStore=</path/to/truststore>	-Djavax.net.ssl.trustStorePassword=<truststorepass>

Example Java Implementation:

System.setProperty("client.ssl.enabled",	<"true"|"false">);	#	This	will	only	be	needed	for	remote	binary	clients
System.setProperty("javax.net.ssl.keyStore",	</path/to/keystore>);
System.setProperty("javax.net.ssl.keyStorePassword",	<keystorepass>);
System.setProperty("javax.net.ssl.trustStore",	</path/to/truststore>);
System.setProperty("javax.net.ssl.trustStorePassword",	<truststorepass>);

Configuring Client

151

If you want to verify/authenticate client certificates, you need to take a few extra steps on
the server:

1. Export the client's certificate so it can be shared with server:

	keytool	-export	-alias	<client_alias>	-keystore	<client.ks>	-file	client_cert	

Example using console:

	keytool	-export	-alias	console	-keystore	orientdb-console.ks	-file	orientdb-console.cert	

2. Create a truststore for the server if one does not exist, and import the client's
certificate. This establishes that the server "trusts" the client:

	keytool	-import	-alias	<client_alias>	-keystore	orientdb.ts	-file	client_cert	

Example using console:

	keytool	-import	-alias	console	-keystore	orientdb.ts	-file	orientdb-console.cert	

In the server config make sure that client authentication is enabled for the and that the
trust-store path and password are correct:

Example

		<sockets>
				<socket	implementation="com.orientechnologies.orient.server.network.OServerSSLSocketFactory"
						<parameters>
								<parameter	value="true"	name="network.ssl.clientAuth"/>
								<parameter	value="config/cert/orientdb.ks"	name="network.ssl.keyStore"/>
								<parameter	value="password"	name="network.ssl.keyStorePassword"/>

								<!--	NOTE:	We	are	using	the	trust	store	with	the	imported	client	cert.	You	can	import	as	many	client	as	you	would	like	-->
								<parameter	value="config/cert/orientdb.ts"	name="network.ssl.trustStore"/>
								<parameter	value="password"	name="network.ssl.trustStorePassword"/>
						</parameters>
				</socket>

152

OrientDB has several caching mechanisms that act at different levels. Look at this
picture:

Local cache is one per database instance (and per thread in multi-thread
environment)
Storage, depending by the implementation could cache. This is the case for the
Local Storage (disk based) that caches file reads to reduce I/O requests

Caching

153

When the client application asks for a record OrientDB checks:

if a transaction is begun searches it inside the transaction changed records and
returns it if found
if the Local cache cache is enabled and contains the requested record then return
it
at this point the record is not in cache, then ask it to the Storage (disk, memory)

How cache works?

Local Mode (embedded database)

154

When the client application asks for a record OrientDB checks:

if a transaction is begun searches it inside the transaction changed records and
returns it if found
if the Local cache cache is enabled and contains the requested record then return
it
at this point the record is not in cache, then ask it to the Server through a TCP/IP
call
in the server if the Local cache cache is enabled and contains the requested record
then return it
at this point the record is not in cache in the server too, then ask it to the Storage
(disk, memory)

Client-Server Mode (remote database)

155

Local cache acts at database level. Each database instance has a Local cache enabled
by default. This cache keeps the used records. Records will be removed from heap if 2
conditions will be satisfied:

1. There are no links to these records from outside of database
2. The Java Virtual Machine doesn't have enough memory to allocate for new data

Record cache

Local cache

156

To remove all the records in Local cache you can invoke the 	invalidate()	 method:

db.getLocalCache().invalidate();

Disabling of local cache may lead to situation when 2 different instances of the same
record will be loaded and OConcurrentModificationException may be thrown during
record update even in single thread mode.

To disable it use the system property 	cache.local.enabled	 by setting it at startup:

java	...	-Dcache.local.enabled=false	...

or via code before to open the database:

OGlobalConfiguration.CACHE_LOCAL_ENABLED.setValue(false);

Empty Local cache

Disable Local cache

157

A Function is an executable unit of code that can take parameters and return a result.
Using Functions you can perform Functional programming where logic and data are all
together in a central place. Functions are similar to the Stored Procedures of RDBMS.

NOTE: This guide refers to the last available release of OrientDB. For past revisions look
at Compatibility.

OrientDB Functions:

are persistent
can be written in SQL or Javascript (Ruby, Scala, Java and other languages are
coming)
can be executed via SQL, Java, REST and Studio
can call each other
supports recursion
have automatic mapping of parameters by position and name
plugins can inject new objects to being used by functions

Functions

158

http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Stored_procedure
https://github.com/orientechnologies/orientdb-studio/wiki

To start using Functions the simplest way is using the Studio. Open the database and go
to the "Functions" panel. Then write as name "sum", add 2 parameters named "a" and
"b" and now write the following code in the text area:

return	a	+	b;

Click on the "Save" button. Your function has been saved and will appear on the left
between the available functions.

Now let's go to test it. On the bottom you will find 2 empty boxes. This is where you can
insert the parameters when invoking the function. Write 3 and 5 as parameters and click
"Execute" to see the result. "8.0" will appear in the output box below.

Create your first function

159

https://github.com/orientechnologies/orientdb-studio/wiki

Functions are saved in the database using the OFunction class and the following
properties:

name, as the name of the function
code, as the code to execute
parameters, as an optional EMBEDDEDLIST of String containing the parameter
names if any
idempotent, tells if the function is idempotent, namely if it changes the database.
Read-only functions are idempotent. This is needed to avoid calling non-idempotent
functions using the HTTP GET method

Since OrientDB uses 1 record per function, the MVCC mechanism is used to protect
against concurrent record updates.

Where are my functions saved?

Concurrent editing

160

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

Using OrientDB's functions from Java is straightforward. First get the reference to the
Function Manager, get the right function and execute it passing the parameters (if any).
In this example parameters are passed by position:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("local:/tmp/db");
db.open("admin",	"admin");
OFunction	sum	=	db.getMetadata().getFunctionLibrary().getFunction("sum");
Number	result	=	sum.execute(3,	5);

If you're using the Blueprints Graph API get the reference to the Function in this way:

OFunction	sum	=	graph.getRawGraph().getMetadata().getFunctionLibrary().getFunction("sum");

You can execute functions passing parameters by name:

Map<String,Object>	params	=	new	HashMap<String,Object>();
params.put("a",	3);
params.put("b",	5);
Number	result	=	sum.execute(params);

Usage

Usage via Java API

161

Each function is exposed as a REST service allowing the receiving of parameters.
parameters are passed by position.

Below how to execute the "sum" function created before:

http://localhost:2480/function/demo/sum/3/5

This will return an HTTP 202 OK with an envelope containing the result of the
calculation:

{"result":[{"@type":"d","@version":0,"value":2}]}

You can call with HTTP GET method only functions declared as "idempotent". Use
HTTP POST to call any functions.

If you're executing the function using HTTP POST method, encode the content and set
the HTTP request header to: 	"Content-Type:	application/json"	.

For more information, see HTTP REST protocol. To learn how to write server-side
function for web applications, see Server-Side functions.

Usage via HTTP REST

162

When calling a function as a REST service, OrientDB encapsulates the result in a JSON
and sends it to the client via HTTP. The result can be slightly different depending on the
return value of the function. Here are some details about different cases:

a function that returns a number:

return	31;

result:

{"result":[{"@type":"d","@version":0,"value":31}]}

a function that returns a JS object

return	{"a":1,	"b":"foo"}

result:

{"result":[{"@type":"d","@version":0,"value":{"a":1,"b":"foo"}}]}

a function that returns an array

return	[1,	2,	3]

result:

{"result":[{"@type":"d","@version":0,"value":[1,2,3]}]}

a function that returns a query result

return	db.query("select	from	OUser")

result:

Function return values in HTTP calls

163

{
				"result":	[
								{
												"@type":	"d",
												"@rid":	"#6:0",
												"@version":	1,
												"@class":	"OUser",
												"name":	"admin",
												"password":	"...",
												"status":	"ACTIVE",
												"roles":	[
																"#4:0"
],
												"@fieldTypes":	"roles=n"
								},
								{
												"@type":	"d",
												"@rid":	"#6:1",
												"@version":	1,
												"@class":	"OUser",
												"name":	"reader",
												"password":	"...",
												"status":	"ACTIVE",
												"roles":	[
																"#4:1"
],
												"@fieldTypes":	"roles=n"
								}
]
}

164

OrientDB always binds a special variable "orient" to use OrientDB services from inside
the functions. The most important methods are:

orient.getGraph(), returns the current transactional graph database instance
orient.getGraphNoTx(), returns the current non-transactional graph database
instance
orient.getDatabase(), returns the current document database instance

Query is an idempotent command. To execute a query use the 	query()	method.
Example:

return	orient.getDatabase().query("select	name	from	ouser");

Create a new function with name "getyUserRoles" with the parameter "user". Then write
this code:

return	orient.getDatabase().query("select	roles	from	ouser	where	name	=	?",	name);

The name parameter is bound as variable in Javascript. You can use this variable to
build your query.

Commands can be written in any language supported by JVM. By default OrientDB
supports "SQL" and "Javascript".

var	gdb	=	orient.getGraph();
var	results	=	gdb.command("sql",	"select	from	Employee	where	company	=	?",	["Orient	Technologies"

Access to the databases from Functions

Execute a query

Execute a query with external parameters

Execute a command

SQL Command

165

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraphNoTx.html
http://www.orientechnologies.com/javadoc/latest/com/orientechnologies/orient/core/db/document/ODatabaseDocumentTx.html

166

Functions are the perfect place to write the logic for your application to access to the
database. You could adopt a DDD approach allowing the function to work as a
Repository or a DAO.

This mechanism provides a thin (or thick if you prefer) layer of encapsulation which may
protect you from database changes.

Furthermore each function is published and reachable via HTTP REST protocol allowing
the automatic creation of a RESTful service.

Below an example of functions to build a repository for OUser records.

function user_getAll(){

return	orient.getDatabase().query("select	from	ouser");

}

function user_getByName(name){

return	orient.getDatabase().query("select	from	ouser	where	name	=	?",	name);

}

function user_getAdmin(){

return	user_getByName("admin");

}

function user_create(name, role){

var	db	=	orient.getDatabase();

Write your own repository classes

Example

167

http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
http://en.wikipedia.org/wiki/Data_access_object

var	role	=	db.query("select	from	ORole	where	name	=	?",	roleName);
if(role	==	null){
		response.send(404,	"Role	name	not	found",	"text/plain",	"Error:	role	name	not	found");
}	else	{

		db.begin();
		try{
				var	result	=	db.save({	"@class"	:	"OUser",	name	:	"Luca",	password	:	"Luc4",	roles	:	role});
				db.commit();
				return	result;
		}catch	(err){
				db.rollback();
				response.send(500,	"Error	on	creating	new	user",	"text/plain",	err.toString());
		}
}

}

168

Create the new function with name "factorial" with the parameter "n". Then write this
code:

if	(num	===	0)
		return	1;
else
		return	num	*	factorial(num	-	1);

This function calls itself to find the factorial number for 	<num>	 as parameter. The result is
	3628800.0	.

Recursive calls

169

Server-Side functions can be used as Servlet replacement. To know how to call a
Server-Side function, see Usage via HTTP REST. When server-side functions are called
via HTTP REST protocol, OrientDB embeds a few additional variables:

request, as the HTTP request and implemented by 	OHttpRequestWrapper	 class
response, as the HTTP request response implemented by 	OHttpResponseWrapper	
class
util, as an utility class with helper functions to use inside the functions. It's
implemented by 	OFunctionUtilWrapper	 class

Refer to this object as "request". Example:

var	params	=	request.getParameters();

Method signature Description Return
type

getContent() Returns the request's content String

getUser() Gets the request's user name String

getContentType() Returns the request's content type String

getHttpVersion() Return the request's HTTP version String

getHttpMethod() Return the request's HTTP method
called String

getIfMatch() Return the request's IF-MATCH header String

isMultipart() Returns if the requests has multipart boolean

getArguments()
Returns the request's arguments
passed in REST form. Example:
/2012/10/26

String[]

getArgument(<position>) Returns the request's argument by
position, or null if not found String

getParameters() Returns the request's parameters String

getParameter(<name>) Returns the request's parameter by
name or null if not found String

Returns the number of parameters

Server-Side functions

Request object

170

found between those passed

getSessionId() Returns the session-id String

getURL() Returns the request's URL String

Refer to this object as "response". Example:

var	db	=	orient.getDatabase();
var	roles	=	db.query("select	from	ORole	where	name	=	?",	roleName);
if(roles	==	null	||	roles.length	==	0){
		response.send(404,	"Role	name	not	found",	"text/plain",	"Error:	role	name	not	found");
}	else	{

		db.begin();
		try{
				var	result	=	db.save({	"@class"	:	"OUser",	name	:	"Luca",	password	:	"Luc4",	"roles"	:	roles});
				db.commit();
				return	result;
		}catch	(err){
				db.rollback();
				response.send(500,	"Error	on	creating	new	user",	"text/plain",	err.toString());
		}
}

Method signature Description Return
type

getHeader() Returns the response's
additional headers String

setHeader(String header)
Sets the response's additional
headers to send back. To
specify multiple headers use
the line breaks

Request
object

getContentType()
Returns the response's content
type. If null will be automatically
detected

String

setContentType(String
contentType)

Sets the response's content
type. If null will be automatically
detected

Request
object

getCharacterSet() Returns the response's
character set used String

setCharacterSet(String
characterSet)

Sets the response's character
set

Request
object

getHttpVersion() String

Response object

171

writeStatus(int httpCode, String
reason)

Sets the response's status as
HTTP code and reason

Request
object

writeStatus(int httpCode, String
reason)

Sets the response's status as
HTTP code and reason

Request
object

writeHeaders(String
contentType)

Sets the response's headers
using the keep-alive

Request
object

writeHeaders(String
contentType, boolean keepAlive)

Sets the response's headers
specifying when using the
keep-alive or not

Request
object

writeLine(String content)
Writes a line in the response. A
line feed will be appended at
the end of the content

Request
object

writeContent(String content) Writes content directly to the
response

Request
object

writeRecords(List	<OIdentifiable>	
records)

Writes records as response.
The records are serialized in
JSON format

Request
object

writeRecords(
List	<OIdentifiable>	 records,
String fetchPlan)

Writes records as response
specifying a fetch-plan to
serialize nested records. The
records are serialized in JSON
format

Request
object

writeRecord(ORecord record)
Writes a record as response.
The record is serialized in
JSON format

Request
object

writeRecord(ORecord record,
String fetchPlan)

Writes a record as response.
The record is serialized in
JSON format

Request
object

send(int code, String reason,
String contentType, Object
content)

Sends the complete HTTP
response in one call

Request
object

send(int code, String reason,
String contentType, Object
content, String headers)

Sends the complete HTTP
response in one call specifying
additional headers. Keep-alive
is set

Request
object

send(int code, String reason,
String contentType, Object
content, String headers, boolean
keepAlive)

Sends the complete HTTP
response in one call specifying
additional headers

Request
object

sendStream(int code, String
reason, String contentType,
InputStream content, long size)

Sends the complete HTTP
response in one call specifying
a stream as content

Request
object

flush() Flushes the content to the
TCP/IP socket

Request
object

Util object

172

Refer to this object as "util". Example:

if(util.exists(year)){
		print("\nYes,	the	year	was	passed!");
}

Method signature Description Return
type

exists(<variable>*)
Returns trues if any of the passed variables
are defined. In JS, for example, a variable is
defined if it's not null and not equals to
"undefined"

Boolean

173

OrientDB's SQL dialect supports many functions written in native language. To obtain
better performance you can write you own native functions in Java language and register
them to the engine.

Native functions

174

OrientDB binds the following variables:

db, that is the current document database instance
gdb, that is the current graph database instance

Compatibility

1.5.0 and before

175

A transaction comprises a unit of work performed within a database management
system (or similar system) against a database, and treated in a coherent and reliable
way independent of other transactions. Transactions in a database environment have
two main purposes:

to provide reliable units of work that allow correct recovery from failures and keep a
database consistent even in cases of system failure, when execution stops
(completely or partially) and many operations upon a database remain
uncompleted, with unclear status
to provide isolation between programs accessing a database concurrently. If this
isolation is not provided, the program's outcome are possibly erroneous.

A database transaction, by definition, must be atomic, consistent, isolated and durable.
Database practitioners often refer to these properties of database transactions using the
acronym ACID. --- Wikipedia

OrientDB is an ACID compliant DBMS.

NOTE: OrientDB keeps the transaction on client RAM, so the transaction size is
affected by the available RAM (Heap memory) on JVM. For transactions involving
many records, consider to split it in multiple transactions.

Transactions

176

http://en.wikipedia.org/wiki/Database_transaction

"Atomicity requires that each transaction is 'all or nothing': if one part of the transaction
fails, the entire transaction fails, and the database state is left unchanged. An atomic
system must guarantee atomicity in each and every situation, including power failures,
errors, and crashes. To the outside world, a committed transaction appears (by its
effects on the database) to be indivisible ("atomic"), and an aborted transaction does not
happen." - WikiPedia

"The consistency property ensures that any transaction will bring the database from one
valid state to another. Any data written to the database must be valid according to all
defined rules, including but not limited to constraints, cascades, triggers, and any
combination thereof. This does not guarantee correctness of the transaction in all ways
the application programmer might have wanted (that is the responsibility of application-
level code) but merely that any programming errors do not violate any defined rules." -
WikiPedia

OrientDB uses the MVCC to assure consistency. The difference between the
management of MVCC on transactional and not-transactional cases is that with
transactional, the exception rollbacks the entire transaction before to be caught by the
application.

Look at this example:

Sequence Client/Thread
1

Client/Thread
2 Version of record X

1 Begin of
Transaction

2 read(x) 10

3 Begin of
Transaction

4 read(x) 10

5 write(x) 10

6 commit 10 -> 11

7 write(x) 10

ACID properties

Atomicity

Consistency

177

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

8 commit 10 -> 11 = Error, in
database x already is at 11

"The isolation property ensures that the concurrent execution of transactions results in a
system state that would be obtained if transactions were executed serially, i.e. one after
the other. Providing isolation is the main goal of concurrency control. Depending on
concurrency control method, the effects of an incomplete transaction might not even be
visible to another transaction." - WikiPedia

OrientDB has different levels of isolation based on settings and configuration:

READ COMMITTED, the default and the only one available with 	remote	 protocol
REPEATABLE READS, allowed only with 	plocal	 and 	memory	 protocols. This mode
consumes more memory than READ COMMITTED, because any read, query, etc.
keep the records in memory to assure the same copy on further access

To change default Isolation Level, use the Java API:

db.begin()
db.getTransaction().setIsolationLevel(OTransaction.ISOLATION_LEVEL.REPEATABLE_READ);

Using 	remote	 access all the commands are executed on the server, so out of transaction
scope. Look below for more information.

Look at this examples:

Sequence Client/Thread 1 Client/Thread 2

1 Begin of Transaction

2 read(x)

3 Begin of Transaction

4 read(x)

5 write(x)

6 commit

7 read(x)

8 commit

Isolation

178

http://en.wikipedia.org/wiki/ACID

At operation 7 the client 1 continues to read the same version of x read in operation 2.

Sequence Client/Thread 1 Client/Thread 2

1 Begin of Transaction

2 read(x)

3 Begin of Transaction

4 read(y)

5 write(y)

6 commit

7 read(y)

8 commit

At operation 7 the client 1 reads the version of y which was written at operation 6 by
client 2. This is because it never reads y before.

Transactions are client-side only until the commit. This means that if you're using the
"remote" protocol the server can't see local changes

In this scenario you can have different isolation levels with commands.

Breaking of ACID properties when using remote protocol
and Commands (SQL, Gremlin, JS, etc)

Durability

179

"Durability means that once a transaction has been committed, it will remain so, even in
the event of power loss, crashes, or errors. In a relational database, for instance, once a
group of SQL statements execute, the results need to be stored permanently (even if the
database crashes immediately thereafter). To defend against power loss, transactions
(or their effects) must be recorded in a non-volatile memory." - WikiPedia

An OrientDB instance can fail for several reasons:

HW problems, such as loss of power or disk error
SW problems, such as a Operating System crash
Application problem, such as a bug that crashes your application that is connected
to the Orient engine.

You can use the OrientDB engine directly in the same process of your application. This
gives superior performance due to the lack of inter-process communication. In this case,
should your application crash (for any reason), the OrientDB Engine also crashes.

If you're using an OrientDB Server connected remotely, if your application crashes the
engine continue to work, but any pending transaction owned by the client will be rolled
back.

At start-up the OrientDB Engine checks to if it is restarting from a crash. In this case, the
auto-recovery phase starts which rolls back all pending transactions.

OrientDB has different levels of durability based on storage type, configuration and
settings.

Fail-over

Auto-recovery

180

http://en.wikipedia.org/wiki/ACID

Default mode. Each operation is executed instantly.

Calls to 	begin()	, 	commit()	 and 	rollback()	 have no effect.

This mode uses the well known Multi Version Control System (MVCC) by allowing
multiple reads and writes on the same records. The integrity check is made on commit. If
the record has been saved by another transaction in the interim, then an
OConcurrentModificationException will be thrown. The application can choose either to
repeat the transaction or abort it.

NOTE: OrientDB keeps the transaction on client RAM, so the transaction size is
affected by the available RAM (Heap) memory on JVM. For transactions involving
many records, consider to split it in multiple transactions.

With Graph API transaction begins automatically, with Document API is explicit by using
the begin() method. Example with Document API:

db.open("remote:localhost:7777/petshop");

try{
		db.begin(TXTYPE.OPTIMISTIC);
		...
		//	WRITE	HERE	YOUR	TRANSACTION	LOGIC
		...
		db.commit();
}catch(Exception	e){
		db.rollback();
}	finally{
		db.close();
}

In Optimistic transaction new records take temporary RecordIDs to avoid to ask to the
server a new RecordID every time. Temporary RecordIDs have Cluster Id -1 and Cluster
Position < -1. When a new transaction begun the counter is reset to -1:-2. So if you
create 3 new records you'll have:

-1:-2

Transaction types

No Transaction

Optimistic Transaction

181

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

-1:-3
-1:-4

At commit time, these temporary records RecordIDs will be converted in the final ones.

This mode is not yet supported by the engine.

Pessimistic Transaction

182

OrientDB doesn't support nested transaction. If further begin() are called after a
transaction is already begun, then the current transaction keeps track of call stack to let
to the final commit() call to effectively commit the transaction. Look at Transaction
Propagation more information.

Nested transactions and propagation

183

OrientDB uses temporary RecordIDs with transaction as scope that will be transformed
to finals once the transactions is successfully committed to the database. This avoid to
ask for a free slot every time a client creates a record.

Record IDs

184

In some situations transactions can improve performance, typically in the client/server
scenario. If you use an Optimistic Transaction, the OrientDB engine optimizes the
network transfer between the client and server, saving both CPU and bandwidth.

For further information look at Transaction tuning to know more.

Tuning

185

Transactions can be committed across a distributed architecture. Look at Distributed
Transactions for more information.

Transaction-propagation

Distributed environment

186

Hook works like a trigger. Hook lets to the user application to intercept internal events
before and after each CRUD operation against records. You can use to write custom
validation rules, to enforce security or even to orchestrate external events like the
replication against a Relational DBMS.

OrientDB supports two main kinds of Hooks:

Dynamic Hooks, defined at schema and/or document level
Native Java Hooks, defined as Java classes

Depends by your goal: Java Hooks are the fastest hooks. Write a Java Hook if you need
the best performance on execution. Dynamic Hooks are more flexible, can be changed
at run-time and can run per document if needed, but are slower than Java Hooks.

Hooks (Triggers)

What use? Pros/Cons?

187

Dynamic Hooks are more flexible than Java Hooks, because can be changed at run-time
and can run per document if needed, but are slower than Java Hooks. Look at Hooks for
more information.

To execute hooks against your documents, let your classes to extend 	OTriggered	 base
class. Then define a custom property for the event you're interested on. The available
events are:

	onBeforeCreate	, called before creating a new document
	onAfterCreate	, called after creating a new document
	onBeforeRead	, called before reading a document
	onAfterRead	, called after reading a document
	onBeforeUpdate	, called before updating a document
	onAfterUpdate	, called after updating a document
	onBeforeDelete	, called before deleting a document
	onAfterDelete	, called after deleting a document

Dynamic Hooks can call:

Functions, written in SQL, Javascript or any language supported by OrientDB and
JVM
Java static methods

Dynamic Hooks

188

Class level hooks are defined for all the documents that rely to a class. Below an
example to setup a hook that acts at class level against Invoice documents.

CREATE	CLASS	Invoice	EXTENDS	OTriggered
ALTER	CLASS	Invoice	CUSTOM	onAfterCreate=invoiceCreated

Now let's create the function "invoiceCreated" in Javascript that print to console the
invoice number created.

CREATE	FUNCTION	invoiceCreated	"print('\\nInvoice	created:	'	+	doc.field('number'));"	LANGUAGE

Now try the hook by creating a new "Invoice" document.

INSERT	INTO	Invoice	CONTENT	{	number:	100,	notes:	'This	is	a	test'	}

And this will appear in the console:

Invoice	created:	100

Class level hooks

189

You could need to define a special action only against one or more documents. To do
this, let your class to extend 	OTriggered	 class.

Example to execute a trigger, as Javascript function, against an existent Profile class, for
all the documents with property account = 'Premium'. The trigger will be called to prevent
deletion of documents:

ALTER	CLASS	Profile	SUPERCLASS	OTriggered
UPDATE	Profile	SET	onBeforeDelete	=	'preventDeletion'	WHERE	account	=	'Premium'

And now let's create the preventDeletion() Javascript function.

CREATE	FUNCTION	preventDeletion	"throw	new	java.lang.RuntimeException('Cannot	delete	Premium	profile	'	+	doc)"

And now test the hook by trying to delete a "Premium" account.

delete	from	#12:1

java.lang.RuntimeException:	Cannot	delete	Premium	profile	profile#12:1{onBeforeDelete:preventDeletion,account:Premium,name:Jill}	v-

Document level hook

190

Java Hooks are the fastest hooks. Write a Java Hook if you need the best performance
on execution. Look at Hooks for more information.

A hook is an implementation of the interface ORecordHook:

public	interface	ORecordHook	{
		public	enum	TYPE	{
				ANY,
				BEFORE_CREATE,	BEFORE_READ,	BEFORE_UPDATE,	BEFORE_DELETE,
				AFTER_CREATE,	AFTER_READ,	AFTER_UPDATE,	AFTER_DELETE
		};

		public	void	onTrigger(TYPE	iType,	ORecord<?>	iRecord);
}

OrientDB comes with an abstract implementation of the ORecordHook interface called
ORecordHookAbstract.java. It switches the callback event calling seperate methods for
each one:

public	abstract	class	ORecordHookAbstract	implements	ORecordHook	{
		public	void	onRecordBeforeCreate(ORecord<?>	iRecord){}
		public	void	onRecordAfterCreate(ORecord<?>	iRecord){}
		public	void	onRecordBeforeRead(ORecord<?>	iRecord){}
		public	void	onRecordAfterRead(ORecord<?>	iRecord){}
		public	void	onRecordBeforeUpdate(ORecord<?>	iRecord){}
		public	void	onRecordAfterUpdate(ORecord<?>	iRecord){}
		public	void	onRecordBeforeDelete(ORecord<?>	iRecord){}
		public	void	onRecordAfterDelete(ORecord<?>	iRecord){}
		...
}

When you want to catch event from Document only, the best way to create a hook is to
extend the 	ODocumentHookAbstract	 abstract class. You can specify what classes you're
interested in. In this way the callbacks will be called only to the document of specified
classes. Classes are polymorphic so filtering works against specified classes and all

(Native) Java Hooks

The ORecordHook interface

The ORecordHookAbstract abstract class

The ODocumentHookAbstract abstract class

191

https://github.com/orientechnologies/orientdb/blob/develop/core/src/main/java/com/orientechnologies/orient/core/hook/ORecordHook.java
https://github.com/orientechnologies/orientdb/blob/develop/core/src/main/java/com/orientechnologies/orient/core/hook/ORecordHook.java
https://github.com/orientechnologies/orientdb/blob/develop/core/src/main/java/com/orientechnologies/orient/core/hook/ORecordHookAbstract.java

sub-classes.

You can specify only the class you're interested or the classes you want to exclude.
Example to include only the 	Client	 and 	Provider	 classes:

public	class	MyHook	extends	ODocumentHookAbstract	{
		public	MyHook()	{
				setIncludeClasses("Client",	"Provider");
		}
}

Example to get called for all the changes on documents of any class but 	Log	:

public	class	MyHook	extends	ODocumentHookAbstract	{
		public	MyHook()	{
				setExcludeClasses("Log");
		}
}

In Hook methods, you can access to the dirty fields and the original values. Example:

for(String	field	:	document.getDirtyFields())	{
		Object	originalValue	=	document.getOriginalValue(field);
		...
}

Hooks could be installed only to certain database instances, but in most of the cases
you'd need to register it for each instance. To do this programmatically you can intercept
the 	onOpen()	 and 	onCreate()	 callbacks from OrientDB to install hooks. All you need is to
implement the 	ODatabaseLifecycleListener	 interface. Example:

public	class	MyHook	extends	ODocumentHookAbstract	implements	ODatabaseLifecycleListener	{
		public	MyHook()	{
				//	REGISTER	MYSELF	AS	LISTENER	TO	THE	DATABASE	LIFECYCLE
				Orient.instance().addDbLifecycleListener(this);
		}
		...
		@Override

Access to the modified fields

Self registration

192

		public	void	onOpen(final	ODatabase	iDatabase)	{
				//	REGISTER	THE	HOOK
				((ODatabaseComplex<?>)iDatabase).registerHook(this);
		}

		@Override
		public	void	onCreate(final	ODatabase	iDatabase)	{
				//	REGISTER	THE	HOOK
				((ODatabaseComplex<?>)iDatabase).registerHook(this);
		}

		@Override
		public	void	onClose(final	ODatabase	iDatabase)	{
				//	REGISTER	THE	HOOK
				((ODatabaseComplex<?>)iDatabase).unregisterHook(this);
		}
		...
		public	RESULT	onRecordBeforeCreate(final	ODocument	iDocument)	{
				//	DO	SOMETHING	BEFORE	THE	DOCUMENT	IS	CREATED
				...
		}
		...
}

In this example the events 	before-create	 and 	after-delete	 are called during the 	save()	
of the 	Profile	 object where:

	before-create	 is used to check custom validation rules
	after-delete	 is used to maintain the references valid

public	class	HookTest	extends	ORecordHookAbstract	{
		public	saveProfile(){
				ODatabaseObjectTx	database	=	new	ODatabaseObjectTx("remote:localhost/demo");
				database.open("writer",	"writer");

				//	REGISTER	MYSELF	AS	HOOK
				database.registerHook(this);

				...
				p	=	new	Profile("Luca");
				p.setAge(10000);
				database.save(p);
				...
		}

		/**
			*	Custom	validation	rules
			*/
		@Override

Hook example

193

		public	void	onRecordBeforeCreate(ORecord<?>	iRecord){
				if(iRecord	instanceof	ODocument){
						ODocument	doc	=	(ODocument)	iRecord;
						Integer	age	=	doc	.field("age");
						if(age	!=	null	&&	age	>	130)
								throw	new	OValidationException("Invalid	age");
				}
		}

		/**
			*	On	deletion	removes	the	reference	back.
			*/
		@Override
		public	void	onRecordAfterDelete(ORecord<?>	iRecord){
				if(iRecord	instanceof	ODocument){
						ODocument	doc	=	(ODocument)	iRecord;

						Set<OIdentifiable>	friends	=	doc.field("friends");
						if(friends	!=	null){
								for(OIdentifiable	friend	:	friends){
										Set<OIdentifiable>	otherFriends	=	((ODocument)friend.getRecord()).field("friends");
										if(friends	!=	null)
												friends.remove(iRecord);
								}
						}
				}
		}
}

For more information take a look to the HookTest.java source code.

To let a hook to be executed in the Server space you've to register it in the server
	orientdb-server-config.xml	 configuration file.

Example of a hook to execute custom validation rules:

public	class	CustomValidationRules	implements	ORecordHook{
		/**
			*	Apply	custom	validation	rules
			*/
		public	boolean	onTrigger(final	TYPE	iType,	final	ORecord<?>	iRecord)	{
				if(iRecord	instanceof	ODocument){
						ODocument	doc	=	(ODocument)	iRecord;

						switch(iType){
								case	BEFORE_CREATE:

Install server-side hooks

Write your hook

194

https://github.com/orientechnologies/orientdb/blob/develop/tests/src/test/java/com/orientechnologies/orient/test/database/auto/HookTest.java

								case	BEFORE_UPDATE:	{
										if(doc.getClassName().equals("Customer")){
												Integer	age	=	doc	.field("age");
												if(age	!=	null	&&	age	>	130)
														throw	new	OValidationException("Invalid	age");
										}
										break;
								}

								case	BEFORE_DELETE:	{
										if(doc.getClassName().equals("Customer")){
												final	ODatabaseRecord	db	=	ODatabaseRecordThreadLocal.INSTANCE.get();
												if(!db.getUser().getName().equals("admin"))
														throw	new	OSecurityException("Only	admin	can	delete	customers");
										}
										break;
								}
				}
		}
}

Once implemented create a 	.jar	 file containing your class and put it under the
	$ORIENTDB_HOME/lib	 directory.

Change the 	orientdb-server-config.xml	 file adding your hook inside the 	<hooks>	 tag. The
position can be one of following values 	FIRST	, 	EARLY	, 	REGULAR	, 	LATE	, 	LAST	:

<hook	class="org.orientdb.test.MyHook"	position="REGULAR"/>

If your hook must be configurable with external parameters write the parameters in the
	orientdb-server-config.xml	 file:

<hook	class="org.orientdb.test.MyHook"	position="REGULAR">
				<parameters>
								<parameter	name="userCanDelete"	value="admin"	/>
				</parameters>
</hook>

And in your Java class implement the config() method to read the parameter:

Deploy the hook

Register it in the server configuration

Configurable hooks

195

private	String	userCanDelete;
...
public	void	config(OServer	oServer,	OServerParameterConfiguration[]	iParams)	{
		for	(OServerParameterConfiguration	param	:	iParams)	{
				if	(param.name.equalsIgnoreCase("userCanDelete"))	{
						userCanDelete	=	param.value;
				}
		}
}
...

196

OrientDB supports 3 kinds of drivers:

Native binary remote, that talks directly against the TCP/IP socket using the binary
protocol
HTTP REST/JSON, that talks directly against the TCP/IP socket using the HTTP
protocol
Java wrapped, as a layer that links in some way the native Java driver. This is
pretty easy for languages that run into the JVM like Scala, Groovy and JRuby

This is the list of the known drivers to use OrientDB through different languages:

Language Name Type Description

Java (native) API Native Native implementation.

JDBC driver Native

For legacy and
reporting/Business
Intelligence applications
and JCA integration for
J2EE containers

Oriento Native

Binary protocol, new
branch that has been
updated with the latest
functionality. Tested on
1.7.0. Branched from
node-orientdb

node-orientdb-http HTTP RESTful HTTP protocol.
Tested on 1.6.1

Gremlin-Node
To execute Gremlin
queries against a
remote OrientDB server

PhpOrient Binary Official Driver

OrientDB-PHP Binary

This was the first PHP
driver for OrientDB, but
doesn't support all
OrientDB features and
it's slow to support new
versions of driver
protocol.

Doctrine ODM
Uses
OrientDB-
PHP

High level framework to
use OrientDB from PHP

.NET driver for

API

197

https://github.com/nuvolabase/orientdb/wiki/Network-Binary-Protocol
https://github.com/nuvolabase/orientdb/wiki/OrientDB-REST
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://github.com/kirpi4ik/orientdb-jca
http://nodejs.org
https://github.com/codemix/oriento
https://github.com/nitrog7/node-orientdb
https://github.com/Havelaer/node-orientdb-http
https://github.com/entrendipity/gremlin-node
http://www.php.net/
https://github.com/orientechnologies/PhpOrient
https://github.com/AntonTerekhov/OrientDB-PHP
https://github.com/doctrine/orientdb-odm
https://github.com/AntonTerekhov/OrientDB-PHP
https://github.com/orientechnologies/OrientDB-NET.binary

.NET driver for
OrientDB

Binary Official Driver

PyOrient Binary
Official Driver for
Python, compatible with
OrientDB 1.7 and
further.

Bulbflow project HTTP

Uses Rexter Graph
HTTP Server to access
to OrientDB database
Configure Rexster for
OrientDB

Compass HTTP

OrientDB-C Binary
Binary protocol
compatibles with C++
and other languages
that supports C calls

LibOrient Binary As another Binary
protocol driver

Javascript Driver HTTP
This driver is the
simpler way to use
OrientDB from JS

Javascript Graph
Driver HTTP

This driver mimics the
Blueprints interface.
Use this driver if you're
working against graphs.

OrientDB-JRuby Native Through Java driver

OrientDB Client Binary

OrientDB4R HTTP

Any Java driver Native

Scala runs on top of
JVM and it's fully
compatible with Java
applications like
OrientDB

Scala Page Native
Offers suggestions and
examples to use it
without pains

Scala utilities and tests Native
To help Scala
developers using
OrientDB

Clojure binding Native Through Java driver

Clojure binding of
Blueprints API

OrientDB-Android is a

198

http://www.microsoft.com
http://www.python.org
https://github.com/orientechnologies/pyorient
http://bulbflow.com
https://github.com/tinkerpop/rexster/wiki
https://github.com/tinkerpop/rexster/wiki/Rexster-Configuration
https://github.com/emehrkay/Compass
https://en.wikipedia.org/wiki/C_%28programming_language%29
http://github.com/tglman/orientdb-c
https://github.com/dam2k/liborient
http://en.wikipedia.org/wiki/JavaScript
https://github.com/orientechnologies/orientdb/wiki/Javascript-Driver
https://github.com/orientechnologies/orientdb-js
https://github.com/orientechnologies/orientdb/wiki/Graph-Database-Tinkerpop
http://www.ruby-lang.org
https://github.com/aemadrid/orientdb-jruby
https://github.com/ryanfields/orient_db_client
https://github.com/veny/orientdb4r
https://en.wikipedia.org/wiki/Scala_%28programming_language%29
http://www.orientechnologies.com/docs/last/orientdb.wiki/Scala-Language.html
https://github.com/eptx/OrientDBScala
http://clojure.org
https://github.com/eduardoejp/clj-orient
https://github.com/eduardoejp/clj-blueprints

OrientDB Android Porting the Android platform by
David Wu

OrientDB Perl driver Binary PlOrient is a Perl binary
interface for OrientDB

199

http://wuman.github.com/orientdb-android
http://wuman.github.com/orientdb-android
http://blog.wu-man.com/
https://github.com/a8wright/plorient
https://github.com/a8wright/plorient

This is the list of the library to use OrientDB by using such standard:

TinkerPop Blueprints, the standard for Graph Databases. OrientDB is 100% compliant
with latest version

JDO 2.2 and JPA 2 by using the Data Nucleus adapter: datanucleus

All the trademarks are property of their legal owners.

Supported standards

TinkerPop Blueprints

JDO

200

http://www.tinkerpop.com
https://github.com/tinkerpop/blueprints/wiki
http://www.oracle.com/technetwork/java/index-jsp-135919.html
http://www.oracle.com/technetwork/java/index-jsp-135919.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.datanucleus.org
https://github.com/luigidellaquila/datanucleus-store-orientdb/

In OrientDB, we created 2 different APIs: Document API and Graph API. The Graph API
works on top of the Document API. The Document API contains the Document,
Key/Value and Object Oriented models.

									YOU,	THE	USER

				||																	||
			||																||
			\		/																||
				\/																_||_
+-------------+							\		/
|		Graph	API		|								\/
+-------------+-----------------+
|									Document	API										|
+-------------------------------+
|	Key/Value	and	Object	Oriented	|
+-------------------------------+

Graph or Document API?

201

With OrientDB 2.0, we improved our Graph API to support all models in just one Multi-
Model API. This API usually covers 80% of use cases, so this could be the default API
you should use if you're starting with OrientDB.

In this way:

Your Data ('records' in the RDBMS world) is modeled as Vertices and Edges. You
can store properties on both.
You can still work in Schema-Less, Schema-Full or Hybrid modes.
Relationships are modeled as Bidirectional Edges. If Lightweight edge setting is
active, OrientDB uses Lightweight Edges in cases where edges have no properties,
so it has the same impact on speed and space as with Document LINKs, but with
the additional bonus to have bidirectional connections. This means you can use the
	MOVE	VERTEX	 command to refactor your graph with no broken LINKs. For more
information how Edges are managed look at Lightweight Edges.

Graph API

202

What about the remaining 20%? In the case where you need a Document Database
(keeping the additional OrientDB features, like LINKs) or you come from the Document
Database world, using the Document API could be the right choice.

These are the Pros and Cons:

The Document API is simpler than the Graph API in general.
Relationships are only Mono Directional. If you need Bidirectional relationships, it is
your responsibility to maintain both LINKs.
A Document is an atomic unit, while with Graphs everything is connected as In &
Out. For this reason, Graph operations must be done within Transactions. Instead,
when you create a relationship between documents with a LINK, the target linked
document is not involved in this operation. This results in better Multi-Thread
support, especially with insert, deletes and updates operations.

Document API

203

When it comes to query languages, SQL is the mostly widely recognized standard. The
majority of developers have experience and are comfortable with SQL. For this reason
Orient DB uses SQL as it's query language and adds some extensions to enable graph
functionality. There are a few differences between the standard SQL syntax and that
supported by OrientDB, but for the most part, it should feel very natural. The differences
are covered in the OrientDB SQL dialect section of this page.

Many SQL commands share the WHERE condition. Keywords and class names in
OrientDB SQL are case insensitive. Field names and values are case sensitive. In the
following examples keywords are in uppercase but this is not strictly required.

For example, if you have a class 	MyClass	 with a field named 	id	, then the following SQL
statements are equivalent:

SELECT	FROM	MyClass	WHERE	id	=	1
select	from	myclass	where	id	=	1

The following is NOT equivalent. Notice that the field name 'ID' is not the same as 'id'.

SELECT	FROM	MyClass	WHERE	ID	=	1

SQL

204

OrientDB allows you to execute queries against any field, indexed or not-indexed. The
SQL engine automatically recognizes if any indexes can be used to speed up execution.
You can also query any indexes directly by using index: as a target. Example:

select	from	index:myIndex	where	key	=	'Jay'

Automatic usage of indexes

205

SQL expression syntax
Where clause
Operators
Functions

Pagination
Pivoting-With-Query
SQL batch

Extra resources

206

OrientDB supports SQL as a query language with some differences compared with SQL.
Orient Technologies decided to avoid creating Yet-Another-Query-Language. Instead we
started from familiar SQL with extensions to work with graphs. We prefer to focus on
standards.

If you want learn SQL, there are many online courses such as:

Online course Introduction to Databases by Jennifer Widom from Stanford university
Introduction to SQL at W3 Schools
SQLCourse.com
YouTube channel Basic SQL Training by Joey Blue

To know more, look to OrientDB SQL Syntax.

Or order any book like these

OrientDB SQL dialect

207

https://class.coursera.org/db
http://www.w3schools.com/sql/sql_intro.asp
http://www.sqlcourse2.com/intro2.html
http://www.youtube.com/playlist?list=PLD20298E653A970F8
http://www.amazon.com/s/ref=nb_sb_noss/189-0251150-4407173?url=search-alias%3Daps&field-keywords=sql

The most important difference between OrientDB and a Relational Database is that
relationships are represented by 	LINKS	 instead of JOINs.

For this reason, the classic JOIN syntax is not supported. OrientDB uses the "dot (.)
notation" to navigate 	LINKS	. Example 1 : In SQL you might create a join such as:

SELECT	*
FROM	Employee	A,	City	B
WHERE	A.city	=	B.id
AND	B.name	=	'Rome'

In OrientDB an equivalent operation would be:

SELECT	*	FROM	Employee	WHERE	city.name	=	'Rome'

This is much more straight forward and powerful! If you use multiple JOINs, the
OrientDB SQL equivalent will be an even larger benefit. Example 2: In SQL you might
create a join such as:

SELECT	*
FROM	Employee	A,	City	B,	Country	C,
WHERE	A.city	=	B.id
AND	B.country	=	C.id
AND	C.name	=	'Italy'

In OrientDB an equivalent operation would be:

SELECT	*	FROM	Employee	WHERE	city.country.name	=	'Italy'

JOINs

208

In SQL projections are mandatory and you can use the star character 	*	 to include all of
the fields. With OrientDB this type of projection is optional. Example: In SQL to select all
of the columns of Customer you would write:

SELECT	*	FROM	Customer

In OrientDB the 	*	 is optional:

SELECT	FROM	Customer

Projections

209

In SQL, 	DISTINCT	 is a keyword but in OrientDB it is a function, so if your query is:

SELECT	DISTINCT	name	FROM	City

In OrientDB you would write:

SELECT	DISTINCT(name)	FROM	City

DISTINCT

210

OrientDB does not support the 	HAVING	 keyword, but with a nested query it's easy to
obtain the same result. Example in SQL:

SELECT	city,	sum(salary)	AS	salary
FROM	Employee
GROUP	BY	city
HAVING	salary	>	1000

This groups all of the salaries by city and extracts the result of aggregates with the total
salary greater than 1,000 dollars. In OrientDB the 	HAVING	 conditions go in a select
statement in the predicate:

SELECT	FROM	(
				SELECT	city,	SUM(salary)	AS	salary
				FROM	Employee
				GROUP	BY	city
)	WHERE	salary	>	1000

HAVING

211

OrientDB allows only one class (classes are equivalent to tables in this discussion) as
opposed to SQL, which allows for many tables as the target. If you want to select from 2
classes, you have to execute 2 sub queries and join them with the 	UNIONALL	 function:

SELECT	FROM	E,	V

In OrientDB, you can accomplish this with a few variable definitions and by using the
	expand	 function to the union:

SELECT	EXPAND($c)	LET	$a	=	(SELECT	FROM	E),	$b	=	(SELECT	FROM	V),	$c	=	UNIONALL($a,	$b)

Select from multiple targets

212

The Where condition is shared among many SQL commands.

SQL - Filtering

213

	[<item>]	<operator>	<item>	

Syntax

214

And 	item	 can be:

What Description Example Available
since

field Document field where price >
1000000 0.9.1

field<indexes>

Document field part. To
know more about field
part look at the full
syntax:
Document_Field_Part

where
tags[name='Hi'] or
tags[0-3] IN
('Hello') and
employees IS
NOT NULL

1.0rc5

record
attribute

Record attribute name
with @ as prefix

where @class =
'Profile' 0.9.21

column
The number of the
column. Useful in
Column Database

where column(1)
> 300 0.9.1

any()

Represents any field of
the Document. The
condition is true if ANY
of the fields matches the
condition

where any() like
'L%' 0.9.10

all()

Represents all the fields
of the Document. The
condition is true if ALL
the fields match the
condition

where all() is null 0.9.10

functions Any function between
the defined ones

where distance(x,
y, 52.20472,
0.14056) <= 30

0.9.25

$variable Context variable prefixed
with $

where $depth <=
3 1.2.0

Items

215

Name Description Example Available
since

@this returns the record it self
select
@this.toJSON()
from Account

0.9.25

@rid

returns the RecordID in the
form <cluster:position>. It's null
for embedded records. NOTE:
using @rid in where condition
slow down queries. Much better
to use the RecordID as target.
Example: change this: select
from Profile where @rid =
#10:44 with this: select from
#10:44

@rid = #11:0 0.9.21

@class
returns Class name only for
record of type Schema Aware.
It's null for the others

@class =
'Profile' 0.9.21

@version
returns the record version as
integer. Version starts from 0.
Can't be null

@version > 0 0.9.21

@size returns the record size in bytes @size > 1024 0.9.21

@type
returns the record type
between: 'document', 'column',
'flat', 'bytes'

@type = 'flat' 0.9.21

Record attributes

216

Apply to Operator Description

any = Equals to

string like Similar to equals, but allow the wildcard
'%' that means 'any'

any < Less than

any <= Less than or equal to

any > Greater than

any >= Greater than or equal to

any <> Not equals (same of !=)

any BETWEEN
The value is between a range. It's
equivalent to <field> >= <from-value>
AND <field> <= <to-value>

any IS Used to test if a value is NULL

record,
string (as
class
name)

INSTANCEOF Used to check if the record extends a
class

collection IN contains any of the elements listed

collection CONTAINS

true if the collection contains at least
one element that satisfy the next
condition. Condition can be a single
item: in this case the behaviour is like
the IN operator

collection CONTAINSALL true if all the elements of the collection
satisfy the next condition

map CONTAINSKEY
true if the map contains at least one key
equals to the requested. You can also
use map.keys() CONTAINS in place of it

map CONTAINSVALUE
true if the map contains at least one
value equals to the requested. You can
also use map.values() CONTAINS in
place of it

used with
89cd72a14eb5493801e99a43c5034685.
Current limitation is that it must be the
unique condition of a query. When used

Operators

Conditional Operators

217

string CONTAINSTEXT against an indexed field, a lookup in the
index will be performed with the text
specified as key. When there is no index
a simple Java indexOf will be performed.
So the result set could be different if you
have an index or not on that field

string MATCHES
Matches the string using a
[http://www.regular-expressions.info/
Regular Expression]

any TRAVERSE[(<minDepth>
[,<maxDepth> [,<fields>]]

This function was born before the SQL
Traverse statement and today it's pretty
limited. Look at Traversing graphs to
know more about traversing in better
ways.
true if traversing the declared field(s) at
the level from <minDepth> to
<maxDepth> matches the condition. A
minDepth = 0 means the root node,
maxDepth = -1 means no limit: traverse
all the graph recursively. If <minDepth>
and <maxDepth> are not used, then (0,
-1) will be taken. If <fields> is not
passed, than any() will be used.

218

http://www.regular-expressions.info/

Operator Description Example Available
since

AND true if both the
conditions are true

name = 'Luke' and
surname like 'Sky%' 0.9.1

OR true if at least one of the
condition is true

name = 'Luke' or
surname like 'Sky%' 0.9.1

NOT true if the condition is
false not name = 'Luke'

Not
supported
yet

Logical Operators

219

Apply to Operator Description Example Available since

Numbers + Plus age + 34 1.0rc7

Numbers - Minus salary - 34 1.0rc7

Numbers * Multiply factor * 1.3 1.0rc7

Numbers / Divide total / 12 1.0rc7

Numbers % Mod total % 3 1.0rc7

Starting from v1.4 OrientDB supports the 	eval()	 function to execute complex
operations. Example:

select	eval("amount	*	120	/	100	-	discount")	as	finalPrice	from	Order

Mathematics Operators

220

Also called "Field Operators", are are treated on a separate page.

Methods

221

All the SQL functions are treated on a separate page.

Functions

222

OrientDB supports variables managed in the context of the command/query. By default
some variables are created. Below the table with the available variables:

Name Description Command(s) Since

$parent
Get the parent context from a sub-
query. Example: select from V let $type
= (traverse * from
$parent.$current.children)

SELECT and
TRAVERSE 1.2.0

$current Current record to use in sub-queries to
refer from the parent's variable

SELECT and
TRAVERSE 1.2.0

$depth The current depth of nesting TRAVERSE 1.1.0

$path
The string representation of the current
path. Example: #6:0.in.#5:0#.out. You
can also display it with -> select $path
from (traverse * from V)

TRAVERSE 1.1.0

$stack The List of operation in the stack. Use it
to access to the history of the traversal TRAVERSE 1.1.0

$history The set of all the records traversed as a
Set<ORID> TRAVERSE 1.1.0

To set custom variable use the LET keyword.

Variables

223

SQL Functions are all the functions bundled with OrientDB SQL engine. You can create
your own Database Functions in any language supported by JVM. Look also to SQL
Methods.

SQL Functions can work in 2 ways based on the fact that receive 1 or more parameters:

SQL - Functions

224

When only one parameter is passed. They aggregate the result in only one record. The
classic example is the sum():

select	sum(salary)	from	employee

This will always return 1 record with the sum of salary field.

Aggregated mode

225

When two or more parameters are passed:

select	sum(salary,	extra,	benefits)	as	total	from	employee

This will return the sum of the field "salary", "extra" and "benefits" as "total". In case you
need to use a function as inline when you've only one parameter, then add a second one
like "null":

SELECT	first(out('friends').name,	null)	as	firstFriend	FROM	Profiles

In this case 	first()	 function doesn't aggregate everything in only one record, but
returns one record per 	Profile	 where the 	firstFriend	 is the first item of the collection
received as parameter.

Inline mode

226

Graph Math Collections Misc

out() eval() set() date()

in() min() map() sysdate()

both() max() list() format()

outE() sum() difference() distance()

inE() first() ifnull()

bothE() intersect() coalescence()

outV() avg() distinct() uuid()

inV() count() expand() if()

traversedElement() mode() union()

traversedVertex() median() flatten()

traversedEdge() percentile() last()

shortestPath() variance()

dijkstra() stddev()

avg() both() bothE() coalescence()

count() date() difference() dijkstra()

distance() distinct() eval() expand()

format() first() flatten() if()

ifnull() |in() | inE() | inV() | | intersect() |list() | map() | min() | | max() | median() | mode() |
out() | | outE() | outV() | percentile() | set() | | shortestPath() |stddev()|sum()|sysdate()| |
traversedElement() | traversedEdge() | traversedVertex() | union() | | uuid()| variance() |

Get the adjacent outgoing vertices starting from the current record as Vertex.

Bundled functions

Functions by category

Functions by name

out()

227

Syntax: 	out([<label-1>][,<label-n>]*)	

Available since: 1.4.0

Get all the outgoing vertices from all the Vehicle vertices:

SELECT	out()	from	V

Get all the incoming vertices connected with edges with label (class) "Eats" and
"Favorited" from all the Restaurant vertices in Rome:

SELECT	out('Eats','Favorited')	from	Restaurant	where	city	=	'Rome'

Get the adjacent incoming vertices starting from the current record as Vertex.

Syntax: 	in([<label-1>][,<label-n>]*)	

Available since: 1.4.0

Get all the incoming vertices from all the Vehicle vertices:

SELECT	in()	from	V

Get all the incoming vertices connected with edges with label (class) "Friend" and
"Brother":

SELECT	in('Friend','Brother')	from	V

Example

in()

Example

228

Get the adjacent outgoing and incoming vertices starting from the current record as
Vertex.

Syntax: 	both([<label1>][,<label-n>]*)	

Available since: 1.4.0

Get all the incoming and outgoing vertices from vertex with rid #13:33:

SELECT	both()	from	#13:33

Get all the incoming and outgoing vertices connected with edges with label (class)
"Friend" and "Brother":

SELECT	both('Friend','Brother')	from	V

Get the adjacent outgoing edges starting from the current record as Vertex.

Syntax: 	outE([<label1>][,<label-n>]*)	

Available since: 1.4.0

Get all the outgoing edges from all the vertices:

SELECT	outE()	from	V

Get all the outgoing edges of type "Eats" from all the SocialNetworkProfile vertices:

both()

Example

outE()

Example

229

SELECT	outE('Eats')	from	SocialNetworkProfile

Get the adjacent incoming edges starting from the current record as Vertex.

Syntax: 	inE([<label1>][,<label-n>]*)	

Get all the incoming edges from all the vertices:

SELECT	inE()	from	V

Get all the incoming edges of type "Eats" from the Restaurant 'Bella Napoli':

SELECT	inE('Eats')	from	Restaurant	where	name	=	'Bella	Napoli'

Get the adjacent outgoing and incoming edges starting from the current record as
Vertex.

Syntax: 	bothE([<label1>][,<label-n>]*)	

Available since: 1.4.0

Get both incoming and outgoing edges from all the vertices:

SELECT	bothE()	from	V

Get all the incoming and outgoing edges of type "Friend" from the Profile with nick 'Jay'

inE()

Example

bothE()

Example

230

SELECT	bothE('Friend')	from	Profile	where	nick	=	'Jay'

Get outgoing vertices starting from the current record as Edge.

Syntax: 	outV()	

Available since: 1.4.0

SELECT	outV()	from	E

Get incoming vertices starting from the current record as Edge.

Syntax: 	inV()	

Available since: 1.4.0

SELECT	inV()	from	E

Syntax: 	eval('<expression>')	

Evaluates the expression between quotes (or double quotes).

Available since: 1.4.0

SELECT	eval('price	*	120	/	100	-	discount')	as	finalPrice	from	Order

outV()

Example

inV()

Example

eval()

Example

231

Returns the first field/value not null parameter. If no field/value is not null, returns null.

Syntax: 	coalesce(<field|value>)	

Available since: 1.3.0

SELECT	coalesce(amount,	amount2,	amount3)	from	Account

Syntax: 	if(<expression>,	<result-if-true>,	<result-if-false>)	

Evaluates a condition (first parameters) and returns the second parameter if the
condition is true, the third one otherwise

select	if(eval("name	=	'John'"),	"My	name	is	John",	"My	name	is	not	John")	from	Person

Returns the passed field/value (or optional parameter return_value_if_not_null). If
field/value is not null, otherwise it returns return_value_if_null.

Syntax: 	ifnull(<field|value>,	<return_value_if_null>
[,<return_value_if_not_null>](,<field&.md#124;value>]*)	

Available since: 1.3.0

SELECT	ifnull(salary,	0)	from	Account

coalesce()

Example

if()

Example:

ifnull()

Example

232

Expands the collection in the field and use it as result.

Available since: 1.4.0

Syntax: 	expand(<field>)	

select	expand(addresses)	from	Account.

This replaces the flatten() now deprecated

Deprecated, use the EXPAND() instead.

Extracts the collection in the field and use it as result.

Syntax: 	flatten(<field>)	

Available since: 1.0rc1

select	flatten(addresses)	from	Account

Retrieves only the first item of multi-value fields (arrays, collections and maps). For non
multi-value types just returns the value.

Syntax: 	first(<field>)	

expand()

Example

flatten()

Example

first()

233

Available since: 1.2.0

select	first(addresses)	from	Account

Retrieves only the last item of multi-value fields (arrays, collections and maps). For non
multi-value types just returns the value.

Syntax: 	last(<field>)	

Available since: 1.2.0

select	last(addresses)	from	Account

Counts the records that match the query condition. If * is not used as a field, then the
record will be counted only if the field content is not null.

Syntax: 	count(<field>)	

Available since: 0.9.25

select	count(*)	from	Account

Example

last()

Example

count()

Example

min()

234

Returns the minimum value. If invoked with more than one parameters, the function
doesn't aggregate, but returns the minimum value between all the arguments.

Syntax: 	min(<field>	[,	<field-n>]*)	

Available since: 0.9.25

Returns the minimum salary of all the Account records:

select	min(salary)	from	Account

Returns the minimum value between 'salary1', 'salary2' and 'salary3' fields.

select	min(salary1,	salary2,	salary3)	from	Account

Returns the maximum value. If invoked with more than one parameters, the function
doesn't aggregate, but returns the maximum value between all the arguments.

Syntax: 	max(<field>	[,	<field-n>]*)	

Available since: 0.9.25

Returns the maximum salary of all the Account records:

select	max(salary)	from	Account.

Returns the maximum value between 'salary1', 'salary2' and 'salary3' fields.

select	max(salary1,	salary2,	salary3)	from	Account

Example

max()

Example

235

Returns the average value.

Syntax: 	avg(<field>)	

Available since: 0.9.25

select	avg(salary)	from	Account

Syntax: 	sum(<field>)	

Returns the sum of all the values returned.

Available since: 0.9.25

select	average(salary)	from	Account

Returns a date formatting a string. <date-as-string> is the date in string format, and
<format> is the date format following these rules. If no format is specified, then the
default database format is used.

Syntax: 	date(<date-as-string>	[<format>]	[,<timezone>])	

Available since: 0.9.25

avg()

Example

sum()

Example

date()

Example

236

http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

select	from	Account	where	created	<=	date('2012-07-02',	'yyyy-MM-dd')

Returns the current date time.

Syntax: 	sysdate([<format>]	[,<timezone>])	

Available since: 0.9.25

select	sysdate('dd-MM-yyyy')	from	Account

Formats a value using the String.format() conventions. Look here for more information.

Syntax: 	format(<format>	[,<arg1>](,<arg-n>]*.md)	

Available since: 0.9.25

select	format("%d	-	Mr.	%s	%s	(%s)",	id,	name,	surname,	address)	from	Account

Returns the cheapest path between two vertices using the
[http://en.wikipedia.org/wiki/Dijkstra's_algorithm Dijkstra algorithm] where the
weightEdgeFieldName parameter is the field containing the weight. Direction can be
OUT (default), IN or BOTH.

Syntax: 	dijkstra(<sourceVertex>,	<destinationVertex>,	<weightEdgeFieldName>	[,	<direction>])	

sysdate()

Example

format()

Example

dijkstra()

237

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html#syntax
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

Available since: 1.3.0

select	dijkstra($current,	#8:10,	'weight')	from	V

Returns the shortest path between two vertices. Direction can be OUT (default), IN or
BOTH.

Syntax: 	shortestPath(<sourceVertex>,	<destinationVertex>	[,	<direction>])	

Available since: 1.3.0

select	shortestPath(#8:32,	#8:10,	'BOTH')

Syntax: 	distance(<x-field>,	<y-field>,	<x-value>,	<y-value>)	

Returns the distance between two points in the globe using the Haversine algorithm.
Coordinates must be as degrees.

Available since: 0.9.25

select	from	POI	where	distance(x,	y,	52.20472,	0.14056)	<=	30

Example

shortestPath()

Example

distance()

Example

distinct()

238

Syntax: 	distinct(<field>)	

Retrieves only unique data entries depending on the field you have specified as
argument. The main difference compared to standard SQL DISTINCT is that with
OrientDB, a function with parenthesis and only one field can be specified.

Available since: 1.0rc2

select	distinct(name)	from	City

Syntax: 	union(<field>	[,<field-n>]*)	

Works as aggregate or inline. If only one argument is passed than aggregates, otherwise
executes, and returns, a UNION of the collections received as parameters. Works also
with no collection values.

Available since: 1.0rc2

select	union(friends)	from	profile

select	union(inEdges,	outEdges)	from	OGraphVertex	where	label	=	'test'

Syntax: 	intersect(<field>	[,<field-n>]*)	

Works as aggregate or inline. If only one argument is passed than aggregates, otherwise
executes, and returns, the INTERSECTION of the collections received as parameters.

Example

union()

Example

intersect()

239

Available since: 1.0rc2

select	intersect(friends)	from	profile	where	jobTitle	=	'programmer'

select	intersect(inEdges,	outEdges)	from	OGraphVertex

Syntax: 	difference(<field>	[,<field-n>]*)	

Works as aggregate or inline. If only one argument is passed than aggregates, otherwise
executes, and returns, the DIFFERENCE between the collections received as
parameters.

Available since: 1.0rc2

select	difference(tags)	from	book

```sql
select	difference(inEdges,	outEdges)	from	OGraphVertex

Adds a value to a set. The first time the set is created. If 	<value>	 is a collection, then is
merged with the set, otherwise 	<value>	 is added to the set.

Syntax: 	set(<field>)	

Available since: 1.2.0

Example

difference()

Example

set()

Example

240



SELECT	name,	set(roles.name)	as	roles	FROM	OUser

Adds a value to a list. The first time the list is created. If 	<value>	 is a collection, then is
merged with the list, otherwise 	<value>	 is added to the list.

Syntax: 	list(<field>)	

Available since: 1.2.0

SELECT	name,	list(roles.name)	as	roles	FROM	OUser

Adds a value to a map. The first time the map is created. If 	<value>	 is a map, then is
merged with the map, otherwise the pair 	<key>	 and 	<value>	 is added to the map as new
entry.

Syntax: 	map(<key>,	<value>)	

Available since: 1.2.0

SELECT	map(name,	roles.name)	FROM	OUser

Returns the traversed element(s) in Traverse commands.

Syntax: 	traversedElement(<index>	[,<items>])	

list()

Example

map()

Example

traversedElement()

241



Where:

	<index>	 is the starting item to retrieve. Value >= 0 means absolute position in the
traversed stack. 0 means the first record. Negative values are counted from the end:
-1 means last one, -2 means the record before last one, etc.
	<items>	, optional, by default is 1. If >1 a collection of items is returned

Available since: 1.7

Returns last traversed item of TRAVERSE command:

SELECT	traversedElement(-1)	FROM	(	TRAVERSE	out()	from	#34:3232	WHILE	$depth	<=	10	)

Returns last 3 traversed items of TRAVERSE command:

SELECT	traversedElement(-1,	3)	FROM	(	TRAVERSE	out()	from	#34:3232	WHILE	$depth	<=	10	)

Returns the traversed edge(s) in Traverse commands.

Syntax: 	traversedEdge(<index>	[,<items>])	

Where:

	<index>	 is the starting edge to retrieve. Value >= 0 means absolute position in the
traversed stack. 0 means the first record. Negative values are counted from the end:
-1 means last one, -2 means the edge before last one, etc.
	<items>	, optional, by default is 1. If >1 a collection of edges is returned

Available since: 1.7

Returns last traversed edge(s) of TRAVERSE command:

Example

traversedEdge()

Example

242



SELECT	traversedEdge(-1)	FROM	(	TRAVERSE	outE(),	inV()	from	#34:3232	WHILE	$depth	<=	10	)

Returns last 3 traversed edge(s) of TRAVERSE command:

SELECT	traversedEdge(-1,	3)	FROM	(	TRAVERSE	outE(),	inV()	from	#34:3232	WHILE	$depth	<=	10	)

Returns the traversed vertex(es) in Traverse commands.

Syntax: 	traversedVertex(<index>	[,<items>])	

Where:

	<index>	 is the starting vertex to retrieve. Value >= 0 means absolute position in the
traversed stack. 0 means the first vertex. Negative values are counted from the end:
-1 means last one, -2 means the vertex before last one, etc.
	<items>	, optional, by default is 1. If >1 a collection of vertices is returned

Available since: 1.7

Returns last traversed vertex of TRAVERSE command:

SELECT	traversedVertex(-1)	FROM	(	TRAVERSE	out()	from	#34:3232	WHILE	$depth	<=	10	)

Returns last 3 traversed vertices of TRAVERSE command:

SELECT	traversedVertex(-1,	3)	FROM	(	TRAVERSE	out()	from	#34:3232	WHILE	$depth	<=	10	)

traversedVertex()

Example

mode()

243



Returns the values that occur with the greatest frequency. Nulls are ignored in the
calculation.

Syntax: 	mode(<field>)	

Available since: 2.0-M1

select	mode(salary)	from	Account

Returns the middle value or an interpolated value that represent the middle value after
the values are sorted. Nulls are ignored in the calculation.

Syntax: 	median(<field>)	

Available since: 2.0-M1

select	median(salary)	from	Account

Returns the nth percentiles (the values that cut off the first n percent of the field values
when it is sorted in ascending order). Nulls are ignored in the calculation.

Syntax: 	percentile(<field>	[,	<quantile-n>]*)	

Available since: 2.0-M1

select	percentile(salary,	95)	from	Account

Example

median()

Example

percentile()

Examples

244



select	percentile(salary,	25,	75)	as	IQR	from	Account

Returns the middle variance: the average of the squared differences from the mean.
Nulls are ignored in the calculation.

Syntax: 	variance(<field>)	

Available since: 2.0-M1

select	variance(salary)	from	Account

Returns the standard deviation: the measure of how spread out values are. Nulls are
ignored in the calculation.

Syntax: 	stddev(<field>)	

Available since: 2.0-M1

select	stddev(salary)	from	Account

Generates a UUID as a 128-bits value using the Leach-Salz variant. For more
information look at: http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html.

Available since: 2.0-M1

variance()

Example

stddev()

Example

uuid()

245

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html


Syntax: 	uuid()	

Insert a new record with an automatic generated id:

INSERT	INTO	Account	SET	id	=	UUID()

Example

246



The SQL engine can be extended with custom functions written with a Scripting
language or via Java.

Look at the Functions page.

Before to use them in your queries you need to register:

//	REGISTER	'BIGGER'	FUNCTION	WITH	FIXED	2	PARAMETERS	(MIN/MAX=2)
OSQLEngine.getInstance().registerFunction("bigger",
																																										new	OSQLFunctionAbstract("bigger",	2,	2)	{
		public	String	getSyntax()	{
				return	"bigger(<first>,	<second>)";
		}

		public	Object	execute(Object[]	iParameters)	{
				if	(iParameters[0]	==	null	||	iParameters[1]	==	null)
						//	CHECK	BOTH	EXPECTED	PARAMETERS
						return	null;

				if	(!(iParameters[0]	instanceof	Number)	||	!(iParameters[1]	instanceof	Number))
						//	EXCLUDE	IT	FROM	THE	RESULT	SET
						return	null;

				//	USE	DOUBLE	TO	AVOID	LOSS	OF	PRECISION
				final	double	v1	=	((Number)	iParameters[0]).doubleValue();
				final	double	v2	=	((Number)	iParameters[1]).doubleValue();

				return	Math.max(v1,	v2);
		}

		public	boolean	aggregateResults()	{
				return	false;
		}
});

Now you can execute it:

List<ODocument>	result	=	database.command(
		new	OSQLSynchQuery<ODocument>("select	from	Account	where	bigger(	salary,	10	)	>	10")	)
		.execute();

Custom functions

Database's function

Custom functions in Java

247



SQL Methods are similar to SQL functions but they apply to values. In Object Oriented
paradigm they are called "methods", as functions related to a class. So what's the
difference between a function and a method?

This is a SQL function:

select	from	sum(	salary	)	from	employee

This is a SQL method:

select	from	salary.toJSON()	from	employee

As you can see the method is executed against a field/value. Methods can receive
parameters, like functions. You can concatenate N operators in sequence. Note:
operators are case-insensitive.

248



Conversions String manipulation Collections Misc

convert() append() [] exclude()

asBoolean() charAt() size() include()

asDate() indexOf() remove() javaType()

asDatetime() left() removeAll() toJSON()

asDecimal() right() keys() type()

asFloat() prefix() values()

asInteger() trim()

asList() replace()

asLong() length()

asMap() subString()

asSet() toLowerCase()

asString() toUpperCase()

normalize() hash()

format()

[] append() asBoolean() asDate() asDatetime()

asDecimal() asFloat() asInteger() asList() asLong()

asSet() asString() charAt() convert() exclude()

hash() include() indexOf() javaType() keys()

length() normalize() prefix() remove() removeAll()

right() size() subString() trim() toJSON()

toUpperCase() type() values()

Bundled methods

Methods by category

Methods by name

[]

249



Execute an expression against the item. An item can be a multi-value object like a map,
a list, an array or a document. For documents and maps, the item must be a string. For
lists and arrays, the index is a number.

Syntax: 	<value>[<expression>]	

Applies to the following types:

document,
map,
list,
array

Get the item with key "phone" in a map:

select	from	Profile	where	'+39'	IN	contacts[phone].left(3)

Get the first 10 tags of posts:

select	from	tags[0-9]	from	Posts

1.0rc5: First version

Appends a string to another one.

Syntax: 	<value>.append(<value>)	

Applies to the following types:

string

Examples

History

.append()

Examples

250



select	name.append('	').append(surname)	from	Employee

1.0rc1: First version

Transforms the field into a Boolean type. If the origin type is a string, then "true" and
"false" is checked. If it's a number then 1 means TRUE while 0 means FALSE.

Syntax: 	<value>.asBoolean()	

Applies to the following types:

string,
short,
int,
long

select	from	Users	where	online.asBoolean()	=	true

0.9.15: First version

Transforms the field into a Date type.

Syntax: 	<value>.asDate()	

Applies to the following types:

History

.asBoolean()

Examples

History

.asDate()

251



string,
long

Time is stored as long type measuring milliseconds since a particular day. Returns all
the records where time is before the year 2010:

select	from	Log	where	time.asDateTime()	<	'01-01-2010	00:00:00'

0.9.14: First version

Transforms the field into a Date type but parsing also the time information.

Syntax: 	<value>.asDateTime()	

Applies to the following types:

string,
long

Time is stored as long type measuring milliseconds since a particular day. Returns all
the records where time is before the year 2010:

select	from	Log	where	time.asDateTime()	<	'01-01-2010	00:00:00'

0.9.14: First version

Examples

History

.asDateTime()

Examples

History

252



Transforms the field into an Decimal type. Use Decimal type when treat currencies.

Syntax: 	<value>.asDecimal()	

Applies to the following types:

any

selct	salary.asDecimal()	from	Employee

1.0rc1: First version

Transforms the field into a float type.

Syntax: 	<value>.asFloat()	

Applies to the following types:

any

selct	ray.asFloat()	>	3.14

0.9.14: First version

.asDecimal()

Examples

History

.asFloat()

Examples

History

253



Transforms the field into an integer type.

Syntax: 	<value>.asInteger()	

Applies to the following types:

any

Converts the first 3 chars of 'value' field in an integer:

selct	value.left(3).asInteger()	from	Log

0.9.14: First version

Transforms the value in a List. If it's a single item, a new list is created.

Syntax: 	<value>.asList()	

Applies to the following types:

any

selct	tags.asList()	from	Friend

1.0rc2: First version

.asInteger()

Examples

History

.asList()

Examples

History

254



Transforms the field into a Long type.

Syntax: 	<value>.asLong()	

Applies to the following types:

any

selct	date.asLong()	from	Log

1.0rc1: First version

Transforms the value in a Map where even items are the keys and odd items are values.

Syntax: 	<value>.asMap()	

Applies to the following types:

collections

selct	tags.asMap()	from	Friend

1.0rc2: First version

.asLong()

Examples

History

.asMap()

Examples

History

255



Transforms the value in a Set. If it's a single item, a new set is created. Sets doesn't
allow duplicates.

Syntax: 	<value>.asSet()	

Applies to the following types:

any

selct	tags.asSet()	from	Friend

1.0rc2: First version

Transforms the field into a string type.

Syntax: 	<value>.asString()	

Applies to the following types:

any

Get all the salaries with decimals:

select	salary.asString().indexof('.')	>	-1

.asSet()

Examples

History

.asString()

Examples

History

256



0.9.14: First version

Returns the character of the string contained in the position 'position'. 'position' starts
from 0 to string length.

Syntax: 	<value>.charAt(<position>)	

Applies to the following types:

string

Get the first character of the users' name:

select	from	User	where	name.charAt(	0	)	=	'L'

0.9.7: First version

Convert a value to another type.

Syntax: 	<value>.convert(<type>)	

Applies to the following types:

any

select	dob.convert(	'date'	)	from	User

.charAt()

Examples

History

.convert()

Examples

257



1.0rc2: First version

Excludes some properties in the resulting document.

Syntax: 	<value>.exclude(<field-name>[,]*)	

Applies to the following types:

document record

select	expand(	@this.exclude(	'password'	)	)	from	OUser

Returns the value formatted using the common "printf" syntax. For the complete
reference goto Java Formatter JavaDoc.

Syntax: 	<value>.format(<format>)	

Applies to the following types:

any

Formats salaries as number with 11 digits filling with 0 at left:

select	salary.format("%-011d")	from	Employee

History

.exclude()

Examples

.format()

Examples

History

258

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html#syntax


0.9.8: First version

Returns the hash of the field. Supports all the algorithms available in the JVM.

Syntax: 	<value>	.hash([])```

Applies to the following types:

string

Get the SHA-512 of the field "password" in the class User:

SELECT	password.hash('SHA-512')	from	User

1.7: First version

Include only some properties in the resulting document.

Syntax: 	<value>.include(<field-name>[,]*)	

Applies to the following types:

document record

select	expand(	@this.include(	'name'	)	)	from	OUser

.hash()

Example

History

.include()

Examples

259



1.0rc2: First version

Returns the position of the 'string-to-search' inside the value. It returns -1 if no
occurrences are found. 'begin-position' is the optional position where to start, otherwise
the beginning of the string is taken (=0).

Syntax: 	<value>.indexOf(<string-to-search>	[,	<begin-position>)	

Applies to the following types:

string

Returns all the UK numbers:

select	from	Contact	where	phone.indexOf('+44')	>	-1

0.9.10: First version

Returns the corresponding Java Type.

Syntax: 	<value>.javaType()	

Applies to the following types:

any

History

.indexOf()

Examples

History

.javaType()

Examples

260



Prints the Java type used to store dates:

select	from	date.javaType()	from	Events

1.0rc1: First version

Returns the map's keys as a separate set. Useful to use in conjunction with IN,
CONTAINS and CONTAINSALL operators.

Syntax: 	<value>.keys()	

Applies to the following types:

maps
documents

select	from	Actor	where	'Luke'	IN	map.keys()

1.0rc1: First version

Returns a substring of the original cutting from the begin and getting 'len' characters.

Syntax: 	<value>.left(<length>)	

Applies to the following types:

History

.keys()

Examples

History

.left()

261



string

select	from	Actors	where	name.left(	4	)	=	'Luke'

0.9.7: First version

Returns the length of the string. If the string is null 0 will be returned.

Syntax: 	<value>.length()	

Applies to the following types:

string

select	from	Providers	where	name.length()	>	0

0.9.7: First version

Form can be NDF, NFD, NFKC, NFKD. Default is NDF. pattern-matching if not defined is
"\p{InCombiningDiacriticalMarks}+". For more information look at Unicode Standard.

Syntax: 	<value>.normalize(	[<form>]	[,<pattern-matching>]	)	

Applies to the following types:

Examples

History

.length()

Examples

History

.normalize()

262

http://www.unicode.org/reports/tr15/tr15-23.html


string

select	from	V	where	name.normalize()	and	name.normalize('NFD')

Examples

History

263



Prefixes a string to another one.

Syntax: 	<value>.prefix('<string>')	

Applies to the following types:

string

select	name.prefix('Mr.	')	from	Profile

1.0rc1: First version

Removes the first occurrence of the passed items.

Syntax: 	<value>.remove(<item>*)	

Applies to the following types:

collection

select	out().in().remove(	@this	)	from	V

1.0rc1: First version

- 1.4.0: First version

.prefix()

Examples

History

.remove()

Examples

History

264



Removes all the occurrences of the passed items.

Syntax: 	<value>.removeAll(<item>*)	

Applies to the following types:

collection

select	out().in().removeAll(	@this	)	from	V

1.0rc1: First version

Replace a string with another one.

Syntax: 	<value>.replace(<to-find>,	<to-replace>)	

Applies to the following types:

string

select	name.replace('Mr.',	'Ms.')	from	User

1.0rc1: First version

.removeAll()

Examples

History

.replace()

Examples

History

265



Returns a substring of the original cutting from the end of the string 'lenght' characters.

Syntax: 	<value>.right(<length>)	

Applies to the following types:

string

Returns all the vertices where the name ends by "ke".

select	from	V	where	name.right(	2	)	=	'ke'

0.9.7: First version

Returns the size of the collection.

Syntax: 	<value>.size()	

Applies to the following types:

collection

Returns all the items in a tree with children:

select	from	TreeItem	where	children.size()	>	0

.right()

Examples

History

.size()

Examples

History

266



0.9.7: First version

Returns a substring of the original cutting from 'begin' and getting 'length' characters.
'begin' starts from 0 to string length - 1.

Syntax: 	<value>.subString(<begin>	[,<length>]	)	

Applies to the following types:

string

Get all the items where the name begins with an "L":

select	name.substring(	0,	1	)	=	'L'	from	StockItems

0.9.7: First version

Returns the original string removing white spaces from the begin and the end.

Syntax: 	<value>.trim()	

Applies to the following types:

string

select	name.trim()	==	'Luke'	from	Actors

.subString()

Examples

History

.trim()

Examples

267



0.9.7: First version

Returns the record in JSON format.

Syntax: 	<value>.toJSON([<format>])	

Where:

format optional, allows custom formatting rules. Rules are the following:
type to include the fields' types in the "@fieldTypes" attribute
rid to include records's RIDs as attribute "@rid"
version to include records' versions in the attribute "@version"
class to include the class name in the attribute "@class"
attribSameRow put all the attributes in the same row
indent is the indent level as integer. By Default no ident is used
fetchPlan is the FetchPlan to use while fetching linked records
alwaysFetchEmbedded to always fetch embedded records (without
considering the fetch plan)
dateAsLong to return dates (Date and Datetime types) as long numers
prettyPrint indent the returning JSON in readeable (pretty) way

Applies to the following types:

record

0.9.8: First version

History

.toJSON()

Examples

History

268



Returns the string in lower case.

Syntax: 	<value>.toLowerCase()	

Applies to the following types:

string

select	name.toLowerCase()	==	'luke'	from	Actors

.toLowerCase()

Examples

History

269



Returns the string in upper case.

Syntax: 	<value>.toUpperCase()	

Applies to the following types:

string

select	name.toUpperCase()	==	'LUKE'	from	Actors

0.9.7: First version

Returns the value's OrientDB Type.

Syntax: 	<value>.type()	

Applies to the following types:

any

Prints the type used to store dates:

select	from	date.type()	from	Events

- 0.9.7: First version

.toUpperCase()

Examples

History

.type()

Examples

History

270



1.0rc1: First version

Returns the map's values as a separate collection. Useful to use in conjunction with IN,
CONTAINS and CONTAINSALL operators.

Syntax: 	<value>.values()	

Applies to the following types:

maps
documents

select	from	Clients	where	map.values()	CONTAINSALL	(	name	is	not	null)

.values()

Examples

History

271



- 1.0rc1: First version

272



OrientDB allows execution of arbitrary scripts written in Javascript or any scripting
language installed in the JVM. OrientDB supports a minimal SQL engine to allow a batch
of commands.

Batch of commands are very useful when you have to execute multiple things at the
server side avoiding the network roundtrip for each command.

SQL Batch supports all the OrientDB SQL commands, plus the following:

	begin	

	commit	[retry	<retry>]	, where:
is the number of retries in case of concurrent modification exception

	let	<variable>	=	<SQL>	, to assign the result of a SQL command to a variable. To
reuse the variable prefix it with the dollar sign $
	return	 , where value can be:

any value. Example: 	return	3	
any variable with $ as prefix. Example: 	return	$a	
arrays. Example: 	return	[	$a,	$b	]	
maps. Example: 	return	{	'first'	:	$a,	'second'	:	$b	}	

SQL Batch

273



Javascript-Command

See also

274



Example to create a new vertex in a Transaction and attach it to an existent vertex by
creating a new edge between them. If a concurrent modification occurs, repeat the
transaction up to 100 times:

begin
let	account	=	create	vertex	Account	set	name	=	'Luke'
let	city	=	select	from	City	where	name	=	'London'
let	edge	=	create	edge	Lives	from	$account	to	$city
commit	retry	100
return	$edge

Just plain OrientDB SQL, but with a few new items:

	begin	 -> begins a transaction
	rollback	 -> rollbacks an active transaction
	commit	[retry	<times>]	 -> commits an active transaction
	let	<variable>	=	<command>	 -> executes a command and assigns it in the context as .
That variable can be used in further commands by prefixing it with $
	return	<$variable>|<value>|null	 -> returns a value instead of last command result
(default)

Note the usage of $account and $city in further SQL commands.

Optimistic transaction

275



This script above used an Optimistic approach: in case of conflict it retries up top 100
times by re-executing the entire transaction (commit retry 100). To follow a Pessimistic
approach by locking the records, try this:

begin
let	account	=	create	vertex	Account	set	name	=	'Luke'
let	city	=	select	from	City	where	name	=	'London'	lock	record
let	edge	=	create	edge	Lives	from	$account	to	$city
commit
return	$edge

Note the "lock record" after the select. This means the returning records will be locked
until commit (or rollback). In this way concurrent updates against London will wait for this
transaction to complete.

NOTE: locks inside transactions works ONLY against MEMORY storage, we're working
to provide such feature also against plocal. Stay tuned (Issue
https://github.com/orientechnologies/orientdb/issues/1677)

Pessimistic transaction

276

https://github.com/orientechnologies/orientdb/issues/1677


This can be used by Java API with:

database.open("admin",	"admin");

String	cmd	=	"begin\n";
cmd	+=	"let	a	=	create	vertex	set	script	=	true\n";
cmd	+=	"let	b	=	select	from	v	limit	1\n";
cmd	+=	"let	e	=	create	edge	from	$a	to	$b\n";
cmd	+=	"commit	retry	100\n";
cmd	+=	"return	$e";

OIdentifiable	edge	=	database.command(new	OCommandScript("sql",	cmd)).execute();

Remember to put one command per line (postfix it with \n) or use the semicolon (;) as
separator.

Java API

277



And via HTTP REST interface
(https://github.com/orientechnologies/orientdb/issues/2056). Execute a POST against
/batch URL by sending a payload in this format:

{	"transaction"	:	false,
		"operations"	:	[
				{
						"type"	:	"script",
						"language"	:	"sql",
						"script"	:	<text>
				}
		]
}

Example:

{	"transaction"	:	false,
		"operations"	:	[
				{
						"type"	:	"script",
						"language"	:	"sql",
						"script"	:	[	"begin;let	account	=	create	vertex	Account	set	name	=	'Luke';let	city	=select	from	City	where	name	=	'London';create	edge	Lives	from	$account	to	$city;commit	retry	100"
				}
		]
}

To separate commands use semicolon (;) or linefeed (\n). Starting from release 1.7 the
"script" property can be an array of strings to put each command on separate item,
example:

{	"transaction"	:	false,
		"operations"	:	[
				{
						"type"	:	"script",
						"language"	:	"sql",
						"script"	:	[	"begin",
																			"let	account	=	create	vertex	Account	set	name	=	'Luke'",
																			"let	city	=select	from	City	where	name	=	'London'",
																			"create	edge	Lives	from	$account	to	$city",
																			"commit	retry	100"	]
				}
		]
}

HTTP REST API

278

https://github.com/orientechnologies/orientdb/issues/2056


Hope this new feature will simplify your development improving performance.

What about having more complex constructs like IF, FOR, etc? If you need more
complexity, we suggest you to use Javascript as language that already support all these
concepts.

279



OrientDB supports pagination natively. Pagination doesn't consume server side
resources because no cursors are used. Only RecordIDs are used as pointers to the
physical position in the cluster.

There are 2 ways to achieve pagination:

280



The first and simpler way to do pagination is to use the 	SKIP	/	LIMIT	 approach. This is
the slower way because OrientDB repeats the query and just skips the first X records
from the result. Syntax:

SELECT	FROM	<target>	[WHERE	...]	SKIP	<records-to-skip>	LIMIT	<max-records>

Where:

records-to-skip is the number of records to skip before starting to collect them as
the result set
max-records is the maximum number of records returned by the query

Example

Use the SKIP-LIMIT

281



This method is faster than the 	SKIP	-	LIMIT	 because OrientDB will begin the scan from
the starting RID. OrientDB can seek the first record in about O(1) time. The downside is
that it's more complex to use.

The trick here is to execute the query multiple times setting the 	LIMIT	 as the page size
and using the greater than 	>	 operator against 	@rid	. The lower-rid is the starting point
to search, for example 	#10:300	.

Syntax:

SELECT	FROM	<target>	WHERE	@rid	>	<lower-rid>	...	[LIMIT	<max-records>]

Where:

lower-rid is the exclusive lower bound of the range as RecordID
max-records is the maximum number of records returned by the query

In this way, OrientDB will start to scan the cluster from the given position lower-rid + 1.
After the first call, the lower-rid will be the rid of the last record returned by the previous
call. To scan the cluster from the beginning, use 	#-1:-1	 as lower-rid .

database.open("admin",	"admin");
final	OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Customer	where	@rid	>	?	LIMIT	20"
ORID	last	=	new	ORecordId();

List<ODocument>	resultset	=	database.query(query,	last);

while	(!resultset.isEmpty())	{
				last	=	resultset.get(resultset.size()	-	1).getIdentity();
				resultset	=	database.query(query,	last);
}
database.close();

In order to simplify the pagination, the 	OSQLSynchQuery	 object (usually used in queries)

Use the RID-LIMIT

Handle it by hand

Automatic management

282



keeps track of the current page and, if executed multiple times, it advances page to page
automatically without using the 	>	 operator.

Example:

OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Customer	LIMIT	20"
for	(List<ODocument>	resultset	=	database.query(query);	!resultset.isEmpty();	resultset	=	database.query(query))	{
				...
}

283



This is the faster way to achieve pagination with large clusters.

If you've defined an index, you can use it to paginate results. An example is to get all the
names next to 	Jay	 limiting it to 20:

Collection<ODocument>	indexEntries	=	(Collection<ODocument>)	index.getEntriesMajor("Jay",	true

Usage of indexes

284



OrientDB doesn't support serial (autoincrement), so you can manage your own counter
in this way (example using SQL):

create	class	counter
insert	into	counter	set	name='mycounter',	value=0

And then every time you need a new number you can do:

UPDATE	counter	INCREMENT	value	=	1	WHERE	name	=	'mycounter'

This works in a SQL batch in this way:

BEGIN
let	$counter	=	UPDATE	counter	INCREMENT	value	=	1	WHERE	name	=	'mycounter'	return	after
INSERT	INTO	items	SET	id	=	$counter.value,	qty	=	10,	price	=	1000
COMMIT

Sequences and auto-increment

285



CRUD Graph Schema Indexes Database Utility

Select Create
Vertex

Create
Class

Create
Index

Create
Cluster Create Link

Insert Create
Edge

Alter
Class

Rebuild
Index Alter Cluster Find

References

Update Delete
Vertex

Drop
Class

Drop
Index Drop Cluster Explain

Delete Delete
Edge

Create
Property

Alter
Database Grant

Traverse Alter
Property

Create
Database
(console
only)

Revoke

Truncate
Class

Drop
Property

Drop
Database
(console
only)

Create
function

Truncate
Cluster

Truncate
Record

SQL Commands

286



Orient supports the SQL language to execute queries against the databas engine. Take
a look at the operators and Functions. To learn the main differences in comparison to
the SQL-92 standard, take a look at: OrientDB SQL.

SQL - SELECT

287



SELECT	[<Projections>]	[FROM	<Target>	[LET	<Assignment>*]]
				[WHERE	<Condition>*]
				[GROUP	BY	<Field>*]
				[ORDER	BY	<Fields>*	[ASC|DESC]	*]
				[SKIP	<SkipRecords>]
				[LIMIT	<MaxRecords>]
				[FETCHPLAN	<FetchPlan>]
				[TIMEOUT	<Timeout>	[<STRATEGY>]
				[LOCK	default|record]
				[PARALLEL]

Projections, optionally, is the data you want to extract from the query as the result
set. Look at Projections. Available since 0.9.25.
Target can be a class, cluster, single RID, set of RIDs or index values sorted by
ascending or descending key order (index values were added in 1.7.7). Class is the
class name on which to execute the query. Similarly, specifying cluster with the
	cluster:	 prefix executes the query within that cluster only. You can fetch records
not from a cluster but instead from an index using the following prefixes:
	indexvalues:	, 	indexvaluesasc:	 or 	indexvaluesdesc:	. If you are using 	indexvalues:	 or
	indexvaluesasc:	 prefix records will be sorted in ascending order of index keys. If you
are using 	indexvaluesdesc:	 prefix records will be sorted in descending order of index
keys. Use one or more RIDs to specify one or a small set of records. This is a useful
in order to specify a starting point when navigating graphs.
WHERE condition is common to the other SQL commands and is described in a
dedicated section of the documentation.
LET is the part that binds context variables to be used in projections, conditions or
sub-queries
GROUP BY is in accordance to the standard SQL syntax specifying the field to
perform the grouping. The current release supports only 1 field.
ORDER BY is in accordance to the standard SQL syntax specifying fields with an
optional ASC or DESC (default is ASCending). If you are using a projection in your
query, ensure the ORDER BY field is included in this projection.
SKIP skips 	<SkipRecords>	 the specified number of records starting at the beginning
of the result set. This is useful for Pagination when used in conjunction with 	LIMIT	.
LIMIT sets the maximum number of records returned by the query to 	<MaxRecords>	.
This is useful for Pagination when used in conjunction with SKIP.
FETCHPLAN sets the fetchplan. Example: 	FETCHPLAN	out:3	 to pre-fetch up to 3rd
level under 	out	 field. Since v1.5.
TIMEOUT sets the maximum timeout in milliseconds for the query. By default the

Syntax

288



query has no timeout. If you don't specify the strategy, the default strategy
	EXCEPTION	 is used. Strategies are:

	RETURN	, truncate the result set returning the data collected up until the timeout
	EXCEPTION	, default one, throws an exception if the timeout has been reached

LOCK manage the locking strategy. By default is "default", that means release the
lock once the record is read, while "record" means to keep the record locked in
exclusive mode in current transaction till the transaction has been finished by a
commit or rollback operation.
PARALLEL execute the query against X concurrent threads, where X is the number
of processors/cores found on the host OS of the query (since 1.7). PARALLEL
execution is useful on long running queries or queries that involve multiple clusters.
On simple queries using PARALLEL could cause a slow down due to the overhead
inherent with using multiple threads

NOTE: Starting from 1.0rc7 the 	RANGE	 keyword has been removed. To execute range
queries use the 	BETWEEN	 operator against 	@rid	 as explained in Pagination.

289



In the standard SQL, projections are mandatory. In OrientDB if it's omitted, the entire
record set is returned. It is the equivalent of the 	*	 keyword. Example:

SELECT	FROM	Account

With all projections except the wildcard "*", a new temporary document is created and
the 	@rid	 and 	@version	 of the original record will not be included.

SELECT	name,	age	FROM	Account

The conventional naming for the returned document's fields are:

the field name for plain fields 	invoice	->	invoice	
the first field name for chained fields, like 	invoice.customer.name	->	invoice	
the name of the function for functions, like 	max(salary)	->	max	

If the target field already exists, a progressive number is used as a prefix. Example:

SELECT	max(incoming),	max(cost)	FROM	Balance

Will return a document with the field 	max	 and 	max2	.

To override the field name, use 	AS	. Example:

SELECT	max(incoming)	AS	max_incoming,	max(cost)	AS	max_cost	FROM	Balance

By using the dollar (	$	) as a prefix, you can access context variables. Each time you run
a command, OrientDB accesses the context to read and write variables. Here's an
example to display the path and depth level of the traversal on all the movies, up to the
5th level of depth:

SELECT	$path,	$depth	FROM	(	TRAVERSE	*	FROM	Movie	WHERE	$depth	<=	5	)

Projections

290



Get all the records of type 	Person	 where the name starts with 	Luk	:

select	*	from	Person	where	name	like	'Luk%'

or

select	*	from	Person	where	name.left(3)	=	'Luk'

or

select	*	from	Person	where	name.substring(0,3)	=	'Luk'

Get all the records of type 	!AnimalType	 where the collection 	races	 contains at least one
entry where the first character of the name, ignoring the case, is equal to 	e	:

select	*	from	animaltype	where	races	contains	(name.toLowerCase().subString(0,1)	=	'e')

Get all the records of type 	!AnimalType	 where the collection 	races	 contains at least one
entry with name 	European	 or 	Asiatic	:

select	*	from	animaltype	where	races	contains	(name	in	['European','Asiatic'])

Get all the records of type 	Profile	 where any field contains the word 	danger	:

select	from	profile	where	any()	like	'%danger%'

Get any record at any level that has the word 	danger	:

select	from	profile	where	any()	traverse	(	any()	like	'%danger%'	)

Examples

291



Get all the records where up to the 3rd level of connections has some field that contains
the word 	danger	 ignoring the case:

select	from	Profile	where	any()	traverse(	0,3	)	(	any().toUpperCase().indexOf(	'danger'	)	>	-

Order the result set by the 	name	 in descending order:

select	from	Profile	order	by	name	desc

Returns the total of records per city:

select	sum(*)	from	Account	group	by	city

Traverse record starting from a root node:

select	from	11:4	where	any()	traverse(0,10)	(address.city	=	'Rome')

Query only a set of records:

select	from	[#10:3,	#10:4,	#10:5]

Select only three fields from Profile:

select	nick,	followings,	followers	from	Profile

Select the 	name	 field in upper-case and the 	country	name	 of the linked city of the
address:

select	name.toUppercase(),	address.city.country.name	from	Profile

Order by record creation. Starting from 1.7.7, using the expression "order by @rid desc",
allows OrientDB to open an Inverse cursor against clusters. This is extremely fast and

292



doesn't require classic ordering resources (RAM and CPU):

select	from	Profile	order	by	@rid	desc

293



The 	LET	 block contains the list of context variables to assign each time a record is
evaluated. These values are destroyed once the query execution ends. Context
variables can be used in projections, conditions and sub-queries.

LET block

294



OrientDB allows crossing relationships, but if in a single query you need to evaluate the
same branch of nested relationship, it's definitely better using a context variable that
refers to the full relationship.

Example:

SELECT	FROM	Profile
WHERE	address.city.name	like	'%Saint%"'	and
				(	address.city.country.name	=	'Italy'	or	address.city.country.name	=	'France'	)

Using LET becomes shorter and faster, because the relationships are traversed only
once:

SELECT	FROM	Profile
LET	$city	=	address.city
WHERE	$city.name	like	'%Saint%"'	and
				(	$city.country.name	=	'Italy'	or	$city.country.name	=	'France'	)

In this case the path till 	address.city	 is traversed only once.

Assign fields to reuse multiple times

295



LET block allows you to assign a context variable the result of a sub-query. Example:

select	from	Document
let	$temp	=	(
				select	@rid,	$depth	from	(
								traverse	V.out,	E.in	from	$parent.current
				)
				where	@class	=	'Concept'	and	(id	=	'first	concept'	or	id	=	'second	concept'	)
)
where	$temp.size()	>	0

Sub-query

296



Context variables can be part of result set used in Projections. The example below
displays the city name of the previous example:

SELECT	$temp.name	FROM	Profile
LET	$temp	=	address.city
WHERE	$city.name	like	'%Saint%"'	and
				(	$city.country.name	=	'Italy'	or	$city.country.name	=	'France'	)

Usage in projection

297



To know more about other SQL commands, take a look at SQL commands.

Conclusion

298



New targets 	indexvalues:	, 	indexvaluesasc:	, 	indexvaluesdesc:	 are added.

Added PARALLEL keyword to execute the query against X concurrent threads,
where X is the number of processors/core found on the os where the query is
running (since 1.7). PARALLEL execution is useful on long running query or query
that involve multiple clusters. On simple queries, using PARALLEL could cause a
slow down because of the overhead on using multiple threads

History

1.7.7

1.7

299



The Insert command creates a new record in the database. Records can be schema-
less or conform to rules you specify in your model.

SQL - INSERT

300



INSERT	INTO	[class:]<class>|cluster:<cluster>|index:<index>
		[(<field>[,]*)	VALUES	(<expression>[,]*)[,]*]|
		[SET	<field>	=	<expression>|<sub-command>[,]*]|
		[CONTENT	{<JSON>}]|
		[RETURN	<expression>]	
		[FROM	<query>]

Where:

	CONTENT	, JSON data as an option to set fields values
	RETURN	, returns an expression instead of the number of inserted records. You can
use any valid SQL expression. The most common use cases include:

	@rid	 to return the record id of the new record
	@this	to return the entire new record

	FROM	, inserts values from the resultset of a query. Since v1.7.

Syntax

301



SQL-92 syntax:

insert	into	Profile	(name,	surname)	values	('Jay',	'Miner'	)

OrientDB abbreviated syntax:

insert	into	Profile	SET	name	=	'Jay',	surname	=	'Miner'

JSON content syntax:

insert	into	Profile	CONTENT	{"name":	"Jay",	"surname"	=	"Miner"}

insert	into	Profile	cluster	profile_recent	(name,	surname)	values	('Jay',	'Miner'	)

insert	into	Profile	cluster	profile_recent	set	name	=	'Jay',	surname	=	'Miner'

insert	into	Profile(name,surname)	VALUES	('Jay','Miner'),('Frank','Hermier'),('Emily','Saut')

insert	into	Employee	(name,	boss)	values	('jack',	#11:99	)

Examples

Insert a new record with name 'Jay' and surname 'Miner'

Insert a new record of type Profile, but in a different
cluster than the default one

Insert several records at the same time

Insert a new record adding a relationship

302



insert	into	Employee	SET	name	=	'jack',	boss	=	#11:99

insert	into	Profile	(name,	friends)	values	('Luca',	[#10:3,	#10:4]	)

insert	into	Profile	SET	name	=	'Luca',	friends	=		[#10:3,	#10:4]

insert	into	Diver	SET	name	=	'Luca',	buddy	=	(select	from	Diver	where	name	=	'Marko')

insert	into	Diver	SET	name	=	'Luca',	buddy	=	(insert	into	Diver	name	=	'Marko')

This inserts a new document in the cluster 'asiaemployee':

insert	into	cluster:asiaemployee	(name)	values	('Mattew')

But note that the document will have no class assigned. To create a document of a
certain class but in a different cluster than the default one use:

insert	into	cluster:asiaemployee	(@class,	content)	values('employee',	'Mattew')

That will insert the document of type 'employee' in the cluster 'asiaemployee'.

Insert a new record adding a collection of relationship

Sub-selects

Sub-inserts

Insert in a different cluster

Insert a new record adding an embedded document

303



insert	into	Profile	(name,	address)	values	('Luca',	{	"@type"	:	"d",	"street"	:	"Melrose	Avenue"

insert	into	GermanyClient	from	(	select	from	Client	where	country	=	'Germany'	)

Will insert all the records from Client where the country is "Germany".

insert	into	GermanyClient	from	(	select	*,	true	as	copied	from	Client	where	country	=	'Germany'

Will insert all the records from Client where the country is "Germany" and will add an
additional field called "copied" with value true.

To know more about other SQL commands look at SQL commands.

Insert from query

Copy records in another class

Copy records in another class adding a field

304



Update one or more records in the current database. Remember that OrientDB can work
also in schema-less mode, so you can create any field on-the-fly. Furthermore, OrientDB
works on collections. This is the reason why OrientDB SQL has some extensions to
handle collections.

SQL - UPDATE

305



UPDATE	<class>|cluster:<cluster>|<recordID>
		[SET|INCREMENT|ADD|REMOVE|PUT	<field-name>	=	<field-value>[,]*]|[CONTENT|MERGE	<JSON>]
		[UPSERT]
		[RETURN	<returning>	[<returning-expression>]]
		[WHERE	<conditions>]
		[LOCK	default|record]
		[LIMIT	<max-records>]	[TIMEOUT	<timeout>]

Where:

SET updates the field
INCREMENT increments the field by the value. If the record had 10 as a value and
"INCREMENT value = 3" is executed, then the new value will be 13. This is useful
for atomic updates of counters. Use negative numbers to decrement. INCREMENT
can be used to implement sequences (autoincrement)
ADD, adds a new item in collection fields
REMOVE, removes an item in collection and maps fields
PUT, puts an entry into map fields
CONTENT, replaces the record content with a JSON
MERGE, merges the record content with a JSON
LOCK specifies how the record is locked between the load and the update. It can
be a value between:

DEFAULT, no lock. In case of concurrent update, the MVCC throws an
exception
RECORD, locks the record during the update

UPSERT updates a record if it already exists, or inserts a new record if it does not,
all in a single statement. This avoids the need to execute 2 commands, one for the
query and a conditional insert/update. UPSERT requires a WHERE clause and a
class target
RETURN specifies what to return as 	<returning>	. If 	<returning-expression>	 is
specified (optional) and returning is BEFORE or AFTER, then the expression value
is returned instead of record. 	<returning>	 can be a value between:

COUNT, the default, returns the number of updated records
BEFORE, returns the records before the update
AFTER, returns the records after the update

WHERE, SQL-Where condition to select records to update
LIMIT, sets the maximum number of records to update

Syntax

306



TIMEOUT, if any limits the update operation to a timeout

Note that RecordID must be prefixed with '#'. Example: #12:3.

To know more about conditions, take a look at WHERE conditions.

307



				>	UPDATE	Profile	SET	nick='Luca'	WHERE	nick	IS	NULL

				Updated	2	record(s)	in	0,008000	sec(s).

>	UPDATE	Profile	REMOVE	nick

>	UPDATE	Account	ADD	addresses=#12:0

>	UPDATE	Account	REMOVE	addresses=#12:0

>	UPDATE	Account	PUT	addresses='Luca',	#12:0

>	UPDATE	Account	REMOVE	addresses='Luca'

Update command can take a JSON as value to update:

Examples

Example 1: Change the value of a field

Example 2: Remove a field from all the records

Example 3: Add a value into a collection

Example 4: Remove a value from a collection

Example 5: Put a map entry into a map

Example 6: Remove a value from a map

Example 7: Update an embedded document

308



>	UPDATE	Account	SET	address={"street":"Melrose	Avenue",	"city":{"name":"Beverly	Hills"}}

>	UPDATE	Profile	SET	nick='Luca'	WHERE	nick	IS	NULL	LIMIT	20

>	UPDATE	Profile	SET	nick='Luca'	UPSERT	WHERE	nick='Luca'

>	UPDATE	Counter	INCREMENT	viewes	=	1	WHERE	page='/downloads/'	LOCK	RECORD

UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	@rid
UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	@version
UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	@this
UPDATE	♯7:0	INCREMENT	Counter	=	123	RETURN	BEFORE	$current.Counter
UPDATE	♯7:0	SET	gender='male'	RETURN	AFTER	$current.exclude("really_big_field")
UPDATE	♯7:0	ADD	out_Edge	=	♯12:1	RETURN	AFTER	$current.outE("Edge")

In case a single field is returned, the result is wrapped in a record storing value in "result"
field (Just to avoid introducing new serialization – there is no primitive-values collection
serialization in binary protocol). Additionally to that, useful fields like version and rid of
original record is provided in corresponding fields. New syntax will allow optimizing
client-server network traffic.

To know more about the SQL syntax used in Orient, take a look at: SQL-Query.

Example 8: Update the first 20 records that satisfy a
condition

Example 9: Update a record or insert if it does not already
exist

Example 10: Update a web counter, avoiding concurrent
accesses

Example 11: Usage of RETURN keyword

309



The Delete command deletes one or more records from the database. The set of
records involved are taken by the WHERE clause.

NOTE: Don't use SQL DELETE to remove Vertices or Edges but use the DELETE
VERTEX and DELETE EDGE commands that assure the integrity of the graph.

SQL - DELETE

310



DELETE	FROM	<Class>|cluster:<cluster>|index:<index>	[LOCK	<default|record>]	[RETURN	<returning>]
		[WHERE	<Condition>*]	[LIMIT	<MaxRecords>]	[TIMEOUT	<timeout>]

Where:

LOCK specifies how the record is locked between the load and the delete. It can be
a value between:

DEFAULT, no lock. In case of concurrent delete, the MVCC throws an
exception
RECORD, locks the record during the delete

RETURN specifies what to return. It can be a value between:
COUNT, the default, returns the number of deleted records
BEFORE, returns the records before the delete

WHERE, SQL-Where condition to select records to update
LIMIT, sets the maximum number of records to update
TIMEOUT, if any limits the update operation to a timeout

Syntax

311



Delete all the records with surname equals to 'unknown' ignoring the case:

delete	from	Profile	where	surname.toLowerCase()	=	'unknown'

To know more about other SQL commands look at SQL commands.

Examples

312



The Alter Class command alters a class in the schema.

SQL - ALTER CLASS

313



ALTER	CLASS	<class>	<attribute-name>	<attribute-value>

Where:

class is the class name to change
attribute-name, is the attribute name to alter. Supported attribute names are:

NAME, the class name. Accepts a string as value
SHORTNAME, the short name. Accepts a string as value. NULL to remove it
SUPERCLASS, the superclass name to assign. Accepts a string as value.
NULL to remove it
OVERSIZE, the oversize factor. Accepts a decimal number as value
ADDCLUSTER, add a cluster to be part of the class. If the cluster doesn't exist,
a physical cluster is created automatically. See also Create Cluster command.
Adding clusters to classes is useful also to store records in distributed servers.
Look at Distributed Sharding
REMOVECLUSTER, remove a cluster from a class. The cluster will be not
deleted.
STRICTMODE, enable or disable the strict mode. With the strict mode enabled
you work in schema-full mode and you can't add new properties in record if the
class
CLUSTERSELECTION sets the strategy used on selecting the cluster where to
create new records. On class creation the settings is inherited by database's
cluster-selection property. For more information look also at Cluster Selection
CUSTOM, to set custom properties. Property name and value must be
expressed using the syntax: "	<name>=<value>	" without spaces between name
and value

attribute-value, is the new attribute value to set

Syntax

314



create class
drop class
alter cluster
SQL commands
Console commands

See also

315



Change the name of the class 'Account':

ALTER	CLASS	Account	NAME	Seller

Change the oversize factor of the class 'Account':

ALTER	CLASS	Account	OVERSIZE	2

Adds a cluster by name to a class. If the cluster didn't exist, it's created automatically:

ALTER	CLASS	Account	ADDCLUSTER	account2

Removes a cluster by id to a class without dropping the cluster:

ALTER	CLASS	Account	REMOVECLUSTER	34

Add custom properties (in this case used in Record level security):

ALTER	CLASS	Post	CUSTOM	onCreate.fields=_allowRead,_allowUpdate
ALTER	CLASS	Post	CUSTOM	onCreate.identityType=role

Create a new cluster to the class and set the cluster-selection strategy as "balanced":

CREATE	CLUSTER	Employee_1
ALTER	CLASS	ADDCLUSTER	Employee_1
ALTER	CLASS	CLUSTERSELECTION	balanced

Examples

316



Added support for CLUSTERSELECTION that sets the strategy used on selecting
the cluster where to create new records

History

1.7

317



The Alter Cluster command updates a cluster.

SQL - ALTER CLUSTER

318



ALTER	CLUSTER	<cluster-name>|<cluster-id>	<attribute-name>	<attribute-value>

Where:

cluster-name name of the cluster to modify
cluster-id id of the cluster to modify
attribute-name between those supported:

NAME cluster's name
STATUS change the cluster's status. Allowed values: ONLINE, OFFLINE. By
default clusters are ONLINE. To put cluster offline, change it status to
OFFLINE. Once offline, the physical files of the cluster will be not open by
OrientDB. This feature is useful when you want to archive old data elsewhere
and restore when needed
COMPRESSION compression used between: nothing, snappy, gzip and any
other compression registered in OCompressionFactory class. OrientDB calls
the compress() method every time it saves a record to the storage, and
uncompress() every time it loads a record from the storage. You can also use
the OCompression interface to manage encryption
USE_WAL use the Journal (Write Ahead Log) when OrientDB operates against
the cluster
RECORD_GROW_FACTOR grow factor to save more space on record
creation. This is useful when you plan to update the record with additional
information. Bigger record avoids defragmentation because OrientDB has not
to find a new space in case of update with more data
RECORD_OVERFLOW_GROW_FACTOR like RECORD_GROW_FACTOR,
but on update. When the size limit is reached this setting is considered to get
more space (factor > 1)
CONFLICTSTRATEGY, (since 2.0) is the name of the strategy used to handle
conflicts when OrientDB's MVCC finds an update or delete operation executed
against an old record. If not defined a strategy at cluster level, the database
configuration is taken (use ALTER DATABASE command for this). While it's
possible to inject custom logic by writing a Java class, the out of the box modes
are:
	version	, the default, throws an exception when versions are different
	content	, in case the version is different, it checks if the content is changed,
otherwise use the highest version and avoid throwing exception

Syntax

319



	automerge	, merges the changes

attribute-value attribute's value to set

320



create cluster
drop cluster
alter class
SQL commands
Console commands

See also

321



ALTER	CLUSTER	profile	NAME	profile2

ALTER	CLUSTER	9	NAME	profile2

ALTER	CLUSTER	V	CONFLICTSTRATEGY	automerge

ALTER	CLUSTER	V_2012	STATUS	OFFLINE

To know more about other SQL commands, take a look at SQL commands.

Examples

Put a cluster offline

322



The Alter Database command update database settings.

SQL - ALTER DATABASE

323



ALTER	DATABASE	<attribute-name>	<attribute-value>

Where: attribute-value attribute's value to set and attribute-name between those
supported:

STATUS database's status between:
IMPORTING to set importing status
DEFAULTCLUSTERID to set the default cluster. By default is 2 = "default"
DATEFORMAT sets the default date format. Look at Java Date Format for more
information. Default is "yyyy-MM-dd"
DATETIMEFORMAT sets the default date time format. Look at Java Date Format
for more information. Default is "yyyy-MM-dd HH:mm:ss"
TIMEZONE set the default timezone. Look at Java Date TimeZones for more
information. Default is the JVM's default timezone
LOCALECOUNTRY sets the default locale country. Look at Java Locales for more
information. Default is the JVM's default locale country. Example: "GB"
LOCALELANGUAGE sets the default locale language. Look at Java Locales for
more information. Default is the JVM's default locale language. Example: "en"
CHARSET set the default charset charset. Look at Java Charset for more
information. Default is the JVM's default charset. Example: "utf8"
CLUSTERSELECTION sets the default strategy used on selecting the cluster
where to create new records. This setting is read on class creation. After creation,
each class has own modifiable strategy. Supported strategies are:

default, uses always the Class's 	defaultClusterId	 property. This was the
default before 1.7
round-robin, put the Class's configured clusters in a ring and returns a
different cluster every time restarting from the first when the ring is completed
balanced, checks the records in all the clusters and returns the smaller cluster.
This allows the cluster to have all the underlying clusters balanced on size. On
adding a new cluster to an existent class, the new empty cluster will be filled
before the others because more empty then the others. In distributed
configuration when configure clusters on different servers this setting allows to
keep the server balanced with the same amount of data. Calculation of cluster
size is made every 5 or more seconds to avoid to slow down insertion

MINIMUMCLUSTERS, as the minimum number of clusters to create automatically
when a new class is created. By default is 1, but on multi CPU/core having multiple

Syntax

324

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html


clusters/files improves read/write performance
CONFLICTSTRATEGY, (since 2.0) is the name of the strategy used to handle
conflicts when OrientDB's MVCC finds an update or delete operation executed
against an old record. The strategy is applied for the entire database, but single
clusters can have own strategy (use ALTER CLUSTER command for this). While it's
possible to inject custom logic by writing a Java class, the out of the box modes are:

	version	, the default, throw an exception when versions are different
	content	, in case the version is different checks if the content is changed,
otherwise use the highest version and avoid throwing exception
	automerge	, merges the changes

CUSTOM sets custom properties

325



Console Command Create Database
Console Command Drop Database

See also

326



ALTER	DATABASE	TYPE	graph

Starting from v 1.4, OrientDB can use Lightweight Edges. After v2.0 this is disabled by
default with new databases. To maintain the compatibility with OrientDB 1.4 or minor
execute this commands:

alter	database	custom	useLightweightEdges=false
alter	database	custom	useClassForEdgeLabel=false
alter	database	custom	useClassForVertexLabel=false
alter	database	custom	useVertexFieldsForEdgeLabels=false

Examples

Change the database type to "graph"

Use GraphDB created with releases before 1.4

327



Added support for CLUSTERSELECTION that sets the strategy used on selecting
the cluster where to create new records
Added MINIMUMCLUSTERS to pre-create X clusters every time a new class is
created

History

1.7

328



The Alter Property command alters a class's property in the schema.

SQL - ALTER PROPERTY

329



ALTER	PROPERTY	<class>.<property>	<attribute-name>	<attribute-value>

Where:

class is the class owner of the property to change
property is the property name to change
attribute-name, is the attribute name to alter
attribute-value, is the new attribute value to set

Supported attribute names are:

LINKEDCLASS, the linked class name. Accepts a string as value. NULL to remove
it
LINKEDTYPE, the linked type name between those supported:Types. Accepts a
string as value. NULL to remove it
MIN, the minimum value as constraint. Accepts strings, numbers or dates as value.
NULL to remove it
MANDATORY, true if the property is mandatory. Accepts "true" or "false"
MAX, the maximum value as constraint. Accepts strings, numbers or dates as
value. NULL to remove it
NAME, the property name. Accepts a string as value
NOTNULL, the property can't be null. Accepts "true" or "false"
REGEXP the regular expression as constraint. Accepts a string as value. NULL to
remove it
TYPE, the type between those supported:Types Accepts a string as value
COLLATE, set the collate to define the strategy of comparison. By default is case
sensitive. By setting it yo "ci", any comparison will be case-insensitive
CUSTOM Set custom properties. Syntax is 	<name>	=	<value>	. Example: stereotype =
icon

Syntax

330

https://github.com/orientechnologies/orientdb/wiki/Types
https://github.com/orientechnologies/orientdb/wiki/Types


ALTER	PROPERTY	Account.age	NAME	born

ALTER	PROPERTY	Account.age	MANDATORY	true

ALTER	PROPERTY	Account.gender	REGEXP	[M|F]

alter	property	Employee.name	collate	ci

alter	property	Foo.bar1	custom	stereotype	=	visible

To create a property use the Create Property command, to remove a property use the
Drop Property command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

Change the name of the property 'age' in class 'Account'
in 'born'

Set a property as mandatory

Set a regexp

Set a field as case insensitive to comparison

Set a custom field on property

331



The Create Class command creates a new class in the schema. NOTE: If a cluster with
the same name exists in the database will be used as default cluster.

SQL - CREATE CLASS

332



CREATE	CLASS	<class>	[EXTENDS	<super-class>]	[CLUSTER	<clusterId>*]

Where:

class is the class name to create. The first character must be alphabetic and others
can be any alphanumeric characters plus underscore _ and dash -.
super-class, optional, is the super-class to extend
clusterId can be a list separated by comma (,)

By default OrientDB creates 1 cluster per class, but this can be changed by setting the
property 	minimumclusters	 at database level.

Syntax

333



OrientDB, by default, inherits the cluster selection by the database. By default is round-
robin, but you can always change it after creation with alter class command. The
supported strategies are:

default, uses always the Class's 	defaultClusterId	 property. This was the default
before 1.7
round-robin, put the Class's configured clusters in a ring and returns a different
cluster every time restarting from the first when the ring is completed
balanced, checks the records in all the clusters and returns the smaller cluster. This
allows the cluster to have all the underlying clusters balanced on size. On adding a
new cluster to an existent class, the new empty cluster will be filled before the
others because more empty then the others. In distributed configuration when
configure clusters on different servers this setting allows to keep the server
balanced with the same amount of data. Calculation of cluster size is made every 5
or more seconds to avoid to slow down insertion

Cluster selection strategy

334



alter class
drop class
create cluster
SQL commands
Console commands

See also

335



Create the class 'Account':

CREATE	CLASS	Account

Create the class 'Car' that extends 'Vehicle':

CREATE	CLASS	Car	extends	Vehicle

Create the class 'Car' with clusterId 10:

CREATE	CLASS	Car	CLUSTER	10

Examples

336



Create the class 'Person' as ABSTRACT:

CREATE	CLASS	Person	ABSTRACT

Abstract class

337



The Create Cluster command creates a new cluster in database. Once created, the
cluster can be used to save records by specifying its name during save. If you want to
add the cluster to a class, use rather the Alter Class command using ADDCLUSTER
property.

SQL - CREATE CLUSTER

338



CREATE	CLUSTER	<name>	[POSITION	<position>|append]

Where:

name is the cluster name to create. The first character must be alphabetic and
others can be any alphanumeric characters plus underscore _ and dash -.
position, optional, is the position where to add the cluster. If omitted or it's equals to
'default' the cluster is appended at the end

Syntax

339



Create the cluster 'Account':

CREATE	CLUSTER	account

To remove a cluster use the Drop Cluster command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

340



This command creates a new Edge into the database. Edges, together with Vertices, are
the main components of a Graph. OrientDB supports polymorphism on edges. The base
class is "E" (before 1.4 was called "OGraphEdge"). Look also how to Create Vertex.

NOTE: While running as distributed, edge creation could be done in
two steps (create+update). This could break some constraint defined

at Edge's class level. To avoid this kind of problem disable the
constrains in Edge's class.

SQL - CREATE EDGE

341



CREATE	EDGE	<class>	[CLUSTER	<cluster>]	FROM	<rid>|(<query>)|[<rid>]*	TO	<rid>|(<query>)|[<rid>]*
																				[SET	<field>	=	<expression>[,]*]|CONTENT	{<JSON>}
																				[RETRY	<retry>	[WAIT	<pauseBetweenRetriesInMs]]

Where:

class, is the Edge's class name, or "E" if you don't use sub-types
cluster, is the cluster name where to physically store the edge
JSON, is the JSON content to set as record content, instead of field by field
retry, is the number of retries in case of conflict (optimistic approach)
pauseBetweenRetriesInMs, are the milliseconds of delay between retries

Syntax

342



create	edge	from	#10:3	to	#11:4

create	class	E1	extends	E
create	edge	E1	from	#10:3	to	#11:4

create	edge	E1	cluster	EuropeEdges	from	#10:3	to	#11:4

create	edge	from	#10:3	to	#11:4	set	brand	=	'fiat'

create	edge	E1	from	#10:3	to	#11:4	set	brand	=	'fiat',	name	=	'wow'

create	edge	Watched	from	(select	from	account	where	name	=	'Luca')	to	(select	from	movies	where

Examples

Create a new edge between two vertices of the base class
'E', namely OGraphEdge

Create a new edge type and a new edge of the new type

Create a new edge in a particular cluster

Create a new edge setting properties

Create a new edge of type E1 setting properties

Create new edges of type Watched between all the action
Movies and me using sub-queries

Create an edge with JSON content

343



create	edge	E	from	#22:33	to	#22:55	content	{	"name"	:	"Jay",	"surname"	:	"Miner"	}

344



1.1: first version
1.2: the support for query and collection of RIDs in FROM/TO
1.4: the command uses the Blueprints API under the hood, so if you're working in
Java using the OGraphDatabase API you could experience in some difference how
edges are managed. To force the command to work with the "old" API change the
GraphDB settings described in Graph backward compatibility
2.0: New databases have Lightweight Edges disabled by default, so this command
creates regular edges.

To know more about other SQL commands look at SQL commands.

History and compatibility

345



The Create Function command creates a new Server-Side function. Functions can be
executed from SQL, HTTP and Java.

SQL - CREATE FUNCTION

346



CREATE	FUNCTION	<name>	<code>
																[PARAMETERS	[<comma-separated	list	of	parameters'	name>]]
																[IDEMPOTENT	true|false]
																[LANGUAGE	<language>]

Where:

name is the function name as string
code is the function code as string
PARAMETERS, optional, are the function parameters bound to the execution heap
IDEMPOTENT, optional, means the function doesn't change the database status.
This is useful because IDEMPOTENT functions can be called by HTTP GET,
otherwise HTTP POST. By default is FALSE.
language, optional, is the language. By default is "Javascript".

Syntax

347



Functions
SQL commands
Console commands

See also

348



Create function 'test' in Javascript with no parameters:

CREATE	FUNCTION	test	"print('\nTest!')"

Create function 'allUsersButAdmin' in SQL with no parameters:

CREATE	FUNCTION	allUsersButAdmin	"select	from	ouser	where	name	<>	'admin'"	LANGUAGE	SQL

Examples

349



Creates a new index. To create an automatic index bound to a schema property use
section "ON" of create index command or use as name the <class.property> notation.
But assure to have created the schema for it before the index. See the example below.

Indexes can be:

UNIQUE, doesn't allow duplicated
NOTUNIQUE, allows duplicates
FULLTEXT, by indexing any single word of the text. It's used in query with the
operator CONTAINSTEXT

SQL - CREATE INDEX

350



CREATE	INDEX	<name>	[ON	<class-name>	(prop-names)]	<type>	[<key-type>]
													METADATA	[{<json-metadata>}]

Where:

name logical name of index. Can be 	<class>.<property>	 to create an automatic index
bound to a schema property. In this case class is the class of the schema and
property, is the property created into the class. Notice that in another case index
name can't contain '.' symbol
class-name name of class that automatic index created for. Class with such name
must already exist in database
prop-names comma-separated list of properties that this automatic index is created
for. Property with such name must already exist in schema. If property belongs to
one of the Map types (LINKMAP, EMBEDDEDMAP) you can specify will be keys or
values used for index generation. Use "by key" or "by value" expressions for that, if
nothing will be specified keys will be used during index creation.
type, between 'unique', 'notunique' and 'fulltext'
key-type, is the type of key (Optional). On automatic indexes is auto-determined by
reading the target schema property where the index is created. If not specified for
manual indexes, at run-time during the first insertion the type will be auto
determined by reading the type of the class. In case of creation composite index it is
a comma separated list of types.
metadata is a json representing all the additional metadata as key/value

If "ON" and key-type sections both exist database validate types of specified properties.
And if types of properties not equals to types specified in key-type list, exception will be
thrown.

List of key types can be used for creation manual composite indexes, but such indexes
don't have fully support yet.

Syntax

351



SQL Drop Index
Indexes
SQL commands

See also

352



CREATE	INDEX	mostRecentRecords	unique	date

CREATE	PROPERTY	User.id	BINARY
CREATE	INDEX	User.id	UNIQUE

CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs)	unique;
CREATE	INDEX	thumbsAuthor	ON	Movie	(thumbs	by	key)	unique;
CREATE	INDEX	thumbsValue	ON	Movie	(thumbs	by	value)	unique;

CREATE	PROPERTY	Book.author	STRING
CREATE	PROPERTY	Book.title	STRING
CREATE	PROPERTY	Book.publicationYears	EMBEDDEDLIST	INTEGER
CREATE	INDEX	books	ON	Book	(author,	title,	publicationYears)	UNIQUE

You can create an index against the edge class if it's containing the begin/end date
range of validity. This is a very common use case with historical graphs. Consider this
File system example:

CREATE	CLASS	File	EXTENDS	V
CREATE	CLASS	Has	EXTENDS	E

Examples

Examples of non-automatic index to store dates
manually:

Examples of automatic index bound to the property "id"
of class "User":

Examples of index for "thumbs" property of class
"Movie".

Composite index example:

Index by Edge's date range

353



CREATE	PROPERTY	Has.started	DATETIME
CREATE	PROPERTY	Has.ended	DATETIME
CREATE	INDEX	Has.started_ended	ON	Has	(started,	ended)	NOTUNIQUE

And then you can retrieve all the edge that existed in 2014:

SELECT	FROM	Has	Where	started	>=	'2014-01-01	00:00:00.000'	and	ended	<	'2015-01-01	00:00:00.000'

To have the connected parent File:

SELECT	outV()	FROM	Has	Where	started	>=	'2014-01-01	00:00:00.000'	and	ended	<	'2015-01-01	00:00:00.000'

To have the connected children Files:

SELECT	inV()	FROM	Has	Where	started	>=	'2014-01-01	00:00:00.000'	and	ended	<	'2015-01-01	00:00:00.000'

Indexes by default ignore null values. For such reason queries against NULL value that
use indexes return no entries.

If you want to index also null values set 	{	ignoreNullValues	:	false	}	 as metadata.
Example:

CREATE	INDEX	addresses	ON	Employee	(address)	notunique
													METADATA	{ignoreNullValues	:	false}

Null values

354



The Create Link transform two simple values in a link. This is very useful when you're
importing data from a Relational database. In facts in the Relational world relationships
are resolved as foreign keys.

This is not the way to create links in general, but a way to convert two values in two
different classes in a link. To create a link in OrientDB look at Relationships. For more
information about importing a Relational Database into OrientDB look at Import from
RDBMS to Document Model.

Consider this example where the class "Post" has a relationship 1-N to "Comment":

Post	1	--->	*	Comment

In a Relational database you'll have something like that:

Table	Post
+----+----------------+
|	Id	|	Title										|
+----+----------------+
|	10	|	NoSQL	movement	|
|	20	|	New	OrientDB			|
+----+----------------+

Table	Comment
+----+--------+--------------+
|	Id	|	PostId	|	Text									|
+----+--------+--------------+
|		0	|			10			|	First								|
|		1	|			10			|	Second							|
|	21	|			10			|	Another						|
|	41	|			20			|	First	again		|
|	82	|			20			|	Second	Again	|
+----+--------+--------------+

Using OrientDB, instead, you have direct relationship as in your object model. So the
navigation is from Post to Comment and not viceversa as for Relational model. For this
reason you need to create a link as INVERSE.

SQL - CREATE LINK

355



	CREATE	LINK	<link-name>	TYPE	[<link-type>]	FROM	<source-class>.<source-property>	TO
<destination-class>.<destination-property>	[INVERSE]	

Where:

link-name is the name of the property for the link. If not expressed will be
overwritten the destination-property field
link-type, optional, is the type to use for the link. In case of inverse relationships
(the most commons) you can specify LINKSET or LINKLIST for 1-N relationships
source-class, is the source class
source-property, is the source property
destination-class, is the destination class
destination-property, is the destination property
INVERSE, tells to create the connection on the opposite direction. This is common
when you've imported 1-N relationships from a RDBMS where they are mapped at
the opposite direction

Syntax

356



CREATE	LINK	comments	TYPE	LINKSET	FROM	comments.PostId	TO	posts.Id	INVERSE

To know more about other SQL commands look at SQL.

Examples

357



The Create Property command creates a new property in the schema. An existing class
is required to perform this command.

SQL - CREATE PROPERTY

358



CREATE	PROPERTY	<class>.<property>	<type>	[<linked-type>|<linked-class>]	[UNSAFE]

Where:

class is the class of the property
property, is the property created in the class
type, the data type of the property. See Types. Valid options are:

boolean
integer
short
long
float
double
date
string
binary
embedded
embeddedlist, an ordered collection of items that supports duplicates.
Optionally accepts the parameter linked-type or linked-class to specify the
collection's content
embeddedset, an unordered collection of items that does not support
duplicates. Optionally accepts the parameter linked-type or linked-class to
specify the collection's content
embeddedmap, a map of key/value entries. Optionally accepts the parameter
linked-type or linked-class to specify the map's value content
link
linklist, an ordered collection of items that supports duplicates. Optionally
accepts the parameter linked-class to specify the linked record's class
linkset, an unordered collection of items that does not support duplicates.
Optionally accepts the parameter linked-class to specify the linked record's
class
linkmap, this is a map of key/ entries. Optionally accepts the parameter linked-
class to specify the map's value record class
byte

linked-type, the contained type in EMBEDDEDSET, EMBEDDEDLIST and
EMBEDDEDMAP types (see above). See also Types. Valid options are:

Syntax

359



boolean
integer
short
long
float
double
date
string
binary
embedded
link
byte

linked-class, the contained class in containers (see above).
	UNSAFE	, optional, avoid check on existent records. With millions of records this
operation could take time. If you are sure the property is new, you can skip the
check by using 	UNSAFE	. Since 2.0.

360



Create the property 'name' of type 'STRING' in class 'User':

CREATE	PROPERTY	user.name	STRING

Create a list of Strings as property 'tags' of type 'EMBEDDEDLIST' in class 'Profile'. The
linked type is 'STRING':

CREATE	PROPERTY	profile.tags	EMBEDDEDLIST	STRING

Create the property 'friends' of type 'EMBEDDEDMAP' in class 'Profile'. The linked class
is profile itself (circular references):

CREATE	PROPERTY	profile.friends	EMBEDDEDMAP	Profile

To remove a property use the SQL Drop Property command.

To learn more about other SQL commands look at SQL commands.

This is a command of the Orient console. To learn all available commands go to
Console-Commands.

Examples

361



This command creates a new Vertex into the database. Vertices, together with Edges,
are the main components of a Graph. OrientDB supports polymorphism on vertices. The
base class is "V" (before 1.4 was called "OGraphVertex"). Look also how to Create
Edges.

NOTE: While running as distributed, vertex creation could be done in
two steps (create+update). This could break some constraint defined

at Vertex's class level. To avoid this kind of problem disable the
constrains in Vertex's class.

SQL - CREATE VERTEX

362



CREATE	VERTEX	[<class>]	[CLUSTER	<cluster>]	[SET	<field>	=	<expression>[,]*]

Syntax

363



create	vertex

create	class	V1	extends	V
create	vertex	V1

create	vertex	V1	cluster	recent

create	vertex	set	brand	=	'fiat'

create	vertex	V1	set	brand	=	'fiat',	name	=	'wow'

create	vertex	Employee	content	{	"name"	:	"Jay",	"surname"	:	"Miner"	}

Examples

Create a new vertex of the base class 'V', namely
OGraphVertex

Create a new vertex type and a new vertex of the new type

Create a new vertex in a particular cluster

Create a new vertex setting properties

Create a new vertex of type V1 setting properties

Create a vertex with JSON content

364



1.1: first version
starting from v.1.4 the command uses the Blueprints API under the hood, so if
you're working in Java using the OGraphDatabase API you could experience in
some difference how edges are managed. To force the command to work with the
"old" API change the GraphDB settings described in Graph backward compatibility

To know more about other SQL commands look at SQL commands.

History and Compatibility

365



SQL - MOVE VERTEX

This command moves a Vertex into another class or cluster.

366



MOVE	VERTEX	<source>	TO	<destination>	[SET	[<field>=<value>]*	[,]]	[MERGE	<JSON>]

Where:

	source	 are the vertices to move. This could be one of the following values:
A single vertex by RID. Example: 	MOVE	VERTEX	#34:232	TO	CLASS:Provider	
An array of vertices by RIDs. Example: 	MOVE	VERTEX	[#34:232,#34:444]	TO
CLASS:Provider	

A subquery with vertices as result. All the returning vertices will be moved.
Example: 	MOVE	VERTEX	(SELECT	FROM	V	WHERE	city	=	'Rome')	TO	CLASS:Provider	

	destination	 is the location where to move vertices. Can be one of the followings:
Class, by using the syntax 	CLASS:<class-name>	. Use this to refactor your graph
assigning a new class to vertices
Cluster, by using the syntax 	CLUSTER:<cluster-name>	. Use this to move your
vertices on different clusters in the same class. This is useful on Distributed
Configuration where you can move vertices on other servers

	SET	 optional block contains the pairs of values to assign during the moving. The
syntax is the same as SQL UPDATE. Example: 	MOVE	VERTEX	(SELECT	FROM	V	WHERE	type
=	'provider')	TO	CLASS:Provider	SET	movedOn	=	Date()	

	MERGE	 optional block gets a JSON containing the pairs of values to assign during
the moving. The syntax is the same as SQL UPDATE. Example: 	MOVE	VERTEX	(SELECT
FROM	V	WHERE	type	=	'provider')	TO	CLASS:Provider	MERGE	{	author	:	'Jay	Miner'	}	

Syntax

367



Create Vertex
Create Edge

See also

368



2.0: first version

History and Compatibility

369



It's very common the case when you start modeling your domain in a way, but then you
need more flexibility. On this example we want to split all the "Person" vertices under 2
new sub-types called "Customer" and "Provider" respectively. At the end we declare
Person as abstract class.

CREATE	CLASS	Customer	EXTENDS	Person
CREATE	CLASS	Provider	EXTENDS	Person
MOVE	(SELECT	FROM	Person	WHERE	type	=	'Customer')	TO	CLASS:Customer
MOVE	(SELECT	FROM	Person	WHERE	type	=	'Provider')	TO	CLASS:Provider
ALTER	CLASS	Person	ABSTRACT	TRUE

OrientDB allows you to scale up by just adding servers. As soon as you add a new
server, OrientDB creates automatically a new cluster with the name of the class plus the
node name. Example: "customer_europe". Partitioning is a best practice when you need
to scale up, specially on writes. If you have a graph with "Customer" vertices and you
want to move some vertices to other server you can move them to the cluster owned by
the server where you want your vertices are moved.

With this example, we're moving all the customers that live in Italy, Germany or UK to
the "customer_europe" cluster assigned to the node "Europe". In this way all the access
to European customers will be faster to the applications connected to the European
node:

MOVE	(SELECT	FROM	Customer	WHERE	['Italy',	'Germany',	'UK']	IN	out('city').out('country')	)	TO

To know more about other SQL commands look at SQL commands.

Examples

Refactoring of graph by adding sub-types

Move vertices on different servers

370



This command deletes one or more edges from the database. Use this command if you
work against graphs. The "Delete edge" command takes care to remove all the cross
references to the edge in both "in" and "out" vertices.

SQL - DELETE EDGE

371



DELETE	EDGE	<rid>|FROM	<rid>|TO	<rid>|[<class>]	[WHERE	<conditions>]>	[LIMIT	<MaxRecords>]

The WHERE clause is common to the other SQL commands.

Syntax

372



1.1: first version
1.4: the command uses the Blueprints API under the hood, so if you're working in
Java using the OGraphDatabase API you could experience in some difference how
edges are managed. To force the command to work with the "old" API change the
GraphDB settings described in Graph backward compatibility

History and Compatibility

373



Delete edges where date is a property which might exist in one of more edges between
the two vertices:

DELETE	EDGE	from	#11:101	TO	#11:117	Where	date	>=	"2012-01-15"

Deletes edges filtering also by Edge's class:

DELETE	EDGE	FROM	#11:101	TO	#11:117	WHERE	@class	=	'owns'	and	comment	like	"regex	of	forbidden	words"

This is the faster alternative to 	DELETE	EDGE	WHERE	@class	=	'owns'	and	date	<	"2011-11"	:

DELETE	EDGE	Owns	WHERE	date	<	"2011-11"

Deletes edges where in.price shows the condition on 'to vertex' for the edge

DELETE	EDGE	Owns	WHERE	date	<	"2011-11"	and	in.price	>=	202.43

Examples

374



When User follow a company We create edge between User and company of type
followCompany and CompanyFollowedBy class

node1	is	User	node,
node2	is	company	node

OGraphDatabase	rawGraph	=	orientGraph.getRawGraph();
String[]	arg={"followCompany,"CompanyFollowedBy"};
Set<OIdentifiable>	edges=rawGraph.getEdgesBetweenVertexes(node1,	node2,null,arg);
for	(OIdentifiable	oIdentifiable	:	edges)	{
				**rawGraph.removeEdge(oIdentifiable);
}

Deleting Edge using Java Code:

375



This command deletes one or more vertices from the database. Use this command if
you work against graphs. The "Delete Vertex" (like the Delete Edge) command takes
care to remove all the cross references to the vertices in all the edges involved.

SQL - DELETE VERTEX

376



DELETE	VERTEX	<rid>|<class>|FROM	(<subquery>)	[WHERE	<conditions>]	[LIMIT	<MaxRecords>>]

The WHERE clause is common to the other SQL commands.

Syntax

377



1.1: first version
starting from v.1.4 the command uses the Blueprints API under the hood, so if
you're working in Java using the OGraphDatabase API you could experience in
some difference how edges are managed. To force the command to work with the
"old" API change the GraphDB settings described in Graph backward compatibility

History and Compatibility

378



Deletes the vertex, and disconnects all vertices pointing towards it:

DELETE	VERTEX	#10:231

Deletes all user accounts which are marked with an incoming edge of class
BadBehaviorInForum:

DELETE	VERTEX	Account	Where	in.@Class	=	'BadBehaviorInForum'

Deletes all those EmailMessages which are marked as spam by isSpam property

DELETE	VERTEX	EMailMessage	Where	isSpam	=	true

Deletes every vertex of class 'Attachment', which has an edge towards it of class
'HasAttachment', with a property 'date' of condition to be all (HasAttachment edges)
which are older than 1990, and secondly, the vertex 'Email' which is connected to class
Attachment has a condition on its property 'from' to be 'some...@example.com':

DELETE	VERTEX	Attachment	Where	in[@Class	=	'HasAttachment'].date	<=	"1990"	and	in.out[@Class	=	

Examples

379



The Drop Class command removes a class from the schema. NOTE: Pay attention to
maintain the schema coherent. For example avoid to remove classes that are super
classes of others. The associated cluster won't be deleted.

SQL - DROP CLASS

380



DROP	CLASS	<class>

Where:

class is the class of the schema

Syntax

381



create class
alter class
alter cluster
SQL commands
Console commands

See also

382



Remove the class 'Account':

DROP	CLASS	Account

Examples

383



The Drop Cluster command removes a cluster and all its content. This operation cannot
be rollbacked.

SQL - DROP CLUSTER

384



DROP	CLUSTER	<cluster-name>|<cluster-id>

Where:

cluster-name is the cluster name as string
cluster-id is the cluster id as integer

Syntax

385



create cluster
alter cluster
drop class
SQL commands
Console commands

See also

386



Remove the cluster 'Account':

DROP	CLUSTER	Account

Examples

387



The Drop Index command removes an index on a property defined in the schema.

SQL - DROP INDEX

388



DROP	INDEX	<index-name>|<class>.<property>

Where:

class is the class of the schema
property, is the property created into the class

Syntax

389



SQL Create Index
Indexes
SQL commands

See also

390



DROP	INDEX	users.Id

Examples

391



The Drop Property command removes a property from the schema. This doesn't
remove the property values in records, but just change the schema information. Records
will continue to have the property values if any.

SQL - DROP PROPERTY

392



DROP	PROPERTY	<class>.<property>

Where:

class is the class of the schema
property, is the property created into the class

Syntax

393



Remove the property 'name' in class 'User':

DROP	PROPERTY	user.name

To create a new property use the Create Property command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

394



Profiles any command and returns back result of execution. This is useful to know why a
query is slow. Use EXPLAIN as keyword before the command you want to profile.

SQL - EXPLAIN

395



EXPLAIN	<command>

command is the command you want to profile.

Returns a document containing all the profiled metrics:

Metric Description

elapsed Time elapsed in seconds to execute the
command. The precision is nanosecond

resultType The result type. Can be 'collection',
'document' or 'number'

resultSize The number of record retrieved in case
the resultType is a 'collection'

recordReads The number of records read from disk

documentReads

The number of documents read from disk.
It could be different by recordReads if
other kind of records are present in the
target of the command. For example if
you put in the same cluster documents
and recordbytes you could skip many
records. Much better to store different
records in separate clusters in case of
scan

documentAnalyzedCompatibleClass

The number of documents analyzed of
the requested class of the query. It could
be different by documentReads if records
of different classes are present in the
target of the command. For example if
you put in the same cluster documents of
class "Account" and "Invoice" you could
skip many records of type "Invoice" if
your're looking for Account instances.
Much better to store records of different
classes in separate clusters in case of
scan

involvedIndexes The indexes involved in the command

indexReads The number of records read from the
index

Syntax

396



orientdb>	explain	select	from	account

Profiled	command
'{documentReads:1126,documentReadsCompatibleClass:1126,recordReads:1126,elapsed:209,resultType:collection,resultSize:1126}'

Examples

Non indexed query

397



orientdb>	explain	select	from	profile	where	name	=	'Luca'

Profiled	command	'{involvedIndexes:[1],indexReads:1,documentAnalyzedCompatibleClass:1,elapsed:1,resultType:collection,resultSize:1}'

To know more about other SQL commands look at SQL commands.

Indexed query

398



SQL command to search all records that contains a link to a given record id in the entire
database or a subset of specified class and cluster. Returns a set of record ids.

SQL - FIND REFERENCES

399



FIND	REFERENCES	<rid|(<sub-query>)>	[class-list]

Where:

rid is the record id to search. If a sub-query is passed, then all the RIDs returned by
the sub-query will be searched. Sub-query is available since 1.0rc9
class-list list of specific class or cluster, separated by commas, you want to execute
the search in.

Returns a list of document containing 2 fields:

rid, as the original RID searched
referredBy, as a Set of RIDs containing the collection of RID that reference the
searched rid if any, otherwise the set is empty

Syntax

400



Get all the records that contains a link to 5:0

find	references	5:0

Result example:

RESULT:
+------+-----------------+
|	rid		|	referredBy						|
+------+-----------------+
|	#5:0	|	[#10:23,	#30:4]	|
+------+-----------------+

Get all the references to the record of the default cluster (available since 1.0rc9):

find	references	(select	from	cluster:default)

Get all the records in Profile and !AnimalType classes that contains a link to 5:0 :

find	references	5:0	[Profile,AnimalType]

Get all the records in Profile cluster and !AnimalType class that contains a link to 5:0

find	references	5:0	[cluster:Profile,AnimalType]

To know more about other SQL commands look at SQL SQL commands.

Examples

401



The Grant command changes the permission of a role granting the access to one or
more resources.

SQL - GRANT

402



GRANT	<permission>	ON	<resource>	TO	<role>

Where:

permission can be:
NONE, no permission
CREATE, to create the indicated resource
READ, to read the indicated resource
UPDATE, to update the indicated resource
DELETE, to delete the indicated resource
ALL, all permissions

resource, the target resource where to change the permissions
database, as the access to the whole database
database.class, as the access to the records contained in a class. Use 	**	 to
indicate all the classes
database.cluster, as the access to the records contained in a cluster. Use 	**	
to indicate all the clusters
database.query, as the ability to execute query (READ is enought)
database.command, as the ability to execute SQL commands. CREATE is for
SQL-Insert, READ is for SQL SELECT, UPDATE for SQL-Update and DELETE
is for SQL-Delete
database.config, as the ability to access to the configuration. Valid permissions
are READ and UPDATE
database.hook.record, as the ability to set hooks
server.admin, as the ability to access to the server resources

role, the role name

Syntax

403



Grant the permission to update any records in cluster Account to the role "backoffice".

GRANT	update	ON	database.cluster.Account	TO	backoffice

To know more about other SQL commands look at SQL commands.

Examples

404



The Rebuild Index command rebuilds an automatic index.

SQL - REBUILD INDEXES

405



REBUILD	INDEX	<index-name>

Where:

index-name name of the index. Use * to rebuild all the automatic indices

Syntax

406



SQL Create Index
SQL Drop Index
Indexes
SQL commands

See also

407



REBUILD	INDEX	Profile.nick

REBUILD	INDEX	*

Examples

408



The Revoke command change the permission of a role revoking the access to one or
more resources.

SQL - REVOKE

409



REVOKE	<permission>	ON	<resource>	FROM	<role>

Where:

permission can be:
NONE, no permission
CREATE, to create the indicated resource
READ, to read the indicated resource
UPDATE, to update the indicated resource
DELETE, to delete the indicated resource
ALL, all permissions

resource, the target resource where to change the permissions
database, as the access to the whole database
database.class, as the access to the records contained in a class. Use 	*	 to
indicate all the classes
database.cluster, as the access to the records contained in a cluster. Use 	*	 to
indicate all the clusters
database.query, as the ability to execute query (READ is enought)
database.command, as the ability to execute SQL commands. CREATE is for
SQL-Insert, READ is for SQL SELECT, UPDATE for SQL-Update and DELETE
is for SQL-Delete
database.config, as the ability to access to the configuration. Valid permissions
are READ and UPDATE
database.hook.record, as the ability to set hooks
server.admin, as the ability to access to the server resources

role, the role name

Syntax

410



Revoke the permission to delete any records in any cluster to the role "backoffice".

REVOKE	delete	ON	database.cluster.*	TO	backoffice

To know more about other SQL commands look at SQL commands.

Examples

411



Traverse is a special command that retrieves the connected records crossing the
relationships. This command works not only with graph API but at document level. This
means you can traverse relationships between invoice and customers without the need
to model the domain using the Graph API.

To know more look at Java-Traverse page.

In many cases SELECT can be used instead of TRAVERSE,
resulting in faster and shorter query. Take a look at Should I use
TRAVERSE or SELECT?

SQL - TRAVERSE

412



TRAVERSE	<[class.]field>|*|any()|all()
									[FROM	<target>]
									[LET	<Assignment>*]
									WHILE	<condition>
									[LIMIT	<max-records>]
									[STRATEGY	<strategy>]

fields are the list of fields you want to traverse
target can be a class, one or more clusters, a single RID, a set of RIDs or another
command like another TRAVERSE (as recursion) or a SELECT
LET is the part that bind context variables to be used in projections, conditions or
sub-queries
while condition to continue the traversing while it's true. Usually it's used to limit the
traversing depth by using 	$depth	 where x is the maximum level of depth you want to
reach. $depth is the first context variable that reports the depth level during
traversal. NOTE: the old 'where' keyword is deprecated
max-records sets the maximum result the command can return
strategy, to specify how to traverse the graph

Are the list of fields you want to traverse. If 	*	, any() or all() are specified then all the
fields are traversed. This could be costly so to optimize the traverse use the pertinent
fields. You can also specify fields at class level. Polymorphism is supported, so by
specifying Person.city and Customer class extends Person, you will traverse Customer
instances too.

Field names are case-sensitive, classes not.

Target can be:

Class is the class name to browse all the record to be traversed. You can avoid to
specify class: as prefix
Cluster with the prefix 'cluster:' is the cluster name where to execute the query
A set of RIDs inside square brackets to specify one or a small set of records. This is
useful to navigate graphs starting from some root nodes

Syntax

Fields

Target

413



A root record specifying its RID

Traverse command uses the following variables in the context:

$parent, to access to the parent's context if any. This is useful when the Traverse is
called in a sub-query
$current, current record iterated. To access to the upper level record in nested
queries use $parent.$current
$depth, as the current depth of nesting
$depth, as the current depth of nesting
$path, as the string representation of the current path. Example 	#6:0.in.#5:0#.out	.
You can also display it with -> 	select	$path	from	(traverse	**	from	V)	
$stack, as the List of operation in the stack. Use it to access to the history of the
traversal. It's a List> where process implementations are:

OTraverseRecordSetProcess, usually the first one it's the base target of
traverse
OTraverseRecordProcess, represent a traversed record
OTraverseFieldProcess, represent a traversal through a record's field
OTraverseMultiValueProcess, use on fields that are multivalue: arrays,
collections and maps

$history, as the set of all the records traversed as a 	Set<ORID>	.

Context

414



Assuming #10:1234 is the RID of the record to start traversing:

traverse	*	from	#10:1234

In a social-network-like domain a profile is linked to all the friends. Below some
commands.

Assuming #10:1234 is the RID of the record to start traversing get all the friends up to
the third level of depth using the BREADTH_FIRST strategy:

traverse	friends	from	#10:1234	while	$depth	<=	3	strategy	BREADTH_FIRST

In case you want to filter per minimum depth create a predicate in the select. Example
like before but excluding the first target vertex (#10:1234):

select	from	(	traverse	friends	from	#10:1234	while	$depth	<=	3	)	where	$depth	>=	1

NOTE: You can also define the maximum depth in the SELECT clause but it's much
more efficient to set it at the inner TRAVERSE statement because the returning record
sets are already filtered by depth

Traverse command can be combined with SQL SELECT statement to filter the result set.
Below the same example above but filtering by Rome as city:

select	from	(	traverse	friends	from	#10:1234	while	$depth	<=	3	)	where	city	=	'Rome'

Examples

Traverse all the fields of a root record

Social Network domain

Specify fields and depth level

Mix with select to have more power

415



Another example to extract all the movies of actors that have worked, at least once, in
any movie produced by J.J. Abrams:

select	from	(
		traverse	Movie.actors,	Actor.movies	from	(
				select	from	Movie	where	producer	=	"J.J.	Abrams"
		)	while	$depth	<=	3
)	where	@class	=	'Movie'

To return or use the current path in traversal refer to the $path variable:

select	$path	from	(	traverse	out	from	V	while	$depth	<=	10	)

Display the current path

416



If traversing information, such as relationship names and depth level, are known at priori,
please consider using SELECT instead of TRAVERSE. SELECT is faster on this case.
Example:

This query traverses the "follow" relationship of Twitter accounts getting the 2nd level of
friendship:

SELECT	FROM	(
		TRAVERSE	out('follow')	FROM	TwitterAccounts	WHERE	$depth	<=	2
)	WHERE	$depth	=	2

But can be expressed also with SELECT and it's shorter and faster:

SELECT	out('follow').out('follow')	FROM	TwitterAccounts

Should I use TRAVERSE or SELECT?

417



Even if the TRAVERSE command can be used with any domain model, the place where
is more used is the Graph-Database model.

Following this model all is based on the concepts of the Vertex (or Node) as the class
"V" and the Edge (or Arc, Connection, Link, etc.) as the class "E". So if you want to
traverse in a direction you have to use the class name when declare the traversing
fields. Below the directions:

OUTGOING, use 	V.out,	E.in	 because vertices are connected with the "out" field
but the edge exits as "in" field.
INCOMING, use 	V.in,	E.out	 because vertices are connected with the "in" field but
the edge enters as "out" field.

Example of traversing all the outgoing vertices found starting from the vertex with id
#10:3434:

traverse	V.out,	E.in	from	#10:3434

So in a mailing-like domain to find all the messages sent in 1/1/2012 from the user 'Luca'
assuming it's stored in the 'User' Vertex class and that messages are contained in the
'Message' Vertex class. Sent messages are stored as "out" connections of Edge class
'SentMessage':

select	from	(
		traverse	V.out,	E.in	from	(
				select	from	User	where	name	=	'Luca'
		)	while	$depth	<=	2	and	(@class	=	'Message'	||	(	@class	=	'SentMessage'	and	sentOn	=	'01/01/2012'
)	where	@class	=	'Message'

Using TRAVERSE with Graph model and API

418



Before the introducing of TRAVERSE command OrientDB has the TRAVERSE operator
but worked in the opposite way and it was applied in the WHERE condition.

TRAVERSE operator is deprecated. Please use the TRAVERSE command together with
SELECT command to have much more power!

The syntax of the old TRAVERSE operator was:

SELECT	FROM	<target>	WHERE	<field>	TRAVERSE[(<minDeep>	[,<maxDeep>	[,<fields>]])]	(<conditions>)

WARNING: THIS SYNTAX WILL NOT BE SUPPORTED
ANYMORE IN v. 2.1

Where:

target can be one of listed above
field can be:

out, as the outgoing edges
in, as the incoming edges
any attribute of the vertex
any(), means any of the field considering also in and out
all(), means all the fields considering also in and out

minDeep is the minimum deep level to start to apply the conditions. Usually is 0 for
the root vertex or 1 for the just-outgoing vertexes
maxDeep, optionally limits the maximum deep level to reach. -1 means infinite.
Default is -1
fields, optionally tells the field list to traverse. Default is any()
conditions are the conditions to check for any traversed vertex. To know more
about the query syntax see SQL syntax

Operator TRAVERSE

Examples

419

http://code.google.com/p/orient/wiki/SQLWhere


Example of a query that returns all the vertices that have at least one friend (connected
with out), up to the 3rd degree, that lives in Rome:

select	from	Profile	where	any()	traverse(0,3)	(city	=	'Rome')

This can be rewritten using the most power TRAVERSE command:

select	from	Profile
let	$temp	=	(
		select	from	(
				traverse	*	from	$current	while	$depth	<=	3
		)
		where	city	=	'Rome'
)
where	$temp.size()	>	0

Vertex edge Vertex User----->Friends----->User Label='f'

select	distinct(in.lid)	as	lid,distinct(in.fid)	as	fid			from	(traverse	V.out,	E.in	from	#10:

SELECT	distinct(in.lid)	as	lid,	distinct(in.fid)	as	fid	FROM	(
		TRAVERSE	V.out,	E.in	FROM	#10:11	WHILE	$depth	<=3
)	WHERE	@class='Friends'

To know more about other SQL commands look at SQL commands.

Examples Of Graph Query.

Query to Find the first level friends of User Whose record
Id is #10:11

2nd level friends of a user, to find that we have to just
change the depth to 3

420



The Truncate Class command deletes the records of all the clusters defined as part of
the class. By default every class has one cluster associated with the same name. This
command acts at lower level then SQL Delete Command.

SQL - TRUNCATE CLASS

421



TRUNCATE	CLASS	<class-name>

Where:

class-name is the name of the class

Syntax

422



Remove all the record of class "Profile":

TRUNCATE	CLASS	Profile

See also SQL Delete Command and SQL Truncate Cluster Command. To create a new
class use the Create Class command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

423



The Truncate Cluster command deletes all the records of a cluster. This command acts
at lower level then SQL Delete Command.

SQL - TRUNCATE CLUSTER

424



TRUNCATE	CLUSTER	<cluster-name>

Where:

cluster-name is the name of the cluster

Syntax

425



Remove all the records in the cluster "Profile":

TRUNCATE	CLUSTER	Profile

See also SQL Delete Command and SQL Truncate Class commands.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

426



The Truncate Record command truncates a record without loading it. Useful when the
record is dirty in any way and can't be loaded correctly.

SQL - TRUNCATE RECORD

427



TRUNCATE	RECORD	<rid>*

Where:

rid RecordID to truncate. To truncate multiple records in one shot, list all the
RecordIDs separated by comma inside squared brackets.

The number of records truncated.

Syntax

Returns

428



Truncates the record #20:3:

TRUNCATE	RECORD	20:3

Truncates 3 records all together:

TRUNCATE	RECORD	[20:0,	20:1,	20:2]

See also SQL Delete Command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

429



OrientDB is written 100% in Java. You can use the native Java APIs without any driver
or adapter. Here the Javadocs.

Java API

430

http://www.orientechnologies.com/javadoc/latest/


OrientDB provides 3 different Java APIs to work with OrientDB. Each one has pros and
cons.

Which API to choose between Graph and Document? Look also at Graph-or-Document-
API?.

Use OrientDB as a Graph Database working with Vertices and Edges. Graph API is
100% compliant with TinkerPop standard.

API: Graph API

Handles records as documents. Documents are comprised of fields. Fields can be any of
the types supported. Does not need a Java domain POJO, as required for the Object
Database. Can be used as schema-less or schema-base modes.

API: Document API

Architecture of components

Graph API

Document API

Object API

431

http://www.tinkerpop.com


It's the JPA like interface where POJO are automatically bound to the database as
documents. Can be used in schema-less or schema-based modes. This API hasn't been
improved since OrientDB 1.5. Please consider using Document or Graph API by writing
an additional layer of mapping with your POJO.

API: Object Database

432



Graph Document Object

API Graph API Document API Object Database

Use this
if

You work with
graphs and
want your code
to be portable
across
TinkerPop
Blueprints
implementations

Your domain fits better
the Document
Database use case with
schema-less
structures

If you need a full
Object Oriented
abstraction that
binds all the
database entities to
POJO (Plain Old
Java Object)

Easy to
switch
from

Other
GraphDBs like
Neo4J or Titan.
If you used
TinkerPop
standard
OrientDB is a
drop-in
replacement

Other DocumentDB like
MongoDB and
CouchDB

JPA applications

Java
class OrientGraph ODatabaseDocumentTx OObjectDatabaseTx

Query Yes Yes Yes

Schema
Less Yes Yes Yes

Schema
full Yes Yes Yes

Speed	*	 90% 100% 50%

	*	 Speed comparison for generic CRUD operations such as query, insertion, update and
deletion. Larger is better. 100% is fastest. In general the price of a high level of
abstraction is a speed penalty, but remember that Orient is orders of magnitude faster
than the classic RDBMS. So using the Object Database gives you a high level of
abstraction with much less code to develop and maintain.

What to use? Feature Matrix

433

https://github.com/orientechnologies/orientdb/blob/master/graphdb/src/main/java/com/tinkerpop/blueprints/impls/orient/OrientGraph.java
http://www.orientechnologies.com/javadoc/latest/index.html?com/orientechnologies/orient/core/db/document/ODatabaseDocumentTx.html
http://www.orientechnologies.com/javadoc/latest/index.html?com/orientechnologies/orient/object/db/OObjectDatabaseTx.html


OrientDB comes with some jar files contained in the lib directory

JAR name Description When required Depends on 3rd
party jars

	orientdb-
core-*.jar	 Core library Always

	snappy-*.jar	 as
optional,
performance pack:
	orientdb-nativeos-
*.jar	, 	jna-*.jar	
and 	jna-platform-
*.jar	

	orientdb-
client-
*.jar	

Remote client
When your application
talks with a remote
server

	orientdb-
enterprise-
*.jar	

Base package
with the
protocol and
network
classes
shared by
client and
server

When your application
talks with a remote
server

	orientdb-
server-
*.jar	

Server
component

It's used by the server
component. Include it
only if you're
embedding a server

	orientdb-
tools-*.jar	

Contain the
console and
console
commands

Never, unless you
want to execute
console command
directly by your
application. Used by
the console
application

	orientdb-
object-
*.jar	

Contain the
Object
Database
interface

Include it if you're
using this interface

	javassist.jar	,
	persistence-api-
1.0.jar	

	orientdb-
graphdb-
*.jar	

Contain the
GraphDB
interface

Include it if you're
using this interface

	blueprints-core-
*.jar	

	orientdb-
distributed-
*.jar	

Contain the
distributed
plugin

Include it if you're
working with a server
cluster

	hazelcast-*.jar	

Which library do I use?

434



To use the Graph API include the following jars in your classpath:

orient-commons-*.jar
orientdb-core-*.jar
blueprints-core-*.jar
orientdb-graphdb-*.jar	
(blueprints-orient-graph-*.jar	only	for	OrientDB	<	v1.7)

If you're connected to a remote server (not local/plocal/memory modes) include also:

orientdb-client-*.jar
orientdb-enterprise-*.jar

To also use the TinkerPop Pipes tool include also:

pipes-*.jar

To also use the TinkerPop Gremlin language include also:

gremlin-java-*.jar
gremlin-groovy-*.jar
groovy-*.jar

NOTE: Starting from v2.0, Lightweight Edges are disabled by default when new
database are created.

Graph API

435

http://wiki.github.com/tinkerpop/pipes
http://wiki.github.com/tinkerpop/gremlin


Tinkerpop is a complete stack of projects to handle Graphs:

Blueprints provides a collection of interfaces and implementations to common,
complex data structures. In short, Blueprints provides a one stop shop for
implemented interfaces to help developers create software without being tied to
particular underlying data management systems.
Pipes is a graph-based data flow framework for Java 1.6+. A process graph is
composed of a set of process vertices connected to one another by a set of
communication edges. Pipes supports the splitting, merging, and transformation of
data from input to output.
Gremlin is a Turing-complete, graph-based programming language designed for
key/value-pair multi-relational graphs. Gremlin makes use of an XPath-like syntax to
support complex graph traversals. This language has application in the areas of
graph query, analysis, and manipulation.
Rexster is a RESTful graph shell that exposes any Blueprints graph as a
standalone server. Extensions support standard traversal goals such as search,
score, rank, and, in concert, recommendation. Rexster makes extensive use of
Blueprints, Pipes, and Gremlin. In this way its possible to run Rexster over various
graph systems. To configure Rexster to work with OrientDB follow this guide:
configuration.

Introduction

436

http://www.tinkerpop.com
http://wiki.github.com/tinkerpop/blueprints
http://pipes.tinkerpop.com
http://wiki.github.com/tinkerpop/gremlin
http://rexster.tinkerpop.com


OrientDB supports different kind of storages and depends by the Database URL used:

Persistent embedded GraphDB. OrientDB is linked to the application as JAR (No
network transfer). Use plocal as prefix. Example "plocal:/tmp/graph/test"
In-Memory embedded GraphDB. Keeps all the data only in memory. Use memory
as prefix. Example "memory:test"
Persistent remote GraphDB. Uses a binary protocol to send and receive data from
a remote OrientDB server. Use remote as prefix. Example "remote:localhost/test". It
requires a OrientDB Server instance is up and running at the specified address
(localhost in this case). Remote database can be persistent or in-memory as well.

Get started with Blueprints

437



Before working with a graph you need an instance of OrientGraph class. The constructor
gets a URL that is the location of the database. If the database already exists, it will be
opened, otherwise it will be created. In multi-threaded applications use one OrientGraph
instance per thread.

Remember to always close the graph once done using the 	.shutdown()	 method.

Example:

OrientGraph	graph	=	new	OrientGraph("plocal:C:/temp/graph/db");
try	{
		...
}	finally	{
		graph.shutdown();
}

Working with the GraphDB

438

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html


Starting from v1.7 the best way to get a Graph instance is through the
OrientGraphFactory. To know more: Use the Graph Factory. Example:

//	AT	THE	BEGINNING
OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:C:/temp/graph/db").setupPool(1,10

//	EVERY	TIME	YOU	NEED	A	GRAPH	INSTANCE
OrientGraph	graph	=	factory.getTx();
try	{
		...

}	finally	{
			graph.shutdown();
}

Use the factory

439

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraphFactory.html


Every time the graph is modified an implicit transaction is started automatically if no
previous transaction was running. Transactions are committed automatically when the
graph is closed by calling the 	shutdown()	 method or by explicit 	commit()	. To rollback
changes call the 	rollback()	 method.

Changes inside a transaction will be temporary until the commit or the close of the graph
instance. Concurrent threads or external clients can see the changes only when the
transaction has been fully committed.

Full example:

try{
		Vertex	luca	=	graph.addVertex(null);	//	1st	OPERATION:	IMPLICITLY	BEGIN	A	TRANSACTION
		luca.setProperty(	"name",	"Luca"	);
		Vertex	marko	=	graph.addVertex(null);
		marko.setProperty(	"name",	"Marko"	);
		Edge	lucaKnowsMarko	=	graph.addEdge(null,	luca,	marko,	"knows");
		graph.commit();
}	catch(	Exception	e	)	{
		graph.rollback();
}

Surrounding the transaction between a try/catch assures that any errors will rollback the
transaction to the previous status for all the involved elements.

NOTE: To work against a graph always use transactional OrientGraph instances and
never non-transactional ones to avoid graph corruption from multi-threaded changes.

Transactions

440

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientGraph.html


To create a new Vertex in the current Graph call the Vertex
OrientGraph.addVertex(Object id)) method. Note that the id parameter is ignored since
OrientDB implementation assigns a unique-id once the vertex is created. To return it use
Vertex.getId()). Example:

Vertex	v	=	graph.addVertex(null);
System.out.println("Created	vertex:	"	+	v.getId());

Working with Vertices and Edges

Create a vertex

441

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#addVertex(java.lang.Object
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getId(


An Edge links two vertices previously created. To create a new Edge in the current
Graph call the Edge OrientGraph.addEdge(Object id, Vertex outVertex, Vertex inVertex,
String label )) method. Note that the id parameter is ignored since OrientDB
implementation assigns a unique-id once the Edge is created. To return it use
Edge.getId()). 	outVertex	 is the Vertex instance where the Edge starts and 	inVertex	 is
the Vertex instance where the Edge ends. 	label	 is the Edge's label. Specify null to not
assign it. Example:

Vertex	luca	=	graph.addVertex(null);
luca.setProperty("name",	"Luca");

Vertex	marko	=	graph.addVertex(null);
marko.setProperty("name",	"Marko");

Edge	lucaKnowsMarko	=	graph.addEdge(null,	luca,	marko,	"knows");
System.out.println("Created	edge:	"	+	lucaKnowsMarko.getId());

Create an edge

442

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#addEdge(java.lang.Object,-Vertex,-Vertex,-java.lang.String
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getId(


To retrieve all the vertices use the 	getVertices()	 method:

for	(Vertex	v	:	graph.getVertices())	{
				System.out.println(v.getProperty("name"));
}

Retrieve all the Vertices

443



To retrieve all the vertices use the getEdges()) method:

for	(Edge	e	:	graph.getEdges())	{
				System.out.println(e.getProperty("age"));
}

NOTE: Starting from OrientDB v1.4.x (until 2.0, where the opposite is true) edges by
default are stored as links not as records (i.e. useLightweightEdges=true by default).
This is to improve performance. As a consequence, getEdges will only retrieve records
of class E. With useLightweightEdges=true, records of class E are only created under
certain circumstances (e.g. if the Edge has properties) otherwise they will be links on the
in and out vertices. If you really want 	getEdges()	 to return all edges, disable the
Lightweight-Edge feature by executing this command once: 	alter	database	custom
useLightweightEdges=false	. This will only take effect for new edges so you'll have to convert
the links to actual edges before getEdges will return all edges. For more information look
at: https://github.com/orientechnologies/orientdb/wiki/Troubleshooting#why-i-cant-see-
all-the-edges.

Retrieve all the Edges

444

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#getEdges(
https://github.com/orientechnologies/orientdb/wiki/Troubleshooting#why-i-cant-see-all-the-edges


To remove a vertex from the current Graph call the OrientGraph.removeVertex(Vertex
vertex)) method. The vertex will be disconnected from the graph and then removed.
Disconnection means that all the vertex's edges will be deleted as well. Example:

graph.removeVertex(luca);

Removing a Vertex

445

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#removeVertex(Vertex


To remove an edge from the current Graph call the OrientGraph.removeEdge(Edge
edge)) method. The edge will be removed and the two vertices will not be connected
anymore. Example:

graph.removeEdge(lucaKnowsMarko);

Removing an Edge

446

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientBaseGraph.html#removeEdge(Edge


Vertices and Edges can have multiple properties where the key is a String and the value
can be any supported OrientDB types.

To set a property use the method setProperty(String key, Object value)).
To get a property use the method Object getProperty(String key)).
To get all the properties use the method Set<String> getPropertyKeys()).
To remove a property use the method void removeProperty(String key)).

Example:

vertex2.setProperty("x",	30.0f);
vertex2.setProperty("y",	((float)	vertex1.getProperty(	"y"	))	/	2);

for	(String	property	:	vertex2.getPropertyKeys())	{
						System.out.println("Property:	"	+	property	+	"="	+	vertex2.getProperty(property));
}

vertex1.removeProperty("y");

Blueprints Extension OrientDB Blueprints implementation supports setting of multiple
properties in one shot against Vertices and Edges. This improves performance avoiding
to save the graph element at every property set: setProperties(Object ...)). Example:

vertex.setProperties(	"name",	"Jill",	"age",	33,	"city",	"Rome",	"born",	"Victoria,	TX"	);

You can also pass a Map of values as first argument. In this case all the map entries will
be set as element properties:

Map<String,Object>	props	=	new	HashMap<String,Object>();
props.put("name",	"Jill");
props.put("age",	33);
props.put("city",	"Rome");
props.put("born",	"Victoria,	TX");
vertex.setProperties(props);

Set and get properties

Setting Multiple Properties

447

http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#setProperty(java.lang.String,-java.lang.Object
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#getProperty(java.lang.String
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientVertex.html#getPropertyKeys(
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#removeProperty(java.lang.String
http://www.orientechnologies.com/javadoc/latest/com/tinkerpop/blueprints/impls/orient/OrientElement.html#setProperties(java.lang.Object...


If you want to create a vertex or an edge while setting the initial properties, the OrientDB
Blueprints implementation offers new methods to do it:

graph.addVertex("class:Customer",	"name",	"Jill",	"age",	33,	"city",	"Rome",	"born",	"Victoria,	TX"

This creates a new Vertex of class 	Customer	 with the properties: 	name	, 	age	, 	city	, and
	born	. The same is for Edges:

person1.addEdge("class:Friend",	person2,	null,	null,	"since",	"2013-07-30");

This creates a new Edge of class 	Friend	 between vertices 	person1	 and 	person2	 with the
property 	since	.

Both methods accept a 	Map<String,	Object>	 as a parameter to set one property per map
entry (see above for the example).

These methods are especially useful if you've declared constraints in the schema. For
example, a property cannot be null, and only using these methods will the validation
checks succeed.

Creating Element and properties all together

448



OrientDB allows execution queries against any field of vertices and edges, indexed and
not-indexed. The first rule to speed up queries is to setup indices on the key properties
you use in the query. For example, if you have a query that is looking for all the vertices
with the name 'OrientDB' you do this:

graph.getVertices("name",	"OrientDB");

Without an index against the property "name" this execution could take a lot of time. So
let's create a new index against the "name" property:

graph.createKeyIndex("name",	Vertex.class);

If the name MUST be unique you can enforce this constraint by setting the index as
"UNIQUE" (this is an OrientDB only feature):

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("type",	"UNIQUE"));

This constraint will be applied to all the Vertex and sub-type instances. To specify an
index against a custom type like the "Customer" vertices use the additional parameter
"class":

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("class",	"Customer"));

You can also have both UNIQUE index against custom types:

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("type",	"UNIQUE"),	new	Parameter("class"

To get a vertex or an edge by key prefix use the class name before the property. For the
example above use 	Customer.name	 in place of only 	name	 to use the index created against
the field 	name	 of class 	Customer	:

Using Indices

449



for	(Vertex	v	:	graph.getVertices("Customer.name",	"Jay"))	{
				System.out.println("Found	vertex:	"	+	v);
}

If the class name is not passed, then "V" is taken for vertices and "E" for edges:

graph.getVertices("name",	"Jay");
graph.getEdges("age",	20);

For more information about indices look at Index guide.

450



To speed up operations like on massive insertions you can avoid transactions by using a
different class than OrientGraph: OrientGraphNoTx. In this case each operation is
atomic and data is updated at each operation. When the method returns, the underlying
storage is updated. Use this for bulk inserts and massive operations.

NOTE: Using non-transactional graphs could create corruption in the graph if changes
are made in multiple threads at the same time. So use non-transactional graph instances
only for non multi-threaded operations.

Using Non-Transactional Graphs

451



Starting from v1.6 OrientDB supports configuration of the graph by setting all the
properties during construction:

Name Description Default
value

blueprints.orientdb.url Database
URL -

blueprints.orientdb.username User name admin

blueprints.orientdb.password User
password admin

blueprints.orientdb.saveOriginalIds

Saves the
original
element IDs
by using the
property id.
This could be
useful on
import of a
graph to
preserve
original ids.

false

blueprints.orientdb.keepInMemoryReferences

Avoids
keeping
records in
memory by
using only
RIDs

false

blueprints.orientdb.useCustomClassesForEdges

Uses the
Edge's label
as OrientDB
class. If it
doesn't exist
create it under
the hood.

true

blueprints.orientdb.useCustomClassesForVertex

Uses Vertex's
label as
OrientDB
class. If it
doesn't exist
create it under
the hood.

true

blueprints.orientdb.useVertexFieldsForEdgeLabels

Stores the
Edge's
relationships
in the Vertex
by using the
Edge's class.
This allows
using multiple

true

Configure the Graph

452



fields and
makes faster
traversal by
edge's label
(class).

blueprints.orientdb.lightweightEdges

Uses
lightweight
edges. This
avoids
creating a
physical
document per
edge.
Documents
are created
only when the
Edges have
properties.

true

blueprints.orientdb.autoStartTx

Auto starts a
transaction as
soon as the
graph is
changed by
adding/remote
vertices and
edges and
properties.

true

453



If you use GREMLIN language with OrientDB remember to initialize it with:

OGremlinHelper.global().create()

Look at these pages about GREMLIN usage:

How to use the Gremlin language with OrientDB
Getting started with Gremlin
Usage of Gremlin through HTTP/RESTful API using the Rexter project.

Gremlin usage

454

http://github.com/tinkerpop/gremlin/wiki/Getting-Started
https://github.com/tinkerpop/rexster/wiki/Using-Gremlin


Multi-threaded applications must use one OrientGraph instance per thread. For more
information about multi-threading look at Java Multi Threading.

Multi-Threaded Applications

455



OrientDB is a Graph Database on steroids because it merges the graph, document, and
object-oriented worlds together. Below are some of the features exclusive to OrientDB.

Blueprints Extensions

456



OrientDB supports custom types for vertices and edges in an Object Oriented manner.
Even if this isn't supported directly by Blueprints there are some tricks to use them. Look
at the Graph Schema page to know how to create a schema and work against types.

OrientDB added a few variants to the Blueprints methods to work with types.

By default each class has one cluster with the same name. You can add multiple
clusters to the class to allow OrientDB to write vertices and edges on multiple files.
Furthermore working in Distributed Mode each cluster can be configured to be managed
by a different server.

Example:

//	SAVE	THE	VERTEX	INTO	THE	CLUSTER	'PERSON_USA'	ASSIGNED	TO	THE	NODE	'USA'
graph.addVertex("class:Person,cluster:Person_usa");

To retrieve all the vertices of 	Person	 class use the special 	getVerticesOfClass(String
className)	 method:

for	(Vertex	v	:	graph.getVerticesOfClass("Person"))	{
				System.out.println(v.getProperty("name"));
}

All the vertices of class Person and all subclasses will be retrieved. This is because by
default polymorphism is used. If you're interested ONLY into 	Person	 vertices (excluding
any sub-types) use the 	getVerticesOfClass(String	className,	boolean	polymorphic)	 method
specifying 	false	 in the second argument 	polymorphic	:

for	(Vertex	v	:	graph.getVerticesOfClass("Person",	false))	{
				System.out.println(v.getProperty("name"));
}

Custom types

Creating vertices and edges in specific clusters

Retrieve vertices and edges by type

457



The same variants also apply to the 	getEdges()	 method as:

	getEdgesOfClass(String	className)	 and
	getEdgesOfClass(String	className,	boolean	polymorphic)	

458



OrientDB, by default, uses a set to handle the edge collection. Sometimes it's better
having an ordered list to access the edge by an offset. Example:

person.createEdgeProperty(Direction.OUT,	"Photos").setOrdered(true);

Every time you access the edge collection the edges are ordered. Below is an example
to print all the photos in an ordered way.

for	(Edge	e	:	loadedPerson.getEdges(Direction.OUT,	"Photos"))	{
		System.out.println(	"Photo	name:	"	+	e.getVertex(Direction.IN).getProperty("name")	);
}

To access the underlying edge list you have to use the Document Database API. Here's
an example to swap the 10th photo with the last.

//	REPLACE	EDGE	Photos
List<ODocument>	photos	=	loadedPerson.getRecord().field("out_Photos");
photos.add(photos.remove(9));

Ordered Edges

459



When you work with web applications, it’s very common to query elements and render
them to the user to let him apply some changes. Once the user updates some fields and
presses the “save” button, what happens?

Before now the developer had to track the changes in a separate structure, load the
vertex/edge from the database, and apply the changes to the element.

Starting with OrientDB v1.7 we added two new methods to the Graph API on the
OrientElement and OrientBaseGraph classes:

	OrientElement.detach()	

	OrientElement.attach()	

	OrientBaseGraph.detach(OrientElement)	

	OrientBaseGraph.attach(OrientElement)	

Detach methods fetch all the record content in RAM and reset the connection to the
Graph instance. This allows you to modify the element off-line and to re-attach it once
finished.

Once the detached element has been modified, to save it back to the database you need
to call the 	attach()	 method. It restores the connection between the Graph Element and
the Graph Instance.

The first step is load a vertex and detach it.

OrientGraph	g	=	OrientGraph("plocal:/temp/db");
try	{
				Iterable<OrientVertex>	results	=	g.query().has("name",	EQUALS,	"fast");
				for	(OrientVertex	v	:	results)
								v.detach();
}	finally	{
				g.shutdown();
}

Working on detached elements

Detach

Attach

Example

460



After a while the element is updated (from GUI or by application)

v.setProperty("name",	"super	fast!");

On “save” re-attach the element and save it to the database.

OrientGraph	g	=	OrientGraph("plocal:/temp/db");
try	{
				v.attach(g);
				v.save();
}	finally	{
				g.shutdown();
}

Does detach go recursively to detach all connected elements? No, it works only at
the current element level.

Can I add an edge against detached elements? No, you can only get/set/remove a
property while is detached. Any other operation that requires the database will throw an
IllegalStateException.

FAQ

461



OrientDB supports optimistic transactions, so no lock is kept when a transaction is
running, but at commit time each graph element version is checked to see if there has
been an update by another client. This is the reason why you should write your code to
be concurrency-proof by handling the concurrent updating case:

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{
				try	{
								//	LOOKUP	FOR	THE	INVOICE	VERTEX
								Vertex	invoice	=	graph.getVertices("invoiceId",	2323);
								//	CREATE	A	NEW	ITEM
								Vertex	invoiceItem	=	graph.addVertex("class:InvoiceItem");
								invoiceItem.field("price",	1000);
								//	ADD	IT	TO	THE	INVOICE
								invoice.addEdge(invoiceItem);
								graph.commit();
								break;
				}	catch(	OTransactionException	e	)	{
								//	SOMEONE	HAVE	UPDATE	THE	INVOICE	VERTEX	AT	THE	SAME	TIME,	RETRY	IT
				}
}

Starting with v.1.5, transactions are automaticaly retried if a timeout exception occurs.
This happens in case of deadlocks or network latency. By default the AutoRetry setting
is 10, but you can change it or disable it by setting it to 0, by calling:

((OTransactionOptimistic)	graph.getRawGraph().getTransaction()).setAutoRetries(	0	);

Transactions

Auto-retry

462



The OrientDB Blueprints implementation allows you to execute commands using SQL,
Javascript, and all the other supported languages.

for	(Vertex	v	:	(Iterable<Vertex>)	graph.command(
												new	OCommandSQL("select	expand(	out('bough')	)	from	Customer	where	name	=	'Jay'")).execute())	{
				System.out.println("-	Bought:	"	+	v);
}

To execute an asynchronous query:

graph.command(
										new	OSQLAsynchQuery<Vertex>("select	from	Member",
												new	OCommandResultListener()	{
														int	resultCount	=0;
														@Override
														public	boolean	result(Object	iRecord)	{
																resultCount++;
																Vertex	doc	=	graph.getVertex(	iRecord	);
															return	resultCount	<	100;
														}
												}	).execute();

Along with queries, you can execute any SQL command like 	CREATE	VERTEX	, 	UPDATE	, or
	DELETE	VERTEX	. In the example below it sets a new property called "local" to true on all the
Customers that live in Rome:

int	modified	=	graph.command(
										new	OCommandSQL("UPDATE	Customer	SET	local	=	true	WHERE	'Rome'	IN	out('lives').name"

If the command modifies the schema (like 	create/alter/drop	class	 and 	create/alter/drop
property	 commands), remember to force updating of the schema of the database
instance you're using by calling 	reload()	:

Execute commands

SQL queries

SQL commands

463



graph.getRawGraph().getMetadata().getSchema().reload();

For more information look at the available SQL commands.

To execute multiple SQL commands in a batch, use the OCommandScript and SQL as
the language. This is recommended when creating edges on the server side, to minimize
the network roundtrip:

String	cmd	=	"begin\n";
cmd	+=	"let	a	=	create	vertex	set	script	=	true\n";
cmd	+=	"let	b	=	select	from	v	limit	1\n";
cmd	+=	"let	e	=	create	edge	from	$a	to	$b	retry	100\n";
cmd	+=	"commit\n";
cmd	+=	"return	$e";

OIdentifiable	edge	=	graph.command(new	OCommandScript("sql",	cmd)).execute();

For more information look at SQL Batch.

To execute a database function it must be written in Javascript or any other supported
languages. In the example below we imagine having written the function
	updateAllTheCustomersInCity(cityName)	 that executes the same update like above. Note the
'Rome' attribute passed in the 	execute()	 method:

graph.command(
										new	OCommandFunction("updateAllTheCustomersInCity")).execute("Rome"));

To execute code on the server side you can select between the supported language (by
default Javascript):

graph.command(
										new	OCommandScript("javascript",	"for(var	i=0;i<10;++i){	print('\nHello	World!');	}"

SQL batch

Database functions

Code

464



This prints the line "Hello World!" ten times in the server console or in the local console if
the database has been opened in "plocal" mode.

465



Since the TinkerPop Blueprints API is quite raw and doesn't provide ad-hoc methods for
very common use cases, you might need to access the underlying ODatabaseGraphTx
object to better use the graph-engine under the hood. Commons operations are:

Count incoming and outgoing edges without browsing them all
Get incoming and outgoing vertices without browsing the edges
Execute a query using SQL-like language integrated in the engine

The OrientGraph class provides the method 	.getRawGraph()	 to return the underlying
database: [Document Database].

Example:

final	OrientGraph	graph	=	new	OrientGraph("plocal:C:/temp/graph/db");
try	{
		List<ODocument>	result	=	graph.getRawGraph().query(
																																			new	OSQLSynchQuery("select	from	V	where	color	=	'red'"));
}	finally	{
		graph.shutdown();
}

Access to the underlying Graph

466

http://github.com/tinkerpop/blueprints/blob/master/blueprints-orient-graph/src/main/java/com/tinkerpop/blueprints/pgm/impls/orientdb/OrientGraph.java


If you want to use OrientDB security, use the constructor that retrieves the URL, user
and password. To know more about OrientDB security visit Security. By default the
"admin" user is used.

Security

467



Look at the Performance Tuning Blueprints page.

Tuning

468



TinkerPop Blueprints standard doesn’t define a proper "Factory" to get graph instances.
For this reason OrientDB users that wanted to use a pool of instances had to mix 2
different API: Graph and Document one. Example:

ODatabaseDocumentPool	pool	=	new	ODatabaseDocumentPool("plocal:/temp/mydb");
OrientGraph	g	=	new	OrientGraph(pool.acquire());

Now everything is simpler, thanks to the new OrientGraphFactory class to manage
graphs in easy way. These are the main features:

by default acts as a factory by creating new database instances every time
can be configured to work as a pool, by recycling database instances
if the database doesn’t exist, it’s created automatically (but in "remote" mode)
returns transactional and non-transactional instances
on 	graph.shutdown()	 the pooled instance is returned to the pool to be reused

This is the basic way to create the factory, by using the default "admin" user (with
"admin" password by default):

OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:/temp/mydb");

But you can also pass user and password:

OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:/temp/mydb",	"jayminer",	"amigarocks"

To work with a recyclable pool of instances with minimum 1, maximum 10 instances:

OrientGraphFactory	factory	=	new	OrientGraphFactory("plocal:/temp/mydb").setupPool(1,	10);

Once the factory is configured you can get a Graph instance to start working.
OrientGraphFactory has 2 methods to retrieve a Transactional and Non-Transactional
instance:

Graph Factory

469

https://github.com/tinkerpop/blueprints/wiki


OrientGraph	txGraph	=	factory.getTx();
OrientGraphNoTx	noTxGraph	=	factory.getNoTx();

Or again you can configure in the factory the instances you want and use the get()
method every time:

factory.setTransactional(false);
OrientGraphNoTx	noTxGraph	=	(OrientGraphNoTx)	factory.get();

To return the Graph instance to the pool, call the shutdown method on graph instance.
	shutdown()	 will not close the graph instance, but will keep open and available for the next
requester:

graph.shutdown();

To release all the instances and free all the resources (in case of pool usage), call the
close():

factory.close();

470



Although OrientDB can work in schema-less mode, sometimes you need to enforce your
data model using a schema. OrientDB supports schema-full or schema-hybrid solutions
where the second one means to set such constraints only for certain fields and leave the
user to add custom fields to the records. This mode is at class level, so you can have the
"Employee" class as schema-full and "EmployeeInformation" class as schema-less.

Schema-Full: enable the strict-mode at class level and set all the fields as
mandatory
Schema-Less: create classes with no properties. Default mode is non strict-mode
so records can have arbitrary fields
Schema-Hybrid, called also Schema-Mixed is the most used: create classes and
define some fields but leave the record to define own custom fields

NOTE: Changes to the schema are not transactional, so execute them outside a
transaction.

For a tutorial look at the following links:

Orient Technologies's Blog post about Using Schema with Graphs

Graph Schema

471

http://orientechnologies.blogspot.it/2013/08/orientdb-using-schema-with-graphs.html


A Class, or type, is a concept taken from the Object Oriented paradigm. In OrientDB
defines a type of record. It's the closest concept to a Relational DBMS Table. Class can
be schema-less, schema-full or mixed. A class can inherit from another shaping a tree of
classes. Inheritance means that the sub-class extends the parent one inheriting all the
attributes as they was own.

A class must have at least one cluster defined (as its default cluster), but can support
multiple ones. In this case By default OrientDB will write new records in the default
cluster, but reads will always involve all the defined clusters. When you create a new
class by default a new physical cluster is created with the same name of the class in
lower-case.

The Graph structure is based on two classes: "V" for Vertices and "E" for Edges. These
class are automatically built once a database is built using the mode "graph". If you don't
have these classes just create them (see below).

You can build a graph using V and E instances but it's strongly suggested to use custom
types for vertices and edges.

To create a custom Vertex class (or type) use the 	createVertexType(<name>)	:

OrientGraph	graph	=	new	OrientGraph("local:/temp/db");
OrientVertexType	account	=	graph.createVertexType("Account");

To create a vertex of type "Account" pass a string with the format 	"class:<name>"	 as
vertex id:

Vertex	v	=	graph.addVertex("class:Account");

Since classes are polymorphic if you look for generic Vertices also "Account" instances
are returned:

Iterable<Vertex>	allVertices	=	graph.getVertices();

Class

Working with custom vertex and edge types

472



To retrieve only the vertices of "Account" class:

Iterable<Vertex>	accountVertices	=	graph.getVerticesOfClass("Account");

In Blueprints Edges has the concept of "label" to distinguish between edge types. In
OrientDB we binds the concept of Edge label to Edge class. To create an Edge custom
type use the similar method 	createEdgeType(<name>)	:

OrientGraph	graph	=	new	OrientGraph("local:/temp/db");
OrientVertexType	accountVertex	=	graph.createVertexType("Account");
OrientVertexType	addressVertex	=	graph.createVertexType("Address");
//	CREATE	THE	EDGE	TYPE
OrientEdgeType	livesEdge	=	graph.createEdgeType("Lives");

Vertex	account	=	graph.addVertex("class:Account");
Vertex	address	=	graph.addVertex("class:Address");

//	CREATE	THE	EDGE
Edge	e	=	account.addEdge("Lives",	address);

To retrieve such custom classes use the methods 	graph.getVertexType(<name>)	 and
	graph.getEdgeType(<name>)	. Example:

OrientVertexType	accountVertex	=	graph.getVertexType("Account");
OrientEdgeType	livesEdge	=	graph.getEdgeType("Lives");

To drop a persistent class use the 	dropVertexType(<name>)	 and 	dropVertexType(<name>)	
methods.

graph.dropVertexType("Address");
graph.dropEdgeType("Lives");

Get custom types

Drop persistent types

473



Properties are the fields of the class. In this guide Property is synonym of Field.

Once the class has been created, you can define fields (properties). Below an example:

OrientVertexType	accountVertex	=	graph.getVertexType("Account");
accountVertex.createProperty("id",	OType.INTEGER);
accountVertex.createProperty("birthDate",	OType.DATE);

Please note that each field must belong to one of [Types supported types].

To drop a persistent class property use the 	OClass.dropProperty(String)	 method.

accountVertex.dropProperty("name");

The dropped property will not be removed from records unless you explicitly delete them
using the [SQLUpdate SQL UPDATE + REMOVE statement]. Example:

accountVertex.dropProperty("name");
database.command(new	OCommandSQL("UPDATE	Account	REMOVE	name")).execute();

Constraints with distributed databases could cause problems because some
operations are executed at 2 steps: create + update. For example in some
circumstance edges could be first created, then updated, but constraints like
MANDATORY and NOTNULL against fields would fail at the first step
making the creation of edges not possible on distributed mode.

OrientDB supports a number of constrains for each field:

Minimum value, accepts a string because works also for date ranges 	setMin()	
Maximum value, accepts a string because works also for date ranges 	setMax()	

Property

Create a property

Drop the Class property

Constraints

474



Mandatory, it must be specified 	setMandatory()	
Readonly, it may not be updated after record is created 	setReadonly()	
Not Null, can't be NULL 	setNotNull()	
Unique, doesn't allow duplicates and speedup searches.
Regexp, it must satisfy the Regular expression.
Ordered, specify if edge list must be ordered, so a List will be used in place of Set.
The method is 	setOrdered()	

Example:

profile.createProperty("nick",	OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);
profile.createIndex("nickIdx",	OClass.INDEX_TYPE.UNIQUE,	"nick");	//	Creates	unique	constraint

profile.createProperty("name",	OType.STRING).setMin("3").setMax("30");
profile.createProperty("surname",	OType.STRING).setMin("3").setMax("30");
profile.createProperty("registeredOn",	OType.DATE).setMin("2010-01-01	00:00:00");
profile.createProperty("lastAccessOn",	OType.DATE).setMin("2010-01-01	00:00:00");

To let to a property value to be UNIQUE use the UNIQUE index as constraint by passing
a Parameter object with key "type":

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("type",	"UNIQUE"));

This constraint will be applied to all the Vertex and sub-types instances. To specify an
index against a custom type use the additional parameter "class":

graph.createKeyIndex("name",	Vertex.class,	new	Parameter("class",	"Member"));

You can also have both UNIQUE index against custom types:

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("type",	"UNIQUE"),	new	Parameter("class",	"Member"));

To get a vertex or an edge by key prefix the class name to the field. For the example
above use "Member.name" in place of only "name" to use the index created against the

Indexes as constrains

475

http://en.wikipedia.org/wiki/Regular_expression


field "name" of class "Member":

for(	Vertex	v	:	graph.getVertices("Member.name",	"Jay")	)	{
		System.out.println("Found	vertex:	"	+	v	);
}

If the class name is not passed, then "V" is taken for vertices and "E" for edges:

graph.getVertices("name",	"Jay");
graph.getEdges("age",	20);

For more information about indexes look at Index guide.

(Go back to Graph-Database-Tinkerpop)

476



This tutorial explains step-by-step how to create partitioned graphs using the Record
Level Security feature introduced in OrientDB 1.2.0. This feature is so powerful we can
totally separate database's records as sand-boxes where each "Restricted" records can't
be accessed by non authorized users. This tutorial demonstrates this sand-boxes works
well also with the GraphDB API and the TinkerPop stack. Partitioning graphs allows to
build real Multi-tenant applications in a breeze.

Requirements:

OrientDB 1.2.0-SNAPSHOT or major
TinkerPop Blueprints 2.2.0 or major.

Partitioned graphs

477

http://en.wikipedia.org/wiki/Multitenancy


First open the console of the GraphDB Edition and create the new database "blog" of
type "graph" against the local file-system:

$	cd	$ORIENTDB_HOME/bin
$	console.sh
OrientDB	console	v.1.2.0-SNAPSHOT	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.

Installing	extensions	for	GREMLIN	language	v.2.2.0-SNAPSHOT

orientdb>	create	database	local:../databases/blog	admin	admin	local	graph
Creating	database	[local:../databases/blog]	using	the	storage	type	[local]...
Database	created	successfully.

Current	database	is:	local:../databases/blog

Create a new empty graph database

478



Now turn on partitioning against graph by letting classes V (Vertex) and E (Edge) to
extend the éORestricted* class. In this way any access to Vertex and Edge instances
can be restricted:

orientdb>	alter	class	V	superclass	orestricted

Class	updated	successfully

orientdb>	alter	class	E	superclass	orestricted

Class	updated	successfully

Enable graph partitioning

479



Now let's go creating 2 users: "luca" and "steve". First ask the current roles in database
to know the "writer" role's rid:

orientdb>	select	from	orole

---+---------+--------------------+--------------------+--------------------+--------------------
		#|	RID					|name																|mode																|rules															|inheritedRole
---+---------+--------------------+--------------------+--------------------+--------------------
		0|					#4:0|admin															|1																			|{}																		|null
		1|					#4:1|reader														|0																			|{database=2,	database.schema=2,	database.cluster.internal=
		2|					#4:2|writer														|0																			|{database=2,	database.schema=7,	database.cluster.internal=
---+---------+--------------------+--------------------+--------------------+--------------------

3	item(s)	found.	Query	executed	in	0.045	sec(s).

Found it, it's the #4:2. Not create 2 users with as first role #4:2 (writer):

orientdb>	insert	into	ouser	set	name	=	'luca',	status	=	'ACTIVE',	password	=	'luca',	roles	=	[#

Inserted	record	'OUser#5:4{name:luca,password:{SHA-256}D70F47790F689414789EEFF231703429C7F88A10210775906460EDBF38589D90,roles:[1]}	v1'

orientdb>	insert	into	ouser	set	name	=	'steve',	status	=	'ACTIVE',	password	=	'steve',	roles	=	[#

Inserted	record	'OUser#5:3{name:steve,password:{SHA-256}F148389D080CFE85952998A8A367E2F7EAF35F2D72D2599A5B0412FE4094D65C,roles:[1]}	v1'

Create 2 users

480



Now it's time to disconnect and reconnect to the blog database using the new "luca"
user:

orientdb>	disconnect

Disconnecting	from	the	database	[blog]...OK

orientdb>	connect	local:../databases/blog	luca	luca
Connecting	to	database	[local:../databases/blog]	with	user	'luca'...OK

Now create 2 vertices: a Restaurant and a Pizza:

orientdb>	create	vertex	set	label	=	'food',	name	=	'Pizza'

Created	vertex	'V#9:0{label:food,name:Pizza,_allow:[1]}	v0'	in	0,001000	sec(s).

orientdb>	create	vertex	set	label	=	'restaurant',	name	=	"Dante's	Pizza"

Created	vertex	'V#9:1{label:restaurant,name:Dante's	Pizza,_allow:[1]}	v0'	in	0,000000	sec(s).

Now connect these 2 vertices with an edge labelled "menu":

orientdb>	create	edge	from	#9:0	to	#9:1	set	label	=	'menu'

Created	edge	'[E#10:0{out:#9:0,in:#9:1,label:menu,_allow:[1]}	v1]'	in	0,003000	sec(s).

To check if everything is ok execute a select against vertices:

orientdb>	select	from	v

---+---------+--------------------+--------------------+--------------------+--------------------
		#|	RID					|label															|name																|_allow														|out
---+---------+--------------------+--------------------+--------------------+--------------------
		0|					#9:0|food																|Pizza															|[1]																	|[1]
		1|					#9:1|restaurant										|Dante's	Pizza							|[1]																	|null																|[1]
---+---------+--------------------+--------------------+--------------------+--------------------+--------------------

2	item(s)	found.	Query	executed	in	0.034	sec(s).

Create a simple graph as user 'Luca'

481



Now let's connect to the database using the 'Steve' user and check if there are vertices:

orientdb>	disconnect

Disconnecting	from	the	database	[blog]...OK

orientdb>	connect	local:../databases/blog	steve	steve
Connecting	to	database	[local:../databases/blog]	with	user	'steve'...OK

orientdb>	select	from	v

0	item(s)	found.	Query	executed	in	0.0	sec(s).

Ok, no vertices found. Try to create something:

orientdb>	create	vertex	set	label	=	'car',	name	=	'Ferrari	Modena'

Created	vertex	'V#9:2{label:car,name:Ferrari	Modena,_allow:[1]}	v0'	in	0,000000	sec(s).

orientdb>	create	vertex	set	label	=	'driver',	name	=	'steve'

Created	vertex	'V#9:3{label:driver,name:steve,_allow:[1]}	v0'	in	0,000000	sec(s).

orientdb>	create	edge	from	#9:2	to	#9:3	set	label	=	'drive'

Created	edge	'[E#10:1{out:#9:2,in:#9:3,label:drive,_allow:[1]}	v1]'	in	0,002000	sec(s).

Now check the graph just created:

orientdb>	select	from	v

---+---------+--------------------+--------------------+--------------------+--------------------
		#|	RID					|label															|name																|_allow														|out
---+---------+--------------------+--------------------+--------------------+--------------------
		0|					#9:2|car																	|Ferrari	Modena						|[1]																	|[1]
		1|					#9:3|driver														|steve															|[1]																	|null																|[
---+---------+--------------------+--------------------+--------------------+--------------------+--------------------

2	item(s)	found.	Query	executed	in	0.034	sec(s).

The "Steve" user doesn't see the vertices and edges creates by other users!

Create a simple graph as user 'Steve'

482



What happen if we try to connect 2 vertices of different users?

orientdb>	create	edge	from	#9:2	to	#9:0	set	label	=	'security-test'

Error:	com.orientechnologies.orient.core.exception.OCommandExecutionException:	Error	on	execution	of	command:	OCommandSQL	[text=create	edge	from	#
Error:	java.lang.IllegalArgumentException:	Source	vertex	'#9:0'	does	not	exist

The partition is totally isolated and OrientDB thinks the vertex doesn't exist while it's
present, but invisible to the current user.

483



Record Level Security feature is very powerful because acts at low level inside the
OrientDB engine. This is why everything works like a charm, even the TinkerPop stack.

Now try to display all the vertices and edges using Gremlin:

orientdb>	gremlin	g.V

[v[#9:2],	v[#9:3]]

Script	executed	in	0,448000	sec(s).
orientdb>	gremlin	g.E

e[#10:1][#9:2-drive->#9:3]

Script	executed	in	0,123000	sec(s).

The same is using other technologies that use the !TinkerPop Blueprints: TinkerPop
Rexter, TinkerPop Pipes, TinkerPop Furnace, TinkerPop Frames and ThinkAurelius
Faunus.

TinkerPop Stack

484

https://github.com/tinkerpop/rexster/wiki
https://github.com/tinkerpop/pipes/wiki
https://github.com/tinkerpop/furnace/wiki
https://github.com/tinkerpop/frames/wiki
http://thinkaurelius.github.com/faunus/


This is a comparison page between GraphDB projects. To know more about the
comparison of DocumentDBs look at this comparison.

We want to keep it always updated with the new products and more features in the
matrix. If any information about any product is not updated or wrong, please change it if
you've the permissions or send an email to any contributors with the link of the source of
the right information.

Graph Database Comparison

485



Feature OrientDB Neo4j DEX

Release 1.0-SNAPSHOT 1.7M03 4.5.1

Product
Web Site http://www.orientdb.org http://www.neo4j.org http://www.sparsity-

technologies.com/dex

License Open Source Apache
2

Open Source GPL,
Open Source AGPL
and Commercial

Commercial

Query
languages

Extended SQL,
Gremlin Cypher Gremlin Not available, only

via API

Transaction
support  ACID  ACID

Protocols
Embedded via Java
API, remote as Binary
and REST

Embedded via Java
API and remote via
REST

?

Replication Multi-Master Master-Slave No

Custom
types  Supports

custom types and
polymorphism

Self loops

Feature matrix

486

http://www.orientdb.org
http://www.neo4j.org
http://www.sparsity-technologies.com/dex
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/agpl-3.0.html
http://neotechnology.com/products/licensing-guide
https://github.com/tinkerpop/gremlin/wiki
http://docs.neo4j.org/chunked/1.4/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
http://www.sparsity-technologies.com/downloads/javadoc/overview-summary.html#query
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID


The products below all support the TinkerPop Blueprints API at different level of
compliance. Below the supported ones. As you can see OrientDB is the most compliant
implementation of TinkerPop Blueprints!

Feature OrientDB Neo4j

Release 1.0-SNAPSHOT 1.7M03

Product Web Site http://www.orientdb.org http://www.neo4j.org

Implementation details OrientDB impl Neo4j impl

allowsDuplicateEdges

allowsSelfLoops

isPersistent

supportsVertexIteration

supportsEdgeIteration

supportsVertexIndex

supportsEdgeIndex

ignoresSuppliedIds

supportsTransactions

allowSerializableObjectProperty

allowBooleanProperty

Blueprints support

487

http://objectivity.com/INFINITEGRAPH
http://objectivity.com/support
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID
https://github.com/tinkerpop/blueprints/wiki/
http://www.tinkerpop.com
http://www.orientdb.org
http://www.neo4j.org
https://github.com/tinkerpop/blueprints/wiki/OrientDB-Implementation
https://github.com/tinkerpop/blueprints/wiki/Neo4j-Implementation


allowDoubleProperty

allowFloatProperty

allowIntegerProperty

allowPrimitiveArrayProperty

allowUniformListProperty

allowMixedListProperty

allowLongProperty

allowMapProperty

allowStringProperty

488

http://www.sparsity-technologies.com/dex
http://objectivity.com/INFINITEGRAPH
https://github.com/tinkerpop/blueprints/wiki/Dex-Implementation
https://github.com/tinkerpop/blueprints/wiki/InfiniteGraph-Implementation
http://wiki.infinitegraph.com/2.1/w/index.php?title=Understanding_InfiniteGraph_Blueprints_Capabilities_and_Limitations


The table below reports the time to complete the Blueprints Test Suite. This is not a
benchmark between GraphDBs and unfortunately doesn't exist a public benchmark
shared by all the vendors :-(

So this table is just to give an idea about the performance of each implementation in
every single module it supports. The support is based on the compliance level reported
in the table above. For the test default settings were used. To run these tests on your
own machine follow these simple instructions.

Lower means faster. In bold the fastest implementation for each module.

Module OrientDB Neo4j

Release 1.4 1.9.M05

Product Web Site http://www.orientdb.org http://www.neo4j.org

VertexTestSuite 1,524.06 1,595.27

EdgeTestSuite 1,252.21 1,253.73

GraphTestSuite 1,664.75 2,400.34

QueryTestSuite 306.58 188.52

IndexableGraphTestSuite 4,620.61 11,299.02

IndexTestSuite 2,072.23 5,239.92

TransactionalGraphTestSuite 1,573.93 3,579.50

KeyIndexableGraphTestSuite 571.42 845.84

GMLReaderTestSuite 778.08 682.83

GraphMLReaderTestSuite 814.38 864.70

GraphSONReaderTestSuite 424.77 480.81

All the tests are executed against the same HW/SW configuration: MacBook Pro
(Retina) 2013 - 16 GB Ram - MacOSX 12.3.0 - SDD 7200rpm. Similar results executed
on Linux CentOS.

Micro benchmark

489

https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model-Test-Suite
http://www.orientdb.org
http://www.neo4j.org


To run the Blueprints Test Suite you need java6+, Apache Maven and Git. Follow these
simple steps:

1. 	>	git	clone	git://github.com/tinkerpop/blueprints.git	
2. 	>	mvn	clean	install	

Run the tests

490

http://www.sparsity-technologies.com/dex
http://objectivity.com/INFINITEGRAPH
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model-Test-Suite


OrientDB supports Lightweight Edges from v1.4. Lightweight Edges are like regular
edges, but they have no identity on database. Lightweight edges can be used only
when:

no properties are defined on edge
two vertices are connected by maximum 1 edge, so if you already have one edge
between two vertices and you're creating a new edge between the same vertices,
the second edge will be regular

By avoiding the creation of the underlying Document, Lightweight Edges have the
same impact on speed and space as with Document LINKs, but with the additional
bonus to have bidirectional connections. This means you can use the MOVE VERTEX
command to refactor your graph with no broken LINKs.

Lightweight Edges

491



Look at the figure below. With Regular Edges both vertices (#10:33 and #10:12) are
connected through an Edge Document (#17:11). The outgoing 	out_Friend	 property in
#10:33 document is a set of LINKs with #17:11 as item. Instead, in document #10:12 the
relationship is as incoming, so the property 	in_Friend	 is used with the LINK to the same
Edge #17:11.

When you cross this relationship, OrientDB loads the Edge document #17:11 to resolve
the other part of the relationship.

+---------------------+				+---------------------+				+---------------------+		
|			Account	Vertex				|				|					Friend	Edge					|				|				Account	Vertex			|
|							#10:33								|				|							#17:11								|				|							#10:12								|
+---------------------+				+---------------------+				+---------------------+
|out_Friend:	[#17:11]	|<-->|out:	[#10:33]								|				|																					|
+---------------------+				|									in:	[#10:12]|<-->|in_Friend:	[#17:11]		|
																											+---------------------+				+---------------------+

Regular Edge representation

492



With Lightweight Edge, instead, there is no Edge document, but both vertices (#10:33
and #10:12) are connected directly to each other. The outgoing 	out_Friend	 property in
#10:33 document contains the direct LINK to the vertex #10:12. The same happens on
Vertex document #10:12, where the relationship is as incoming and the property
	in_Friend	 contains the direct LINK to vertex #10:33.

When you cross this relationship, OrientDB doesn't need to load any edge to resolve the
other part of the relationship. Furthermore no edge document is created.

+---------------------+				+---------------------+
|			Account	Vertex				|				|				Account	Vertex			|
|							#10:33								|				|							#10:12								|
+---------------------+				+---------------------+
|out_Friend:	[#10:12]	|<-->|in_Friend:	[#10:33]		|
+---------------------+				+---------------------+

Starting from OrientDB v2.0, Lightweight Edges are disabled by default with new
databases. This is because having regular edges makes easier to act on edges from
SQL. Many issues from beginner users were on Lightweight Edges. If you want to use
Lightweight Edges, enable it via API:

OrientGraph	g	=	new	OrientGraph("mygraph");
g.setUseLightweightEdges(true);

Or via SQL:

alter	database	custom	useLightweightEdges=true

Changing 	useLightweightEdges	 setting to 	true	, will not transform previous edges, but all
new edges could be Lightweight Edges if they meet the requirements.

Lightweight Edge representation

493



These are the PROS and CONS of Lightweight Edges vs Regular Edges:

PROS:

faster in creation and traversing, because don't need an additional document to
keep the relationships between 2 vertices

CONS:

cannot store properties
harder working with Lightweight edges from SQL, because there is no a regular
document under the edge

When use Lightweight Edges?

494



To use the Document API include the following jars in your classpath:

orient-commons-*.jar
orientdb-core-*.jar

If you're using the Document Database interface connected to a remote server (not
local/embedded mode) include also:

orientdb-client-*.jar
orientdb-enterprise-*.jar

Document API

495



The Orient Document DB is the base of higher-level implementation like Object-
Database and Graph-Database. The Document Database API has the following
features:

supports Multi threads access
supports Transactions
supports Queries
supports Traverse
very flexible: can be used in schema-full, schema-less or schema-hybrid mode.

This is an example to store 2 linked documents in the database:

//	OPEN	THE	DATABASE
ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("remote:localhost/petshop").open("admin",	"admin"

//	CREATE	A	NEW	DOCUMENT	AND	FILL	IT
ODocument	doc	=	new	ODocument("Person");
doc.field(	"name",	"Luke"	);
doc.field(	"surname",	"Skywalker"	);
doc.field(	"city",	new	ODocument("City").field("name","Rome").field("country",	"Italy")	);

//	SAVE	THE	DOCUMENT
doc.save();

db.close();

This is the very first example. While the code is pretty clear and easy to understand
please note that we haven't declared the type "Person" before now. When an
ODocument instance is saved, the declared type "Person" will be created without
constraints. To declare persistent classes look at the Schema management.

Introduction

496



Before to execute any operation you need an opened database instance. You can open
an existent database or create a new one. Databases instances aren't thread safe, so
use one database per thread.

Before to open or create a database instance you need a valid URL. URL is where the
database is available. URL says what kind of database will be used. For example
memory: means in-memory only database, plocal: is for embedded ones and remote: to
use a remote database hosted on an up & running DBServer OrientDB Server instance.
For more information look at Database URL.

Database instances must be closed once finished to release precious resources. To
assure it the most common usage is to enclose all the database operations inside a
try/finally block:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/test");
db.open("admin",	"admin");

try	{
		//	YOUR	CODE
}	finally	{
		db.close();
}

If you are using a remote storage (url starts with "remote:") assure the server is up &
running and include the orientdb-client.jar file in your classpath.

Use the database

497



The ODatabaseDocumentTx class is non thread-safe. For this reason use different
ODatabaseDocumentTx instances by multiple threads. They will share the same
Storage instance (with the same URL) and the same level-2 cache. For more information
look at Multi-Threading with Java.

Multi-threading

498



ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx	("plocal:/tmp/databases/petshop").create();

To create a database in a remote server you need the user/password of the remote
OrientDB Server instance. By default the "root" user is created on first startup of the
server. Check this in the file config/orientdb-server-config.xml, where you will also find
the password.

To create a new document database called dbname on dbhost using filesystem storage
(as opposed to in-memory storage):

new	OServerAdmin("remote:dbhost")
				.connect("root",	"kjhsdjfsdh128438ejhj")
				.createDatabase("dbname","document","local").close();

To create a graph database replace "document" with "graph".

To store the database in memory replace "local" with "memory".

Create a new database

In local filesystem

On a remote server

499



ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx	("remote:localhost/petshop").open("admin",	"admin"

The database instance will share the connection versus the storage. if it's a "local"
storage, then all the database instances will be synchronized on it. If it's a "remote"
storage then the network connection will be shared among all the database instances.

One of most common use cases is to reuse the database, avoiding to create it every
time. It's also the typical scenario of the Web applications. Instead of creating a new
ODatabaseDocumentTx instance all the times, get an available instance from the pool:

//	OPEN	THE	DATABASE
ODatabaseDocumentTx	db	=	ODatabaseDocumentPool.global().acquire("remote:localhost/petshop",	"admin"
try	{
		//	YOUR	CODE
		...
}	finally	{
		db.close();
}

Remember to always close the database instance using the 	close()	 database method
like a classic non-pooled database. In this case the database will be not closed for real,
but the instance will be released to the pool, ready to be reused by future requests. The
best is to use a try/finally block to avoid cases where the database instance remains
open, just like the example above.

By default OrientDB provide a global pool declared with maximum 20 instances. Use it
with: 	ODatabaseDocumentPool.global()	.

To create your own pool build it and call the 	setup(min,	max)	 method to define minimum
and maximum managed instances. Remember to close it when the pool is not more

Open a database

Use the connection Pool

Global pool

Use your pool

500



used. Example:

//	CREATE	A	NEW	POOL	WITH	1-10	INSTANCES
ODatabaseDocumentPool	pool	=	new	ODatabaseDocumentPool();
pool.setup(1,10);
...
pool.close();

501



OrientDB can work in schema-full (like RDBMS), schema-less (like many NoSQL
Document databases) and in schema-hybrid mode. For more information about the
Schema look at the Schema page.

To use the schema with documents create the ODocument instance using the
	ODocument(String	className)	 constructor passing the class name. If the class hasn't been
declared, it's created automatically with no fields. This can't work during transaction
because schema changes can't be applied in transactional context.

Schema

502



Few NoSQL solutions supports security. OrientDB does it. To know more about it look at
Security.

To manage the security get the Security Manager and use it to work with users and
roles. Example:

OSecurity	sm	=	db.getMetadata().getSecurity();
OUser	user	=	sm.createUser("god",	"god",	new	String[]	{	"admin"	}	);

To get the reference to the current user use:

OUser	user	=	db.getUser();

Security

503



ODocument instances can be saved by calling the save() method against the object
itself. Note that the behaviour depends on the running transaction, if any. See
Transactions.

ODocument	animal	=	new	ODocument("Animal");
animal.field(	"name",	"Gaudi"	);
animal.field(	"location",	"Madrid"	);
animal.save();

Create a new document

504



for	(ODocument	doc	:	database.browseCluster("CityCars"))	{
		System.out.println(	doc.field("model")	);

Retrieve documents

Browse all the documents in a cluster

505



for	(ODocument	animal	:	database.browseClass("Animal"))	{
		System.out.println(	animal.field(	"name"	)	);

Browse all the records of a class

506



long	cars	=	database.countClass("Car");

v= Count records of a cluster ==

long	cityCars	=	database.countCluster("CityCar");

Count records of a class

507



Although OrientDB is part of the NoSQL database community, it supports a subset of
SQL that allows it to process links to documents and graphs.

To know more about the SQL syntax supported go to: SQL-Query.

Example of a SQL query:

List<ODocument>	result	=	db.query(
		new	OSQLSynchQuery<ODocument>("select	*	from	Animal	where	ID	=	10	and	name	like	'G%'"));

OrientDB supports asynchronous queries. The result is not collected and returned like
synchronous ones (see above) but a callback is called every time a record satisfy the
predicates:

database.command(
		new	OSQLAsynchQuery<ODocument>("select	*	from	animal	where	name	=	'Gipsy'",
				new	OCommandResultListener()	{
						resultCount	=	0;
						@Override
						public	boolean	result(Object	iRecord)	{
								resultCount++;
								ODocument	doc	=	(ODocument)	iRecord;
								//	DO	SOMETHING	WITH	THE	DOCUMENT

								return	resultCount	>	20	?	false	:	true;
						}

						@Override
						public	void	end()	{
						}
				})).execute();

Asynchronous queries are useful to manage big result sets because don't allocate
memory to collect results.

Prepared query are quite similar to the Prepared Statement of JDBC. Prepared queries

Execute a query

Asynchronous query

Prepared query

508



are pre-parsed so on multiple execution of the same query are faster than classic SQL
queries. Furthermore the pre-parsing doesn't allow SQL Injection. Note: prepared
queries (parameter substition) only works with select statements (but not select
statements within other types of queries such as "create vertex").

Prepared query uses two kinds of markers to substitute parameters on execution:

?	is	positional	parameter
:<par>	is	named	parameter

Example of positional parameters:

OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Profile	where	name	=	?	and	surname	=	?"
List<ODocument>	result	=	database.command(query).execute("Barack",	"Obama");

Example of named parameters:

OSQLSynchQuery<ODocument>	query	=	new	OSQLSynchQuery<ODocument>("select	from	Profile	where	name	=	:name	and
		surname	=	:surname");
Map<String,Object>	params	=	new	HashMap<String,Object>();
params.put("name",	"Barack");
params.put("surname",	"Obama");

List<ODocument>	result	=	database.command(query).execute(params);

OrientDB is a graph database. This means that traversing is very efficient. You can use
this feature to optimize queries. A common technique is the Pivoting.

To execute SQL commands use the 	command()	 method passing a OCommandSQL
object:

int	recordsUpdated	=	db.command(
		new	OCommandSQL("update	Animal	set	sold	=	false")).execute();

Right usage of the graph

SQL Commands

509



If the command modifies the schema (like 	create/alter/drop	class	 and 	create/alter/drop
property	 commands), remember to force updating of the schema of the database
instance you're using:

db.getMetadata().getSchema().reload();

For more information look at the available SQL commands.

510



Traversing is the operation to cross documents by links (relationships). OrientDB is a
graph database so this operation is much much more efficient than executing a JOIN in
the relational databases. To know more about traversing look at the Java traverse API.

The example below traverses, for each movie, all the connected records up to the 5th
depth level.

for	(OIdentifiable	id	:	new	OTraverse()
														.field("in").field("out")
														.target(	database.browseClass("Movie").iterator()	)
														.predicate(new	OCommandPredicate()	{

				public	boolean	evaluate(ORecord<?>	iRecord,	OCommandContext	iContext)	{
						return	((Integer)	iContext.getVariable("depth"))	<=	5;
				}
		}))	{

		System.out.println(id);
}

Traverse records

511



Any persistent document can be updated by using the Java API and then by calling the
db.save() method. Alternatively, you can call the document's save() method to
synchronize the changes to the database. The behaviour depends on the transaction
begun, if any. See Transactions.

animal.field(	"location",	"Nairobi"	);
animal.save();

OrientDB will update only the fields really changed.

Example of how to increase the price of all the animals by 5%:

for	(ODocument	animal	:	database.browseClass("Animal"))	{
		animal.field(	"price",	animal.field(	"price"	)	*	105	/	100	);
		animal.save();
}

Update a document

512



To delete a document call the delete() method on the document instance that's loaded.
The behaviour depends on the transaction begun, if any. See Transactions.

animal.delete();

Example of deletion of all the documents of class "Animal".

for	(ODocument	animal	:	database.browseClass("Animal"))
		animal.delete();

Delete a document

513



Transactions are a practical way to group a set of operations together. OrientDB
supports ACID transactions so that all or none of the operations succeed. The database
always remains consistent. For more information look at Transactions.

Transactions are managed at the database level. Nested transactions are currently not
supported. A database instance can only have one transaction running. The database's
methods to handle transactions are:

	begin()	 to start a new transaction. If a transaction was already running, it's rolled
back and a new one is begun.
	commit()	 makes changes persistent. If an error occurs during commit the
transaction is rolled back and an OTransactionException exception is raised.
	rollback()	 aborts a transaction. All the changes will be lost.

Transactions

514

http://en.wikipedia.org/wiki/ACID


The current release of OrientDB only supports OPTIMISTIC transactions where no lock
is kept and all operations are checked at commit time. This improves concurrency but
can throw an 	OConcurrentModificationException	 exception in the case where records are
modified by concurrent clients or threads. In this scenario, the client code can reload the
updated records and repeat the transaction.

Optimistic transactions keep all the changes in memory in the client. If you're using
remote storage no changes are sent to the server until 	commit()	 is called. All the
changes will be transferred in a block. This reduces network latency, speeds-up the
execution, and increases concurrency. This is a big difference compared to most
Relational DBMS where, during a transaction, changes are sent immediately to the
server.

Optimistic approach

515



Transactions are committed only when the 	commit()	 method is called and no errors
occur. The most common usage of transactions is to enclose all the database operations
inside a 	try/finally	 block. On closing of the database ("finally" block) if a pending
transaction is running it will be rolled back automatically. Look at this example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx(url);
db.open("admin",	"admin");

try	{
		db.begin();
		//	YOUR	CODE
		db.commit();
}	finally	{
		db.close();
}

Usage

516



Even though you can use Indices via SQL, the best and most efficient way is to use the
Java API.

The main class to use to work with indices is the IndexManager. To get the
implementation of the IndexManager use:

OIndexManager	idxManager	=	database.getMetadata().getIndexManager();

The Index Manager allows you to manage the index life-cycle for creating, deleting, and
retrieving an index instance. The most common usage is with a single index. You can
get the reference to an index by using:

OIndex<?>	idx	=	database.getMetadata().getIndexManager().getIndex("Profile.name");

Where "Profile.name" is the index name. Note that by default OrientDB assigns the
name as 	<class>.<property>	 for automatic indices created against a class's property.

The OIndex interface is similar to a Java Map and provides methods to get, put, remove,
and count items. The following are examples of retrieving records using a UNIQUE index
against a name field and a NOTUNIQUE index against a gender field:

OIndex<?>	nameIdx	=	database.getMetadata().getIndexManager().getIndex("Profile.name");

//	THIS	IS	A	UNIQUE	INDEX,	SO	IT	RETRIEVES	A	OIdentifiable
OIdentifiable	luke	=	nameIdx.get(	"Luke"	);
if(	luke	!=	null	)
		printRecord(	(ODocument)	luke.getRecord()	);

OIndex<?>	genderIdx	=	database.getMetadata().getIndexManager().getIndex("Profile.gender");

//	THIS	IS	A	NOTUNIQUE	INDEX,	SO	IT	RETRIEVES	A	Set<OIdentifiable>
Set<OIdentifiable>	males	=	genderIdx.get(	"male"	);
for(	OIdentifiable	male	:	males	)
		printRecord(	(ODocument)	male.getRecord()	);

While automatic indices are managed automatically by OrientDB hooks, the manual
indices can be used to store any value. To create a new entry use the 	put()	:

Index API

517

http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/index/OIndexManager.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/index/OIndexManager.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/index/OIndex.java


OIndex<?>	addressbook	=	database.getMetadata().getIndexManager().getIndex("addressbook");

addressbook.put(	"Luke",	new	ODocument("Contact").field(	"name",	"Luke"	);

518



Javadoc: JavaDoc
OrientDB Studio Web tool.

Resources

519

http://www.orientechnologies.com/javadoc/latest/


Although OrientDB can work in schema-less mode, sometimes you need to enforce your
data model using a schema. OrientDB supports schema-full or schema-hybrid solutions
where the latter means to set such constraints only for certain fields and to leave the
user to add custom fields on the records. This mode is at a class level, so you can have
an "Employee" class as schema-full and an "EmployeeInformation" class as schema-
less.

Schema-Full: enables the strict-mode at class level and sets all the fields as
mandatory.
Schema-Less: creates classes with no properties. Default mode is non strict-mode
so records can have arbitrary fields.
Schema-Hybrid, also called Schema-Mixed is the most used: creates classes and
define some fields but allows the user to define custom fields.

NOTE: Changes to the schema are not transactional, so execute them outside a
transaction.

To gain access to the schema APIs you get the OMetadata object from database
instance you're using and then call its 	getSchema()	 method.

OSchema	schema	=	database.getMetadata().getSchema();

Schema

520



A Class is a concept taken from the Object Oriented paradigm. In OrientDB a class
defines a type of record. It's the closest concept to a relational database table. A Class
can be schema-less, schema-full, or mixed.

A Class can inherit from another class. This [#Inheritance] means that the sub-class
extends the parent class, inheriting all its attributes as if they were its own.

Each class has its own clusters that can be logical (by default) or physical. A class must
have at least one cluster defined (as its default cluster), but can support multiple ones. In
this case By default OrientDB will write new records in the default cluster, but reads will
always involve all the defined clusters.

When you create a new class, by default, a new physical cluster is created with the
same name as the class (in lowercase).

Class

521



Each class contains one or more properties (also called fields). This mode is similar to
the classic relational DBMS approach where you define tables before storing records.

Here's an example of creating an Account class. By default a new
[Concepts#Physical_Cluster Physical Cluster] will be created to keep the class
instances:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");

To create a new Vertex or Edge type you have to extend the "V" and "E" classes,
respectively. Example:

OClass	person	=	database.getMetadata().getSchema().createClass("Account",
							database.getMetadata().getSchema().getClass("V"));

Look at Graph Schema for more information.

Create a persistent class

522



To retrieve a persistent class use the 	getClass(String)	 method. If the class does not exist
then null is returned.

OClass	account	=	database.getMetadata().getSchema().getClass("Account");

Get a persistent class

523



To drop a persistent class use the 	OSchema.dropClass(String)	 method.

database.getMetadata().getSchema().dropClass("Account");

The records of the removed class will not be deleted unless you explicitly delete them
before dropping the class. Example:

database.command(	new	OCommandSQL("DELETE	FROM	Account")	).execute();
database.getMetadata().getSchema().dropClass("Account");

Drop a persistent class

524



To work in schema-full mode set the strict mode at the class level by calling the
	setStrictMode(true)	 method. In this case, all the properties of the record must be
predefined.

Constraints

525



Properties are the fields of the class. In this guide a property is synonymous with a field.

Property

526



Once the class has been created, you can define fields (properties). Below is an
example:

OClass	account	=	database.getMetadata().getSchema().createClass("Account");
account.createProperty("id",	OType.INTEGER);
account.createProperty("birthDate",	OType.DATE);

Please note that each field must belong to one of these Types.

Create the Class property

527

https://github.com/orientechnologies/orientdb/wiki/Types


To drop a persistent class property use the 	OClass.dropProperty(String)	 method.

database.getMetadata().getSchema().getClass("Account").dropProperty("name");

The dropped property will not be removed from records unless you explicitly delete them
using the [SQLUpdate SQL UPDATE + REMOVE statement]. Example:

database.getMetadata().getSchema().getClass("Account").dropProperty("name");
database.command(new	OCommandSQL("UPDATE	Account	REMOVE	name")).execute();

Drop the Class property

528



OrientDB supports two types of relationships: referenced and embedded.

OrientDB uses a direct link to the referenced record(s) without the need of a costly JOIN
as does the relational world. Example:

																		customer
		Record	A					------------->				Record	B
CLASS=Invoice																	CLASS=Customer
		RID=5:23																							RID=10:2

Record A will contain the reference to the Record B in the property called "customer".
Note that both records are reachable by any other records since they have a
[Concepts#RecordID RecordID].

1-1 and N-1 referenced relationships are expressed using the LINK type.

OClass	customer=	database.getMetadata().getSchema().createClass("Customer");
customer.createProperty("name",	OType.STRING);

OClass	invoice	=	database.getMetadata().getSchema().createClass("Invoice");
invoice.createProperty("id",	OType.INTEGER);
invoice.createProperty("date",	OType.DATE);
invoice.createProperty("customer",	OType.LINK,	customer);

In this case records of class "Invoice" will link to a record of class "Customer" using the
field "customer".

1-N and N-M referenced relationships are expressed using the collection of links such
as:

LINKLIST as an ordered list of links
LINKSET as an unordered set of links. It doesn't accept duplicates

Define relationships

Referenced relationships

1-1 and N-1 referenced relationships

1-N and N-M referenced relationships

529



LINKMAP as an ordered map of links with String key. It doesn't accept duplicated
keys

Example of a 1-N relationship between the classes Order and OrderItem:

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id",	OType.INTEGER);
orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");
order.createProperty("id",	OType.INTEGER);
order.createProperty("date",	OType.DATE);
order.createProperty("items",	OType.LINKLIST,	orderItem);

db.getMetadata().getSchema().save();

Embedded records, instead, are contained inside the record that embeds them. It's a
kind of relationship stronger than the [#Referenced_relationships reference]. The
embedded record will not have its own [Concepts#RecordID RecordID] since it can't be
directly referenced by other records. It's only accessible via the container record. If the
container record is deleted, then the embedded record will be deleted too. Example:

																		address
		Record	A					<>---------->			Record	B
CLASS=Account															CLASS=Address
		RID=5:23																					NO	RID!

Record A will contain the entire Record B in the property called "address". Record B can
be reached only by traversing the container record.

Example:

SELECT	FROM	account	WHERE	address.city	=	'Rome'

1-1 and N-1 referenced relationships are expressed using the EMBEDDED type.

Embedded relationships

1-1 and N-1 referenced relationships

530



OClass	address	=	database.getMetadata().getSchema().createClass("Address");

OClass	account	=	database.getMetadata().getSchema().createClass("Account");
account.createProperty("id",	OType.INTEGER);
account.createProperty("birthDate",	OType.DATE);
account.createProperty("address",	OType.EMBEDDED,	address);

In this case, records of class "Account" will embed a record of class "Address".

1-N and N-M referenced relationships are expressed using the collection of links such
as:

EMBEDDEDLIST, as an ordered list of records.
EMBEDDEDSET, as an unordered set of records. It doesn't accepts duplicates.
EMBEDDEDMAP, as an ordered map with records as the value and String as the
key. It doesn't accept duplicate keys.

Example of a 1-N relationship between the class Order and OrderItem:

OClass	orderItem	=	db.getMetadata().getSchema().createClass("OrderItem");
orderItem.createProperty("id",	OType.INTEGER);
orderItem.createProperty("animal",	OType.LINK,	animal);

OClass	order	=	db.getMetadata().getSchema().createClass("Order");
order.createProperty("id",	OType.INTEGER);
order.createProperty("date",	OType.DATE);
order.createProperty("items",	OType.EMBEDDEDLIST,	orderItem);

1-N and N-M referenced relationships

531



OrientDB supports a number of constraints for each field:

Minimum value, accepts a string because it also works for date ranges 	setMin()	
Maximum value, accepts a string because it also works for date ranges 	setMax()	
Mandatory, must be specified 	setMandatory()	
Readonly, may not be updated after record is created 	setReadonly()	
Not Null, cannot be NULL 	setNotNull()	
Unique, doesn't allow duplicates and speeds up searches.
Regexp, must satisfy the Regular expression.

Example:

profile.createProperty("nick",	OType.STRING).setMin("3").setMax("30").setMandatory(true).setNotNull(true);
profile.createIndex("nickIdx",	OClass.INDEX_TYPE.UNIQUE,	"nick");	//	Creates	unique	constraint

profile.createProperty("name",	OType.STRING).setMin("3").setMax("30");
profile.createProperty("surname",	OType.STRING).setMin("3").setMax("30");
profile.createProperty("registeredOn",	OType.DATE).setMin("2010-01-01	00:00:00");
profile.createProperty("lastAccessOn",	OType.DATE).setMin("2010-01-01	00:00:00");

To ensure that a property value is UNIQUE use the UNIQUE index as a constraint:

profile.createIndex("EmployeeId",	OClass.INDEX_TYPE.UNIQUE,	"id");

To ensure that a group of properties is UNIQUE create a composite index made of
multiple fields: Example of creating a composite index:

profile.createIndex("compositeIdx",	OClass.INDEX_TYPE.NOTUNIQUE,	"name",	"surname");

For more information about indexes look at Indexes.

Constraints

Indexes as constraints

532

http://en.wikipedia.org/wiki/Regular_expression


OrientDB has a powerful way to extract parts of a Document field. This applies to the
Java API, SQL Where conditions, and SQL projections.

To extract parts you have to use the square brackets.

Working with Fields

533



Example: tags is an EMBEDDEDSET of Strings containing the values ['Smart', 'Geek',
'Cool'].

The expression tags[0] will return 'Smart'.

Inside square brackets put the items separated by comma ",".

Following the tags example above, the expression tags[0,2] will return a list with [Smart,
'Cool'].

Inside square brackets put the lower and upper bounds of an item, separated by "-".

Following the tags example above, the expression tags[1-2] returns ['Geek', 'Cool'].

Example:

SELECT	*	FROM	profile	WHERE	phones['home']	like	'+39%'

Works the same with double quotes.

You can go in a chain (contacts is a map of map):

SELECT	*	FROM	profile	WHERE	contacts[phones][home]	like	'+39%'

With lists and arrays you can pick an item element from a range:

SELECT	*	FROM	profile	WHERE	tags[0]	=	'smart'

Extract punctual items

Single item

Single items

Range items

Usage in SQL query

534



and single items:

SELECT	*	FROM	profile	WHERE	tags[0,3,5]	CONTAINSALL	['smart',	'new',	'crazy']

and a range of items:

SELECT	*	FROM	profile	WHERE	tags[0-5]	CONTAINSALL	['smart',	'new',	'crazy']

Inside the square brackets you can specify a condition. Today only the equals condition
is supported.

Example:

employees[label	=	'Ferrari']

You can cross a graph using a projection. This an example of traversing all the retrieved
nodes with name "Tom". "out" is outEdges and it's a collection. Previously, a collection
couldn't be traversed with the . notation. Example:

SELECT	out.in	FROM	v	WHERE	name	=	'Tom'

This retrieves all the vertices connected to the outgoing edges from the Vertex with
name = 'Tom'.

A collection can be filtered with the equals operator. This an example of traversing all the
retrieved nodes with name "Tom". The traversal crosses the out edges but only where
the linked (in) Vertex has the label "Ferrari" and then forward to the:

SELECT	out[in.label	=	'Ferrari']	FROM	v	WHERE	name	=	'Tom'

Or selecting vertex nodes based on class:

Condition

Use in graphs

535



SELECT	out[in.@class	=	'Car']	FROM	v	WHERE	name	=	'Tom'

Or both:

SELECT	out[label='drives'][in.@class	=	'Car']	FROM	v	WHERE	name	=	'Tom'

As you can see where brackets ([]) follow brackets, the result set is filtered in each step
like a Pipeline.

NOTE: This doesn't replace the support of GREMLIN. GREMLIN is much more powerful
because it does thousands of things more, but it's a simple and, at the same time,
powerful tool to traverse relationships.

In the future you will be able to use the full expression of the OrientDB SQL language
inside the square brackets [], like:

SELECT	out[in.label.trim()	=	'Ferrari'	AND	in.@class='Vehicle']	FROM	v	WHERE	name	=	'Tom'

But for this you have to wait yet :-) Monitor the issue:
https://github.com/nuvolabase/orientdb/issues/513

Future directions

536

https://github.com/nuvolabase/orientdb/issues/513


This is a comparison page between OrientDB and other DocumentDB projects . To know
more about the comparison of OrientDB against GraphDBs look at this comparison.

NOTE: If any information about any product is not updated or wrong, please send an
email to the committers with the link of the source of the right information. Thanks!

Document Database Comparison

537



Feature OrientDB MongoDB CouchDB

Web Site http://www.orientdb.org http://www.mongodb.org http://www.couchdb.org

Supported
models Document and Graph Document Document

Transactions Yes, ACID No Yes, ACID

Query
languages

Extended SQL,
Gremlin Mongo Query Language Non supported, JS API

Features matrix

538

http://www.orientdb.org
http://www.mongodb.org
http://www.couchdb.org
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Graph_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/Document-oriented_database
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
https://github.com/tinkerpop/gremlin/wiki
http://www.mongodb.org/display/DOCS/Querying
http://sitr.us/2009/06/30/database-queries-the-couchdb-way.html


Note: The object database has been refactored since the release 1.0. If you use the
previous one look at: Old Implementation ODatabaseObjectTx.

Object API

539



To use the Object APi include the following jars in your classpath:

orient-commons-*.jar
orientdb-core-*.jar
orientdb-object-*.jar

If you're using the Object Database interface connected to a remote server (not
local/embedded mode) include also:

orientdb-client-*.jar
orientdb-enterprise-*.jar

Requirements

540



The OrientDB Object Interface works on top of the Document-Database and works like
an Object Database: manages Java objects directly. It uses the Java Reflection to
register the classes and Javassist tool to manage the Object-to-Document conversion.
Please consider that the Java Reflection in modern Java Virtual Machines is really fast
and the discovering of Java meta data is made only at first time.

Future implementation could use also the byte-code enhancement techniques in
addition.

The proxied objects have a ODocument bounded to them and transparently replicate
object modifications. It also allows lazy loading of the fields: they won't be loaded from
the document until the first access. To do so the object MUST implement getters and
setters since the Javassist Proxy is bounded to them. In case of object load, edit an
update all non loaded fields won't be lost.

The database instance has an API to generate new objects already proxied, in case a
non-proxied instance is passed it will be serialized, wrapped around a proxied instance
and returned.

Read more about the Binding between Java Objects and Records.

Quick example of usage:

//	OPEN	THE	DATABASE
OObjectDatabaseTx	db	=	new	OObjectDatabaseTx	("remote:localhost/petshop").open("admin",	"admin"

//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED
db.getEntityManager().registerEntityClasses("foo.domain");

//	CREATE	A	NEW	PROXIED	OBJECT	AND	FILL	IT
Account	account	=	db.newInstance(Account.class);
account.setName(	"Luke"	);
account.setSurname(	"Skywalker"	);

City	rome	=		db.newInstance(City.class,"Rome",		db.newInstance(Country.class,"Italy"));
account.getAddresses().add(new	Address("Residence",	rome,	"Piazza	Navona,	1"));

db.save(	account	);

//	CREATE	A	NEW	OBJECT	AND	FILL	IT
Account	account	=	new	Account();
account.setName(	"Luke"	);
account.setSurname(	"Skywalker"	);

Introduction

541

http://www.jboss.org/javassist
http://en.wikipedia.org/wiki/Mutator_method
http://www.jboss.org/javassist


City	rome	=	new	City("Rome",	new	Country("Italy"));
account.getAddresses().add(new	Address("Residence",	rome,	"Piazza	Navona,	1"));

//	SAVE	THE	ACCOUNT:	THE	DATABASE	WILL	SERIALIZE	THE	OBJECT	AND	GIVE	THE	PROXIED	INSTANCE
account	=	db.save(	account	);

542



One of most common use case is to reuse the database avoiding to create it every time.
It's also the typical scenario of the Web applications.

//	OPEN	THE	DATABASE
OObjectDatabaseTx	db=	OObjectDatabasePool.global().acquire("remote:localhost/petshop",	"admin"

//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED
db.getEntityManager().registerEntityClass("org.petshop.domain");

try	{
		...
}	finally	{
		db.close();
}

The close() method doesn't close the database but release it to the owner pool. It could
be reused in the future.

Connection Pool

543



In the example above a database of type Database Object Transactional has been
created using the storage: remote:localhost/petshop. This address is a URL. To know
more about database and storage types go to Database URL.

In this case the storage resides in the same computer of the client, but we're using the
remote storage type. For this reason we need a OrientDB Server instance up and
running. If we would open the database directly bypassing the server we had to use the
local storage type such as "plocal:/usr/local/database/petshop/petshop" where, in this
case, the storage was located in the /usr/local/database/petshop folder on the local file
system.

Database URL

544

http://it.wikipedia.org/wiki/Uniform_Resource_Locator


The OObjectDatabaseTx class is non thread-safe. For this reason use different
OObjectDatabaseTx instances by multiple threads. They will share local cache once
transactions are committed.

Multi-threading

545



Starting from the release 0.9.19 OrientDB supports the Inheritance. Using the
ObjectDatabase the inheritance of Documents fully matches the Java inheritance.

When registering a new class Orient will also generate the correct inheritance schema if
not already generated.

Example:

public	class	Account	{
		private	String	name;
//	getters	and	setters
}

public	class	Company	extends	Account	{
		private	int	employees;
//	getters	and	setters
}

When you save a Company object, OrientDB will save the object as unique Document in
the cluster specified for Company class. When you search between all the Account
instances with:

SELECT	FROM	account

The search will find all the Account and Company documents that satisfy the query.

Inheritance

546



Before to use a database you need to open or create it:

//	CREATE	AN	IN	MEMORY	DATABASE
OObjectDatabase	db1	=	new	OObjectDatabaseTx("memory:petshop").create();

//	OPEN	A	REMOTE	DATABASE
OObjectDatabase	db2	=	new	OObjectDatabaseTx("remote:localhost/petshop").open("admin",	"admin"

The database instance will share the connection versus the storage. if it's a local
storage, then all the database instances will be synchronized on it. If it's a remote
storage then the network connection will be shared among all the database instances.

To get the reference to the current user use:

OUser	user	=	db.getUser();

Once finished remember to close the database to free precious resources.

db.close();

Use the database

547



Please read the POJO binding guide containing all the information about the
management of POJO.

Working with POJO

548



The Object Database can be used totally in schema-less mode as long as the POJO
binding guide requirements are followed. Schema less means that the class must be
created but even without properties. Take a look to this example:

OObjectDatabase	db	=	new	OObjectDatabaseTx("remote:localhost/petshop").open("admin",	"admin");
db.getEntityManager().registerEntityClass(Person.class);

Person	p	=	db.newInstance(Person.class);
p.setName(	"Luca"	);
p.setSurname(	"Garulli"	);
p.setCity(	new	City(	"Rome",	"Italy"	)	);

db.save(	p	);
db.close();

This is the very first example. While the code it's pretty clear and easy to understand
please note that we didn't declared "Person" structure before now. However Orient has
been able to recognize the new object and save it in persistent way.

Work in schema-less mode

549



In the schema-full mode you need to declare the classes you're using. Each class
contains one or multiple properties. This mode is similar to the classic Relational DBMS
approach where you need to create tables before to store records. To work in schema-
full mode take a look to the Schema APIs page.

Work in schema-full mode

550



The best practice to create a Java object is to use the OObjectDatabase.newInstance()
API:

public	class	Person	{
		private	String	name;
		private	String	surname;

		public	Person(){
		}

		public	Person(String	name){
			this.name	=	name;
		}

		public	Person(String	name,	String	surname){
			this.name	=	name;
			this.surname	=	surname;
		}
//	getters	and	setters
}

OObjectDatabase	db	=	new	OObjectDatabaseTx("remote:localhost/petshop").open("admin",	"admin");
db.getEntityManager().registerEntityClass(Person.class);

//	CREATES	A	NEW	PERSON	FROM	THE	EMPTY	CONSTRUCTOR
Person	person	=	db.newInstance(Person.class);
animal.setName(	"Antoni"	);
animal.setSurname(	"Gaudi"	);
db.save(	person	);

//	CREATES	A	NEW	PERSON	FROM	A	PARAMETRIZED	CONSTRUCTOR
Person	person	=	db.newInstance(Person.class,		"Antoni");
animal.setSurname(	"Gaudi"	);
db.save(	person	);

//	CREATES	A	NEW	PERSON	FROM	A	PARAMETRIZED	CONSTRUCTOR
Person	person	=	db.newInstance(Person.class,"Antoni","Gaudi");
db.save(	person	);

However any Java object can be saved by calling the db.save() method, if not created
with the database API will be serialized and saved. In this case the user have to assign
the result of the db.save() method in order to get the proxied instance, if not the
database will always treat the object as a new one. Example:

//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED
db.getEntityManager().registerEntityClass(Animal.class);

Create a new object

551



Animal	animal	=	new	Animal();
animal.setName(	"Gaudi"	);
animal.setLocation(	"Madrid"	);
animal	=	db.save(	animal	);

Note that the behaviour depends by the transaction begun if any. See Transactions

552



for	(Object	o	:	database.browseCluster("CityCars"))	{
		System.out.println(	((Car)	o).getModel()	);

Browse all the records in a cluster

553



for	(Animal	animal	:	database.browseClass(Animal.class))	{
		System.out.println(	animal.getName()	);

Browse all the records of a class

554



long	cars	=	database.countClass("Car");

Count records of a class

555



long	cityCars	=	database.countCluster("CityCar");

Count records of a cluster

556



Any proxied object can be updated using the Java language and then calling the
db.save() method to synchronize the changes to the repository. Behaviour depends by
the transaction begun if any. See Transactions.

animal.setLocation(	"Nairobi"	);
db.save(	animal	);

Orient will update only the fields really changed.

Example of how to update the price of all the animals by 5% more:

for	(Animal	animal	:	database.browseClass(Animal.class))	{
		animal.setPrice(animal.getPrice()	*	105	/	100);
		database.save(animal);
}

If the db.save() method is called with a non-proxied object the database will create a
new document, even if said object were already saved

Update an object

557



To delete an object call the db.delete() method on a proxied object. If called on a non-
proxied object the database won't do anything. Behaviour also depends by the
transaction begun if any. See Transactions.

db.delete(	animal	);

Example of deletion of all the objects of class "Animal".

for	(Animal	animal	:	database.browseClass(Animal.class))
		database.delete(animal);

Object Database uses JPA annotations to manage cascade deleting. It can be done
expliciting (orphanRemoval = true) or using the CascadeType. The first mode works only
with @OneToOne and @OneToMany annotations, the CascadeType works also with
@ManyToMany annotation.

Example:

public	class	JavaCascadeDeleteTestClass	{
		...

		@OneToOne(orphanRemoval	=	true)
		private	JavaSimpleTestClass		simpleClass;

		@ManyToMany(cascade	=	{	CascadeType.REMOVE	})
		private	Map<String,	Child>			children				=	new	HashMap<String,	Child>();

		@OneToMany(orphanRemoval	=	true)
		private	List<Child>										list	=	new	ArrayList<Child>();

		@OneToMany(orphanRemoval	=	true)
		private	Set<Child>	set	=	new	HashSet<Child>();
		...

		//	GETTERS	AND	SETTERS
}

so calling

Delete an object

Cascade deleting

558



database.delete(testClass);

or

for	(JavaCascadeDeleteTestClass	testClass	:	database.browseClass(JavaCascadeDeleteTestClass.class))
		database.delete(testClass);

will also delete JavaSimpleTestClass instances contained in "simpleClass" field and all
the other documents contained in "children","list" and "test"

559



Since version 1.1.0 the Object Database provides attach(Object) and detach(Object)
methods to manually manage object to document data transfer.

With the attach method all data contained in the object will be copied in the associated
document, overwriting all existing informations.

Animal	animal	=	database.newInstance(Animal.class);
animal.name	=	"Gaudi"	;
animal.location	=	"Madrid";
database.attach(animal);
database.save(animal);

in this way all changes done within the object without using setters will be copied to the
document.

There's also an attachAndSave(Object) methods that after attaching data saves the
object.

Animal	animal	=	database.newInstance(Animal.class);
animal.name	=	"Gaudi"	;
animal.location	=	"Madrid";
database.attachAndSave(animal);

This will do the same as the example before

With the detach method all data contained in the document will be copied in the
associated object, overwriting all existing informations. The detach(Object) method
returns a proxied object, if there's a need to get a non proxied detached instance the
detach(Object,boolean) can be used.

Animal	animal	=	database.load(rid);
database.detach(animal);

Attaching and Detaching

Attach

Detach

560



this will copy all the loaded document information in the object, without needing to call all
getters. This methods returns a proxied instance

Animal	animal	=	database.load(rid);
animal	=	database.detach(animal,true);

this example does the same as before but in this case the detach will return a non
proxied instance.

Since version 1.2 there's also the detachAll(Object, boolean) method that detaches
recursively the entire object tree. This may throw a StackOverflowError with big trees. To
avoid it increase the stack size with -Xss java option. The boolean parameter works the
same as with the detach() method.

Animal	animal	=	database.load(rid);
animal	=	database.detachAll(animal,true);

561



Although OrientDB is part of NoSQL databases, supports the SQL engine, or at least a
subset of it with such extensions to work with objects and graphs.

To know more about the SQL syntax supported go to: SQL-Query.

Example:

List<Animal>	result	=	db.query(
		new	OSQLSynchQuery<Animal>("select	*	from	Animal	where	ID	=	10	and	name	like	'G%'"));

OrientDB is a graph database. This means that traversing is very efficient. You can use
this feature to optimize queries. A common technique is the Pivoting.

To execute SQL commands use the 	command()	 method passing a OCommandSQL
object:

int	recordsUpdated	=	db.command(
		new	OCommandSQL("update	Animal	set	sold	=	false")).execute();

See all the SQL Commands.

Execute a query

Right usage of the graph

SQL Commands

562



The OObjectDatabase implementation has APIs to get a document from its referencing
object:

ODocument	doc	=	db.getRecordByUserObject(	animal	);

In case of non-proxied objects the document will be a new generated one with all object
field serialized in it.

Get the ODocument from a POJO

563



The Object Database can also create an Object from a record.

Object	pojo	=	db.getUserObjectByRecord(record);

Get the POJO from a Record

564



Since version 1.5 the Object Database manages automatic Schema generation based
on registered entities. This operation can be

manual
automatic

The ObjectDatabase will generate class properties based on fields declaration if not
created yet.

Changes in class fields (as for type changing or renaming) types won't be
updated, this operation has to be done manually

Schema can be generated manually for single classes or entire packages:

Version 1.6

db.getMetadata().getSchema().generateSchema(Foo.class);	//	Generates	the	schema	for	Foo	class
db.getMetadata().getSchema().generateSchema("com.mycompany.myapp.mydomainpackage");		//	Generates	the	schema	for	all	classes	contained	in	the	given	package

Version 1.5

db.generateSchema(Foo.class);	//	Generates	the	schema	for	Foo	class
db.generateSchema("com.mycompany.myapp.mydomainpackage");	//	Generates	the	schema	for	all	classes	contained	in	the	given	package

By setting the "automaticSchemaGeneration" property to true the schema will be
generated automatically on every class declaration.

db.setAutomaticSchemaGeneration(true);
db.getEntityManager().registerClass(Foo.class);	//	Generates	the	schema	for	Foo	class	after	registering.
db.getEntityManager().registerEntityClasses("com.mycompany.myapp.mydomainpackage");	//	Generates	the	schema	for	all	classes	contained	in	the	given	package	after	registering.

Schema Generation

Manual Schema Generation

Automatic Schema Generation

565



class Foo could look like, generating one field with an Integer and ignoring the String
field.

public	class	Foo	{
		private	transient	String	field1;	//	ignore	this	field
		private	Integer	field2;	//	create	a	Integer
}

Having the Foo class defined as following

public	class	Foo{
private	String	text;
private	Child	reference;
private	int	number;
//getters	and	setters
}

schema generation will create "text", "reference" and "number" properties as respectively
STRING, LINK and INTEGER types.

The default schema management API equivalent would be

OClass	foo	=	db.getMetadata().getSchema().getClass(Foo.class);
OClass	child	=	db.getMetadata().getSchema().getClass(Child.class)
foo.createProperty("text",OType.STRING);
foo.createProperty("number",OType.INTEGER);
foo.createProperty("text",OType.LINK,	child);
db.getMetadata().getSchema().save();

Since version 1.6 there's an API to synchronize schema of all registered entities.

db.getMetadata().getSchema().synchronizeSchema();

By calling this API the ObjectDatabase will check all registered entities and generate the
schema if not generated yet. This management is useful on multi-database enviroments

Standard schema management equivalent

Schema synchronizing

566



567



Until the release 1.0rc9 the Object Database was implemented as the class
	com.orientechnologies.orient.db.object.ODatabaseObjectTx	. This class is deprecated, but if
you want to continue to use it change the package to:
	com.orientechnologies.orient.object.db	.

Old Implementation ODatabaseObjectTx

568



This implementation and documentation refers to all ODatabaseObjectXXX
deprecated classes.

The Orient Object DB works on top of the Document-Database and it's able to treat Java
objects without the use of pre-processor, byte enhancer or Proxy classes. It uses the
simpler way: the Java Reflection. Please consider that the Java reflection in modern
Java Virtual Machines is really fast and the discovering of Java meta data is made at
first time. Future implementation could use the byte-code enhancement techniques in
addition.

Read more about the Binding between Java Objects and Records.

Quick example of usage:

//	OPEN	THE	DATABASE
ODatabaseObjectTx	db	=	new	ODatabaseObjectTx	("remote:localhost/petshop").open("admin",	"admin"

db.getEntityManager().registerEntityClasses("foo.domain");

//	CREATE	A	NEW	ACCOUNT	OBJECT	AND	FILL	IT
Account	account	=	new	Account()
account.setName(	"Luke"	);
account.setSurname(	"Skywalker"	);

City	rome	=	new	City("Rome",	new	Country("Italy"));
account.getAddresses().add(new	Address("Residence",	rome,	"Piazza	Navona,	1"));

db.save(	account	);

Introduction

569



One of most common use case is to reuse the database avoiding to create it every time.
It's also the typical scenario of the Web applications.

//	OPEN	THE	DATABASE
ODatabaseObjectTx	db=	ODatabaseObjectPool.global().acquire("remote:localhost/petshop",	"admin"

...

db.close();

The close() method doesn't close the database but release it to the owner pool. It could
be reused in the future.

Connection Pool

570



Starting from the release 0.9.19 OrientDB supports the Inheritance. Using the
ObjectDatabase the inheritance of Documents fully matches the Java inheritance.

Example:

public	class	Account	{
		private	String	name;
}

public	class	Company	extends	Account	{
		private	int	employees;
}

When you save a Company object, OrientDB will save the object as unique Document in
the cluster specified for Company class. When you search between all the Account
instances with:

SELECT	FROM	account

The search will find all the Account and Company documents that satisfy the query.

Inheritance

571



The ObjectDatabase implementation makes things easier for the Java developer since
the binding between Objects to Records is transparent.

Object Binding

572



OrientDB uses Java reflection and Javassist Proxy to bound POJOs to Records directly.
Those proxied instances take care about the synchronization between the POJO and the
underlying record. Every time you invoke a setter method against the POJO, the value is
early bound into the record. Every time you call a getter method the value is retrieved
from the record if the POJO's field value is null. Lazy loading works in this way too.

So the Object Database class works as wrapper of the underlying Document-Database.

NOTE: In case a non-proxied object is found it will be serialized, proxied and bounded to
a corresponding Record.

How it works?

573

http://www.javassist.org/


Before to use persistent POJOs OrientDB needs to know which classes are persistent
(between thousands in your classpath) by registering the persistent packages and/or
classes. Example:

database.getEntityManager().registerEntityClasses("com.orientechnologies.orient.test.domain");

This must be done only right after the database is created or opened.

Requirements

Declare persistent classes

574



OrientDB follows some naming conventions to avoid writing tons of configuration files
but just applying the rule "Convention over Configuration". Below those used:

1. Java classes will be bound to persistent classes defined in the OrientDB schema
with the same name. In OrientDB class names are case insensitive. The Java class
name is taken without the full package. For example registering the class 	Account	 in
the package 	com.orientechnologies.demo	, the expected persistent class will be
"Account" and not the entire 	com.orientechnologies.demo.Account	. This means that
class names, in the database, are always unique and can't exist two class with the
same name even if declared in different packages.

2. Java class's attributes will be bound to the fields with the same name in the
persistent classes. Field names are case sensitive.

Naming conventions

575



All the Java classes must have an empty constructor to let to OrientDB to create
instances.

Empty constructor

576



All your classes must have getters and setters of every field that needs to be persistent
in order to let to OrientDB to manage proxy operations. Getters and Setters also need to
be named same as the declaring field: Example:

public	class	Test	{

		private	String	textField;
		private	int	intField;

		public	String	getTextField()	{
				return	textField;
		}

		public	void	setTextField(	String	iTextField	)	{
				textField	=	iTextField;
		}

		//	THIS	DECLARATION	WON'T	WORK,	ORIENTDB	WON'T	BE	ABLE	TO	RECOGNIZE	THE	REAL	FIELD	NAME
		public	int	getInt(){
				return	intField;
		}

		//	THIS	DECLARATION	WON'T	WORK,	ORIENTDB	WON'T	BE	ABLE	TO	RECOGNIZE	THE	REAL	FIELD	NAME
		public	void	setInt(int	iInt){
				intField	=	iInt;
		}
}

Getters and Setters

577

http://en.wikipedia.org/wiki/Mutator_method#Java_example
http://en.wikipedia.org/wiki/Mutator_method#Java_example


To avoid ClassCastExecption when the Java classes have Collections and Maps, the
interface must be used rather than the Java implementation. The classic mistake is to
define in a persistent class the types ArrayList, HashSet, HashMap instead of List, Set
and Map.

Example:

public	class	MyClass{
			//	CORRECT
			protected	List<MyElement>	correctList;

			//	WRONG:	WILL	THROW	A	ClassCastException
			protected	ArrayList<MyElement>	wrongList;

			//	CORRECT
			protected	Set<MyElement>	correctSet;

			//	WRONG:	WILL	THROW	A	ClassCastException
			protected	TreeSet<MyElement>	wrongSet;

			//	CORRECT
			protected	Map<String,MyElement>	correctMap;

			//	WRONG:	WILL	THROW	A	ClassCastException
			protected	HashMap<String,MyElement>	wrongMap;
}

Collections and Maps

578



OrientDB manages all the POJO attributes in persistent way during read/write from/to
the record, except for the fields those:

have the transient modifier
have the static modifier,
haven't getters and setters
are set with anonymous class types.

OrientDB uses the Java reflection to discovery the POJO classes. This is made only
once during the registration of the domain classes.

POJO binding

579



This is the default. It tries to use the getter and setter methods for the field if they exist,
otherwise goes in RAW mode (see below). The convention for the getter is the same as
Java: 	get<field-name>	 where field-name is capitalized. The same is for setter but with
'set' as prefix instead of 'get': 	set<field-name>	. If the getter or setter is missing, then the
raw binding will be used.

Example: Field '	String	name	' -> 	getName()	 and 	setName(String)	

Default binding

580



Since v1.2 Orient provides the possibility of custom binding extending the
OObjectMethodFilter class and registering it to the wanted class.

The custom implementation must provide the 	public	boolean	isHandled(Method	m)	 to
let Orient know what methods will be managed by the ProxyHandler and what
methods won't.
The custom implementation must provide the 	public	String	getFieldName(Method	m)	 to
let orient know how to parse a field name starting from the accessing method name.
In the case those two methods are not provided the default binding will be used

The custom MethodFilter can be registered by calling
	OObjectEntityEnhancer.getInstance().registerClassMethodFilter(Class<?>,	customMethodFilter);	

Domain class example:

public	class	CustomMethodFilterTestClass	{

		protected	String	standardField;

		protected	String	UPPERCASEFIELD;

		protected	String	transientNotDefinedField;

		//	GETTERS	AND	SETTERS
		...

}

Method filter example:

	public	class	CustomMethodFilter	extends	OObjectMethodFilter	{
				@Override
				public	boolean	isHandled(Method	m)	{
						if	(m.getName().contains("UPPERCASE"))	{
								return	true;
						}	else	if	(m.getName().contains("Transient"))	{
								return	false;
						}
						return	super.isHandled(m);
				}

				@Override
				public	String	getFieldName(Method	m)	{
						if	(m.getName().startsWith("get"))	{
								if	(m.getName().contains("UPPERCASE"))	{

Custom binding

581



										return	"UPPERCASEFIELD";
								}
								return	getFieldName(m.getName(),	"get");
						}	else	if	(m.getName().startsWith("set"))	{
								if	(m.getName().contains("UPPERCASE"))	{
										return	"UPPERCASEFIELD";
								}
								return	getFieldName(m.getName(),	"set");
						}	else
								return	getFieldName(m.getName(),	"is");
				}
		}

Method filter registration example:

OObjectEntityEnhancer.getInstance().registerClassMethodFilter(CustomMethodFilterTestClass.class,	

582



You can read a POJO from the database in two ways:

by calling the method 	load(ORID)	
by executing a query 	query(q)	

When OrientDB loads the record, it creates a new POJO by calling the empty
constructor and filling all the fields available in the source record. If a field is present only
in the record and not in the POJO class, then it will be ignored. Even when the POJO is
updated, any fields in the record that are not available in the POJO class will be
untouched.

Read a POJO

583



You can save a POJO to the database by calling the method 	save(pojo)	. If the POJO is
already a proxied instance, then the database will just save the record bounded to it. In
case the object is not proxied the database will serialize it and save the corresponded
record: In this case the object MUST be reassinged with the one returned by the
database

Save a POJO

584



Starting from release 0.9.20, OrientDB supports Fetching-Strategies by using the Fetch
Plans. Fetch Plans are used to customize how OrientDB must load linked records. The
ODatabaseObjectTx uses the Fetch Plan also to determine how to bind the linked
records to the POJO by building an object tree.

Fetching strategies

585

http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java


To let OrientDB use not supported types use the custom types. They MUST BE
registered before domain classes registration, if not all custom type fields will be treated
as domain classes. In case of registering a custom type that is already register as a
domain class said class will be removed.

Important: java.lang classes cannot be managed this way

Example to manage an enumeration as custom type:

Enum declaration

public	enum	SecurityRole	{
				ADMIN("administrador"),	LOGIN("login");
				private	String				id;

				private	SecurityRole(String	id)	{
								this.id	=	id;
				}

				public	String	getId()	{
								return	id;
				}

				@Override
				public	String	toString()	{
								return	id;
				}

				public	static	SecurityRole	getByName(String	name)	{
								if	(ADMIN.name().equals(name))	{
												return	ADMIN;
								}	else	if	(LOGIN.name().equals(name))	{
												return	LOGIN;
								}
								return	null;
				}

				public	static	SecurityRole[]	toArray()	{
								return	new	SecurityRole[]	{	ADMIN,	LOGIN	};
				}
}

Custom type management

		OObjectSerializerContext	serializerContext	=	new	OObjectSerializerContext();
		serializerContext.bind(new	OObjectSerializer<SecurityRole,	String>()	{

Custom types

586



				public	Object	serializeFieldValue(Class<?>	type,	SecurityRole	role)	{
						return	role.name();
				}

				public	Object	unserializeFieldValue(Class<?>	type,	String	str)	{
						return	SecurityRole.getByName(str);
				}
		});

		OObjectSerializerHelper.bindSerializerContext(null,	serializerContext);

//	NOW	YOU	CAN	REGISTER	YOUR	DOMAIN	CLASSES
database.getEntityManager().registerEntityClass(User.class);

OrientDB will use that custom serializer to marshall and unmarshall special types.

587



Available since v1.0rc9

The ObjectDatabase implementation makes things easier for the Java developer since
the binding between Objects to Records is transparent.

ODatabaseObjectTx (old deprecated
implementation)

588



OrientDB uses Java reflection and doesn't require that the POJO is enhanced in order to
use it according to the JDO standard and doesn't use Proxies as do many JPA
implementations such as Hibernate. So how can you work with plain POJOs?

OrientDB works in two ways:

Connected mode
Detached mode

The ODatabaseObjectTx implementation is the gateway between the developer and
OrientDB. ODatabaseObjectTx keeps track of the relationship between the POJO and
the Record.

Each POJO read from the database is created and tracked by ODatabaseObjectTx. If
you change the POJO and call the 	ODatabaseObjectTx.save(pojo)	 method, OrientDB
recognizes the POJO bound with the underlying record and, before saving it, will copy
the POJO attributes to the loaded record.

This works with POJOs that belong to the same ODatabaseObjectTx instance. For
example:

ODatabaseObjectTx	db	=	new	ODatabaseObjectTx("remote:localhost/demo");
db.open("admin",	"admin");

try{
		List<Customer>	result	=	db.query(	new	OSQLSynchQuery<Customer>(db,	"select	from	customer")	);
		for(	Customer	c	:	result	){
				c.setAge(	100	);
				db.save(	c	);	//	<-	AT	THIS	POINT	THE	POJO	WILL	BE	RECOGNIZED	AS	KNOWN	BECAUSE	IS
																	//	ALWAYS	LOADED	WITH	THIS	DB	INSTANCE
		}

}	finally	{
		db.close;
}

When the 	db.save(	c	)	 is called, the ODatabaseObjectTx instance already knows obout
it because has been retrieved by using a query through the same instance.

How it works?

Connected mode

589

http://java.sun.com/jdo
http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://www.hibernate.org
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java


In a typical Front-End application you need to load objects, display them to the user,
capture the changes and save them back to the database. Usually this is implemented
by using a database pool in order to avoid leaving a database instance open for the
entire life cycle of the user session.

The database pool manages a configurable number of database instances. These
instances are recycled for all database operations, so the list of connected POJOs is
cleared at every release of the database pool instance. This is why the database
instance doesn't know the POJO used by the application and in this mode if you save a
previously loaded POJO it will appear as a NEW one and is therefore created as new
instance in the database with a new RecordID.

This is why OrientDB needs to store the record information inside the POJO itself. This
is retrieved when the POJO is saved so it is known if the POJO already has own identity
(has been previously loaded) or not (it's new).

To save the Record Identity you can use the JPA @Id annotation above the property
interested. You can declare it as:

Object, the suggested, in this case OrientDB will store the ORecordId instance
String, in this case OrientDB will store the string representation of the ORecordId
Long, in this case OrientDB will store the right part of the RecordID. This works only
if you've a schema for the class. The left side will be rebuilt at save time by getting
the class id.

Example:

public	class	Customer{
		@Id
		private	Object	id;	//	DON'T	CREATE	GETTER/SETTER	FOR	IT	TO	PREVENT	THE	CHANGING	BY	THE	USER	APPLICATION,
																		//	UNLESS	IT'S	NEEDED

		private	String	name;
		private	String	surname;

		public	String	getName(){
				return	name;
		}
		public	void	setName(String	name){
				this.name	=	name;
		}

		public	String	getSurname(){

Detached mode

590

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/5/api/javax/persistence/Id.html


				return	name;
		}
		public	void	setSurname(String	surname){
				this.surname	=	surname;
		}
}

OrientDB will save the Record Identity in the id property even if getter/setter methods
are not created.

If you work with transactions you also need to store the Record Version in the POJO to
allow MVCC. Use the JPA @Version annotation above the property interested. You can
declare it as:

java.lang.Object (suggested) - a
com.orientechnologies.orient.core.version.OSimpleVersion is used
java.lang.Long
java.lang.String

Example:

public	class	Customer{
		@Id
		private	Object	id;	//	DON'T	CREATE	GETTER/SETTER	FOR	IT	TO	PREVENT	THE	CHANGING	BY	THE	USER	APPLICATION,
																		//	UNLESS	IT'S	NEEDED

		@Version
		private	Object	version;	//	DON'T	CREATE	GETTER/SETTER	FOR	IT	TO	PREVENT	THE	CHANGING	BY	THE	USER	APPLICATION,
																							//	UNLESS	IT'S	NEEDED

		private	String	name;
		private	String	surname;

		public	String	getName(){
				return	name;
		}
		public	void	setName(String	name){
				this.name	=	name;
		}

		public	String	getSurname(){
				return	name;
		}
		public	void	setSurname(String	surname){
				this.surname	=	surname;
		}
}

591

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/5/api/javax/persistence/Version.html


Since OrientDB doesn't know what object is changed in a tree of connected objects, by
default it saves all the objects. This could be very expensive for big trees. This is the
reason why you can control manually what is changed or not via a setting in the
ODatabaseObjectTx instance:

db.setSaveOnlyDirty(true);

or by setting a global parameter (see Parameters):

OGlobalConfiguration.OBJECT_SAVE_ONLY_DIRTY.setValue(true);

To track what object is dirty use:

db.setDirty(pojo);

To unset the dirty status of an object use:

db.unsetDirty(pojo);

Dirty mode doesn't affect in memory state of POJOs, so if you change an object without
marking it as dirty, OrientDB doesn't know that the object is changed. Furthermore if you
load the same changed object using the same database instance, the modified object is
returned.

Save Mode

592

http://code.google.com/p/orient/wiki/PerformanceTuning#Parameters


In order to know which classes are persistent (between thousands in your classpath),
you need to tell OrientDB. Using the Java API is:

database.getEntityManager().registerEntityClasses("com.orientechnologies.orient.test.domain");

OrientDB saves only the final part of the class name without the package. For example if
you're using the class 	Account	 in the package 	com.orientechnologies.demo	, the persistent
class will be only "Account" and not the entire 	com.orientechnologies.demo.Account	. This
means that class names, in the database, are always unique and can't exist two class
with the same name even if declared in different packages.

All your classes must have an empty constructor to let to OrientDB to create instances.

Requirements

Declare persistent classes

Empty constructor

593



All the POJO attributes will be read/stored from/into the record except for fields with the
transient modifier. OrientDB uses Java reflection but the discovery of POJO classes is
made only the first time at startup. Java Reflection information is inspected only the first
time to speed up the access to the fields/methods.

There are 2 kinds of binding:

Default binding and
Raw binding

This is the default. It tries to use the getter and setter methods for the field if they exist,
otherwise goes in RAW mode (see below). The convention for the getter is the same as
Java: 	get<field-name>	 where field-name is capitalized. The same is for setter but with
'set' as prefix instead of 'get': 	set<field-name>	. If the getter or setter is missing, then the
raw binding will be used.

Example: Field '	String	name	' -> 	getName()	 and 	setName(String)	

POJO binding

Default binding

594



This mode acts at raw level by accessing the field directly. If the field signature is private
or protected, then the accessibility will be forced. This works generally in all the
scenarios except where a custom SecurityManager is defined that denies the change to
the accessibility of the field.

To force this behaviour, use the JPA 2 @AccessType annotation above the relevant
property. For example:

public	class	Customer{
		@AccessType(FIELD)
		private	String	name;

		private	String	surname;

		public	String	getSurname(){
				return	name;
		}
		public	void	setSurname(String	surname){
				this.surname	=	surname;
		}
}

Raw binding

595

http://java.sun.com/developer/technicalArticles/J2EE/jpa
http://download.oracle.com/javaee/6/api/javax/persistence/AccessType.html


You can read a POJO from the database in two ways:

by calling the method 	load(ORID)	
by executing a query 	query(q)	

When OrientDB loads the record, it creates a new POJO by calling the empty
constructor and filling all the fields available in the source record. If a field is present only
in the record and not in the POJO class, then it will be ignored. Even when the POJO is
updated, any fields in the record that are not available in the POJO class will be
untouched.

You can define some methods in the POJO class that are called as callbacks before the
record is read:

@OBeforeDeserialization called just BEFORE unmarshalling the object from the
source record
@OAfterDeserialization called just AFTER unmarshalling the object from the source
record

Example:

public	class	Account{
		private	String	name;
		transient	private	String	status;

		@OAfterDeserialization
		public	void	init(){
				status	=	"Loaded";
		}
}

Callbacks are useful to initialize transient fields.

Read a POJO

Callbacks

596

http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OBeforeDeserialization.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OAfterDeserialization.java


You can save a POJO to the database by calling the method 	save(pojo)	. If the POJO is
already known to the ODatabaseObjectTx instance, then it updates the underlying
record by copying all the POJO attributes to the records (omitting those with transient
modifier).

You can define in the POJO class some methods called as callback before the record is
written:

@OBeforeSerialization called just BEFORE marshalling the object to the record
@OAfterSerialization called just AFTER marshalling the object to the record

Example:

public	class	Account{
		private	String	name;
		transient	private	Socket	s;

		@OAfterSerialization
		public	void	free(){
				s.close();
		}
}

Callbacks are useful to free transient resources.

== Fetching strategies =v

Starting from release 0.9.20, OrientDB supports Fetching-Strategies by using the Fetch
Plans. Fetch Plans are used to customize how OrientDB must load linked records. The
ODatabaseObjectTx uses the Fetch Plan also to determine how to bind the linked
records to the POJO by building an object tree.

Save a POJO

Callbacks

597

http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OBeforeSerialization.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/annotation/OAfterSerialization.java
http://code.google.com/p/orient/source/browse/trunk/core/src/main/java/com/orientechnologies/orient/core/db/object/ODatabaseObjectTx.java


To let OrientDB use not supported types use the custom types. Register them before to
register domain classes. Example to manage a BigInteger (that it's not natively
supported):

OObjectSerializerContext	serializerContext	=	new	OObjectSerializerContext();
serializerContext.bind(new	OObjectSerializer<BigInteger,	Integer>()	{

		public	Integer	serializeFieldValue(Class<?>	itype,		BigInteger	iFieldValue)	{
				return	iFieldValue.intValue();
		}

		public		BigInteger	unserializeFieldValue(Class<?>	itype,		Integer	iFieldValue)	{
				return	new		BigInteger(iFieldValue);
		}

});
OObjectSerializerHelper.bindSerializerContext(null,	serializerContext);

//	NOW	YOU	CAN	REGISTER	YOUR	DOMAIN	CLASSES
database.getEntityManager().registerEntityClass(Customer.class);

OrientDB will use that custom serializer to marshall and unmarshall special types.

Custom types

598



OrientDB is a graph database. This means that the focal point is on relationships (links)
and how are managed. The standard SQL language is not enough to work with tree or
graphs because it hasn't the concept of recursion. This is the reason why OrientDB
provide a new command to traverse trees and graphs: TRAVERSE. Traversing is the
operation that cross relationships between records (documents, vertexes, nodes, etc).
This operation is much much faster than executing a JOIN in a Relational database.

The main concepts of Traversal are:

target, as the starting point where to traverse records. Can be:
class
cluster
set of records, specifying its RecordID
sub-command that returns an 	Iterable<OIdentifiable>	. You can nest multiple
select and traverse all together

fields, the fields to traverse. Use 	*	, 	any()	 or 	all()	 to traverse all the fields of a
document
limit, the maximum number of records to retrieve
predicate, as the predicate to execute against each document traversed. If the
predicate returns true, then the document is returned, otherwise is skipped
strategy, as the way the traverse go in deep:

DEPTH_FIRST, the default,
BREADTH_FIRST,

This is the default strategy used by OrientDB traversal. It explores as far as possible
along each branch before backtracking. It's implemented using recursion. To know more
look at Depth-First algorithm. Below the ordered steps executed while traversing the
graph using BREADTH_FIRST strategy:

Traverse

Traversing strategies

DEPTH_FIRST strategy

599

https://github.com/orientechnologies/orientdb/wiki/Java-Traverse#depth_first-strategy
https://github.com/orientechnologies/orientdb/wiki/Java-Traverse#breadth_first-strategy
http://en.wikipedia.org/wiki/Depth-first_search


It inspects all the neighboring nodes, then for each of those neighbor nodes in turn, it
inspects their neighbor nodes which were unvisited, and so on. Compare
BREADTH_FIRST with the equivalent, but more memory-efficient Iterative deepening
DEPTH_FIRST search and contrast with DEPTH_FIRST search. To know more look at
Breadth-First algorithm. Below the ordered steps executed while traversing the graph
using Depth-First strategy:

BREADTH_FIRST strategy

600

http://en.wikipedia.org/wiki/Breadth-first_search


During traversing some context variables are managed and can be used by the traverse
condition:

$depth, as an integer that contain the depth level of nesting in traversal. First level
is 0
$path, as a string representation of the current position as the sum of traversed
nodes
$stack, as the stack current node traversed
$history, as the entire collection of visited nodes

Below how to traverse using different approaches.

Context variables

601



The simpler available way to execute a traversal is using the SQL Traverse command.
Example to retrieve all the records connected from and to Movie records up to the 5th
level of depth:

for	(OIdentifiable	id	:	new	OSQLSynchQuery<ODocument>("traverse	in,	out	from	Movie	while	$depth	<=	5"
		System.out.println(id);
}

Look at the command syntax for more information.

SQL Traverse

602



Native API supports fluent execution guaranteeing compact and readable syntax. The
main class is 	OTraverse	:

	target(<iter:Iterable<OIdentifiable>>)	, to specify the target as any iterable object like
collections or arrays of OIdentifiable objects.
	target(<iter:Iterator<OIdentifiable>>)	, to specify the target as any iterator object. To
specify a class use 	database.browseClass(<class-name>).iterator()	
	target(<record:OIdentifiable>,	<record:OIdentifiable>,	...	)	, to specify the target as a
var ars of OIterable objects
	field(<field-name:string>)	, to specify the document's field to traverse. To add
multiple field call this method in chain. Example: 	.field("in").field("out")	
	fields(<field-name:string>,	<field-name:string>,	...)	, to specify multiple fields in one
call passing a var args of Strings
	fields(Collection<field-name:string>)	, to specify multiple fields in one call passing a
collection of String
	limit(<max:int>)	, as the maximum number of record returned
	predicate(<predicate:OCommandPredicate>)	, to specify a predicate to execute against
each traversed record. If the predicate returns true, then the record is returned as
result, otherwise false. it's common to create an anonymous class specifying the
predicate at the fly
	predicate(<predicate:OSQLPredicate>)	, to specify the predicate using the SQL syntax.

In the traverse command context iContext you can read/put any variable. Traverse
command updates these variables:

depth, as the current depth of nesting
path, as the string representation of the current path. You can also display it.
Example: 	select	$path	from	(traverse	*	from	V)	
stack, as the List of operation in the stack. Use it to access to the history of the
traversal. It's a 	List<OTraverseAbstractProcess<?>>	 where process implementations
are:

	OTraverseRecordSetProcess	, usually the first one it's the base target of traverse
	OTraverseRecordProcess	, represent a traversed record
	OTraverseFieldProcess	, represent a traversal through a record's field
	OTraverseMultiValueProcess	, use on fields that are multivalue: arrays, collections
and maps

history, as the set of records traversed as a 	Set<ORID>	.

Native Fluent API

603



for	(OIdentifiable	id	:	new	OTraverse()
														.field("in").field("out")
														.target(	database.browseClass("Movie").iterator()	)
														.predicate(new	OCommandPredicate()	{

				public	boolean	evaluate(ORecord<?>	iRecord,	OCommandContext	iContext)	{
						return	((Integer)	iContext.getVariable("depth"))	<=	5;
				}
		}))	{

		System.out.println(id);
}

for	(OIdentifiable	id	:	new	OTraverse()
														.field("in").field("out")
														.target(database.browseClass("Movie").iterator())
														.predicate(	new	OSQLPredicate("$depth	<=	5")))	{

		System.out.println(id);
}

OTraverse gets any Iterable, Iterator and Single/Multi OIdentifiable. There's also the
limit() clause. To specify multiple fields use fields(). Full example:

for	(OIdentifiable	id	:	new	OTraverse()
														.target(new	ORecordId("#6:0"),	new	ORecordId("#6:1"))
														.fields("out",	"int")
														.limit(100)
														.predicate(	new	OSQLPredicate("$depth	<=	10")))	{

		System.out.println(	id);
}

Example using an anonymous OCommandPredicate as
predicate

Example using the OSQLPredicate as predicate

Other examples

604



OrientDB supports multi-threads access to the database. 	ODatabase	 instances are not
thread-safe, so you've to get an instance per thread and each database instance can be
used only in one thread per time*.

Multiple database instances points to the same storage by using the same URL. In this
case Storage is thread-save and orchestrates requests from different 	ODatabase*	
instances.

ODatabaseDocument1------+
																								+---->	OStorageLocal	(url=local:/temp/db)
ODatabaseDocument2------+

Database instances share the following objects:

schema
index manager
security

These objects are synchronized for concurrent contexts by storing the current database
in the ThreadLocal variable. Every time you create, open or acquire a database
connection, the database instance is automatically set into the current ThreadLocal
space, so in normal use this is hidden from the developer.

The current database is always reset for all common operations like load, save, etc.

Example of using two database in the same thread:

ODocument	rec1	=	database1.newInstance();
ODocument	rec2	=	database2.newInstance();

rec1.field("name",	"Luca");
database1.save(rec1);	//	force	saving	in	database1	no	matter	where	the	record	came	from

rec2.field("name",	"Luke");
database2.save(rec2);	//	force	saving	in	database2	no	matter	where	the	record	came	from

Multi-Threading

605

http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html


To get the current database from the ThreadLocal use:

ODatabaseDocument	database	=	(ODatabaseDocument)	ODatabaseRecordThreadLocal.INSTANCE.get();

Get current database

606

http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html


Beware when you reuse database instances from different threads or then a thread
handle multiple databases. In this case you can override the current database by calling
this manually:

ODatabaseRecordThreadLocal.INSTANCE.set(	database	);

Where database is the current database instance. Example:

ODocument	rec1	=	database1.newInstance();
ODocument	rec2	=	database2.newInstance();

ODatabaseRecordThreadLocal.INSTANCE.set(	database1	);
rec1.field("name",	"Luca");
rec1.save();

ODatabaseRecordThreadLocal.INSTANCE.set(	database2	);
rec2.field("name",	"Luke");
rec2.save();

Manual control

607



Since v1.2 Orient provides an interface to manage custom database management in
MultiThreading cases:

public	interface	ODatabaseThreadLocalFactory	{
		public	ODatabaseRecord	getThreadDatabase();
}

Examples:

public	class	MyCustomRecordFactory	implements	ODatabaseThreadLocalFactory	{

		public	ODatabaseRecord	getDb(){
			return	ODatabaseDocumentPool.global().acquire(url,	"admin",	"admin");
		}
}

public	class	MyCustomObjectFactory	implements	ODatabaseThreadLocalFactory	{
		public	ODatabaseRecord	getThreadDatabase(){
			return	OObjectDatabasePool.global().acquire(url,	"admin",	"admin").getUnderlying().getUnderlying();
		}
}

Registering the factory:

ODatabaseThreadLocalFactory	customFactory	=	new	MyCustomRecordFactory();
	Orient.instance().registerThreadDatabaseFactory(customFactory);

When a database is not found in current thread it will be called the factory getDb() to
retrieve the database instance.

Custom database factory

608



What happens if you are working with two databases and close one? The Thread Local
isn't a stack, so you loose the previous database in use. Example:

ODatabaseDocumentTx	db1	=	new	ODatabaseDocumentTx("local:/temo/db1").create();
ODatabaseDocumentTx	db2	=	new	ODatabaseDocumentTx("local:/temo/db2").create();
...

db2.close();

//	NOW	NO	DATABASE	IS	SET	IN	THREAD	LOCAL.	TO	WORK	WITH	DB1	SET	IT	IN	THE	THREAD	LOCAL
ODatabaseRecordThreadLocal.INSTANCE.set(	db1	);
...

Close a database

609



If two threads update the same record, then the last one receive the following exception:
"OConcurrentModificationException: Cannot update record #X:Y in storage 'Z' because
the version is not the latest. Probably you are updating an old record or it has been
modified by another user (db=vA your=vB)"

This is because every time you update a record, the version is incremented by 1. So the
second update fails checking the current record version in database is higher than the
version contained in the record to update.

To fix this problem you can:

if your JVM is the only client is writing to the database then disabling the Level1
cache could be enough: http://code.google.com/p/orient/wiki/Caching#Level_1
disable MVCC by setting the {db.mvcc} parameter to false: 	java	-Ddb.mvcc=false	
If you're using the GraphDB api look at: concurrency

If you want to leave the MVCC and write code concurrency proof:

for(	int	retry	=	0;	retry	<	maxRetries;	++retry	)	{
		try{
				//	APPLY	CHANGES
				document.field(	name,	"Luca"	);

				document.save();
				break;
		}	catch(	ONeedRetryException	e	)	{
				//	RELOAD	IT	TO	GET	LAST	VERSION
				document.reload();
		}
}

The same in transactions:

for(	int	retry	=	0;	retry	<	maxRetries;	++retry	)	{
		db.begin();
		try{
				//	CREATE	A	NEW	ITEM
				ODocument	invoiceItem	=	new	ODocument("InvoiceItem");
				invoiceItem.field(	price,	213231	);
				invoiceItem.save();

				//	ADD	IT	TO	THE	INVOICE
				Collection<ODocument>	items	=	invoice.field(	items	);

Multi Version Concurrency Control

610

http://code.google.com/p/orient/wiki/Caching#Level_1
http://code.google.com/p/orient/wiki/GraphDatabaseRaw#ConcurrencyGraphDB


				items.add(	invoiceItem	);
				invoice.save();

				db.commit();
				break;
		}	catch(	OTransactionException	e	)	{
				//	RELOAD	IT	TO	GET	LAST	VERSION
				invoice.reload();
		}
}

Where 	maxRetries	 is the maximum number of attempt of reloading.

611



Transactions are bound to a database, so if you change the current database while a tx
is running, the deleted and saved objects remain attached to the original database
transaction. When it commits, the objects are committed.

Example:

ODatabaseDocumentTx	db1	=	new	ODatabaseDocumentTx("local:/temo/db1").create();

db1.begin();

ODocument	doc1	=	new	ODocument("Customer");
doc1.field("name",	"Luca");
doc1.save();	//	NOW	IT'S	BOUND	TO	DB1'S	TX

ODatabaseDocumentTx	db2	=	new	ODatabaseDocumentTx("local:/temo/db2").create();	//	THE	CURRENT	DB	NOW	IS	DB2

ODocument	doc2	=	new	ODocument("Provider");
doc2.field("name",	"Chuck");
doc2.save();	//	THIS	IS	BOUND	TO	DB2	BECAUSE	IT'S	THE	CURRENT	ONE

db1.commit();	//	WILL	COMMIT	DOC1	ONLY

What about running transaction?

612



During application development there are situations when a transaction started in one
method should be propagated to other method.

Lets suppose we have 2 methods.

public	void	method1()	{
	database.begin();
	try	{
		method2();
		database.commit();
	}	catch(Exception	e)	{
			database.rollback();
	}
}

public	void	method2()	{
		database.begin();
		try	{
				database.commit();
		}	catch(Exception	e)	{
				database.rollback();
		}
}

As you can see transaction is started in first method and then new one is started in
second method. So how these transactions should interact with each other. Prior 1.7-rc2
first transaction was rolled back and second was started so were risk that all changes
will be lost.

Since 1.7-rc2 we start nested transaction as part of outer transaction. What does it mean
on practice?

Lets consider example above we may have two possible cases here:

First case:

1. begin outer transaction.
2. begin nested transaction.
3. commit nested transaction.
4. commit outer transaction.

When nested transaction is started all changes of outer transaction are visible in nested
transaction and then when nested transaction is committed changes are done in nested

Transaction Propagation

613



transaction are not committed they will be committed at the moment when outer
transaction will be committed.

Second case:

1. begin outer transaction.
2. begin nested transaction.
3. rollback nested transaction.
4. commit outer transaction.

When nested transaction is rolled back, changes are done in nested transaction are not
rolled back. But when we commit outer transaction all changes will be rolled back and
ORollbackException will be thrown.

So what instances of database should we use to get advantage of transaction
propagation feature:

1. The same instance of database should be used between methods.
2. Database pool can be used, in such case all methods which asks for db connection

in same thread will have the same the same database instance.

614



OrientDB natively handles binary data, namely BLOB. However, there are some
considerations to take into account based on the type of binary data, the size, the kind of
usage, etc.

Sometimes it's better to store binary records in a different path then default database
directory to benefit of faster HD (like a SSD) or just to go in parallel if the OS and HW
configuration allow this.

In this case create a new cluster in a different path:

db.addCluster("physical",	"binary",	"/mnt/ssd",	"binary"	);

All the records in cluster 	binary	 will reside in files created under the directory 	/mnt/ssd	.

Binary Data

615



This is the simpler way to handle binary data: store them to the file system and just keep
the path to retrieve them.

Example:

ODocument	doc	=	new	ODocument();
doc.field("binary",	"/usr/local/orientdb/binary/test.pdf");
doc.save();

Pros:

Easy to write
100% delegated to the File System

Cons:

Binary data can't be automatically distributed using the OrientDB cluster

Techniques

Store on file system and save the path in the
document

616



ODocument class is able to manage binary data in form of 	byte[]	 (byte array). Example:

ODocument	doc	=	new	ODocument();
doc.field("binary",	"Binary	data".getBytes());
doc.save();

This is the easiest way to keep the binary data inside the database, but it's not really
efficient on large BLOB because the binary content is serialized in Base64. This means
a waste of space (33% more) and a run-time cost in marshalling/unmarshalling.

Also be aware that once the binary data reaches a certain size (10 MB in some recent
testing), the database's performance can decrease significantly. If this occurs, the
solution is to use the 	ORecordBytes	 solution described below.

Pros:

Easy to write

Cons:

Waste of space +33%
Run-time cost of marshalling/unmarshalling
Significant performance decrease once the binary reaches a certain large size

Store it as a Document field

617



The 	ORecordBytes	 class is a record implementation able to store binary content without
conversions (see above). This is the faster way to handle binary data with OrientDB but
needs a separate record to handle it. This technique also offers the highest performance
when storing and retrieving large binary data records.

Example:

ORecordBytes	record	=	new	ORecordBytes("Binary	data".getBytes());
record.save();

Since this is a separate record, the best way to reference it is to link it to a Document
record. Example:

ORecordBytes	record	=	new	ORecordBytes("Binary	data".getBytes());

ODocument	doc	=	new	ODocument();
doc.field("id",	12345);
doc.field("binary",	record);
doc.save();

In this way you can access to the binary data by traversing the 	binary	 field of the
parent's document record.

ORecordBytes	record	=	doc.field("binary");
byte[]	content	=	record.toStream();

You can manipulate directly the buffer and save it back again by calling the 	setDirty()	
against the object:

byte[]	content	=	record.toStream();
content[0]	=	0;
record.setDirty();
record.save();

Or you can work against another 	byte[]	:

Store it with ORecordBytes

618



byte[]	content	=	record.toStream();
byte[]	newContent	=	new	byte[content*2];
System.arrayCopy(content,	0,	newContent,	0,	content.length);
record.fromStream(newContent);
record.setDirty();
record.save();

	ORecordBytes	 class can work with Java Streams:

ORecordBytes	record	=	new	ORecordBytes().fromInputStream(in);
record.toOutputStream(out);

Pros:

Fast and compact solution

Cons:

Slightly complex management

619



OrientDB can store up to 2Gb as record content. But there are other limitations on
network buffers and file sizes you should tune to reach the 2GB barrier.

However managing big chunks of binary data means having big 	byte[]	 structures in
RAM and this could cause a Out Of Memory of the JVM. Many users reported that
splitting the binary data in chunks it's the best solution.

Continuing from the last example we could handle not a single reference against one
	ORecordBytes	 record but multiple references. A One-To-Many relationship. For this
purpose the 	LINKLIST	 type fits perfect because maintains the order.

To avoid OrientDB caches in memory large records use the massive insert intent and
keep in the collection the RID, not the entire records.

Example to store in OrientDB the file content:

database.declareIntent(	new	OIntentMassiveInsert()	);

List<ORID>	chunks	=	new	ArrayList<ORID>();
InputStream	in	=	new	BufferedInputStream(	new	FileInputStream(	file	)	);
while	(	in.available()	>	0	)	{
		final	ORecordBytes	chunk	=	new	ORecordBytes();

		//	READ	REMAINING	DATA,	BUT	NOT	MORE	THAN	8K
		chunk.fromInputStream(	in,	8192	);

		//	SAVE	THE	CHUNK	TO	GET	THE	REFERENCE	(IDENTITY)	AND	FREE	FROM	THE	MEMORY
		database.save(	chunk	);

		//	SAVE	ITS	REFERENCE	INTO	THE	COLLECTION
		chunks.add(	chunk.getIdentity()	);
}

//	SAVE	THE	COLLECTION	OF	REFERENCES	IN	A	NEW	DOCUMENT
ODocument	record	=	new	ODocument();
record.field(	"data",	chunks	);
database.save(	record	);

database.declareIntent(	null	);

Example to read back the file content:

Large content: split in multiple
ORecordBytes

620



record.setLazyLoad(false);
for	(OIdentifiable	id	:	(List<OIdentifiable>)	record.field("data"))	{
				ORecordBytes	chunk	=	(ORecordBytes)	id.getRecord();
				chunk.toOutputStream(out);
				chunk.unload();
}

Pros:

Fastest and compact solution

Cons:

More complex management

621



What to use?

Have you short binary data? Store them as document's field
Do you want the maximum of performance and better use of the space? Store it
with 	ORecordBytes	
Have you large binary objects? Store it with 	ORecordBytes	 but split the content in
multiple records

Conclusion

622



The database instances are not thread-safe, so each thread needs a own instance. All
the database instances will share the same connection to the storage for the same URL.
For more information look at Java Multi threads and databases.

Java WebApp runs inside a Servlet container with a pool of threads that work the
requests.

There are mainly 2 solutions:

Manual control of the database instances from Servlets (or any other server-side
technology like Apache Struts Actions, Spring MVC, etc.)
Automatic control using Servlet Filters

Web Applications

623



package	com.orientechnologies.test;
import	javax.servlet.*;

public	class	Example	extends	HttpServlet	{
		public	void	doGet(HttpServletRequest	request,
																				HttpServletResponse	response)
								throws	IOException,	ServletException
		{
				ODatabaseDocument	database	=	ODatabaseDocumentPool.global().acquire("local:/temp/db",	"admin"

				try	{

					//	USER	CODE

				}	finally	{
						database.close();
				}
		}
}

Manual control

624



Servlets are the best way to automatise database control inside WebApps. The trick is to
create a Filter that get a database from the pool and binds it in current ThreadLocal
before to execute the Servlet code. Once returned the ThreadLocal is cleared and
database released to the pool.

JaveEE Servlets

Automatic control using Servlet Filters

625

http://www.oracle.com/technetwork/java/javaee/servlet/index.html


In this example a new database instance is created per request, opened and at the end
closed.

package	com.orientechnologies.test;
import	javax.servlet.*;

public	class	OrientDBFilter	implements	Filter	{

		public	void	doFilter(ServletRequest	request,	ServletResponse	response,
										FilterChain	chain)	{
						ODatabaseDocument	database	=	new	ODatabaseDocumentTx("local:/temp/db").open("admin",	"admin"
						try{
								chain.doFilter(request,	response);
						}	finally	{
								database.close();
						}
		}
}

In this example the database pool is used.

package	com.orientechnologies.test;
import	javax.servlet.*;

public	class	OrientDBFilter	implements	Filter	{

		public	void	doFilter(ServletRequest	request,	ServletResponse	response,
										FilterChain	chain)	{
						ODatabaseDocument	database	=	ODatabaseDocumentPool.global().acquire("local:/temp/db",	"admin"
						try{
								chain.doFilter(request,	response);
						}	finally	{
								database.close();
						}
		}

		public	void	destroy()	{
						ODatabaseDocumentPool.global().close();
		}
}

Create a Filter class

Create a database instance per request

Use the database pool

626



Now we've create the filter class it needs to be registered in the web.xml file:

<?xml	version="1.0"	encoding="UTF-8"?>
<web-app	xmlns="http://java.sun.com/xml/ns/j2ee"
									xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
									xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
									http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
									version="2.4">
		<filter>
				<filter-name>OrientDB</filter-name>
				<filter-class>com.orientechnologies.test.OrientDBFilter</filter-class>
		</filter>
				<filter-mapping>
						<filter-name>OrientDB</filter-name>
						<url-pattern>/*</url-pattern>
				</filter-mapping>
				<session-config>
						<session-timeout>30</session-timeout>
				</session-config>
</web-app>

Register the filter

627



A remote server can be managed via API using the OServerAdmin class. Create it using
the URL of the remote server as first parameter of the constructor.

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost:2480");

You can also use the URL of the remote database:

OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost:2480/GratefulDeadConcerts");

Manage a remote Server instance

Introduction

628



OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost:2480").connect("admin",	"admin"

User and password are not the database accounts but the server users configured in
orientdb-server-config.xml file.

When finished call the 	OServerAdmin.close()	 method to release the network connection.

Connect to a remote server

629



To create a new database in a remote server you can use the console's create database
command or via API using the 	OServerAdmin.createDatabase()	 method.

//	ANY	VERSION:	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER
OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost/GratefulDeadConcerts").connect(
serverAdmin.createDatabase("graph",	"local");

//	VERSION	>=	1.4:	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER
OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost").connect("admin",	"admin");
serverAdmin.createDatabase("GratefulDeadConcerts",	"graph",	"local");

The iStorageMode can be memory or plocal.

Create a database

630

https://github.com/orientechnologies/orientdb/wiki/plocal-storage-engine


To drop a database from a server you can use the console's drop database command or
via API using the 	OServerAdmin.dropDatabase()	 method.

//	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER
OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost/GratefulDeadConcerts").connect(
serverAdmin.dropDatabase("GratefulDeadConcerts");

Drop a database

631



To check if a database exists in a server via API use the 	OServerAdmin.existsDatabase()	
method.

//	CREATE	A	SERVER	ADMIN	CLIENT	AGAINST	A	REMOTE	SERVER
OServerAdmin	serverAdmin	=	new	OServerAdmin("remote:localhost/GratefulDeadConcerts").connect(
serverAdmin.existsDatabase("local");

Check if a database exists

632



OrientDB is a NoSQL DBMS that support a subset of SQL ad query language.

JDBC Driver

633

http://www.orientechnologies.com


<dependency>
		<groupId>com.orientechnologies</groupId>
		<artifactId>orientdb-jdbc</artifactId>
		<version>1.7</version>
</dependency>

NOTE: to use SNAPSHOT version remember to add the Snapshot repository to your
	pom.xml	.

Include in your projects

634



The driver is registered to the Java SQL DriverManager and can be used to work with all
the OrientDB database types:

memory,
plocal and
remote

The driver's class is 	com.orientechnologies.orient.jdbc.OrientJdbcDriver	. Use your
knowledge of JDBC API to work against OrientDB.

How can be used in my code?

635



Properties	info	=	new	Properties();
info.put("user",	"admin");
info.put("password",	"admin");

Connection	conn	=	(OrientJdbcConnection)	DriverManager.getConnection("jdbc:orient:remote:localhost/test"

Then execute a Statement and get the ResultSet:

Statement	stmt	=	conn.createStatement();

ResultSet	rs	=	stmt.executeQuery("SELECT	stringKey,	intKey,	text,	length,	date	FROM	Item");

rs.next();

rs.getInt("@version");
rs.getString("@class");
rs.getString("@rid");

rs.getString("stringKey");
rs.getInt("intKey");

rs.close();
stmt.close();

The driver retrieves OrientDB metadata (@rid,@class and @version) only on direct
queries. Take a look at tests code to see more detailed examples.

First get a connection

636



By default a new database instance is created every time you ask for a JDBC
connection. OrientDB JDBC driver provides a Connection Pool out of the box. Set the
connection pool parameters before to ask for a connection:

Properties	info	=	new	Properties();
info.put("user",	"admin");
info.put("password",	"admin");

info.put("db.usePool",	"true");	//	USE	THE	POOL
info.put("db.pool.min",	"3");			//	MINIMUM	POOL	SIZE
info.put("db.pool.max",	"30");		//	MAXIMUM	POOL	SIZE

Connection	conn	=	(OrientJdbcConnection)	DriverManager.getConnection("jdbc:orient:remote:localhost/test"

Advanced features

Connection pool

637



There are two ways to configure OrientDB JPA

JPA

638



The first - do it through /META-INF/persistence.xml Folowing OrientDB properties are
supported as for now:

javax.persistence.jdbc.url, javax.persistence.jdbc.user, javax.persistence.jdbc.password,
com.orientdb.entityClasses

You can also use <class> tag

Example:

<?xml	version="1.0"	encoding="UTF-8"?>
<persistence	version="2.0"
				xmlns="http://java.sun.com/xml/ns/persistence"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation="http://java.sun.com/xml/ns/persistence	http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
				<persistence-unit	name="appJpaUnit">
								<provider>com.orientechnologies.orient.object.jpa.OJPAPersistenceProvider</provider>

								<!--	JPA	entities	must	be	registered	here	-->
								<class>com.example.domain.MyPOJO</class>

								<properties>
												<property	name="javax.persistence.jdbc.url"	value="remote:localhost/test.odb"	/>
												<property	name="javax.persistence.jdbc.user"	value="admin"	/>
												<property	name="javax.persistence.jdbc.password"	value="admin"	/>
												<!--	Register	whole	package.
																													See	com.orientechnologies.orient.core.entity.OEntityManager.registerEntityClasses(String)	for	more	details	-->
												<property	name="com.orientdb.entityClasses"	value="com.example.domains"	/>
								</properties>
				</persistence-unit>
</persistence>

Configuration

639



The second one is programmatic:

com.google.inject.persist.jpa.JpaPersistModule.properties(Properties)

/**
	*	triggered	as	soon	as	a	web	application	is	deployed,	and	before	any	requests
	*	begin	to	arrive
	*/
@WebListener
public	class	GuiceServletConfig	extends	GuiceServletContextListener	{
				@Override
				protected	Injector	getInjector()	{
								return	Guice.createInjector(
																								new	JpaPersistModule("appJpaUnit").properties(orientDBProp),
																								new	ConfigFactoryModule(),
																								servletModule);
				}

				protected	static	final	Properties	orientDBProp	=	new	Properties(){{
								setProperty("javax.persistence.jdbc.url",	"remote:localhost/test.odb");
								setProperty("javax.persistence.jdbc.user",	"admin");
								setProperty("javax.persistence.jdbc.password",	"admin");
								setProperty("com.orientdb.entityClasses",	"com.example.domains");
				}};

				protected	static	final	ServletModule	servletModule	=	new	ServletModule()	{
								@Override
								protected	void	configureServlets()	{
												filter("/*").through(PersistFilter.class);
												//	...
				};
}

//	OPEN	THE	DATABASE
OObjectDatabaseTx	db	=	new	OObjectDatabaseTx	("remote:localhost/petshop").open("admin",	"admin"

//	REGISTER	THE	CLASS	ONLY	ONCE	AFTER	THE	DB	IS	OPEN/CREATED
db.getEntityManager().registerEntityClasses("foo.domain");

Programmatic

Guice example

Native example

640



DB properties, that were passed programmatically, will overwrite parsed from XML ones

641



Config parser checks persistence.xml with validation schemes (XSD), so configuration
file must be valid.

1.0, 2.0 and 2.1 XSD schemes are supported.

Note

642

https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_1_0.xsd
https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_2_0.xsd
https://github.com/orientechnologies/orientdb/blob/develop/object/src/main/resources/META-INF/persistence/persistence_2_1.xsd


Gremlin is a language specialized to work with Property Graphs. Gremlin is part of
TinkerPop Open Source products. For more information:

Gremlin Documentation
Gremlin WiKi
OrientDB adapter to use it inside Gremlin
OrientDB implementation of TinkerPop Blueprints

To know more about Gremlin and TinkerPop's products subscribe to the Gremlin Group.

Gremlin API

643

http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Defining-a-Property-Graph
http://gremlindocs.com
http://www.tinkerpop.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/blueprints/wiki/OrientDB-Implementation
http://gremlindocs.com
http://www.tinkerpop.com
http://groups.google.com/forum/#!forum/gremlin-users


Launch the gremlin.sh (or gremlin.bat on Windows OS) console script located in bin
directory:

>	gremlin.bat

									\,,,/
									(o	o)
-----oOOo-(_)-oOOo-----

Get Started

644



Before to play with Gremlin you need a valid OrientGraph instance that points to a
OrientDB database. To know all the database types look at Storage types.

When you're working with a local or memory database if the database not exists it's
created automatically. Using the remote connection you need to create the database on
the target server before to use it. This is due to security restrictions.

Once created the OrientGraph instance with a proper URL is necessary to assign it to a
variable. Gremlin is written in Groovy, so it supports all the Groovy syntax and both can
be mixed to create very powerful scripts!

Example with a local database (see below for more information about it):

gremlin>	g	=	new	OrientGraph("local:/home/gremlin/db/demo");
==>orientgraph[local:/home/gremlin/db/demo]

Some useful links:

All Gremlin methods
All available steps

Open the graph database

645

http://gremlindocs.com
http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Methods
https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps


This is the most used mode. The console opens and locks the database for exclusive
use. Doesn't require to start a OrientDB Server.

gremlin>	g	=	new	OrientGraph("local:/home/gremlin/db/demo");
==>orientgraph[local:/home/gremlin/db/demo]

Working with local database

646



Open a database on a remote server. Assure the server is up and running. To start the
server just launch server.sh (or server.bat on Windows OS) script. For more information
look at OrientDB Server

gremlin>	g	=	new	OrientGraph("remote:localhost/demo");
==>orientgraph[remote:localhost/demo]

Working with remote database

647



In this mode the database is volatile and all the changes will be not persistent. Use this
in cluster configuration (the database life is assured by the cluster itself) or just for test.

gremlin>	g	=	new	OrientGraph("memory:demo");
==>orientgraph[memory:demo]

Working with in-memory database

648



OrientDB supports the security by creating multiple users and roles to associate
privileges. To know more look at Security. To open the graph database with a different
user than default pass user and password as additional parameters:

gremlin>	g	=	new	OrientGraph("memory:demo",	"reader",	"reader");
==>orientgraph[memory:demo]

Use the security

649



To create a new vertex use the addVertex() method. The vertex will be created and the
unique id will be displayed as return value.

g.addVertex();
==>v[#5:0]

Create a new Vertex

650



To create a new edge between two vertices use the addEdge(v1, v2, label) method.
The edge will be created with the label specified.

In the example below 2 vertices are created and assigned to a variable (Gremlin is
based on Groovy), then an edge is created between them.

gremlin>	v1	=	g.addVertex();
==>v[#5:0]

gremlin>	v2	=	g.addVertex();
==>v[#5:1]

gremlin>	e	=	g.addEdge(v1,	v2,	'friend');
==>e[#6:0][#5:0-friend->#5:1]

Create an edge =

651



OrientDB assigns a temporary identifier to each vertex and edge that is created. For
saving them to the database stopTransaction(SUCCESS) should be called

gremlin>	g.stopTransaction(SUCCESS)

Save changes

652



To retrieve a vertex by its ID, use the v(id) method passing the RecordId as argument
(with or without the prefix '#'). This example retrieves the first vertex created in the upon
example.

gremlin>	g.v('5:0')
==>v[#5:0]

Retrieve a vertex

653



To retrieve all the vertices in the opened graph use .V (V in upper-case):

gremlin>	g.V
==>v[#5:0]
==>v[#5:1]

Get all the vertices

654



Retrieving an edge it's very similar to [use the e(id) method passing the
Concepts#RecordId RecordId as argument (with or without the prefix '#'). This example
retrieves the first edge created in the upon example.

gremlin>	g.e('6:0')
==>e[#6:0][#5:0-friend->#5:1]

Retrieve an edge

655



To retrieve all the edges in the opened graph use .E (E in upper-case):

gremlin>	g.E
==>e[#6:0][#5:0-friend->#5:1]

Get all the edges

656



The power of Gremlin is on traversal. Once you have a graph loaded in your database
you can traverse it in many ways.

Traversal

657



To display all the outgoing edges of the first vertex just created postpone the .outE at
the vertex. Example:

gremlin>	v1.outE
==>e[#6:0][#5:0-friend->#5:1]

And to display all the incoming edges of the second vertex created in the previous
examples postpone the .inE at the vertex. Example:

gremlin>	v2.inE
==>e[#6:0][#5:0-friend->#5:1]

In this case the edge is the same because it's the outgoing of 5:0 and the goes up to 5:1
where is the incoming edge.

For more information look at the Basic Traversal with Gremlin.

Basic Traversal

658

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals


This examples returns all the outgoing edges of all the vertices with label equals to
'friend'.

gremlin>	g.V.outE('friend')
==>e[#6:0][#5:0-friend->#5:1]

Filter results

659



To close a graph use the shutdown() method:

gremlin>	g.shutdown()
==>null

This is not strictly necessary because OrientDB always closes the database when the
Gremlin console quits.

Close the database =

660

http://gremlindocs.com


Gremlin allows to concatenate expressions to create more complex traversal in a single
line:

v1.outE.inV

Of course this could be much more complex. Below an examples with the graph taken
from the official documentation:

g	=	new	OrientGraph('memory:test')

//	calculate	basic	collaborative	filtering	for	vertex	1
m	=	[:]
g.v(1).out('likes').in('likes').out('likes').groupCount(m)
m.sort{a,b	->	a.value	<=>	b.value}

//	calculate	the	primary	eigenvector	(eigenvector	centrality)	of	a	graph
m	=	[:];	c	=	0;
g.V.out.groupCount(m).loop(2){c++	<	1000}
m.sort{a,b	->	a.value	<=>	b.value}

Create complex paths

661

http://gremlindocs.com


Some Gremlin expressions require declaration of input parameters to be run. This is the
case, for example, of bound variables, as described in JSR223 Gremlin Script Engine.
OrientDB has enabled a mechanism to pass variables to a Gremlin pipeline declared in
a command as described below:

Map<String,	Object>	params	=	new	HashMap<String,	Object>();
params.put("map1",	new	HashMap());
params.put("map2",	new	HashMap());
db.command(new	OCommandSQL("select	gremlin('
current.as('id').outE.label.groupCount(map1).optional('id').sideEffect{map2=it.map();map2+=map1;}
')")).execute(params);

Passing input parameters

662

http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki/Using-Gremlin-through-Java
http://gremlindocs.com


You can also use native Java GremlinPipeline like:

new	GremlinPipeline(g.getVertex(1)).out("knows").property("name").filter(new	PipeFunction<String,Boolean>()	{
		public	Boolean	compute(String	argument)	{
				return	argument.startsWith("j");
		}
}).back(2).out("created");

For more information: Using Gremlin through Java

GremlinPipeline

663

https://github.com/tinkerpop/gremlin/wiki/Using-Gremlin-through-Java


In the simplest case, the output of the last step
(https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps) in the Gremlin pipeline
corresponds to the output of the overall Gremlin expression. However, it is possible to
instruct the Gremlin engine to consider any of the input variables as output. This can be
declared as:

Map<String,	Object>	params	=	new	HashMap<String,	Object>();
params.put("map1",	new	HashMap());
params.put("map2",	new	HashMap());
params.put("output",	"map2");
db.command(new	OCommandSQL("select	gremlin('
current.as('id').outE.label.groupCount(map1).optional('id').sideEffect{map2=it.map();map2+=map1;}
')")).execute(params);

There are more possibilities to define the output in Gremlin pipelines so this mechanism
is expected to be extended in the future. Please, contact OrientDB mailing list to discuss
customized outputs.

Declaring output

664

https://github.com/tinkerpop/gremlin/wiki/Gremlin-Steps
http://gremlindocs.com


Now you learned how to use Gremlin on top of OrientDB the best place to go in deep
with this powerful language is the Gremlin WiKi.

Conclusions

665

http://gremlindocs.com
https://github.com/tinkerpop/gremlin/wiki


Starting from version 1.0, OrientDB supports server side scripting. All the JVM
languages are supported. By default JavaScript is installed.

Scripts can be executed client and server side. For the client side the user must have
the privilege of READ against 	database.command	 resource. For the server side the server
must enable the scripting interpreter that are disabled by default for security reason.

Javascript

666

http://en.wikipedia.org/wiki/List_of_JVM_languages
http://en.wikipedia.org/wiki/JavaScript


SQL-batch

See also

667



Execute a command like SQL but using the class 	OCommandScript	 passing the language
to use. JavaScript is installed by default. Example:

db.command(	new	OCommandScript("Javascript",	"print('hello	world')")	).execute();

Usage

Via Java API

668



JavaScript code can be executed at client-side, the console, or server-side:

Use 	js	 to execute the script at the client-side running it in the console
use 	jss	 to execute the script at the server-side. This feature is disabled by default.
To enable it look at Enable Server side scripting.

Since the semicolon 	;	 character is used in both console and JavaScript language to
separate statements, how can we execute multiple commands in the console and
JavaScript?

OrientDB console uses a reserved keyword 	end	 to switch from the JavaScript mode to
the console mode.

Example:

orientdb>	connect	remote:localhost/demo	admin	admin;	js	for(	i	=	0;	i	<	10;	i++	){	db.query('select	from	MapPoint')	};end;	exit

This line connects to the remote server and executes 10 queries on the console. The
	end	 command switches the mode back to the OrientDB console and then executes the
console 	exit	 command.

Below an example to display the result of a query server and client side.

1. connects to the remote server as 	admin	
2. Execute a query and assign the result to the variable 	r	, then display it server side

and return it to be displayed client side too
3. Exit the console

$	./console.sh
OrientDB	console	v.1.5	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.

orientdb>	connect	remote:localhost/demo	admin	admin
Connecting	to	database	[remote:localhost/demo]	with	user	'admin'...OK

orientdb>	jss	var	r	=	db.query('select	from	ouser');print(r);r

Via console

Interactive mode

669



---+---------+--------------------+--------------------+--------------------+--------------------
		#|	RID					|name																|password												|status														|roles
---+---------+--------------------+--------------------+--------------------+--------------------
		0|					#4:0|admin															|{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918|ACTIVE														|[1]
		1|					#4:1|reader														|{SHA-256}3D0941964AA3EBDCB00CCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30|ACTIVE														|[1]
		2|					#4:2|writer														|{SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBA5|ACTIVE														|[1]
---+---------+--------------------+--------------------+--------------------+--------------------
Script	executed	in	0,073000	sec(s).	Returned	3	records

orientdb>	exit

The same example above is execute in batch mode:

$	./console.sh	"connect	remote:localhost/demo	admin	admin;jss	var	r	=	db.query('select	from	ouser');print(r);r;exit"
OrientDB	console	v.1.0-SNAPSHOT	(build	11761)	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.
Connecting	to	database	[remote:localhost/demo]	with	user	'admin'...OK

---+---------+--------------------+--------------------+--------------------+--------------------
		#|	RID					|name																|password												|status														|roles
---+---------+--------------------+--------------------+--------------------+--------------------
		0|					#4:0|admin															|{SHA-256}8C6976E5B5410415BDE908BD4DEE15DFB167A9C873FC4BB8A81F6F2AB448A918|ACTIVE														|[
		1|					#4:1|reader														|{SHA-256}3D0941964AA3EBDCB00CCEF58B1BB399F9F898465E9886D5AEC7F31090A0FB30|ACTIVE														|[
		2|					#4:2|writer														|{SHA-256}B93006774CBDD4B299389A03AC3D88C3A76B460D538795BC12718011A909FBA5|ACTIVE														|[
---+---------+--------------------+--------------------+--------------------+--------------------
Script	executed	in	0,099000	sec(s).	Returned	3	records

Batch mode

670



orientdb>	js	for(	i	=	0;	i	<	1000;	i++	){	db.query(	'insert	into	jstest	(label)	values	("test

orientdb>	js	new	com.orientechnologies.orient.core.record.impl.ODocument('Profile').field('name',	'Luca').save()

Client	side	script	executed	in	0,426000	sec(s).	Value	returned	is:	Profile#11:52{name:Luca}	v3

Examples of usage

Insert 1000 records

Create documents using wrapped Java API

671



For security reason server-side scripting is disabled by default on server. To enable it
change the enable field to 	true	 in orientdb-server-config.xml file:

<!--	SERVER	SIDE	SCRIPT	INTERPRETER.	WARNING!	THIS	CAN	BE	A	SECURITY	HOLE:	ENABLE	IT	ONLY	IF	CLIENTS	ARE	TRUSTED,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->
		<handler	class="com.orientechnologies.orient.server.handler.OServerSideScriptInterpreter">
				<parameters>
						<parameter	name="enabled"	value="true"	/>
				</parameters>
		</handler>

NOTE: this will allow to clients to execute any code inside the server. Enable it only if
clients are trusted.

Enable Server side scripting

672



This driver wraps the most common use cases in database usage. All parameters
required by methods or constructor are Strings. This library works on top of HTTP
RESTful protocol.

Note: Due to cross-domain XMLHttpRequest restriction this API works, for now, only
placed in the server deployment. To use it with cross-site look at Cross-site scripting .

The full source code is available here: oriendb-api.js.

Javascript API

673

https://github.com/nuvolabase/orientdb/blob/master/server/src/site/js/orientdb-api.js


Javascript-Command

See also

674



var	database	=	new	ODatabase('http://localhost:2480/demo');
databaseInfo	=	database.open();
queryResult	=	database.query('select	from	Address	where	city.country.name	=	\'Italy\'');
if	(queryResult["result"].length	==	0){
		commandResult	=	database.executeCommand('insert	into	Address	(street,type)	values	(\'Via	test	1\',\'Tipo	test\')'
}	else	{
		commandResult	=	database.executeCommand('update	Address	set	street	=	\'Via	test	1\'	where	city.country.name	=	\'Italy\''
}
database.close();

Example

675



ODatabase object requires server URL and database name:

Syntax: 	new	ODatabase(http://<host>:<port>/<databaseName&gt;)	

Example:

var	orientServer	=	new	ODatabase('http://localhost:2480/demo');

Once created database instance is ready to be used. Every method return the operation
result when it succeeded, null elsewhere. 
In case of null result the database instance will have the error message obtainable by
the getErrorMessage() method.

Method that connects to the server, it returns database information in JSON format.

Syntax: 	<databaseInstance>.open()	
Note: This implementation asks to the browser to provide user and password.

Example:

orientServer	=	new	ODatabase('http://localhost:2480/demo');
databaseInfo	=	orientServer.open();

Syntax: 	<databaseInstance>.open(username,userpassword)	

Example:

orientServer	=	new	ODatabase('http://localhost:2480/demo');

API

ODatabase object

Open

Browser Authentication

Javascript Authentication

676

http://<host>:<port>/<databaseName&gt


databaseInfo	=	orientServer.open('admin','admin');

Return Example:

{"classes":	[
				{
						"id":	0,
						"name":	"ORole",
						"clusters":	[3],
						"defaultCluster":	3,	"records":	3,
						"properties":	[
								{
								"id":	0,
								"name":	"mode",
								"type":	"BYTE",
								"mandatory":	false,
								"notNull":	false,
								"min":	null,
								"max":	null,
								"indexed":	false
						},
								{
								"id":	1,
								"name":	"rules",
								"linkedType":	"BYTE",
								"type":	"EMBEDDEDMAP",
								"mandatory":	false,
								"notNull":	false,
								"min":	null,
								"max":	null,
								"indexed":	false
						}
		]},
],
"dataSegments":	[
				{"id":	-1,	"name":	"default",	"size":	10485760,	"filled":	1380391,	"maxSize":	"0",	"files
		],

"clusters":	[
				{"id":	0,	"name":	"internal",	"type":	"PHYSICAL",	"records":	4,	"size":	1048576,	"filled":	
],

"txSegment":	[
				{"totalLogs":	0,	"size":	1000000,	"filled":	0,	"maxSize":	"50mb",	"file":	"${STORAGE_PATH}/txlog.otx"
		],	"users":	[
				{"name":	"admin",	"roles":	"[admin]"},
				{"name":	"reader",	"roles":	"[reader]"},
				{"name":	"writer",	"roles":	"[writer]"}
		],

		"roles":	[
				{"name":	"admin",	"mode":	"ALLOW_ALL_BUT",
						"rules":	[]
				},
				{"name":	"reader",	"mode":	"DENY_ALL_BUT",

677



						"rules":	[{
								"name":	"database",	"create":	false,	"read":	true,	"update":	false,	"delete":	false
								},	{
								"name":	"database.cluster.internal",	"create":	false,	"read":	true,	"update":	false,	"
								},	{
								"name":	"database.cluster.orole",	"create":	false,	"read":	true,	"update":	false,	"delete
								},	{
								"name":	"database.cluster.ouser",	"create":	false,	"read":	true,	"update":	false,	"delete
								},	{
								"name":	"database.class.*",	"create":	false,	"read":	true,	"update":	false,	"delete":	
								},	{
								"name":	"database.cluster.*",	"create":	false,	"read":	true,	"update":	false,	"delete
								},	{
								"name":	"database.query",	"create":	false,	"read":	true,	"update":	false,	"delete":	false
								},	{
								"name":	"database.command",	"create":	false,	"read":	true,	"update":	false,	"delete":	
								},	{
								"name":	"database.hook.record",	"create":	false,	"read":	true,	"update":	false,	"delete
								}]
				},
],

		"config":{
				"values":	[
						{"name":	"dateFormat",	"value":	"yyyy-MM-dd"},
						{"name":	"dateTimeFormat",	"value":	"yyyy-MM-dd	hh:mm:ss"},
						{"name":	"localeCountry",	"value":	""},
						{"name":	"localeLanguage",	"value":	"en"},
						{"name":	"definitionVersion",	"value":	0}
				],
				"properties":	[
				]
		}
}

Method that executes the query, it returns query results in JSON format.

Syntax: 	<databaseInstance>.query(<queryText>,	[limit],	[fetchPlan])	

Limit and fetchPlan are optional.

Simple Example:

queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'');

Return Example:

Query

678

-https://github.com/nuvolabase/orientdb/wiki/Fetching-Strategies.md


{	"result":	[{
						"@rid":	"12:0",	"@class":	"Address",
						"street":	"Piazza	Navona,	1",
						"type":	"Residence",
						"city":	"#13:0"
				},	{
						"@rid":	"12:1",	"@class":	"Address",
						"street":	"Piazza	di	Spagna,	111",
						"type":	"Residence",
						"city":	"#13:0"
				}
		]
}

Fetched Example: fetching of all fields except "type"

queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'',null

Return Example 1:

{	"result":	[{
						"@rid":	"12:0",	"@class":	"Address",
						"street":	"Piazza	Navona,	1",
						"city":{
								"@rid":	"13:0",	"@class":	"City",
								"name":	"Rome",
								"country":{
										"@rid":	"14:0",	"@class":	"Country",
										"name":	"Italy"
								}
						}
				},	{
						"@rid":	"12:1",	"@version":	1,	"@class":	"Address",
						"street":	"Piazza	di	Spagna,	111",
						"city":{
								"@rid":	"13:0",	"@class":	"City",
								"name":	"Rome",
								"country":{
										"@rid":	"14:0",	"@class":	"Country",
										"name":	"Italy"
								}
						}
				}
		]
}

Fetched Example: fetching of all fields except "city" (Class)

679



queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'',null

Return Example 2:

{	"result":	[{
							"@rid":	"12:0",	"@class":	"Address",
							"street":	"Piazza	Navona,	1",
							"type":	"Residence"
					},	{
							"@rid":	"12:1",	"@version":	1,	"@class":	"Address",
							"street":	"Piazza	di	Spagna,	111",
							"type":	"Residence"
				}
		]
}

Fetched Example: fetching of all fields except "country" of City class

queryResult	=	orientServer.query('select	from	Address	where	city.country.name	=	\'Italy\'',null

Return Example 3:

{	"result":	[{
						"@rid":	"12:0",	"@class":	"Address",
						"street":	"Piazza	Navona,	1",
						"type":	"Residence",
						"city":{
										"@rid":	"13:0",	"@class":	"City",
										"name":	"Rome"
						}
				}
		]
}

Method that executes arbitrary commands, it returns command result in text format.

Syntax: 	<databaseInstance>.executeCommand(<commandText>)	

Execute Command

680



Example 1 (insert):

commandResult	=	orientServer.executeCommand('insert	into	Address	(street,type)	values	(\'Via	test	1\',\'Tipo	test\')'

Return Example 1 (created record):

Address@14:177{street:Via	test	1,type:Tipo	test}

Example 2 (delete):

commandResult	=	orientServer.executeCommand('delete	from	Address	where	street	=	\'Via	test	1\'	and	type	=	\'Tipo	test\''

Return Example 2 (records deleted):

{	"value"	:	5	}

Note: Delete example works also with update command

Method that loads a record from the record ID, it returns the record informations in JSON
format.

Syntax: `.load(, [fetchPlan]);

Simple Example:

queryResult	=	orientServer.load('12:0');

Return Example:

{

Load

681



"@rid":	"12:0",	"@class":	"Address",
						"street":	"Piazza	Navona,	1",
						"type":	"Residence",
						"city":	"#13:0"
				}

Fetched Example: all fields fetched except "type"

queryResult	=	orientServer.load('12:0',	'*:-1	type:0');

Return Example 1:

{
"@rid":	"12:0",	"@class":	"Address",
						"street":	"Piazza	Navona,	1",
						"city":{
									"@rid":	"13:0",
									"name":	"Rome",
									"country":{
									"@rid":	"14:0",
													"name":	"Italy"
										}
						}
				}

Method that retrieves information of a class, it returns the class informations in JSON
format.

Syntax: 	<databaseInstance>.classInfo(<className>)	

Example:

addressInfo	=	orientServer.classInfo('Address');

Return Example:

{	"result":	[{
						"@rid":	"14:0",	"@class":	"Address",
						"street":	"WA	98073-9717",
						"type":	"Headquarter",

Class Info

682



						"city":	"#12:1"
				},	{
						"@rid":	"14:1",	"@class":	"Address",
						"street":	"WA	98073-9717",
						"type":	"Headquarter",
						"city":	"#12:1"
				}
		]
}

Method that retrieves information of a cluster, it returns the class informations in JSON
format.

Syntax: 	<databaseInstance>.browseCluster(<className>)	

Example:

addressInfo	=	orientServer.browseCluster('Address');

Return Example:

{	"result":	[{
						"@rid":	"14:0",	"@class":	"Address",
						"street":	"WA	98073-9717",
						"type":	"Headquarter",
						"city":	"#12:1"
				},	{
						"@rid":	"14:1",	"@class":	"Address",
						"street":	"WA	98073-9717",
						"type":	"Headquarter",
						"city":	"#12:1"
				}
		]
}

Method that retrieves server informations, it returns the server informations in JSON
format.
Note: Server information needs root username and password.

Syntax: 	<databaseInstance>.serverInfo()	

Browse Cluster

Server Information

683



Example:

serverInfo	=	orientServer.serverInfo();

Return Example:

{
		"connections":	[{
				"id":	"64",
				"id":	"64",
				"remoteAddress":	"127.0.0.1:51459",
				"db":	"-",
				"user":	"-",
				"protocol":	"HTTP-DB",
				"totalRequests":	"1",
				"commandInfo":	"Server	status",
				"commandDetail":	"-",
				"lastCommandOn":	"2010-12-23	12:53:38",
				"lastCommandInfo":	"-",
				"lastCommandDetail":	"-",
				"lastExecutionTime":	"0",
				"totalWorkingTime":	"0",
				"connectedOn":	"2010-12-23	12:53:38"
				}],
		"dbs":	[{
				"db":	"demo",
				"user":	"admin",
				"open":	"open",
				"storage":	"OStorageLocal"
				}],
		"storages":	[{
				"name":	"temp",
				"type":	"OStorageMemory",
				"path":	"",
				"activeUsers":	"0"
				},	{
				"name":	"demo",
				"type":	"OStorageLocal",
				"path":	"/home/molino/Projects/Orient/releases/0.9.25-SNAPSHOT/db/databases/demo",
				"activeUsers":	"1"
				}],
				"properties":	[
						{"name":	"server.cache.staticResources",	"value":	"false"
						},
						{"name":	"log.console.level",	"value":	"info"
						},
						{"name":	"log.file.level",	"value":	"fine"
						}
				]
}

684



Method that retrieves database Schema, it returns an array of classes (JSON parsed
Object).

Syntax: 	<databaseInstance>.schema()	

Example:

schemaInfo	=	orientServer.schema();

Return Example:

{"classes":	[
				{
						"id":	0,
						"name":	"ORole",
						"clusters":	[3],
						"defaultCluster":	3,	"records":	3,
						"properties":	[
								{
								"id":	0,
								"name":	"mode",
								"type":	"BYTE",
								"mandatory":	false,
								"notNull":	false,
								"min":	null,
								"max":	null,
								"indexed":	false
						},
								{
								"id":	1,
								"name":	"rules",
								"linkedType":	"BYTE",
								"type":	"EMBEDDEDMAP",
								"mandatory":	false,
								"notNull":	false,
								"min":	null,
								"max":	null,
								"indexed":	false
						}
		]},
]
}

Schema

getClass()

685



Return a schema class from the schema.

Syntax: 	<databaseInstance>.getClass(<className>)	

Example:

var	customerClass	=	orientServer.getClass('Customer');

Return Example:

{
		"id":	0,
		"name":	"Customer",
		"clusters":	[3],
		"defaultCluster":	3,	"records":	3,
		"properties":	[
				{
						"id":	0,
						"name":	"name",
						"type":	"STRING",
				},
				{
						"id":	1,
						"name":	"surname",
						"type":	"STRING",
				}
		]
}

Method that retrieves database Security Roles, it returns an array of Roles (JSON
parsed Object).

Syntax: 	<databaseInstance>.securityRoles()	

Example:

roles	=	orientServer.securityRoles();

Return Example:

Security

Roles

686



{	"roles":	[
				{"name":	"admin",	"mode":	"ALLOW_ALL_BUT",
						"rules":	[]
				},
				{"name":	"reader",	"mode":	"DENY_ALL_BUT",
						"rules":	[{
								"name":	"database",	"create":	false,	"read":	true,	"update":	false,	"delete":	false
								},	{
								"name":	"database.cluster.internal",	"create":	false,	"read":	true,	"update":	false,	"
								},	{
								"name":	"database.cluster.orole",	"create":	false,	"read":	true,	"update":	false,	"delete
								},	{
								"name":	"database.cluster.ouser",	"create":	false,	"read":	true,	"update":	false,	"delete
								},	{
								"name":	"database.class.*",	"create":	false,	"read":	true,	"update":	false,	"delete":	
								},	{
								"name":	"database.cluster.*",	"create":	false,	"read":	true,	"update":	false,	"delete
								},	{
								"name":	"database.query",	"create":	false,	"read":	true,	"update":	false,	"delete":	false
								},	{
								"name":	"database.command",	"create":	false,	"read":	true,	"update":	false,	"delete":	
								},	{
								"name":	"database.hook.record",	"create":	false,	"read":	true,	"update":	false,	"delete
								}]
				}
		]
}

Method that retrieves database Security Users, it returns an array of Users (JSON
parsed Object).

Syntax: 	<databaseInstance>.securityUsers()	

Example:

users	=	orientServer.securityUsers();

Return Example:

{	"users":	[
				{"name":	"admin",	"roles":	"[admin]"},
				{"name":	"reader",	"roles":	"[reader]"},
				{"name":	"writer",	"roles":	"[writer]"}
		]
}

Users

687



Method that disconnects from the server.

Syntax: 	<databaseInstance>.close()	

Example:

orientServer.close();

Method that changes server URL in the database instance.
You'll need to call the open method to reconnect to the new server.

Syntax: 	<databaseInstance>.setDatabaseUrl(<newDatabaseUrl>)	

Example:

orientServer.setDatabaseUrl('http://localhost:3040')

Method that changes database name in the database instance.
You'll need to call the open method to reconnect to the new database.

Syntax: 	<databaseInstance>.setDatabaseName(<newDatabaseName>)	

Example:

orientServer.setDatabaseName('demo2');

This API allows you to chose the return type, Javascript Object or JSON plain text.
Default return is Javascript Object.

close()

Change server URL

Change database name

Setting return type

688



Important: the javascript object is not always the evaluation of JSON plain text: for each
document (identified by its Record ID) the JSON file contains only one expanded object,
all other references are just its Record ID as String, so the API will reconstruct the real
structure by re-linking all references to the matching javascript object.

Syntax: 	orientServer.setEvalResponse(<boolean>)	

Examples:

orientServer.setEvalResponse(true);

Return types will be Javascript Objects.

orientServer.setEvalResponse(false);

Return types will be JSON plain text.

To invoke OrientDB cross-site you can use the Query command in GET and the JSONP
protocol. Example:

<script	type="text/javascript"	src='http://127.0.0.1:2480/query/database/sql/select+from+XXXX?jsoncallback=var	datajson='

This will put the result of the query 	select	from	XXXX</code>			into	the	<code>datajson	
variable.

In case of errors the error message will be stored inside the database instance,
retrievable by getErrorMessage() method.

Syntax: 	<databaseInstance>.getErrorMessage()	

Example:

Cross-site scripting

Errors

689



if	(orientServer.getErrorMessage()	!=	null){
							//write	error	message
}

690



OrientDB is a NoSQL database writen in Java, we can use it in scala easily. Look also at
Scala utilities and tests project for Scala high level classes built on top of OrientDB.

Scala API

691

https://github.com/eptx/OrientDBScala


Usually the main problems are related to calling conventions between Scala and Java.

Java method invocation problems

692



Be careful to pass parameters to methods with varargs like 	db.query(...)	. You need to
convert it to java's repeated args correctly.

Look at these links: http://stackoverflow.com/questions/3022865/calling-java-vararg-
method-from-scala-with-primitives http://stackoverflow.com/questions/1008783/using-
varargs-from-scala http://stackoverflow.com/questions/3856536/how-to-pass-a-string-
scala-vararg-to-a-java-method-using-scala-2-8

Parameters

693

http://stackoverflow.com/questions/3022865/calling-java-vararg-method-from-scala-with-primitives
http://stackoverflow.com/questions/1008783/using-varargs-from-scala
http://stackoverflow.com/questions/3856536/how-to-pass-a-string-scala-vararg-to-a-java-method-using-scala-2-8


You can only use java collections when define pojos. If you use scala collections, they
can be persisted, but can't be queried.

This's not a problem, if you imported:

import	scala.collection.JavaConverters._
import	scala.collection.JavaConversions._

You don't need to convert Java and Scala collections manually (even don't need to
invoke 	.asJava	 or 	.asScala	) You can treat these java collections as scala's.

Collections

694



package	models

import	javax.persistence.{Version,	Id}

class	User	{
				@Id	var	id:	String	=	_
				var	name:	String	=	_
				var	addresses:	java.util.List[Address]	=	new	java.util.ArrayList()
				@Version	var	version:	String	=	_

				override	def	toString	=	"User:	"	+	this.id	+	",	name:	"	+	this.name	+	",	addresses:	"	+	this
}

class	Address	{
				var	city:	String	=	_
				var	street:	String	=	_

				override	def	toString	=	"Address:	"	+	this.city	+	",	"	+	this.street
}

class	Question	{
				@Id	var	id:	String	=	_
				var	title:	String	=	_
				var	user:	User	=	_
				@Version	var	version:	String	=	_

				override	def	toString	=	"Question:	"	+	this.id	+	",	title:	"	+	this.title	+	",	belongs:	"
}

models.scala

695



package	models

import	com.orientechnologies.orient.core.id.ORecordId
import	com.orientechnologies.orient.core.sql.query.OSQLSynchQuery
import	scala.collection.JavaConverters._
import	scala.collection.JavaConversions._
import	com.orientechnologies.orient.core.db.`object`.{ODatabaseObject,	ODatabaseObjectPool,	OObjectDatabaseTx}

object	Test	{
				implicit	def	dbWrapper(db:	OObjectDatabaseTx)	=	new	{
								def	queryBySql[T](sql:-String,-params:-AnyRef*.md):	List[T]	=	{
												val	params4java	=	params.toArray
												val	results:	java.util.List[T]	=	db.query(new	OSQLSynchQuery[T](sql.md),	params4java:	_*)
												results.asScala.toList
								}
				}

				def	main(args:	Array[String])	=	{
								//	~~~~~~~~~~~~~	create	db	~~~~~~~~~~~~~~~~~~~
								var	uri:	String	=	"local:test/orientdb"
								var	db:	OObjectDatabaseTx	=	new	OObjectDatabaseTx(uri)
								if	(!db.exists)	{
												db.create()
								}	else	{
												db.open("admin",	"admin")
								}

								//	~~~~~~~~~~~~	register	models	~~~~~~~~~~~~~~~~
								db.getEntityManager.registerEntityClasses("models")

								//	~~~~~~~~~~~~~	create	some	data	~~~~~~~~~~~~~~~~
								var	user:	User	=	new	User
								user.name	=	"aaa"
								db.save(user)

								var	address1	=	new	Address
								address1.city	=	"NY"
								address1.street	=	"road1"
								var	address2	=	new	Address
								address2.city	=	"ST"
								address2.street	=	"road2"

								user.addresses	+=	address1
								user.addresses	+=	address2
								db.save(user)

								var	q1	=	new	Question
								q1.title	=	"How	to	use	orientdb	in	scala?"
								q1.user	=	user
								db.save(q1)

								var	q2	=	new	Question
								q2.title	=	"Show	me	a	demo"
								q2.user	=	user

test.scala

696



								db.save(q2)

								//	~~~~~~~~~~~~~~~~	count	them	~~~~~~~~~~~~~~~~
								val	userCount	=	db.countClass(classOf[User])
								println("User	count:	"	+	userCount)

								val	questionCount	=	db.countClass(classOf[Question])
								println("Question	count:	"	+	questionCount)

								//	~~~~~~~~~~~~~~~~~	get	all	users	~~~~~~~~~~~~
								val	users	=	db.queryBySql[User]("select-from-User".md)
								for	(user	<-	users)	{
												println("	-	user:	"	+	user)
								}

								//	~~~~~~~~~~~~~~~~~~	get	the	first	user	~~~~~~~~
								val	firstUser	=	db.queryBySql[User]("select-from-User-limit-1".md).head
								println("First	user:	"	+	firstUser)

								//	query	by	id
								val	userById	=	db.queryBySql[User]("select-from-User-where-@rid-=-?",-new-ORecordId(user.id))
								println("User	by	id:	"	+	userById)

								//	query	by	field
								val	userByField	=	db.queryBySql[User]("select-from-User-where-name-=-?",-user.name)
								println("User	by	field:	"	+	userByField)

								//	query	by	city
								val	userByCity	=	db.queryBySql[User]("select-from-User-where-addresses-contains-(-city-=-?-.md)"
								println("User	by	city:	"	+	userByCity)

								//	query	questions	of	the	user
								val	questions	=	db.queryBySql[Question]("select-from-Question-where-user-=-?",-user.md)
								for	(q	<-	questions)	{
												println("	-	question:	"	+	q)
								}

								db.drop()
								db.close()
				}
}

697



OrientDB RESTful HTTP protocol allows to talk with a OrientDB Server instance using
the HTTP protocol and JSON. OrientDB supports also a highly optimized Binary protocol
for superior performances.

HTTP Protocol

698

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/JSON


allocation
DB's

defragmentation

batch
Batch of

commands

class
Operations on

schema
classes

cluster
Operations
on clusters

command
Executes

commands
connect

Create the session

database
Information

about
database

disconnect
Disconnect

session

document
Operations on

documents by RID
GET - HEAD -
POST - PUT -

DELETE

documentbyclass
Operations on
documents by

Class

export
Exports a
database

function
Executes a
server-side

function

index
Operations on

indexes

listDatabases
Available

databases

property
Operations on

schema
properties

query
Query

server
Information about

the server

Available Commands

699



This protocol uses the four methods of the HTTP protocol:

GET, to retrieve values from the database. It's idempotent that means no changes
to the database happen. Remember that in IE6 the URL can be maximum of 2,083
characters. Other browsers supports major length, but if you want to stay
compatible with all limit to 2,083 characters
POST, to insert values into the database
PUT, to change values into the database
DELETE, to delete values from the database

When using POST and PUT the following are important when preparing the contents of
the post message:

Always have the content type set to “application/json” or "application/xml"
Where data or data structure is involved the content is in JSON format
For OrientDB SQL or Gremlin the content itself is just text

HTTP Methods

700



All the requests must have these 2 headers:

'Accept-Encoding':	'gzip,deflate'
'Content-Length':	<content-length>
`

Where the 	<content-length>	 is the length of the request's body.

Headers

701



The REST API is very flexible, with the following features:

Data returned is in JSON format
JSONP callback is supported
Support for http and https connections
The API itself is case insensitive
API can just be used as a wrapper to retrieve (and control) data through requests
written in OrientDB SQL or Gremlin
You can avoid using 	#	 for RecordIDs in URLs, if you prefer. Just drop the 	#	 from
the URL and it will still work

The REST syntax used is the same for all the four HTTP methods:

Syntax: 	http://<server>:<port>/<command>/[<database>/<arguments>]	

Results are always in JSON format. Support for 'document' object types is through the
use of the attribute 	@type	:	'd'	. This also applies when using inner document objects.
Example:

{
		"@type"		:	"d"
		"Name"			:	"Test",
		"Data"			:	{	"@type":	"d",
															"value":	0	},
		"@class"	:	"SimpleEntity"
}

JSONP is also supported by adding a callback parameter to the request (containing the
callback function name).

Syntax: 	http://<server>:<port>/<command>/[<database>/<arguments>]?callback=
<callbackFunctionName>	

Commands are divided in two main categories:

Server commands, such as to know server statistics and to create a new database
Database commands, all the commands against a database

Syntax

702

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSONP


All the commands (but the Disconnect need a valid authentication before to get
executed. The OrientDB Server checks if the Authorization HTTP header is present,
otherwise answers with a request of authentication (HTTP error code: 401).

The HTTP client (or the Internet Browser) must send user and password using the HTTP
Base authentication. Password is encoded using Base64 algorithm. Please note that if
you want to encrypt the password using a safe mode take in consideration to use SSL
connections.

Server commands use the realm "OrientDB Server", while the database commands use
a realm per database in this form: 	"OrientDB	db-<database>"	, where 	<database>	 is the
database name. In this way the Browser/HTTP client can reuse user and password
inserted multiple times until the session expires or the "Disconnect" is called.

On first call (or when the session is expired and a new authentication is required),
OrientDB returns the OSESSIONID parameter in response's HTTP header. On further
calls the client should pass this OSESSIONID header in the requests and OrientDB will
skip the authentication because a session is alive. By default sessions expire after 300
seconds (5 minutes), but you can change this configuration by setting the global setting:
	network.http.sessionExpireTimeout	

Authentication and security

703



Since OrientDB supports also schema-less/hybrid modes how to manage types? JSON
doesn't support all the types OrientDB has, so how can I pass the right type when it's not
defined in the schema?

The answer is using the special field "@fieldTypes" as string containing all the field
types separated by comma. Example:

{	"@class":"Account",	"date":	1350426789,	"amount":	100.34,
		"@fieldTypes":	"date=t,amount=c"	}

The supported special types are:

'f' for float
'c' for decimal
'l' for long
'd' for double
'b' for byte and binary
'a' for date
't' for datetime
's' for short
'e' for Set, because arrays and List are serialized as arrays like [3,4,5]
'x' for links
'n' for linksets
'z' for linklist
'm' for linkmap
'g' for linkbag

JSON data type handling and Schema-less
mode

704



Connect to a remote server using basic authentication.

Syntax: 	http://<server>:[<port>]/connect/<database>	

HTTP GET request: 	http://localhost:2480/connect/demo	 HTTP response: 204 if ok,
otherwise 401.

HTTP commands

Connect

GET - Connect

Example

705



HTTP GET request: 	http://localhost:2480/database/demo	 HTTP response:

{
		"server":	{
				"version":	"1.1.0-SNAPSHOT",
				"osName":	"Windows	7",
				"osVersion":	"6.1",
				"osArch":	"amd64",
				"javaVendor":	"Oracle	Corporation",
				"javaVersion":	"23.0-b21"
		},	"classes":	[
		{
				"id":	0,
				"name":	"ORole",
				"clusters":	[3],
				"defaultCluster":	3,	"records":	0},
...

Database

GET - Database

706



Gets informations about requested class.

Syntax: 	http://<server>:[<port>]/class/<database>/<class-name>	

HTTP response:

{	"class":	{
				"name":	"<class-name>"
				"properties":	[
						{	"name":	<property-name>,
								"type":	<property-type>,
								"mandatory":	<mandatory>,
								"notNull":	<not-null>,
								"min":	<min>,
								"max":	<max>
						}
				]
		}
}

For more information about properties look at the supported types, or see the SQL
Create property page for text values to be used when getting or posting class commands

HTTP GET request: 	http://localhost:2480/class/demo/OFunction	 HTTP response:

{
		"name":	"OFunction",
		"superClass":	"",
		"alias":	null,
		"abstract":	false,
		"strictmode":	false,
		"clusters":	[
				7
		],
		"defaultCluster":	7,
		"records":	0,
		"properties":	[
				{
						"name":	"language",
						"type":	"STRING",
						"mandatory":	false,

Class

GET - Class

Example

707



						"readonly":	false,
						"notNull":	false,
						"min":	null,
						"max":	null,
						"collate":	"default"
				},
				{
						"name":	"name",
						"type":	"STRING",
						"mandatory":	false,
						"readonly":	false,
						"notNull":	false,
						"min":	null,
						"max":	null,
						"collate":	"default"
				},
				{
						"name":	"idempotent",
						"type":	"BOOLEAN",
						"mandatory":	false,
						"readonly":	false,
						"notNull":	false,
						"min":	null,
						"max":	null,
						"collate":	"default"
				},
				{
						"name":	"code",
						"type":	"STRING",
						"mandatory":	false,
						"readonly":	false,
						"notNull":	false,
						"min":	null,
						"max":	null,
						"collate":	"default"
				},
				{
						"name":	"parameters",
						"linkedType":	"STRING",
						"type":	"EMBEDDEDLIST",
						"mandatory":	false,
						"readonly":	false,
						"notNull":	false,
						"min":	null,
						"max":	null,
						"collate":	"default"
				}
		]
}

Create a new class where the schema of the vertexes or edges is known. OrientDB
allows (encourages) classes to be derived from other class definitions – this is achieved
by using the COMMAND call with an OrientDB SQL command. Returns the id of the new

POST - Class

708



class created.

Syntax: 	http://<server>:[<port>]/class/<database>/<class-name>	

HTTP POST request: 	http://localhost:2480/class/demo/Address2	 HTTP response: 	9	

709



Create one or more properties into a given class. Returns the number of properties of
the class.

Syntax: 	http://<server>:[<port>]/property/<database>/<class-name>/<property-name>/[<property-
type>]	

Creates a property named 	<property-name>	 in 	<class-name>	. If 	<property-type>	 is not
specified the property will be created as STRING.

Syntax: 	http://<server>:[<port>]/property/<database>/<class-name>/	

Requires a JSON document post request content:

{
		"fieldName":	{
						"propertyType":	"<property-type>"
		},
		"fieldName":	{
						"propertyType":	"LINK",
						"linkedClass":	"<linked-class>"
		},
		"fieldName":	{
						"propertyType":	"<LINKMAP|LINKLIST|LINKSET>",
						"linkedClass":	"<linked-class>"
		},
		"fieldName":	{
						"propertyType":	"<LINKMAP|LINKLIST|LINKSET>",
						"linkedType":	"<linked-type>"
		}
}

Single property:

String Property Example: HTTP POST request:

Property

POST - Property

Single property creation

Multiple property creation

Example

710



	http://localhost:2480/class/demo/simpleField	 HTTP response: 	1	

Type Property Example: HTTP POST request:
	http://localhost:2480/class/demo/dateField/DATE	 HTTP response: 	1	

Link Property Example: HTTP POST request:
	http://localhost:2480/class/demo/linkField/LINK/Person	 HTTP response: 	1	

Multiple properties: HTTP POST request: 	http://localhost:2480/class/demo/	 HTTP POST
content:

{
		"name":	{
						"propertyType":	"STRING"
		},
		"father":	{
						"propertyType":	"LINK",
						"linkedClass":	"Person"
		},
		"addresses":	{
						"propertyType":	"LINKMAP",
						"linkedClass":	"Address"
		},
		"examsRatings":	{
						"propertyType":	"LINKMAP",
						"linkedType":	"INTEGER"
		}
		"events":	{
						"propertyType":	"LINKLIST",
						"linkedType":	"DATE"
		}
		"family":	{
						"propertyType":	"LINKLIST",
						"linkedClass":	"Person"
		}
...

HTTP response: 	6	

711



Where the primary usage is a document db, or where the developer wants to optimise
retrieval using the clustering of the database, use the CLUSTER command to browse
the records of the requested cluster.

Syntax: 	http://<server>:[<port>]/cluster/<database>/<cluster-name>/	

Where 	<limit>	 is optional and tells the maximum of records to load. Default is 20.

HTTP GET request: 	http://localhost:2480/cluster/demo/Address	

HTTP response:

{	"schema":	{
				"id":	5,
				"name":	"Address"
		},
		"result":	[{
						"_id":	"11:0",
						"_ver":	0,
						"@class":	"Address",
						"type":	"Residence",
						"street":	"Piazza	Navona,	1",
						"city":	"12:0"
				}
...

Cluster

GET - Cluster

Example

712



Execute a command against the database. Returns the records affected or the list of
records for queries. Command executed via POST can be non-idempotent (look at
Query).

Syntax: 	http://<server>:[<port>]/command/<database>/<language>[/<command-text>
[/limit[/<fetchPlan>]]]	 content: 	<command-text>	

Where:

	<language>	 is the name of the language between those supported. OrientDB
distribution comes with "sql" and GraphDB distribution has both "sql" and "gremlin"
	command-text	 is the text containing the command to execute
	limit	 is the maximum number of record to return. Optional, default is 20
	fetchPlan	 is the fetching strategy to use. For more information look at Fetching
Strategies. Optional, default is *:1 (1 depth level only)

The command-text can appear in either the URL or the content of the POST
transmission.

Where the command-text is included in the URL, it must be encoded as per normal URL
encoding.

Read the SQL section or the Gremlin introduction for the type of commands.

HTTP POST request: 	http://localhost:2480/command/demo/sql	 content: 	update	Profile	set
online	=	false	

HTTP response: 	10	

Or the same:

HTTP POST request: 	http://localhost:2480/command/demo/sql/update	Profile	set	online	=
false	

HTTP response: 	10	

Command

POST - Command

Example

713



Executes a batch of operations in a single call. This is useful to reduce network latency
issuing multiple commands as multiple requests. Batch command supports transactions
as well.

Syntax: 	http://<server>:[<port>]/batch/<database>	

Content: { "transaction" : , "operations" : [ { "type" : "" }* ] }

Returns: Number of operations executed.

Where: type can be:

'c' for create, 'record' field is expected.
'u' for update, 'record' field is expected.
'd' for delete. The '@rid' field only is needed.
'cmd' for commands (Since v1.6). The expected fields are:

'language', between those supported (sql, gremlin, script, etc.)
'command' as the text of the command to execute

'script' for scripts (Since v1.6). The expected fields are:
'language', between the language installed in the JVM. Javascript is the default
one, but you can also use SQL (see below)
'script' as the text of the script to execute

{	"transaction"	:	true,
		"operations"	:	[
				{	"type"	:	"u",
						"record"	:	{
								"@rid"	:	"#14:122",
								"name"	:	"Luca",
								"vehicle"	:	"Car"
						}
				},	{
						"type"	:	"d",
						"record"	:	{
								"@rid"	:	"#14:100"
						}
				},	{

Batch

POST - Batch

Example

714



						"type"	:	"c",
						"record"	:	{
								"@class"	:	"City",
								"name"	:	"Venice"
						}
				},	{
						"type"	:	"cmd",
						"language"	:	"sql",
						"command"	:	"create	edge	Friend	from	#10:33	to	#11:33"
				},	{
						"type"	:	"script",
						"language"	:	"javascript",
						"script"	:	"orient.getGraph().createVertex('class:Account')"
				}
		]
}

{	"transaction"	:	true,
		"operations"	:	[
				{
						"type"	:	"script",
						"language"	:	"sql",
						"script"	:	[	"let	account	=	create	vertex	Account	set	name	=	'Luke'",
																			"let	city	=select	from	City	where	name	=	'London'",
																			"create	edge	Lives	from	$account	to	$city	retry	100"	]
				}
		]
}

SQL batch

715



Executes a server-side function against the database. Returns the result of the function
that can be a string or a JSON containing the document(s) returned.

The difference between GET and POST method calls are if the function has been
declared as idempotent. In this case can be called also by GET, otherwise only POST is
accepted.

Syntax: 	http://<server>:[<port>]/function/<database>/<name>[/<argument>*]<server>	

Where

	<name>	 is the name of the function
	<argument>	, optional, are the arguments to pass to the function. They are passed by
position.

Creation of functions, when not using the Java API, can be done through the Studio in
either Orient DB SQL or Java – see the OrientDB Functions page.

HTTP POST request: 	http://localhost:2480/function/demo/sum/3/5	

HTTP response: 	8.0	

Function

POST and GET - Function

Example

716



Retrieve all the information about a database.

Syntax: 	http://<server>:[<port>]/database/<database>	

HTTP GET request: 	http://localhost:2480/database/demo	

HTTP response:

{"classes":	[
		{
				"id":	0,
				"name":	"ORole",
				"clusters":	[3],
				"defaultCluster":	3,	"records":	0},
		{
				"id":	1,
				"name":	"OUser",
				"clusters":	[4],
				"defaultCluster":	4,	"records":	0},
		{
...

Create a new database. Requires additional authentication to the server.

Syntax for the url `http://:

storage can be
'plocal' for disk-based database
'memory' for in memory only database.
type, is optional, and can be document or graph. By default is a document.

HTTP POST request: 	http://localhost:2480/database/demo2/local	 HTTP response:

Database

GET - Database

Example

POST - Database

Example

717



{	"classes":	[
		{
				"id":	0,
				"name":	"ORole",
				"clusters":	[3],
				"defaultCluster":	3,	"records":	0},
		{
				"id":	1,
				"name":	"OUser",
				"clusters":	[4],
				"defaultCluster":	4,	"records":	0},
		{
...

Drop a database. Requires additional authentication to the server.

Syntax: 	http://<server>:[<port>]/database/<databaseName>	

Where:

databaseName is the name of database

HTTP DELETE request: 	http://localhost:2480/database/demo2	 HTTP response code 204

DELETE - Database

Example

718



Exports a gzip file that contains the database JSON export.

Syntax: http://:[]/export/

HTTP GET request: 	http://localhost:2480/export/demo2	 HTTP response: demo2.gzip file

Export

GET - Export

719



Imports a database from an uploaded JSON text file.

Syntax: 	http://<server>:[<port>]/import/<database>	

Important: Connect required: the connection with the selected database must be
already established

HTTP POST request: 	http://localhost:2480/import/	 HTTP response: returns a JSON
object containing the result text Success:

{
		"responseText":	"Database	imported	correctly"
}

_Fail::

{
		"responseText":	"Error	message"
}

Import

POST - Import

Example

720



Retrieves the available databases.

Syntax: 	http://<server>:<port>/listDatabases	

To let to the Studio to display the database list by default the permission to list the
database is assigned to guest. Remove this permission if you don't want anonymous
user can display it.

For more details see Server Resources

Example of configuration of "guest" server user: a15b5e6bb7d06bd5d6c35db97e51400b

HTTP GET request: 	http://localhost:2480/listDatabases	 HTTP response:

{
		"@type":	"d",	"@version":	0,
				"databases":	["demo",	"temp"]
						}

List Databases

GET - List Databases

Example

721



Syntax: 	http://<server>:[<port>]/disconnect	

HTTP GET request: 	http://localhost:2480/disconnect	 HTTP response: empty.

Disconnect

GET - Disconnect

Example

722



This is a key way to retrieve data from the database, especially when combined with a
	<fetchplan>	. Where a single result is required then the RID can be used to retrieve that
single document.

Syntax: 	http://<server>:[<port>]/document/<database>/<record-id>[/<fetchPlan>]	

Where:

	<record-id>	 See Concepts: RecordID
	<fetchPlan>	 Optional, is the fetch plan used. 0 means the root record, -1 infinite
depth, positive numbers is the depth level. Look at Fetching Strategies for more
information.

HTTP GET request: 	http://localhost:2480/document/demo/9:0	

HTTP response can be:

HTTP Code 200, with the document in JSON format in the payload, such as:

{
"_id":	"9:0",
"_ver":	2,
"@class":	"Profile",
"nick":	"GGaribaldi",
"followings":	[],
"followers":	[],
"name":	"Giuseppe",
"surname":	"Garibaldi",
"location":	"11:0",
"invitedBy":	null,
"sex":	"male",
"online":	true
}

HTTP Code 404, if the document was not found

The example above can be extended to return all the edges and vertices beneath #9:0

Document

GET - Document

Example

723



HTTP GET request: 	http://localhost:2480/document/demo/9:0/*:-1	

Check if a document exists

Syntax: 	http://<server>:[<port>]/document/<database>/<record-id>	

Where:

	<record-id>	 See Concepts: RecordID

HTTP HEAD request: 	http://localhost:2480/document/demo/9:0	

HTTP response can be:

HTTP Code 204, if the document exists
HTTP Code 404, if the document was not found

Create a new document. Returns the document with the new @rid assigned. Before
1.4.x the return was the @rid content only.

Syntax: 	http://<server>:[<port>]/document/<database>	

HTTP POST request: 	http://localhost:2480/document/demo	

		content:
		{
				"@class":	"Profile",
				"nick":	"GGaribaldi",
				"followings":	[],
				"followers":	[],
				"name":	"Giuseppe",
				"surname":	"Garibaldi",
				"location":	"11:0",
				"invitedBy":	null,
				"sex":	"male",
				"online":	true
		}

HEAD - Document

Example

POST - Document

Example

724



HTTP response, as the document created with the assigned RecordID as @rid:

{
		"@rid":	"#11:4456",
		"@class":	"Profile",
		"nick":	"GGaribaldi",
		"followings":	[],
		"followers":	[],
		"name":	"Giuseppe",
		"surname":	"Garibaldi",
		"location":	"11:0",
		"invitedBy":	null,
		"sex":	"male",
		"online":	true
}

Update a document. Remember to always pass the version to update. This prevent to
update documents changed by other users (MVCC).

Syntax: 	http://<server>:[<port>]/document/<database>[/<record-id>][?updateMode=full|partial]	
Where:

updateMode can be full (default) or partial. With partial mode only the delta of
changes is sent, otherwise the entire document is replaced (full mode)

HTTP PUT request: 	http://localhost:2480/document/demo/9:0	

content:
{
		"@class":	"Profile",
		"@version":	3,
		"nick":	"GGaribaldi",
		"followings":	[],
		"followers":	[],
		"name":	"Giuseppe",
		"online":	true
}

HTTP response, as the updated document with the updated @version field (Since v1.6):

PUT - Document

Example

725



content:
{
		"@class":	"Profile",
		"@version":	4,
		"nick":	"GGaribaldi",
		"followings":	[],
		"followers":	[],
		"name":	"Giuseppe",
		"online":	true
}

Delete a document.

Syntax: 	http://<server>:[<port>]/document/<database>/<record-id>	

HTTP GET request: 	http://localhost:2480/document/demo/9:0	

HTTP response: empty

DELETE - Document

Example

726



Retrieve a document by cluster name and record position.

Syntax: 	http://<server>:[<port>]/documentbyclass/<database>/<class-name>/<record-position>
[/fetchPlan]	

Where:

	<class-name>	 is the name of the document's class
	<record-position>	 is the absolute position of the record inside the class' default
cluster
	<fetchPlan>	 Optional, is the fetch plan used. 0 means the root record, -1 infinite
depth, positive numbers is the depth level. Look at Fetching Strategies for more
information.

HTTP GET request: 	http://localhost:2480/documentbyclass/demo/Profile/0	

HTTP response:

{
		"_id":	"9:0",
		"_ver":	2,
		"@class":	"Profile",
		"nick":	"GGaribaldi",
		"followings":	[],
		"followers":	[],
		"name":	"Giuseppe",
		"surname":	"Garibaldi",
		"location":	"11:0",
		"invitedBy":	null,
		"sex":	"male",
		"online":	true
}

Check if a document exists

Document By Class

GET Document by Class

Example

HEAD - Document by Class

727



Syntax: 	http://<server>:[<port>]/documentbyclass/<database>/<class-name>/<record-position>	

Where:

	<class-name>	 is the name of the document's class
	<record-position>	 is the absolute position of the record inside the class' default
cluster

HTTP HEAD request: 	http://localhost:2480/documentbyclass/demo/Profile/0	

HTTP response can be:

HTTP Code 204, if the document exists
HTTP Code 404, if the document was not found

Example

728



Retrieve information about the storage space of a disk-based database.

Syntax: 	http://<server>:[<port>]/allocation/<database>	

HTTP GET request: 	http://localhost:2480/allocation/demo	

HTTP response: 	{	"size":	61910,	"segments":	[	{"type":	"d",	"offset":	0,	"size":	33154},
{"type":	"h",	"offset":	33154,	"size":	4859},	{"type":	"h",	"offset":	3420,	"size":	9392},
{"type":	"d",	"offset":	12812,	"size":	49098}	],	"dataSize":	47659,	"dataSizePercent":	76,
"holesSize":	14251,	"holesSizePercent":	24	}	

Allocation

GET - Allocation

Example

729



NOTE: Every single new database has the default manual index called "dictionary".

Retrieve a record looking into the index.

Syntax: 	http://<server>:[<port>]/index/<index-name>/<key>	

HTTP GET request: 	http://localhost:2480/dictionary/test	 HTTP response:

{
		"name"	:	"Jay",
		"surname"	:	"Miner"
}

Create or modify an index entry.

Syntax: 	http://<server>:[<port>]/index/<index-name>/<key>	

HTTP PUT request: 	http://localhost:2480/dictionary/test	 content: 	{	"name"	:	"Jay",
"surname"	:	"Miner"	}	

HTTP response: No response.

Remove an index entry.

Syntax: 	http://<server>:[<port>]/index/<index-name>/<key>	

Index

GET - Index

Example

PUT - Index

Example

DELETE - Index

Example

730



HTTP DELETE request: 	http://localhost:2480/dictionary/test	 HTTP response: No
response.

731



Execute a query against the database. Query means only idempotent commands like
SQL SELECT and TRAVERSE. Idempotent means the command is read-only and can't
change the database. Remember that in IE6 the URL can be maximum of 2,083
characters. Other browsers supports major length, but if you want to stay compatible
with all limit to 2,083 characters.

Syntax: 	http://<server>:[<port>]/query/<database>/<language>/<query-text>[/<limit>]
[/<fetchPlan>]	

Where:

	<language>	 is the name of the language between those supported. OrientDB
distribution comes with "sql" only. Gremlin language cannot be executed with query
because it cannot guarantee to be idempotent. To execute Gremlin use command
instead.
	query-text	 is the text containing the query to execute
	limit	 is the maximum number of record to return. Optional, default is 20
	fetchPlan	 is the fetching strategy to use. For more information look at Fetching
Strategies. Optional, default is *:1 (1 depth level only)

Other key points:

To use commands that change the database (non-idempotent), see the POST –
Command section
The command-text included in the URL must be encoded as per a normal URL
See the SQL section for the type of queries that can be sent

HTTP GET request: 	http://localhost:2480/query/demo/sql/select	from	Profile	

HTTP response:

{	"result":	[
{
		"_id":	"-3:1",
		"_ver":	0,

Query

GET - Query

Example

732



		"@class":	"Address",
		"type":	"Residence",
		"street":	"Piazza	di	Spagna",
		"city":	"-4:0"
},
{
		"_id":	"-3:2",
		"_ver":	0,
		"@class":	"Address",
		"type":	"Residence",
		"street":	"test",
		"city":	"-4:1"
}]	}

The same query with the limit to maximum 20 results using the fetch plan *:-1 that
means load all recursively:

HTTP GET request: 	http://localhost:2480/query/demo/sql/select	from	Profile/20/*:-1	

733



Retrieve information about the connected OrientDB Server. Requires additional
authentication to the server.

Syntax: 	http://<server>:[<port>]/server	

HTTP GET request: 	http://localhost:2480/server	 HTTP response:

{
		"connections":	[{
				"id":	"4",
				"id":	"4",
				"remoteAddress":	"0:0:0:0:0:0:0:1:52504",
				"db":	"-",
				"user":	"-",
				"protocol":	"HTTP-DB",
				"totalRequests":	"1",
				"commandInfo":	"Server	status",
				"commandDetail":	"-",
				"lastCommandOn":	"2010-05-26	05:08:58",
				"lastCommandInfo":	"-",
				"lastCommandDetail":	"-",
				"lastExecutionTime":	"0",
				"totalWorkingTime":	"0",
...

Server

GET - Server

Example

734



Syntax: 	http://<server>:[<port>]/connection/<command>/<id>	

Where:

command can be:
kill to kill a connection
interrupt to interrupt the operation (if possible)

id, as the connection id. To know all the connections use GET /connections/[<db>]

You've to execute this command authenticated in the OrientDB Server realm (no
database realm), so get the root password from config/orientdb-server-config.xml file
(last section).

Connection

POST - Connection

735



Current protocol version for 2.0-SNAPSHOT: 28. Look at compatibility for retro-
compatibility.

Binary Protocol

736



Introduction
Connection
Getting started
Session

Enable debug messages on protocol
Exchange
Network message format
Supported types
Record format
Request

Operation types

Response
Statuses
Errors

Operations
REQUEST_SHUTDOWN
REQUEST_CONNECT
REQUEST_DB_OPEN
REQUEST_DB_CREATE
REQUEST_DB_CLOSE
REQUEST_DB_EXIST
REQUEST_DB_RELOAD
REQUEST_DB_DROP
REQUEST_DB_SIZE
REQUEST_DB_COUNTRECORDS
REQUEST_DATACLUSTER_ADD
REQUEST_DATACLUSTER_DROP
REQUEST_DATACLUSTER_COUNT

Example

REQUEST_DATACLUSTER_DATARANGE
Example

REQUEST_RECORD_LOAD
REQUEST_RECORD_CREATE

Table of content

737



REQUEST_RECORD_UPDATE
REQUEST_RECORD_DELETE
REQUEST_COMMAND

SQL command payload
SQL Script command payload

REQUEST_TX_COMMIT

Special use of LINKSET types
Tree node binary structure

History
Version 24
Version 23
Version 22
Version 21
Version 20
Version 19
Version 18
Version 17
Version 16
Version 15
Version 14
Version 13
Version 12
Version 11

Compatibility

738



The OrientDB binary protocol is the fastest way to interface a client application to an
OrientDB Server instance. The aim of this page is to provide a starting point from which
to build a language binding, maintaining high-performance.

If you'd like to develop a new binding, please take a look to the available ones before
starting a new project from scratch: Existent Drivers.

Also, check the available REST implementations.

Before starting, please note that:

Record is an abstraction of Document. However, keep in mind that in OrientDB
you can handle structures at a lower level than Documents. These include positional
records, raw strings, raw bytes, etc.

For more in-depth information please look at the Java classes:

Client side: OStorageRemote.java
Server side: ONetworkProtocolBinary.java
Protocol constants: OChannelBinaryProtocol.java

Introduction

739

https://github.com/nuvolabase/orientdb/tree/master/client/src/main/java/com/orientechnologies/orient/client/remote/OStorageRemote.java
https://github.com/nuvolabase/orientdb/tree/master/server/src/main/java/com/orientechnologies/orient/server/network/protocol/binary/ONetworkProtocolBinary.java
https://github.com/nuvolabase/orientdb/tree/master/enterprise/src/main/java/com/orientechnologies/orient/enterprise/channel/binary/OChannelBinaryProtocol.java


(Since 0.9.24-SNAPSHOT Nov 25th 2010) Once connected, the server sends a short
number (2 byte) containing the binary protocol number. The client should check that it
supports that version of the protocol. Every time the protocol changes the version is
incremented.

Connection

740



After the connection has been established, a client can Connect to the server or request
the opening of a database Database Open. Currently, only TCP/IP raw sockets are
supported. For this operation use socket APIs appropriate to the language you're using.
After the Connect and Database Open all the client's requests are sent to the server
until the client closes the socket. When the socket is closed, OrientDB Server instance
frees resources the used for the connection.

The first operation following the socket-level connection must be one of:

Connect to the server to work with the OrientDB Server instance
Open a database to open an existing database

In both cases a Session-Id is sent back to the client. The server assigns a unique
Session-Id to the client. This value must be used for all further operations against the
server. You may open a database after connecting to the server, using the same
Session-Id

Getting started

741



The session managment is implemented in two different way, one stateful another
stateless this is choosed in the open/connect operation with a flag, the stateful is based
on a Session-id the stateless is based on a Token

Session

742



All the operations that follow the open/connect must contain, as the first parameter, the
client Session-Id (as Integer, 4 bytes) and it will be sent back on completion of the
request just after the result field.

NOTE: In order to create a new server-side connection, the client must send a negative
number into the open/connect calls.

This Session-Id can be used into the client to keep track of the requests if it handles
multiple session bound to the same connection. In this way the client can implement a
sharing policy to save resources. This requires that the client implementation handle the
response returned and dispatch it to the correct caller thread.

Session-Id

743



All the operation in a stateless session are based on the token, the token is a byte[] that
contains all the information for the interaction with the server, the token is acquired at the
mement of open or connect, and need to be resend for each request. the session id
used in the stateful requests is still there and is used to associate the request to the
response. in the response can be resend a token in case of expire renew.

Token

744



To make the development of a new client easier it's strongly suggested to activate debug
mode on the binary channel. To activate this, edit the file orientdb-server-config.xml and
configure the new parameter "network.binary.debug" on the "binary" or "distributed"
listener. E.g.:

...
<listener	protocol="distributed"	port-range="2424-2430"
ip-address="127.0.0.1">
<parameters>
<parameter	name="network.binary.debug"	value="true"	/>
</parameters>
</listener>
...

In the log file (or the console if you have configured the orientdb-server-log.properties
file) all the packets received will be printed.

Enable debug messages on protocol

745



This is the typical exchange of messages between client and server sides:

+------+	+------+
|Client|	|Server|
+------+	+------+
|	TCP/IP	Socket	connection	|
+-------------------------->|
|	DB_OPEN	|
+-------------------------->|
|	RESPONSE	(+	SESSION-ID)	|
+<--------------------------+
...	...
|	REQUEST	(+	SESSION-ID)	|
+-------------------------->|
|	RESPONSE	(+	SESSION-ID)	|
+<--------------------------+
...	...
|	DB_CLOSE	(+	SESSION-ID)	|
+-------------------------->|
|	TCP/IP	Socket	close	|
+-------------------------->|

Exchange

746



In explaining the network messages these conventions will be used:

fields are bracketed by parenthesis and contain the name and the type separated by
':'. E.g. 	(length:int)	

Network message format

747



The network protocol supports different types of information:

Type
Minimum
length in

bytes

Maximum
length in

bytes
Notes Example

boolean 1 1 Single byte: 1 =
true, 0 = false 1

byte 1 1
Single byte, used
to store small
numbers and
booleans

1

short 2 2 Signed short type 01

int 4 4 Signed integer
type 0001

long 8 8 Signed long type 00000001

bytes 4 N
Used for binary
data. The format is
	(length:int)bytes)	.
Send -1 as NULL

	000511111	

string 4 N

Used for text
messages.The
format is:
	(length:int)bytes)	.
Send -1 as NULL

	0005Hello	

record 2 N

An entire record
serialized. The
format depends if
a RID is passed or
an entire record
with its content. In
case of null record
then -2 as short is
passed. In case of
RID -3 is passes
as short and then
the RID: 	(-3:short)
(cluster-id:short)
(cluster-
position:long)	. In
case of record:
	(0:short)(record-
type:byte)(cluster-
id:short)(cluster-
position:long)
(record-version:int)
(record-
content:bytes)	

Used for multiple
text messages.

Supported types

748



strings 4 N The format is:
	(length:int)[(Nth-
string:string)]	

	00020005Hello0007World!

749



The record format is choose during the CONNECT or DB_OPEN request, the formats
available are:

CSV (serialization-impl value "ORecordDocument2csv") Binary (serialization-impl value
"ORecordSerializerBinary")

The CSV format is the default for all the versions 0. and 1. or for any client with Network
Protocol Version < 22

Record format

750



Each request has own format depending of the operation requested. The operation
requested is indicated in the first byte:

1 byte for the operation. See Operation types for the list
4 bytes for the Session-Id number as Integer
N bytes optional token bytes only present if the
REQUEST_CONNECT/REQUEST_DB_OPEN return a token.
N bytes = message content based on the operation type

Request

751



Command
Value

as
byte

REQUEST_SHUTDOWN 1 Shut down server.

REQUEST_CONNECT 2 Required initial operation to access to
server commands.

REQUEST_DB_OPEN 3 Required initial operation
to the database.

REQUEST_DB_CREATE 4 Add a new database.

REQUEST_DB_EXIST 6 Check if database exists.

REQUEST_DB_DROP 7 Delete database.

REQUEST_CONFIG_GET 70 Get a configuration property.

REQUEST_CONFIG_SET 71 Set a configuration property.

REQUEST_CONFIG_LIST 72 Get a list of configuration properties.

REQUEST_DB_LIST 74 Get a list of databases.

REQUEST_DB_CLOSE 5 Close a database.

REQUEST_DB_SIZE 8 Get the size of a database (in bytes).

REQUEST_DB_COUNTRECORDS 9 Get total number of records in a
database.

REQUEST_DATACLUSTER_ADD 10 Add a data cluster.

REQUEST_DATACLUSTER_DROP 11 Delete a data cluster.

REQUEST_DATACLUSTER_COUNT 12 Get the total number of data clusters.

REQUEST_DATACLUSTER_DATARANGE 13 Get the data range of data clusters.

REQUEST_DATACLUSTER_COPY 14 Copy a data cluster.

REQUEST_DATACLUSTER_LH_CLUSTER_IS_USED 16

REQUEST_RECORD_METADATA 29 Get metadata from a record.

Operation types

Server (CONNECT Operations)

Database (DB_OPEN Operations)

752



REQUEST_RECORD_LOAD 30 Load a record.

REQUEST_RECORD_CREATE 31 Add a record.

REQUEST_RECORD_UPDATE 32

REQUEST_RECORD_DELETE 33 Delete a record.

REQUEST_RECORD_COPY 34 Copy a record.

REQUEST_RECORD_CLEAN_OUT 38 Clean out record.

REQUEST_POSITIONS_FLOOR 39 Get the last record.

REQUEST_COUNT (DEPRECATED) 40 See
REQUEST_DATACLUSTER_COUNT

REQUEST_COMMAND 41 Execute a command.

REQUEST_POSITIONS_CEILING 42 Get the first record.

REQUEST_TX_COMMIT 60 Commit transaction.

REQUEST_DB_RELOAD 73 Reload database.

REQUEST_PUSH_RECORD 79

REQUEST_PUSH_DISTRIB_CONFIG 80

REQUEST_DB_COPY 90

REQUEST_REPLICATION 91

REQUEST_CLUSTER 92

REQUEST_DB_TRANSFER 93

REQUEST_DB_FREEZE 94

REQUEST_DB_RELEASE 95

REQUEST_DATACLUSTER_FREEZE 96

REQUEST_DATACLUSTER_RELEASE 97

REQUEST_CREATE_SBTREE_BONSAI 110 Creates an sb-tree bonsai on the
remote server

REQUEST_SBTREE_BONSAI_GET 111 Get value by key from sb-tree bonsai

REQUEST_SBTREE_BONSAI_FIRST_KEY 112 Get first key from sb-tree bonsai

REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR 113
Gets the portion of entries major than
specified one. If returns 0 entries than
the specified entrie is the largest

REQUEST_RIDBAG_GET_SIZE 114
Rid-bag specific operation. Send but
does not save changes of rid bag.
Retrieves computed size of rid bag.

753



Every request has a response unless the command supports the asynchronous mode
(look at the table above).

1 byte: Success status of the request if succeeded or failed (0=OK, 1=ERROR)
4 bytes: Session-Id (Integer)
N bytes optional token, is only present for token based session
(REQUEST_CONNECT/REQUEST_DB_OPEN return a token) and is usually
empty(N=0) is only filled up by the server when renew of an expiring token is
required.
N bytes: Message content depending on the operation requested

Response

754



Every time the client sends a request, and the command is not in asynchronous mode
(look at the table above), client must read the one-byte response status that indicates
OK or ERROR. The rest of response bytes depends on this first byte.

*	OK	=	0;
*	ERROR	=	1;

OK response bytes are depends for every request type. ERROR response bytes
sequence described below.

Statuses

755



The format is: 	[(1)(exception-class:string)(exception-message:string)]*(0)(serialized-
exception:bytes)	

The pairs exception-class and exception-message continue while the following byte is 1.
A 0 in this position indicates that no more data follows.

E.g. (parentheses are used here just to separate fields to make this easier to read: they
are not present in the server response):

(1)(com.orientechnologies.orient.core.exception.OStorageException)(Can't	open	the	storage	'demo')(0)

Example of 2 depth-levels exception:

(1)(com.orientechnologies.orient.core.exception.OStorageException)(Can't	open	the	storage	'demo')(1)(com.orientechnologies.orient.core.exception.OStorageException)(File	not	found)(0)

Since 1.6.1 we also send serialized version of exception thrown on server side. This
allows to preserve full stack trace of server exception on client side but this feature can
be used by Java clients only.

Errors

756



This section explains the request and response messages of all suported operations.

Operations

757



Shut down the server. Requires "shutdown" permission to be set in orientdb-server-
config.xml file.

Request:	(user-name:string)(user-password:string)
Response:	empty

Typically the credentials are those of the OrientDB server administrator. This is not the
same as the admin user for individual databases.

REQUEST_SHUTDOWN

758



This is the first operation requested by the client when it needs to work with the server
instance. It returns the session id of the client.

Request:	(driver-name:string)(driver-version:string)(protocol-version:short)(client-id:string)(serialization-impl:string)(token-session:boolean)(user-name:string)(user-password:string)
Response:	(session-id:int)(token:bytes)

Where:
request content:

client's driver-name as string. Example: "OrientDB Java client"
client's driver-version as string. Example: "1.0rc8-SNAPSHOT"
client's protocol-version as short. Example: 7
client's client-id as string. Can be null for clients. In clustered configuration is the
distributed node ID as TCP host+port. Example: "10.10.10.10:2480"
client's serialization-impl the serialization format required by the client.
token-session as boolean, true if the client want to use a token based session
otherwise false
user-name as string. Example: "root"
user-password as string. Example: "kdsjkkasjad" Typically the credentials are
those of the OrientDB server administrator. This is not the same as the admin user
for individual databases. It returns the Session-Id to being reused for all the next
calls.

response content:

session-id the new session id or a match id in case of token auth
token:bytes the token bytes or empty(size = 0) if the client send token-
session=false or the server not support the token based session

REQUEST_CONNECT

759



This is the first operation the client should call. It opens a database on the remote
OrientDB Server. Returns the Session-Id to being reused for all the next calls and the list
of configured clusters.

Request:	(driver-name:string)(driver-version:string)(protocol-version:short)(client-id:string)(serialization-impl:string)(token-session:boolean)(database-name:string)(database-type:string)(user-name:string)(user-password:string)
Response:	(session-id:int)(token:bytes)(num-of-clusters:short)[(cluster-name:string)(cluster-id:short)](cluster-config:bytes.md)(orientdb-release:string)

Where: request detail:

client's driver-name as string. Example: "OrientDB Java client"
client's driver-version as string. Example: "1.0rc8-SNAPSHOT"
client's protocol-version as short. Example: 7
client's client-id as string. Can be null for clients. In clustered configuration is the
distributed node ID as TCP host+port. Example: "10.10.10.10:2480"
client's serialization-impl the serialization format required by the client.
token-session as boolean, true if the client want to use a token based session
otherwise false
database-name as string. Example: "demo"
database-type as string, can be 'document' or 'graph' (since version 8). Example:
"document"
user-name as string. Example: "admin"
user-password as string. Example: "admin"
cluster-config is always null unless you're running in a server clustered
configuration.
orientdb-release as string. Contains version of OrientDB release deployed on
server and optionally build number. Example: "1.4.0-SNAPSHOT (build 13)"

response detail :

session-id the new session id or a match id in case of token auth
token:bytes the token bytes or empty(size = 0) if the client send token-
session=false or the server not support the token based session
num-of-clusters:short the size of cluster definition array composed by cluster-
name:string and cluster-id:short and cluster-config
orientdb-release the decription of the token release

REQUEST_DB_OPEN

760



Creates a database in the remote OrientDB server instance

Request:	(database-name:string)(database-type:string)(storage-type:string)
Response:	empty

Where:

database-name as string. Example: "demo"
database-type as string, can be 'document' or 'graph' (since version 8). Example:
"document"
storage-type can be one of the supported types:
plocal, as a persistent database
memory, as a volatile database

NB. It doesn't make sense to use "remote" in this context

REQUEST_DB_CREATE

761



Closes the database and the network connection to the OrientDB Server instance. No
return is expected. The socket is also closed.

Request:	empty
Response:	no	response,	the	socket	is	just	closed	at	server	side

REQUEST_DB_CLOSE

762



Asks if a database exists in the OrientDB Server instance. It returns true (non-zero) or
false (zero).

Request:	(database-name:string)	<--	before	1.0rc1	this	was	empty	(server-storage-type:string	
Response:	(result:byte)

Where:

server-storage-type can be one of the supported types:
plocal as a persistent database
memory, as a volatile database

REQUEST_DB_EXIST

763



Reloads database information. Available since 1.0rc4.

Request:	empty
Response:(num-of-clusters:short)[(cluster-name:string)(cluster-id:short)]

REQUEST_DB_RELOAD

764



Removes a database from the OrientDB Server instance. It returns nothing if the
database has been deleted or throws a OStorageException if the database doesn't
exists.

Request:	(database-name:string)(server-storage-type:string	-	since	1.5-snapshot)
Response:	empty

Where:

server-storage-type can be one of the supported types:
plocal as a persistent database
memory, as a volatile database

REQUEST_DB_DROP

765



Asks for the size of a database in the OrientDB Server instance.

Request:	empty
Response:	(size:long)

REQUEST_DB_SIZE

766



Asks for the number of records in a database in the OrientDB Server instance.

Request:	empty
Response:	(count:long)

REQUEST_DB_COUNTRECORDS

767



Add a new data cluster.

Request:	(name:string)(cluster-id:short	-	since	1.6	snapshot)
Response:	(new-cluster:short)

Where: type is one of "PHYSICAL" or "MEMORY". If cluster-id is -1 (recommended
value) new cluster id will be generated.

REQUEST_DATACLUSTER_ADD

768



Remove a cluster.

Request:	(cluster-number:short)
Response:	(delete-on-clientside:byte)

Where:

delete-on-clientside can be 1 if the cluster has been successfully removed and the
client has to remove too, otherwise 0

REQUEST_DATACLUSTER_DROP

769



Returns the number of records in one or more clusters.

Request:	(cluster-count:short)(cluster-number:short)*(count-tombstones:byte)
Response:	(records-in-clusters:long)

Where:

cluster-count the number of requested clusters
cluster-number the cluster id of each single cluster
count-tombstones the flag which indicates whether deleted records should be
taken in account. It is applicable for autosharded storage only, otherwise it is
ignored.
records-in-clusters is the total number of records found in the requested clusters

Request the record count for clusters 5, 6 and 7. Note the "03" at the beginning to tell
you're passing 3 cluster ids (as short each). 1,000 as long (8 bytes) is the answer.

Request:	03050607
Response:	00001000

REQUEST_DATACLUSTER_COUNT

Example

770



Returns the range of record ids for a cluster.

Request:	(cluster-number:short)
Response:	(begin:long)(end:long)

Request the range for cluster 7. The range 0-1,000 is returned in the response as 2
longs (8 bytes each).

Request:	07
Response:	0000000000001000

REQUEST_DATACLUSTER_DATARANGE

Example

771



Load a record by RecordID, according to a fetch plan

Request:	(cluster-id:short)(cluster-position:long)(fetch-plan:string)(ignore-cache:byte)(load-tombstones:byte)
Response:	[(payload-status:byte)[(record-type:byte)(record-version:int)(record-content:bytes)]*]+

Where:

fetch-plan, the fetch plan to use or an empty string
ignore-cache, tells if the cache must be ignored: 1 = ignore the cache, 0 = not
ignore. since protocol v.9 (introduced in release 1.0rc9)
load-tombstones, the flag which indicates whether information about deleted
record should be loaded. The flag is applied only to autosharded storage and
ignored otherwise.
payload-status can be:
0: no records remain to be fetched
1: a record is returned as resultset
2: a record is returned as pre-fetched to be loaded in client's cache only. It's not part
of the result set but the client knows that it's available for later access. This value is
not currently used.
record-type is
'b': raw bytes
'f': flat data
'd': document

REQUEST_RECORD_LOAD

772



Create a new record. Returns the position in the cluster of the new record. New records
can have version > 0 (since v1.0) in case the RID has been recycled.

Request:	(cluster-id:short)(record-content:bytes)(record-type:byte)(mode:byte)
Response:	(cluster-id:short)(cluster-position:long)(record-version:int)(count-of-collection-changes)[(uuid-most-sig-bits:long)(uuid-least-sig-bits:long)(updated-file-id:long)(updated-page-index:long)(updated-page-offset:int)]*

Where:

datasegment-id the segment id to store the data (since version 10 - 1.0-
SNAPSHOT). -1 Means default one. Removed since 2.0
record-type is:
'b': raw bytes
'f': flat data
'd': document

and mode is:

0 = synchronous (default mode waits for the answer)
1 = asynchronous (don't need an answer)

The last part of response is referred to RidBag management. Take a look at the main
page for more details.

REQUEST_RECORD_CREATE

773



Update a record. Returns the new record's version.

Request:	(cluster-id:short)(cluster-position:long)(update-content:boolean)(record-content:bytes)(record-version:int)(record-type:byte)(mode:byte)
Response:	(record-version:int)(count-of-collection-changes)[(uuid-most-sig-bits:long)(uuid-least-sig-bits:long)(updated-file-id:long)(updated-page-index:long)(updated-page-offset:int)]*

Where record-type is:

'b': raw bytes
'f': flat data
'd': document

and record-version policy is:

'-1': Document update, version increment, no version control.
'-2': Document update, no version control nor increment.
'-3': Used internal in transaction rollback (version decrement).
'>-1': Standard document update (version control).

and mode is:

0 = synchronous (default mode waits for the answer)
1 = asynchronous (don't need an answer)

and update-content is:

true - content of record has been changed and content should be updated in
storage
false - the record was modified but its own content has not been changed. So
related collections (e.g. rig-bags) have to be updated, but record version and
content should not be.

The last part of response is referred to RidBag management. Take a look at the main
page for more details.

REQUEST_RECORD_UPDATE

774



Delete a record by its RecordID. During the optimistic transaction the record will be
deleted only if the versions match. Returns true if has been deleted otherwise false.

Request:	(cluster-id:short)(cluster-position:long)(record-version:int)(mode:byte)
Response:	(payload-status:byte)

Where:

mode is:
0 = synchronous (default mode waits for the answer)
1 = asynchronous (don't need an answer)
payload-status returns 1 if the record has been deleted, otherwise 0. If the record
didn't exist 0 is returned.

REQUEST_RECORD_DELETE

775



Executes remote commands:

Request:	(mode:byte)(command-payload-length:int)(class-name:string)(command-payload)
Response:
-	synchronous	commands:	[(synch-result-type:byte)[(synch-result-content:?)]]+
-	asynchronous	commands:	[(asynch-result-type:byte)[(asynch-result-content:?)]*](pre-fetched-record-size.md)[(pre-fetched-record)]*+

Where the request:

mode can be 'a' for asynchronous mode and 's' for synchronous mode
command-payload-length is the length of the class-name field plus the command-
payload field
class-name is the class name of the command implementation. There are short
form for the most common commands:

q stands for query as idempotent command. It's like passing
	com.orientechnologies.orient.core.sql.query.OSQLSynchQuery	

c stands for command as non-idempotent command (insert, update, etc). It's
like passing 	com.orientechnologies.orient.core.sql.OCommandSQL	
s stands for script. It's like passing
	com.orientechnologies.orient.core.command.script.OCommandScript	. Script commands
by using any supported server-side scripting like Javascript command. Since
v1.0.
any other values is the class name. The command will be created via
reflection using the default constructor and invoking the 	fromStream()	 method
against it

command-payload is the command's serialized payload (see Network-Binary-
Protocol-Commands)

Response is different for synchronous and asynchronous request:

synchronous:
synch-result-type can be:

'n', means null result
'r', means single record returned
'l', collection of records. The format is:
an integer to indicate the collection size

REQUEST_COMMAND

776



all the records one by one
'a', serialized result, a byte[] is sent

synch-result-content, can only be a record
pre-fetched-record-size, as the number of pre-fetched records not directly part of
the result set but joined to it by fetching
pre-fetched-record as the pre-fetched record content
asynchronous:
asynch-result-type can be:

0: no records remain to be fetched
1: a record is returned as a resultset
2: a record is returned as pre-fetched to be loaded in client's cache only. It's not
part of the result set but the client knows that it's available for later access

asynch-result-content, can only be a record

777



Commits a transaction. This operation flushes all the pending changes to the server
side.

Request:	(tx-id:int)(using-tx-log:byte)(tx-entry)*(0-byte	indicating	end-of-records)

	tx-entry:	(operation-type:byte)(cluster-id:short)(cluster-position:long)(record-type:byte)(entry-content)
		entry-content	for	CREATE:	(record-content:bytes)
		entry-content	for	UPDATE:	(version:record-version)(content-changed:boolean)(record-content:bytes)
		entry-content	for	DELETE:	(version:record-version)

Response:	(created-record-count:int)[(client-specified-cluster-id:short)(client-specified-cluster-position:long)(created-cluster-id:short)(created-cluster-position:long)]*(updated-record-count:int)[(updated-cluster-id:short)(updated-cluster-position:long)(new-record-version:int)]*(count-of-collection-changes:int)[(uuid-most-sig-bits:long)(uuid-least-sig-bits:long)(updated-file-id:long)(updated-page-index:long)(updated-page-offset:int)]*

Where:

tx-id is the Transaction's Id
using-tx-log tells if the server must use the Transaction Log to recover the
transaction. 1 = true, 0 = false. Use always 1 (true) by default to assure consistency.
NOTE: Disabling the log could speed up execution of transaction, but can't be
rollbacked in case of error. This could bring also at inconsistency in indexes as well,
because in case of duplicated keys the rollback is not called to restore the index
status.
operation-type can be:

1, for UPDATES
2, for DELETES
3, for CREATIONS

record-content depends on the operation type:
For UPDATED (1): 	(original-record-version:int)(record-content:bytes)	
For DELETED (2): 	(original-record-version:int)	
For CREATED (3): 	(record-content:bytes)	

This response contains two parts: a map of 'temporary' client-generated record ids to
'real' server-provided record ids for each CREATED record, and a map of UPDATED
record ids to update record-versions.

Look at Optimistic Transaction to know how temporary RecordIDs are managed.

The last part or response is referred to RidBag management. Take a look at the main
page for more details.

REQUEST_TX_COMMIT

778



Request:	(clusterId:int)
Response:	(collectionPointer)

See: serialization of collection pointer

Creates an sb-tree bonsai on the remote server.

Request:	(collectionPointer)(key:binary)
Response:	(valueSerializerId:byte)(value:binary)

See: serialization of collection pointer

Get value by key from sb-tree bonsai.

Key and value are serialized according to format of tree serializer. If the operation is
used by RidBag key is always a RID and value can be null or integer.

Request:	(collectionPointer)
Response:	(keySerializerId:byte)(key:binary)

See: serialization of collection pointer

Get first key from sb-tree bonsai. Null if tree is empty.

Key are serialized according to format of tree serializer. If the operation is used by
RidBag key is null or RID.

Request:	(collectionPointer)(key:binary)(inclusive:boolean)(pageSize:int)
Response:	(count:int)[(key:binary)(value:binary)]*

REQUEST_CREATE_SBTREE_BONSAI

REQUEST_SBTREE_BONSAI_GET

REQUEST_SBTREE_BONSAI_FIRST_KEY

REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR

779



See: serialization of collection pointer

Gets the portion of entries major than specified one. If returns 0 entries than the
specified entry is the largest.

Keys and values are serialized according to format of tree serializer. If the operation is
used by RidBag key is always a RID and value is integer.

Default pageSize is 128.

Request:	(collectionPointer)(collectionChanges)
Response:	(size:int)

See: serialization of collection pointer, serialization of collection changes

Rid-bag specific operation. Send but does not save changes of rid bag. Retrieves
computed size of rid bag.

REQUEST_RIDBAG_GET_SIZE

780



NOTE. Since 1.7rc1 this feature is deprecated. Usage of RidBag is preferable.

Starting from 1.0rc8-SNAPSHOT OrientDB can transform collections of links from the
classic mode:

[#10:3,#10:4,#10:5]

to:

(ORIDs@pageSize:16,root:#2:6)

For more information look at the announcement of this new feature:
https://groups.google.com/d/topic/orient-database/QF52JEwCuTM/discussion

In practice to optimize cases with many relationships/edges the collection is transformed
in a mvrb-tree. This is because the embedded object. In that case the important thing is
the link to the root node of the balanced tree.

You can disable this behaviour by setting

mvrbtree.ridBinaryThreshold = -1

Where mvrbtree.ridBinaryThreshold is the threshold where OrientDB will use the tree
instead of plain collection (as before). -1 means "hey, never use the new mode but leave
all as before".

Special use of LINKSET types

781

https://groups.google.com/d/topic/orient-database/QF52JEwCuTM/discussion


To improve performance this structure is managed in binary form. Below how is made:

+-----------+-----------+--------+------------+----------+-----------+---------------------+
|	TREE	SIZE	|	NODE	SIZE	|	COLOR	.|	PARENT	RID	|	LEFT	RID	|	RIGHT	RID	|	RID	LIST	..........	|
+-----------+-----------+--------+------------+----------+-----------+---------------------+
|	4	bytes	.	|	4	bytes	.	|	1	byte	|	10	bytes	..|	10	bytes	|	10	bytes	.|	10	*	MAX_SIZE	bytes	|
+-----------+-----------+--------+------------+----------+-----------+---------------------+
=	39	bytes	+	10	*	PAGE-SIZE	bytes

Where:

TREE SIZE as signed integer (4 bytes) containing the size of the tree. Only the root
node has this value updated, so to know the size of the collection you need to load
the root node and get this field. other nodes can contain not updated values
because upon rotation of pieces of the tree (made during tree rebalancing) the root
can change and the old root will have the "old" size as dirty.
NODE SIZE as signed integer (4 bytes) containing number of entries in this node.
It's always <= to the page-size defined at the tree level and equals for all the nodes.
By default page-size is 16 items
COLOR as 1 byte containing 1=Black, 0=Red. To know more about the meaning of
this look at Red-Black Trees
PARENT RID as RID (10 bytes) of the parent node record
LEFT RID as RID (10 bytes) of the left node record
RIGHT RID as RID (10 bytes) of the right node record
RID LIST as the list of RIDs containing the references to the records. This is pre-
allocated to the configured page-size. Since each RID takes 10 bytes, a page-size
of 16 means 16 x 10bytes = 160bytes

The size of the tree-node on disk (and memory) is fixed to avoid fragmentation. To
compute it: 39 bytes + 10 * PAGE-SIZE bytes. For a page-size = 16 you'll have 39 + 160
= 199 bytes.

Tree node binary structure

782

http://en.wikipedia.org/wiki/Red%E2%80%93black_tree


Since version 28 the REQUEST_RECORD_LOAD response order is changed from:
	[(payload-status:byte)[(record-content:bytes)(record-version:int)(record-type:byte)]*]+	 to:
	[(payload-status:byte)[(record-type:byte)(record-version:int)(record-content:bytes)]*]+	

History

Version 28

783



Since version 27 is introduced an extension to allow use a token based session, if this
modality is enabled a few things change in the modality the protocol works.

in the first negotiation the client should ask for a token based authentication using
the token-auth flag
the server will reply with a token or an empty byte array that means that it not
support token based session and is using a old style session.
if the server don't send back the token the client can fail or drop back the the old
modality.
for each request the client should send the token and the sessionId
the sessionId is needed only for match a response to a request
if used the token the connections can be shared between users and db of the same
server, not needed to have connection associated to db and user.

protocol methods changed:

REQUEST_DB_OPEN

request add token session flag
response add of the token

REQUEST_CONNECT

request add token session flag
response add of the token

Version 27

784



added cluster-id in the REQUEST_CREATE_RECORD response.

Version 26

785



Reviewd serialization of index changes in the REQUEST_TX_COMMIT for detais #2676
Removed double serialization of commands parameters, now the parameters are
directly serialized in a document see Network Binary Protocol Commands and #2301

Version 25

786

https://github.com/orientechnologies/orientdb/issues/2676
https://github.com/orientechnologies/orientdb/issues/2301


cluster-type and cluster-dataSegmentId parameters were removed from response
for REQUEST_DB_OPEN, REQUEST_DB_RELOAD requests.
datasegment-id parameter was removed from REQUEST_RECORD_CREATE
request.
type, location and datasegment-name parameters were removed from
REQUEST_DATACLUSTER_ADD request.
REQUEST_DATASEGMENT_ADD request was removed.
REQUEST_DATASEGMENT_DROP request was removed.

Version 24

787



Add support of 	updateContent	 flag to UPDATE_RECORD and COMMIT

Version 23

788



REQUEST_CONNECT and REQUEST_OPEN now send the document serialization
format that the client require

Version 22

789



REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR (which is used to iterate
through SBTree) now gets "pageSize" as int as last argument. Version 20 had a
fixed pageSize=5. The new version provides configurable pageSize by client.
Default pageSize value for protocol=20 has been changed to 128.

Version 21

790



Rid bag commands were introduced.
Save/commit was adapted to support client notifications about changes of collection
pointers.

Version 20

791



Serialized version of server exception is sent to the client.

Version 19

792



Ability to set cluster id during cluster creation was added.

Version 18

793



Synchronous commands can send fetched records like asynchronous one.

Version 17

794



Storage type is required for REQUEST_DB_FREEZE, REQUEST_DB_RELEASE,
REQUEST_DB_DROP, REQUEST_DB_EXIST commands.
This is required to support plocal storage.

Version 16

795



SET types are stored in different way then LIST. Before rel. 15 both were stored
between squared braces [] while now SET are stored between <>

Version 15

796



DB_OPEN returns information about version of OrientDB deployed on server.

Version 14

797



To support upcoming auto-sharding support feature following changes were done
RECORD_LOAD flag to support ability to load tombstones was added.
DATACLUSTER_COUNT flag to support ability to count tombstones in cluster
was added.

Version 13

798



DB_OPEN returns the dataSegmentId foreach cluster

Version 12

799



RECORD_CREATE always returns the record version. This was necessary
because new records could have version > 0 to avoid MVCC problems on RID
recycle

Version 11

800



Current release of OrientDB server supports older client versions.

version 26: 100% compatible 2.0-SNAPSHOT
version 25: 100% compatible 2.0-SNAPSHOT
version 24: 100% compatible 2.0-SNAPSHOT
version 23: 100% compatible 2.0-SNAPSHOT
version 22: 100% compatible 2.0-SNAPSHOT
version 22: 100% compatible 2.0-SNAPSHOT
version 21: 100% compatible 1.7-SNAPSHOT
version 20: 100% compatible 1.7rc1-SNAPSHOT
version 19: 100% compatible 1.6.1-SNAPSHOT
version 18: 100% compatible 1.6-SNAPSHOT
version 17: 100% compatible. 1.5
version 16: 100% compatible. 1.5-SNAPSHOT
version 15: 100% compatible. 1.4-SNAPSHOT
version 14: 100% compatible. 1.4-SNAPSHOT
version 13: 100% compatible. 1.3-SNAPSHOT
version 12: 100% compatible. 1.3-SNAPSHOT
version 11: 100% compatible. 1.0-SNAPSHOT
version 10: 100% compatible. 1.0rc9-SNAPSHOT
version 9: 100% compatible. 1.0rc9-SNAPSHOT
version 8: 100% compatible. 1.0rc9-SNAPSHOT
version 7: 100% compatible. 1.0rc7-SNAPSHOT - 1.0rc8
version 6: 100% compatible. Before 1.0rc7-SNAPSHOT
< version 6: not compatible

Compatibility

801



The CSV serialzation is the format how record are serialized in the orientdb 0. and 1.
version.

Documents are serialized in a proprietary format (as a string) derived from JSON, but
more compact. The string retrieved from the storage could be filled with spaces. This is
due to the oversize feature if it is set. Just ignore the tailing spaces.

To know more about types look at Supported types.

These are the rules:

Any string content must escape some characters:
	"	->	\"	

	\	->	\	

The class, if present, is at the begin and must end with 	@	. E.g. 	Customer@	
Each Field must be present with its name and value separated by 	:	.
E.g.	name:"Barack"	
Fields must be separated by 	,	. E.g. 	name:"Barack",surname:"Obama"	
All Strings must be enclosed by 	"	 character. E.g. 	city:"Rome"	
All Binary content (like byte[must be encoded in Base64 and enclosed by
underscore 		 character. E.g. 	buffer:_AAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGx	. Since
v1.0rc7
Numbers (integer, long, short, byte, floats, double) are formatted as strings as ouput
by the Java toString() method. No thousands separator must be used. The decimal
separator is always 	.	 Starting from version 0.9.25, if the type is not integer, a suffix
is used to distinguish the right type when unmarshalled: b=byte, s=short, l=long,
f=float, d=double, c=BigDecimal (since 1.0rc8). E.g. 	salary:120.3f	 or 	code:124b	.
Output of Floats
Output of Doubles
Output of BigDecimal
Booleans are expressed as 	true	 and 	false	 always in lower-case. They are
recognized as boolean since the text has no double quote as is the case with strings
Dates must be in the POSIX format (also called UNIX format:
http://en.wikipedia.org/wiki/Unix_time). Are always stored as longs but end with:
the 't' character when it's DATETIME type (default in schema-less mode when a
Date object is used). Datetime handles the maximum precision up to milliseconds.
E.g. 	lastUpdate:1296279468000t	 is read as 2011-01-29 05:37:48
the 'a' character when it's DATE type. Date handles up to day as precision. E.g.

CSV Serialization

802

http://docs.oracle.com/javase/6/docs/api/java/lang/Float.html#toString%28float%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#toString%28double%29
http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html#toPlainString%28%29
http://en.wikipedia.org/wiki/Unix_time


	lastUpdate:1306281600000a	 is read as 2011-05-25 00:00:00 (Available since 1.0rc2)
RecordID (link) must be prefixed by 	#	. A Record Id always has the format
	<cluster-id>:<cluster-position>	. E.g. 	location:#3:2	
Embedded documents are enclosed by parenthesis 	(	 and 	)	 characters. E.g.
	(name:"rules")	. Note: before SVN revision 2007 (0.9.24-snapshot) only 		 characters
were used to begin and end the embedded document.*
Lists (array and list) must be enclosed by 	[	 and 	]	 characters. E.g. 	[1,2,3]	,
	[#10:3,#10:4]	 and 	[(name:"Luca")]	. Before rel.15 SET type was stored as a list, but
now it uses own format (see below)
Sets (collections without duplicates) must be enclosed by 	<	 and 	>	 characters.
E.g. 	<1,2,3>	, 	<#10:3,#10:4>	 and 	<(name:"Luca")>	. There is a special case when use
LINKSET type reported in detail in Special use of LINKSET types section. Before
rel.15 SET type was stored as a list (see upon).
Maps (as a collection of entries with key/value) must be enclosed in 	{	 and 	}	
characters. E.g. 	rules:{"database":2,"database.cluster.internal":2</code>}	 (NB. to set a
value part of a key/value pair, set it to the text "null", without quotation marks. Eg.
	rules:{"database_name":"fred","database_alias":null}	)
RidBags a special collection for link management. Represented as 	%
(content:binary);	 where the content is binary data encoded in base64. Take a look
at the main page for more details.
Null fields have an empty value part of the field. E.g. 	salary_cloned:,salary:	

[<class>@][,][<field-name>:<field-value>]*

Simple example (line breaks introduced so it's visible on this page):

Profile@nick:"ThePresident",follows:[],followers:[#10:5,#10:6],name:"Barack",surname:"Obama",
location:#3:2,invitedBy:,salary_cloned:,salary:120.3f

Complex example used in schema (line breaks introduced so it's visible on this page):

name:"ORole",id:0,defaultClusterId:3,clusterIds:[3],properties:[(name:"mode",type:17,offset:0,
mandatory:false,notNull:false,min:,max:,linkedClass:,
linkedType:,index:),(name:"rules",type:12,offset:1,mandatory:false,notNull:false,min:,
max:,linkedClass:,linkedType:17,index:)]

803



Other example of ORole that uses a map (line breaks introduced so it's visible on this
page):

ORole@name:"reader",inheritedRole:,mode:0,rules:{"database":2,"database.cluster.internal":2,"database.cluster.orole":2,"database.cluster.ouser":2,
"database.class.*":2,"database.cluster.*":2,"database.query":2,"database.command":2,
"database.hook.record":2}

804



Below the serialization of types in JSON and Binary format (always refers to latest
version of the protocol).

Type JSON format Binary descriptor

String 0 Value ends with 'b'. Example:
23b

Short 10000 Value ends with 's'. Example:
23s

Integer 1000000 Just the value. Example: 234392

Long 1000000000 Value ends with 'l'. Example:
23439223l

Float 100000.33333 Value ends with 'f'. Example:
234392.23f

Double 100.33 Value ends with 'd'. Example:
10020.2302d

Decimal 1000.3333 Value ends with 'c'. Example:
234.923c

Boolean true 'true' or 'false'. Example: true

Date 1002020303 Value in milliseconds ends with
'a'. Example: 1002020303a

Datetime 1002020303 Value in milliseconds ends with
't'. Example: 1002020303t

Binary base64 encoded binary, like:
"A3ERjRFdc0023Kc"

Bytes surrounded with 	_	
characters. Example:
	_	2332322	_	

Link #10:3 Just the RID. Example: #10:232

Link list 	[#10:3,	#10:4]	

Collections values separated by
commas and surrounded by
brackets "[ ]". Example: [#10:3,
#10:6]

Link set Example: 	[#10:3,	#10:6]	 Example: 	<#10:3,	#10:4>	

Link map Example: 	{	"name"	:	"#10:3"
}	

Map entries separated by
commas and surrounded by
curly braces "{ }". Example:
	{"Jay":#10:3,"Mike":#10:6}	

Embedded 	{"Jay":"#10:3","Mike":"#10:6"}	

Embedded document serialized
surrounded by parenthesis "( )".
Example:
	({"Jay":#10:3,"Mike":#10:6})	

Serialization

805



Embedded
list Example: 	[20,	30]	

Collections of values separated
by commas and surrounded by
brackets "[ ]". Example: 	[20,
30]	

Embedded
set 	['is',	'a',	'test']	

Collections of values separated
by commas and surrounded by
minor and major "<>". Example:
	<20,	30>	

Embedded
map 	{	"name"	:	"Luca"	}	

Map of values separated by
commas and surrounded by
curly braces "{ }". Example:
	{"key1":23,"key2":2332}	

Custom base64 encoded binary, like:
"A3ERjRFdc0023Kc" -

806



The binary schemaless serialization is an attempt to define a serialization format that
can serialize a document containing all the information about the structure and the data,
with no need of a external schema definition and with support for partial
serialization/deserialization.

The whole record is structured in three main segments

+---------------+------------------+---------------+-------------+
|	version:byte		|	className:string	|	header:byte[]	|	data:byte[]	|
+---------------+------------------+---------------+-------------+

Schemaless Serialization

807



1 byte that contain the version of the current record serialization, to allow progressive
serialization upgrade

Version

808



A String containing the name of the class of the record, if the record has no class will be
just an empty string, the serialization of the string is the same of the String value

Class Name

809



The header contains the list of fields names of the current record with the association to
the data location

+----------------------------+
|	fields:field_definition[]		|
+----------------------------+

field definition

+-----------------------------+-------------------+-------------------------------+----------------+
|	field_name_length|id:varint	|	field_name:byte[]	|	pointer_to_data_structure:int	|	data_type:byte	|
+-----------------------------+-------------------+-------------------------------+----------------+

field_name_length varint that describe the field, if positive is the size of the string that
fallow next if negative is and id of current property referred in the schema, if is 0 mark
the end of the header.
field_name the field name present only with field_name_length > 0
pointer_to_data a pointer to the data structure in the data segment that contains the
field value or 0 if the field is null
data_type the field type id, the supported types are defined here OType present only
with field_name_length > 0

The property Id will be stored in field_name_length as negative value, for decode it
should translated to positive value and decrased by 1: (field_name_length * -1) -1 ==
propertyId.

the relative property will be found in the schema, stored in the globalProperty list at the
root of the document that rapresent the schema definition.

Header

Property ID

810

https://github.com/orientechnologies/orientdb/wiki/Types


The data segment is where the data is stored is composed by an array of data structure

+------------------------+
|	data:data_structure[]		|
+------------------------+

each data structures content is depended to the field type, each type have it's own
serialization structure

Data

811



The Integer numbers will be serialized as variable size integer it use the same format of
protobuf specified HERE
-64 < value < 64 1 byte
-8192 < value < 8192 2 byte
-1048576 < value < 1048576 3 byte
-134217728 < value < 134217728 4 byte
-17179869184 < value < 17179869184 5 byte

all the negative value are translated to positive using the ZigZag encoding

the algorithm can be also extended for longer values!

The byte is stored as byte

The boolean is serialized as a byte: 0 = false 1 = true

This is stored as flat byte array copying the memory from the float memory

+---------------+
|	float:byte[4]	|
+---------------+

This is stored as flat byte array copying the memory from the double memory

+---------------+
|	float:byte[8]	|
+---------------+

field_data serialization by type

SHORT,INTEGER,LONG

BYTE

BOOLEAN

FLOAT

DOUBLE

812

https://developers.google.com/protocol-buffers/docs/encoding?csw=1


The date is converted to millisecond unix epoch and stored as the type LONG

The date is converted to second unix epoch,moved at midnight UTC+0, divided by
86400(seconds in a day) and stored as the type LONG

The string are stored as binary structure with UTF-8 encoding

+-------------+----------------+
|	size:varInt	|	string:byte[]		|
+-------------+----------------+

size the number of the bytes in the string stored(not the length of the string) as variable
size integer string the bytes of the string in UTF-8 encodings

The BINARY store bytes in a row way on the storage

+--------------+----------------+
|	size:varInt		|	bytes:byte[]			|
+--------------+----------------+

size the number of the bytes to store bytes the row bytes

The embedded document is serialized calling the document serializer in recursive
fashion, in the following structure

embedded document

+-----------------------------+

DATETIME

DATE

STRING

BINARY

EMBEDDED

813



|	serialized_document:bytes[]	|
+-----------------------------+

**serialized_document the bytes of the serialized document

The embedded collections is stored as an array of bytes that contain the serialized
document in the embedded mode.

+-------------+------------+-------------------+
|size:varInt		|	type:Otype	|	items:item_data[]	|
+-------------+------------+-------------------+

size the number of items in the list type the type of the types in the list or ANY if the type
is unknown items an array of value serialized by type or if the type is ANY the item will
have it's own structure.

the item_data structure is: +------------------+--------------+ | data_type:OType | data:byte[] |
+------------------+--------------+ data_type the type of the data stored in the item. data the
data stored with the format choose by the OType.

The link map allow to have as key the types:
STRING,SHORT,INTEGER,LONG,BYTE,DATE,DECIMAL,DATETIME,DATA,FLOAT,D
OUBLE the serialization of the map is divided in a header and a values

+---------------------------+-------------------------+
|	header:headerStructure				|	values:valueStructure			|
+---------------------------+-------------------------+

header structure

+--------------+------------------+
|	keyType:byte	|	keyValue:byte[]		|
+--------------+------------------+

Current implementation convert all the keys to string keyType is the type of the key,

EMBEDDEDLIST, EMBEDDEDSET

EMBEDDEDMAP

814



can be only one of the listed type. keyValue the value of the key serialized with the
serializer of the type

value structure

+---------------+---------------+
|valueType:byte	|	value:byte[]		|
+---------------+---------------+

valueType the OType of the stored value value the value serialized with the serializer
selected by OType

The link is stored as two 64 bit integer

+--------------+--------------+
|cluster:64int	|	record:64Int	|
+--------------+--------------+

cluster orientdb cluster id record orientdb record id

+-------------+---------------------+
|	size:varint	|	collection:LINK[]	|
+-------------+---------------------+

size the number of links in the collection collection an array of LINK each element is
serialized as LINK type.

The link map allow to have as key the types:
STRING,SHORT,INTEGER,LONG,BYTE,DATE,DECIMAL,DATETIME,DATA,FLOAT,D
OUBLE the serialization of the linkmap is a list of entry

+----------------------------+
|	values:link_map_entry[]				|

LINK

LINKLIST, LINKSET

LINKMAP

815



+----------------------------+

link_map_entry structure

+--------------+------------------+------------+
|	keyType:byte	|	keyValue:byte[]		|	link:LINK		|
+--------------+------------------+------------+

keyType is the type of the key, can be only one of the listed type. keyValue the value of
the key serialized with the serializer of the type link the link value store with the formant
of a LINK

The Decimal is converted to an integer and stored as scale and value (example
"10234.546" is stored as scale "3" and value as:"10234546")

+---------------+-------------------+--------------+
|	scale:byte[4]	|	valueSize:byte[4]	|	value:byte[]	|
+---------------+-------------------+--------------+

scale an 4 byte integer that represent the scale of the value valueSize the length of the
value bytes value the bytes that represent the value of the decimal in big-endian order.

DECIMAL

LINKBAG

816



This is the guide to the commands you can send through the binary protocol.

Network Binary Protocol Commands

817



List of SQL Commands
Network Binary Protocol Specification

the commands are divided in three main groups:

SQL (select) Query
SQL Commands
Script commands

(text:string)(non-text-limit:int)[(fetch-plan:string)](serialized-params:bytes[])

text text of the select query
non-text-limit Limit can be set in query's text, or here. This field had priority. Send -1 to
use limit from query's text
fetch-plan used only for select queries, otherwise empty
serialized-params the byte[] result of the serialization of a ODocument.

The ODocument have to contain a field called "params" of type Map.
the Map should have as key, in case of positional perameters the numeric position of the
parameter, in case of named parameters the name of the parameter and as value the
value of the parameter.

(text:string)(has-simple-parameters:boolean)(simple-paremeters:bytes[])(has-complex-parameters:boolean)(complex-parameters:bytes[])

text text of the sql command
has-simple-parameters boolean flag for determine if the simple-parameters byte array
is present or not
simple-parameters the byte[] result of the serialization of a ODocument.
has-complex-parameters boolean flag for determine if the complex-parameters byte

See also

SQL (Select) Query

Serialized Parameters ODocument content

SQL Commands

818



array is present or not
complex-parameters the byte[] result of the serialization of a ODocument.

The ODocument have to contain a field called "parameters" of type Map.
the Map should have as key, in case of positional perameters the numeric position of the
parameter, in case of named parameters the name of the parameter and as value the
value of the parameter.

The ODocument have to contain a field called "compositeKeyParams" of type Map.
the Map should have as key, in case of positional perameters the numeric position of the
parameter, in case of named parameters the name of the parameter and as value a List
that is the list of composite parameters.

(language:string)(text:string)(has-simple-parameters:boolean)(simple-paremeters:bytes[])(has-complex-parameters:boolean)(complex-parameters:bytes[])

language the language of the script present in the text field. All the others paramenters
are serialized as the SQL Commands

Serialized Simple Parameters ODocument content

Serialized Complex Parameters ODocument content

Script

819



This page contains the solution to the most common use cases. Please don't consider
them as the definitive solution, but as suggestions where to get the idea to solve your
needs.

Use Cases

820



Time Series Use case
Use OrientDB as a Key/Value DBMS

Use cases

821



Managing records related to historical information is pretty common. When you've
millions of records indexes show their limitation because the cost to find the records is
O(logN). This is also the main reason why Relational DBMS are so slow with huge
database.

So when you've millions of record the best way to scale up linearly is avoid using
indexes at all or as much as you can. But how to retrieve records in short time without
indexes? Should OrientDB scan the entire database at every query? No. You should use
the Graph properties of OrientDB. Let's look at a simple example where the domain are
logs.

A typical log record has some information about the event and a date. Follows the Log
record to use in our example. We're going to use the JSON format to simplify reading:

{
		"date"	:	12293289328932,
		"priority"	:	"critical",
		"note"	:	"System	reboot"
}

Now let's create a tree (that is a directed, non cyclic graph) to group the Log records
based on the granularity we need. Example:

Year	->	month	(map)	->	Month	->	day	(map)	->	Day	->	hour		(map)	->	Hour

Where Year, Month, Day and Hour are vertex classes. Each Vertex links the other
Vertices of smaller type. The links should be handled using a Map to make easier the
writing of queries.

Create the classes:

create	class	Year
create	class	Month
create	class	Day
create	class	Hour

create	property	Year.month	linkmap	Month
create	property	Month.day	linkmap	Day
create	property	Day.hour	linkmap	Hour

Time Series Use Case

822



Example to retrieve the vertex relative to the date March 2012, 20th at 10am
(2012/03/20 10:00:00):

select	month[3].day[20].hour[10].logs	from	Year	where	year	=	"2012"

If you need more granularity than the Hour you can go ahead until the Time unit you
need:

Hour	->	minute	(map)	->	Minute	->	second	(map)	->	Second

Now connect the record to the right Calendar vertex. If the usual way to retrieve Log
records is by hour you could link the Log records in the Hour. Example:

Year	->	month	(map)	->	Month	->	day	(map)	->	Day	->	hour		(map)	->	Hour	->	log	(set)	->	Log

The "log" property connects the Time Unit to the Log records. So to retrieve all the log of
March 2012, 20th at 10am:

select	flatten(	month[3].day[20].hour[10].logs	)	from	Year	where	year	=	"2012"

That could be used as starting point to retrieve only a sub-set of logs that satisfy certain
rules. Example:

select	from	(
		select	flatten(	month[3].day[20].hour[10].logs	)	from	Year	where	year	=	"2012"
)	where	priority	=	'critical'

That retrieves all the CRITICAL logs of March 2012, 20th at 10am.

823



If you need multiple hours/days/months as result set you can use the UNION function to
create a unique result set:

select	flatten(	records	)	from	(
		select	union(	month[3].day[20].hour[10].logs,	month[3].day[20].hour[11].logs	)	as	records
		from	Year	where	year	=	"2012"
)

In this example we create a union between the 10th and 11th hours. But what about
extracting all the hours of a day without writing a huge query? The shortest way is using
the Traverse. Below the Traverse to get all the hours of one day:

traverse	hour	from	(
		select	flatten(	month[3].day[20]	)	from	Year	where	year	=	"2012"
)

So putting all together this query will extract all the logs of all the hours in a day:

select	flatten(	logs	)	from	(
		select	union(	logs	)	as	logs	from	(
				traverse	hour	from	(
					select	flatten(	month[3].day[20]	)	from	Year	where	year	=	"2012"
				)
		)
)

Join multiple hours

824



Once you built up a Calendar in form of a Graph you can use it to store aggregated
values and link them to the right Time Unit. Example: store all the winning ticket of
Online Games. The record structure in our example is:

{
		"date"	:	12293289328932,
		"win"	:	10.34,
		"machine"	:	"AKDJKD7673JJSH",
}

You can link this records to the closest Time Unit like the example above, but you could
sum all the records in the same Day and put link it to the Day vertex. Example:

Create a new class to store the aggregated daily records:

create	class	DailyLog

Create the new record from an aggregation of the hour:

insert	into	DailyLog
set	win	=	(
		select	sum(win)	as	win	from	Hour	where	date	between	'2012-03-20	10:00:00'	and	'2012-03-20	11:00:00'
)

Link it in the Calendar graph assuming the previous command returned #23:45 as the
RecordId of the brand new DailyLog record:

update	(
		select	flatten(	month[3].day[20]	)	from	Year	where	year	=	"2012"
)	add	logs	=	#23:45

Aggregate

825



OrientDB can be used like a Key Value DBMS by using the super fast Indexes. You can
have as many Indexes as you need.

Key Value Use Case

826



OrientDB RESTful HTTP protocol allows to talk with a OrientDB Server instance using
the HTTP protocol and JSON. OrientDB supports also a highly optimized Binary protocol
for superior performances.

HTTP

827



To interact against OrientDB indexes use the four methods of the HTTP protocol in
REST fashion:

PUT, to create or modify an entry in the database
GET, to retrieve an entry from the database. It's idempotent that means no changes
to the database happen. Remember that in IE6 the URL can be maximum of 2,083
characters. Other browsers supports major length, but if you want to stay
compatible with all limit to 2,083 characters
DELETE, to delete an entry from the database

Operations

828



To create a new entry in the database use the Index-PUT API.

Syntax: 	http://<server>:[<port>]/index/<index-name>/<key>	

Example:

HTTP PUT: http://localhost:2480/index/customers/jay

{
		"name"	:	"Jay",
		"surname"	:	"Miner"
}

HTTP Response 204 is returned.

Create an entry

829

http://localhost:2480/index/customers/jay


To retrieve an entry from the database use the Index-GET API.

Syntax: 	http://<server>:[<port>]/index/<index-name>/<key>	

Example:

HTTP GET: 	http://localhost:2480/index/customers/jay	

HTTP Response 200 is returned with this JSON as payload:

{
		"name"	:	"Jay",
		"surname"	:	"Miner"
}

Retrieve an entry

830



To remove an entry from the database use the Index-DELETE API.

Syntax: 	http://<server>:[<port>]/index/<index-name>/<key>	

Example:

HTTP DELETE: 	http://localhost:2480/index/customers/jay	

HTTP Response 200 is returned

Remove an entry

831



Before to start assure you've a OrientDB server up and running. In this example we'll
use curl considering the connection to localhost to the default HTTP post 2480. The
default "admin" user is used.

Step-by-Step tutorial

832



To use OrientDB as a Key/Value store we need a brand new manual index, let's call it
"mainbucket". We're going to create it as UNIQUE because keys cannot be duplicated. If
you can have multiple keys consider:

creating the index as NOTUNIQUE
leave it as UNIQUE but as value handle array of documents

Create the new manual unique index "mainbucket":

>	curl	--basic	-u	admin:admin	localhost:2480/command/demo/sql	-d	"create	index	mainbucket	UNIQUE"

Response:

{	"result"	:	[	
				{	"@type"	:	"d"	,	"@version"	:	0,	"value"	:	0,	"@fieldTypes"	:	"value=l"	}
		]
}

Create a new index

833



Below we're going to insert the first entry by using the HTTP PUT method passing "jay"
as key in the URL and as value the entire document in form of JSON:

>	curl	--basic	-u	admin:admin	-X	PUT	localhost:2480/index/demo/mainbucket/jay	-d	"{'name':'Jay','surname':'Miner'}"

Response:

Key	'jay'	correctly	inserted	into	the	index	mainbucket.

Store the first entry

834



Below we're going to retrieve the entry we just entered by using the HTTP GET method
passing "jay" as key in the URL:

>	curl	--basic	-u	admin:admin	localhost:2480/index/demo/mainbucket/jay

Response:

[{
		"@type"	:	"d"	,	"@rid"	:	"#3:477"	,	"@version"	:	0,
		"name"	:	"Jay",
		"surname"	:	"Miner"
}]

Note that an array is always returned in case multiple records are associated to the
same key (if NOTUNIQUE index is used). Look also at the document has been created
with RID #3:477. You can load it directly if you know the RID. Remember to remove the
# character. Example:

>	curl	--basic	-u	admin:admin	localhost:2480/document/demo/3:477

Response:

{
		"@type"	:	"d"	,	"@rid"	:	"#3:477"	,	"@version"	:	0,
		"name"	:	"Jay",
		"surname"	:	"Miner"
}

Retrieve the entry just inserted

835



Once finished drop the index "mainbucket" created for the example:

>	curl	--basic	-u	admin:admin	localhost:2480/command/demo/sql	-d	"drop	index	mainbucket"

Response:

{	"result"	:	[	
				{	"@type"	:	"d"	,	"@version"	:	0,	"value"	:	0,	"@fieldTypes"	:	"value=l"	}
		]
}

Drop an index

836



OrientDB Server (DB-Server from now) is a multi-threaded Java application that listens
to remote commands and executes them against the Orient databases. OrientDB Server
supports both binary and HTTP protocols. The first one is used by the Orient native
client and the Orient Console. The second one can be used by any languages since it's
based on HTTP RESTful API. The HTTP protocol is used also by the OrientDB Studio
application.

Starting from v1.7 OrientDB support protected SSL connections.

OrientDB Server

837



OrientDB Server is part of Community and Enterprise distributions. To install OrientDB
as service follow the following guides

Unix, Linux and MacOSX
Windows

Install as a service

838



To start the server, execute bin/orient-db.sh (or bin/orient-db.bat on Microsoft Windows
systems). By default both the binary and http interfaces are active. If you want to disable
one of these change the Server configuration.

Upon startup, the server runs on port 2424 for the binary protocol and 2480 for the http
one. If a port is busy the next free one will be used. The default range is 2424-2430
(binary) and 2480-2490 (http). These default ranges can be changed in in Server
configuration.

Start the server

839



To stop a running server, press CTRL+C in the open shell that runs the Server instance
or soft kill the process to be sure that the opened databases close softly. Soft killing on
Windows can be done by closing the window. On Unix-like systems, a simple kill is
enough (Do not use kill -9 unless you want to force a hard shutdown).

Stop the server

840



The OrientDB distribution provides the Orient Console tool as a console Java application
that uses the binary protocol to work with the database.

Starting from the release 0.9.13 Orient comes with the OrientDB Studio application, a
client-side web app that uses the HTTP protocol to work with the database.

Consider the native APIs if you use Java. For all the other languages you can use the
HTTP RESTful protocol.

Connect to the server

By Console

By OrientDB Studio

By your application

841



To setup a distributed configuration look at: Distributed-Architecture.

Distributed servers

842



By default OrientDB server manages the database under the directory
"$ORIENTDB_HOME/databases" where $ORIENTDB_HOME is the OrientDB
installation directory. By setting the configuration parameter 	"server.database.path"	 in
server orientdb-server-config.xml you can specify a custom path. Example:

<orient-server>
		...
		<properties>
				<entry	value="C:/temp/databases"	name="server.database.path"	/>
		</properties>
</orient-server>

Change the Server's database directory

843



Plug-ins (old name "Handler") are the way the OrientDB Server can be extended.

To write your own plug-in read below Extend the server.

Available plugins:

Automatic-Backup
EMail Plugin
JMX Plugin
Distributed-Server-Manager
Server-side script interpreter
Write your own

Contains the list of protocols used by the listeners section. The protocols supported
today are:

binary: the Raw binary protocol used by OrientDB clients and console application.
http: the HTTP RESTful protocol used by OrientDB Studio and direct raw access
from any language and browsers.

You can configure multiple listeners by adding items under the 	<listeners>	 tag and
selecting the ip-address and TCP/IP port to bind. The protocol used must be listed in the
protocols section. Listeners can be configured with single port or port range. If a range of
ports is specified, then it will try to acquire the first port available. If no such port is
available, then an error is thrown. By default the Server configuration activates
connections from both the protocols:

binary: by default the binary connections are listened to the port range 2424-2430.
http: by default the HTTP connections are listened to the port range 2480-2490.

Configuration

Plugins

Protocols

Listeners

Storages

844



Contains the list of the static configured storages. When the server starts for each
storages static configured storage enlisted check if exists. If exists opens it, otherwise
creates it transparently.

By convention all the storages contained in the $ORIENT_HOME/databases are visible
from the OrientDB Server instance without the need of configure them. So configure
storages if:

are located outside the default folder. You can use any environment variable in the
path such the ORIENT_HOME that points to the Orient installation path if defined
otherwise to the root directory where the Orient Server starts.
want to create/open automatically a database when the server start ups

By default the "temp" database is always configured as in-memory storage useful to
store volatile information.

Example of configuration:

<storage	name="mydb"	path="local:C:/temp/databases/mydb"
									userName="admin"	userPassword="admin"
									loaded-at-startup="true"	/>

To create a new database use the CREATE DATABASE console command or create it
dinamically using the Java-API.

Starting from v.0.9.15 OrientDB supports per-server users in order to protect sensible
operations to the users. In facts the creation of a new database is a server operation as
much as the retrieving of server statistics.

When an OrientDB server starts for the first time, a new user called "root" will be
generated and saved in the server configuration. This avoid security problems when,
very often, the passwords remain the default ones.

User based authentication checks if the logged user has the permission to access to the

Users

Automatic password generation

Resources

845

http://code.google.com/p/orient/wiki/ConsoleCommandCreateDb


requested resource. "*" means access to all the resource. This is the typical setting for
the user "root". Multiple resources must be separated by comma.

Example to let to the "root" user to access to all the server commands:

<user	name="root"	resources="*"	password="095F17F6488FF5416ED24E"/>

Example to let to the "guest" user to access only to the "info-server" command:

<user	name="guest"	resources="info-server"	password="3489438DKJDK4343UDH76"/>

Supported resources are:

	info-server	, to obtain statistics about the server
	database.create	, to create a new database
	database.exists	, to check if a database exists
	database.delete	, to delete an existent database
	database.share	, to share a database to another OrientDB Server node
	database.passthrough	, to access to the hosted databases without database's
authentication
	server.config.get	, to retrieve a configuration setting value
	server.config.set	, to set a configuration setting value

To configure a new user open the config/orientdb-server-config.xml file and add a
new XML tag under the tag 	<users>	:

<users>
				<user	name="MyUser"	password="MyPassword"	resources="database.exists"/>
</users>

Create new user with some privileges

846



To extend the server's features look at Extends the server.

Extend the server

847



To debug the server configure your IDE to execute the class OServerMain:

com.orientechnologies.orient.server.OServerMain

Passing these parameters:

-server
-Dorientdb.config.file=config/orientdb-server-config.xml
-Dorientdb.www.path=src/site
-DORIENTDB_HOME=url/local/orientdb/releases/orientdb-1.2.0-SNAPSHOT
-Djava.util.logging.config.file=config/orientdb-server-log.properties
-Dcache.level1.enabled=false
-Dprofiler.enabled=true

Changing the ORIENTDB_HOME according to your path.

Debug the server

848



Embedding an OrientDB Server inside a Java application has several advantages and
interesting features:

Java application that runs embedded with the server can bypass the remote
connection and use the database directly with local mode. local and remote
connections against the same database can work in concurrency: OrientDB will
synchronize the access.
You can use the Console to control it
You can use the OrientDB Studio
You can replicate the database across distributed standalone or embedded servers

To embed an OrientDB Server inside a Java application you have to create the 	OServer	
object and use a valid configuration for it.

Embed the Server

849

https://github.com/nuvolabase/orientdb/wiki/Concepts#wiki-Database_URL
https://github.com/nuvolabase/orientdb/wiki/Console-Commands
https://github.com/nuvolabase/orientdb/wiki/OrientDB-Studio


In order to embed the server you need to include the following jar files in the classpath:

	orientdb-enterprise-**.jar	

	orientdb-server-**.jar	

Requirements

850



Even if most of the HTTP commands are auto registered assure to have all the
commands you need. For example the static content must be registered. This is
fundamental if you want to use OrientDB as Web Server providing static content like the
Studio app:

<listener	protocol="http"	port-range="2480-2490"	ip-address="0.0.0.0">
		<commands>
				<command	implementation="com.orientechnologies.orient.server.network.protocol.http.command.get.OServerCommandGetStaticContent"
						<parameters>
								<entry	value="Cache-Control:	no-cache,	no-store,	max-age=0,	must-revalidate\r\nPragma:	no-cache"
								<entry	value="Cache-Control:	max-age=120"	name="http.cache:default"/>
						</parameters>
				</command>
		</commands>
</listener>

Include the commands you need

851



import	com.orientechnologies.orient.server.OServerMain;

public	class	OrientDBEmbeddable	{

	public	static	void	main(String[]	args)	throws	Exception	{
		OServer	server	=	OServerMain.create();
		server.startup(
			"<?xml	version=\"1.0\"	encoding=\"UTF-8\"	standalone=\"yes\"?>"
			+	"<orient-server>"
			+	"<network>"
			+	"<protocols>"
			+	"<protocol	name=\"binary\"	implementation=\"com.orientechnologies.orient.server.network.protocol.binary.ONetworkProtocolBinary\"/>"
			+	"<protocol	name=\"http\"	implementation=\"com.orientechnologies.orient.server.network.protocol.http.ONetworkProtocolHttpDb\"/>"
			+	"</protocols>"
			+	"<listeners>"
			+	"<listener	ip-address=\"0.0.0.0\"	port-range=\"2424-2430\"	protocol=\"binary\"/>"
			+	"<listener	ip-address=\"0.0.0.0\"	port-range=\"2480-2490\"	protocol=\"http\"/>"
			+	"</listeners>"
			+	"</network>"
			+	"<users>"
			+	"<user	name=\"root\"	password=\"ThisIsA_TEST\"	resources=\"*\"/>"
			+	"</users>"
			+	"<properties>"
			+	"<entry	name=\"orientdb.www.path\"	value=\"C:/work/dev/orientechnologies/orientdb/releases/1.0rc1-SNAPSHOT/www/\"/>"
			+	"<entry	name=\"orientdb.config.file\"	value=\"C:/work/dev/orientechnologies/orientdb/releases/1.0rc1-SNAPSHOT/config/orientdb-server-config.xml\"/>"
			+	"<entry	name=\"server.cache.staticResources\"	value=\"false\"/>"
			+	"<entry	name=\"log.console.level\"	value=\"info\"/>"
			+	"<entry	name=\"log.file.level\"	value=\"fine\"/>"
			//The	following	is	required	to	eliminate	an	error	or	warning	"Error	on	resolving	property:	ORIENTDB_HOME"
			+	"<entry	name=\"plugin.dynamic\"	value=\"false\"/>"
			+	"</properties>"	+	"</orient-server>");
		server.activate();
		}
}

Once the embedded server is running, clients can connect using the remote connection
method. For example in the console, you can connect with:

connect	remote:localhost:{port}/{db}	{user}	{password}
where:
		port					:	the	port	that	the	binary	server	listens	on
													(first	free	port	from	2424-2430	according	to	the	configuration	above)
		db							:	the	database	name	to	connect	to	(defaults	to	"db"	and	can	be	set	using	<entry	name="server.database.path"	value="db"/>	in	the	configuration
		user					:	the	user	to	connect	with	(this	is	NOT	the	same	as	root	user	in	the	configuration)
		password	:	the	user	to	connect	with	(this	is	NOT	the	same	as	root	password	in	the	configuration)

Use an embedded configuration

852



Use a regular 	File	:

public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{
						OServer	server	=	OServerMain.create();
						server.startup(new	File("/usr/local/temp/db.config"));
						server.activate();
		}

}

Or an 	InputStream	 from the class loader:

public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{
						OServer	server	=	OServerMain.create();
						server.startup(getClass().getResourceAsStream("db.config"));
						server.activate();
		}

}

Use custom file for configuration

853



OrientDB Server creates some threads internally as non-daemon, so they run even if the
main application exits. Use the 	OServer.shutdown()	 method to shutdown the server in soft
way:

import	com.orientechnologies.orient.server.OServerMain;

public	class	OrientDBEmbeddable	{

		public	static	void	main(String[]	args)	throws	Exception	{
				OServer	server	=	OServerMain.create();
				server.startup(new	File("/usr/local/temp/db.config"));
				server.activate();
				...
				server.shutdown();
		}
}

Shutdown

854



The OrientDB Server is a customizable platform to build powerful server component and
applications.

Since the OrientDB server contains an integrated Web Server what about creating
server side applications without the need to have a J2EE and Servlet container? By
extending the server you can benefit of the best performance because you don't have
many layers but the database and the application reside on the same JVM without the
cost of the network and serialization of requests.

Furthermore you can package your application together with the OrientDB server to
distribute just a ZIP file containing the entire Application, Web server and Database.

To customize the OrientDB server you have two powerful tools:

Handlers
Custom commands

To debug the server while you develop new feature follow Debug the server.

OrientDB Plugins

855



Handlers are plug-ins and starts when OrientDB starts.

To create a new handler create the class and register it in the OrientDB server
configuration.

Handlers (Server Plugins)

856



A Handler must implements the OServerPlugin interface or extends the
OServerPluginAbstract abstract class.

Below an example of a handler that print every 5 seconds a message if the "log"
parameters has been configured to be "true":

package	orientdb.test;

public	class	PrinterHandler	extends	OServerPluginAbstract	{
		private	boolean				log	=	false;

		@Override
		public	void	config(OServer	oServer,	OServerParameterConfiguration[]	iParams)	{
				for	(OServerParameterConfiguration	p	:	iParams)	{
						if	(p.name.equalsIgnoreCase("log"))
								log	=	true;
				}

				Orient.getTimer().schedule(	new	TimerTask()	{
						@Override
						public	void	run()	{
								if(	log	)
										System.out.println("It's	the	PrinterHandler!");
						}
				},	5000,	5000);
		}

		@Override
		public	String	getName()	{
				return	"PrinterHandler";
		}
}

Create the Handler class

857



Once created register it to the server configuration in orientdb-server-config.xml file:

<orient-server>
		<handlers>
				<handler	class="orientdb.test.PrinterHandler">
						<parameters>
								<parameter	name="log"	value="true"/>
						</parameters>
				</handler>
		</handlers>
		...

Note that you can specify arbitrary parameters in form of name and value. Those
parameters can be read by the config() method. In this example a parameter "log" is
read. Look upon to the example of handler to know how to read parameters specified in
configuration.

Register the handler

858



As more complete example let's create a distributed record manager by installing hooks
to all the server's databases and push these changes to the remote client caches.

public	class	DistributedRecordHook	extends	OServerHandlerAbstract	implements	ORecordHook	{
		private	boolean	log	=	false;

		@Override
		public	void	config(OServer	oServer,	OServerParameterConfiguration[]	iParams)	{
				for	(OServerParameterConfiguration	p	:	iParams)	{
						if	(p.name.equalsIgnoreCase("log"))
								log	=	true;
				}
		}

		@Override
		public	void	onAfterClientRequest(final	OClientConnection	iConnection,	final	byte	iRequestType)
				if	(iRequestType	==	OChannelBinaryProtocol.REQUEST_DB_OPEN)
						iConnection.database.registerHook(this);
				else	if	(iRequestType	==	OChannelBinaryProtocol.REQUEST_DB_CLOSE)
						iConnection.database.unregisterHook(this);
		}

		@Override
		public	boolean	onTrigger(TYPE	iType,	ORecord<?>	iRecord)	{
				try	{
						if	(log)
								System.out.println("Broadcasting	record:	"	+	iRecord	+	"...");

						OClientConnectionManager.instance().broadcastRecord2Clients((ORecordInternal<?>)	iRecord,	
				}	catch	(Exception	e)	{
						e.printStackTrace();
				}
				return	false;
		}

		@Override
		public	String	getName()	{
				return	"DistributedRecordHook";
		}
}

Creating a distributed change manager

859



Custom commands are useful when you want to add behavior or business logic at the
server side.

A Server command is a class that implements the OServerCommand interface or
extends one of the following abstract classes:

OServerCommandAuthenticatedDbAbstract if the command requires an
authentication at the database
OServerCommandAuthenticatedServerAbstract if the command requires an
authentication at the server

Custom commands

860

http://code.google.com/p/orient/source/browse/trunk/server/src/main/java/com/orientechnologies/orient/server/network/protocol/http/command/OServerCommand.java
http://code.google.com/p/orient/source/browse/trunk/server/src/main/java/com/orientechnologies/orient/server/network/protocol/http/command/OServerCommandAuthenticatedDbAbstract.java
http://code.google.com/p/orient/source/browse/trunk/server/src/main/java/com/orientechnologies/orient/server/network/protocol/http/command/OServerCommandAuthenticatedServerAbstract.java


To learn how to create a custom command, let's begin with a command that just returns
"Hello world!".

OrientDB follows the convention that the command name is:

	OServerCommand<method><name>	 Where:

method is the HTTP method and can be: GET, POST, PUT, DELETE
name is the command name

In our case the class name will be "OServerCommandGetHello". We want that the use
must be authenticated against the database to execute it as any user.

Furthermore we'd like to receive via configuration if we must display the text in Italic or
not, so for this purpose we'll declare a parameter named "italic" of type boolean (true or
false).

package	org.example;

public	class	OServerCommandGetHello	extends	OServerCommandAuthenticatedDbAbstract	{
		//	DECLARE	THE	PARAMETERS
		private	boolean	italic	=	false;

		public	OServerCommandGetHello(final	OServerCommandConfiguration	iConfiguration)	{
				//	PARSE	PARAMETERS	ON	STARTUP
				for	(OServerEntryConfiguration	par	:	iConfiguration.parameters)	{
						if	(par.name.equals("italic"))	{
								italic	=	Boolean.parseBoolean(par.value);
						}
				}
		}

		@Override
		public	boolean	execute(final	OHttpRequest	iRequest,	OHttpResponse	iResponse)	throws	Exception	
				//	CHECK	THE	SYNTAX.	3	IS	THE	NUMBER	OF	MANDATORY	PARAMETERS
				String[]	urlParts	=	checkSyntax(iRequest.url,	3,	"Syntax	error:	hello/<database>/<name>");

				//	TELLS	TO	THE	SERVER	WHAT	I'M	DOING	(IT'S	FOR	THE	PROFILER)
				iRequest.data.commandInfo	=	"Salutation";
				iRequest.data.commandDetail	=	"This	is	just	a	test";

				//	GET	THE	PARAMETERS
				String	name	=	urlParts[2];

				//	CREATE	THE	RESULT
				String	result	=	"Hello	"	+	name;
				if	(italic)	{

The Hello World Web

861



						result	=	"<i>"	+	result	+	"</i>";
				}

				//	SEND	BACK	THE	RESPONSE	AS	TEXT
				iResponse.send(OHttpUtils.STATUS_OK_CODE,	"OK",	null,	OHttpUtils.CONTENT_TEXT_PLAIN,	result);

				//	RETURN	ALWAYS	FALSE,	UNLESS	YOU	WANT	TO	EXECUTE	COMMANDS	IN	CHAIN
				return	false;
		}

		@Override
		public	String[]	getNames()	{
				return	new	String[]{"GET|hello/*	POST|hello/*"};
		}
}

Once created the command you need to register them through the orientdb-server-
config.xml file. Put a new tag 	<command>	 under the tag 	commands	 of 	<listener>	 with
attribute 	protocol="http"	:

		...
		<listener	protocol="http"	port-range="2480-2490"	ip-address="0.0.0.0">
				<commands>
						<command	implementation="org.example.OServerCommandGetHello"	pattern="GET|hello/*">
								<parameters>
										<entry	name="italic"	value="true"/>
								</parameters>
						</command>
				</commands>
		</listener>

Where:

implementation is the full class name of the command
pattern is how the command is called in the format: 	<HTTP-method>|<name>	. In this
case it's executed on HTTP GET with the URL: 	/<name>	
parameters specify parameters to pass to the command on startup
entry is the parameter pair name/value

To test it open a browser at this address:

http://localhost/hello/demo/Luca

862



You will see:

Hello	Luca

863



Below a more complex example taken by official distribution. It is the command that
executes queries via HTTP. Note how to get a database instance to execute operation
against the database:

public	class	OServerCommandGetQuery	extends	OServerCommandAuthenticatedDbAbstract	{
		private	static	final	String[]	NAMES	=	{	"GET|query/*"	};

		@Override
		public	boolean	execute(OHttpRequest	iRequest,	OHttpResponse	iResponse)	throws	Exception	{
				String[]	urlParts	=	checkSyntax(
								iRequest.url,
								4,
								"Syntax	error:	query/<database>/sql/<query-text>[/<limit>][/<fetchPlan>].<br/>Limit	is	optional	and	is	setted	to	20	by	default.	Set	expressely	to	0	to	have	no	limits."

				int	limit	=	urlParts.length	>	4	?	Integer.parseInt(urlParts[4])	:	20;
				String	fetchPlan	=	urlParts.length	>	5	?	urlParts[5]	:	null;
				String	text	=	urlParts[3];

				iRequest.data.commandInfo	=	"Query";
				iRequest.data.commandDetail	=	text;

				ODatabaseDocumentTx	db	=	null;

				List<OIdentifiable>	response;

				try	{
						db	=	getProfiledDatabaseInstance(iRequest);
						response	=	(List<OIdentifiable>)	db.command(new	OSQLSynchQuery<OIdentifiable>(text,	limit).setFetchPlan(fetchPlan)).execute();

				}	finally	{
						if	(db	!=	null)	{
								db.close();
						}
				}

				iResponse.writeRecords(response,	fetchPlan);
				return	false;
		}

		@Override
		public	String[]	getNames()	{
				return	NAMES;
		}
}

Complete example

864



If your extensions need additional libraries put the additional jar files under the 	/lib	
folder of the server installation.

Include JARS in the classpath

865



To debug your plugin you can start your server in debug mode.

Parameter Value

Main class 	com.orientechnologies.orient.server.OServerMain	

JVM
parameters

	-server	-DORIENTDB_HOME=/opt/orientdb	-Dorientdb.www.path=src/site	-
Djava.util.logging.config.file=${ORIENTDB_HOME}/config/orientdb-server-
log.properties	-Dorientdb.config.file=${ORIENTDB_HOME}/config/orientdb-
server-config.xml	

Debug the server

866



Java class implementation:

com.orientechnologies.orient.server.handler.OAutomaticBackup

Automatic Backup Plugin

867



Configure an automatic backup of databases. This task is configured as a Server
handler. The task can be configured in easy way by changing parameters:

enabled: true to turn on, false (default) is turned off
delay: delay time. You can use different suffixes to specify different measures:

ms for milliseconds. Example 10000ms means 10 seconds
s for seconds. Example 10s means 10 seconds
m for minutes. Example 5m means 5 minutes
h for hours. Example 24h means every day
d for days. Example 1d means every day

target.directory: target directory, the default is "backup"
target.fileName: target file name configurable using the following variables between
	${}	:

	${DBNAME}	, as the database name
	${DATE}	, as the current date following the format. For the complete syntax look
at Java DateTime syntax

db.include: database list to include. If empty means all the databases
db.exclude: database list to exclude
bufferSize: In memory buffer size to use in compression. Default is 1MB. Bigger
means faster backup but more RAM used (Since 1.7)
compressionLevel: Compression level of the resulting ZIP file. Default is
maximum: 9. Set it lower if backup takes too much time (Since 1.7)

Default configuration in orientdb-server-config.xml

<!--	AUTOMATIC	BACKUP,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->
<handler	class="com.orientechnologies.orient.server.handler.OAutomaticBackup">
		<parameters>
				<parameter	name="enabled"	value="false"	/>
				<parameter	name="delay"	value="4h"	/>
				<parameter	name="target.directory"	value="backup"	/>
				<parameter	name="target.fileName"	value="${DBNAME}-${DATE:yyyyMMddHHmmss}.zip"	/><!--	${DBNAME}	AND	${DATE:}	VARIABLES	ARE	SUPPORTED	-->
				<parameter	name="db.include"	value=""	/><!--	DEFAULT:	NO	ONE,	THAT	MEANS	ALL	DATABASES.	USE	COMMA	TO	SEPARATE	MULTIPLE	DATABASE	NAMES	-->
				<parameter	name="db.exclude"	value=""	/><!--	USE	COMMA	TO	SEPARATE	MULTIPLE	DATABASE	NAMES	-->
				<parameter	name="compressionLevel"	value="9"/>
				<parameter	name="bufferSize"	value="1048576"/>
		</parameters>
</handler>

Introduction

868

http://download.oracle.com/javase/1,5.0/docs/api/java/text/SimpleDateFormat.html


Java class implementation:

com.orientechnologies.orient.server.plugin.mail.OMailPlugin

Available since: v. 1.2.0.

Mail Plugin

869



Allows to send (and in future read) emails.

Introduction

870



This plugin is configured as a Server handler. The plugin can be configured in easy way
by changing parameters:

Name Description Type Example

enabled
true to turn
on, false
(default) is
turned off

boolean true

	profile.<name>.mail.smtp.host	

The SMTP
host name
or ip-
address

string smtp.gmail.com

	profile.<name>.mail.smtp.port	 The SMTP
port number 587

	profile.<name>.mail.smtp.auth	 Authenticate
in SMTP boolean true

	profile.
<name>.mail.smtp.starttls.enable	

Enable the
starttls boolean true

	profile.<name>.mail.smtp.user	 The SMTP
username string yoda@starwars.com

	profile.<name>.mail.from	

The
source's
email
address

string yoda@starwars.com

	profile.
<name>.mail.smtp.password	

The SMTP
password string UseTh3F0rc3

	profile.<name>.mail.date.format	

The date
format to
use, default
is "yyyy-
MM-dd
HH:mm:ss"

string yyyy-MM-dd
HH:mm:ss

Default configuration in orientdb-server-config.xml. Example:

<!--	MAIL,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->
<handler
class="com.orientechnologies.orient.server.plugin.mail.OMailPlugin">
		<parameters>
				<parameter	name="enabled"	value="true"	/>
				<!--	CREATE	MULTIPLE	PROFILES	WITH	profile.<name>...	-->
				<parameter	name="profile.default.mail.smtp.host"	value="smtp.gmail.com"/>
				<parameter	name="profile.default.mail.smtp.port"	value="587"	/>
				<parameter	name="profile.default.mail.smtp.auth"	value="true"	/>

Configuration

871



				<parameter	name="profile.default.mail.smtp.starttls.enable"	value="true"	/>
				<parameter	name="profile.default.mail.from"	value="test@gmail.com"	/>
				<parameter	name="profile.default.mail.smtp.user"	value="test@gmail.com"	/>
				<parameter	name="profile.default.mail.smtp.password"	value="mypassword"	/>
				<parameter	name="profile.default.mail.date.format"	value="yyyy-MM-dd	HH:mm:ss"	/>
		</parameters>
</handler>

872



The message is managed as a map of properties containing all the fields those are part
of the message.

Supported message's properties:

Name Description Mandatory Example Since

from source email
address No

to :
"first@mail.com",
"second@mail.com"

1.7

to
destination
addresses
separated by
commas

Yes
to :
"first@mail.com",
"second@mail.com"

1.2.0

cc
Carbon copy
addresses
separated by
commas

No
cc:
"first@mail.com",
"second@mail.com"

1.2.0

bcc
Blind Carbon
Copy addresses
separated by
commas

No
bcc :
"first@mail.com",
"second@mail.com"

1.2.0

subject The subject of
the message No subject : "This

Email plugin rocks!" 1.2.0

message The message's
content Yes message : "Hi, how

are you mate?" 1.2.0

date

The subject of
the message.
Pass a
java.util.Date
object or a string
formatted
following the
rules specified in
"mail.date.format"
configuration
parameter or
"yyyy-MM-dd
HH:mm:ss" is
taken

No, if not
specified
current
date is
assumed

date : "2012-09-25
13:20:00" 1.2.0

attachments The files to attach No attachments :
"tmp/2.eml" 1.2.0

Usage

873



The Email plugin install a new variable in the server-side function's context: "mail".
"profile" attribute is the profile name in configuration.

Example to send an email writing a function in JS:

mail.send({
						profile	:	"default",
						to:	"orientdb@ruletheworld.com",
						cc:	"yoda@starwars.com",
						bcc:	"darthvader@starwars.com",
						subject:	"The	EMail	plugin	works",
						message	:	"Sending	email	from	OrientDB	Server	is	so	powerful	to	build	real	web	applications!"
				});

On Nashorn (>= Java8) the mapping of JSON to Map is not implicit. Use this:

mail.send(	new	java.util.HashMap{
						profile	:	"default",
						to:	"orientdb@ruletheworld.com",
						cc:	"yoda@starwars.com",
						bcc:	"darthvader@starwars.com",
						subject:	"The	EMail	plugin	works",
						message	:	"Sending	email	from	OrientDB	Server	is	so	powerful	to	build	real	web	applications!"
		});

From Server-Side Functions

874



OMailPlugin	plugin	=	OServerMain.server().getPlugin("mail");

Map<String,	Object>	message	=	new	HashMap<String,	Object>();
message.put("profile",	"default");
message.put("to",						"orientdb@ruletheworld.com");
message.put("cc",						"yoda@starts.com,yoda-beach@starts.com");
message.put("bcc",					"darthvader@starwars.com");
message.put("subject",	"The	EMail	plugin	works");
message.put("message",	"Sending	email	from	OrientDB	Server	is	so	powerful	to	build	real	web	applications!"

plugin.send(message);

From Java

875



Java class implementation:

com.orientechnologies.orient.server.handler.OJMXPlugin

Available since: v. 1.2.0.

JMX plugin

876



Expose the OrientDB server configuration through JMX protocol. This task is configured
as a Server handler. The task can be configured in easy way by changing parameters:

enabled: true to turn on, false (default) is turned off
profilerManaged: manage the Profiler instance

Default configuration in orientdb-server-config.xml

<!--	JMX	SERVER,	TO	TURN	ON	SET	THE	'ENABLED'	PARAMETER	TO	'true'	-->
<handler	class="com.orientechnologies.orient.server.handler.OJMXPlugin">
		<parameters>
				<parameter	name="enabled"	value="false"	/>
				<parameter	name="profilerManaged"	value="true"	/>
		</parameters>
</handler>

Introduction

877



Studio is a web interface for the administration of OrientDB that comes in bundle with the
OrientDB distribution.

If you run OrientDB in your machine the web interface can be accessed via the URL:

http://localhost:2480

This is the new Studio 2.0 Homepage.

From here, you can :

Connect to an existing database
Drop an existing database
Create a new database
Import a public database
Go to the Server Management UI

Studio Home page

878



To Login, select a database from the databases list and use any database user. By
default reader/reader can read records from the database, writer/writer can read,
create, update and delete records. admin/admin has all rights.

Connect to an existing database

879



Select a database from the databases list and click the trash icon. Studio will open a
confirmation popup where you have to insert

Server User
Server Password

and then click the "Drop database" button. You can find the server credentials in the
$ORIENTDB_HOME/config/orientdb-server-config.xml file:

<users>
		<user	name="root"	password="pwd"	resources="*"	/>
</users>

Drop an existing database

880



To create a new database, click the "New DB" button from the Home Page

Some information is needed to create a new database:

Database name
Database type (Document/Graph)
Storage type (plocal/memory)
Server user
Server password

You can find the server credentials in the $ORIENTDB_HOME/config/orientdb-server-
config.xml file:

<users>
		<user	name="root"	password="pwd"	resources="*"	/>
</users>

Once created, Studio will automatically login to the new database.

Create a new database

881



Studio 2.0 allows you to import databases from a public repository. These databases
contains public data and bookmarked queries that will allow you to start playing with
OrientDB and OrientDB SQL. The classic bundle database 'GratefulDeadConcerts' will
be moved to this public repository.

To install a public database, you will need the Server Credentials. Then, click the
download button of the database that you are interested in. Then Studio will download
and install in to your $ORIENTDB_HOME/databases directory. Once finished, Studio will
automatically login to the newly installed database.

Import a public database

882



Studio supports auto recognition of the language you're using: between those supported:
SQL and Gremlin. While writing, use the auto-complete feature by pressing Ctrl + Space.

Other shortcuts are available in the query editor:

Ctrl + Return to execute the query or just click the Run button
Ctrl/Cmd + Z to undo changes
Ctrl/Cmd + Shift + Z to redo changes
Ctrl/Cmd + F to search in the editor
Ctrl/Cmd + / to toggle a comment

Note: If you have multiple queries in the editor, you can select a single query with
text selection and execute it with Ctrl + Return or the Run button

By clicking any @rid value in the result set, you will go into document edit mode if the
record is a Document, otherwise you will go into vertex edit.

You can bookmark your queries by clicking the star icon in the results set or in the editor.
To browse bookmarked queries, click the Bookmarks button. Studio will open the
bookmarks list on the left, where you can edit/delete or rerun queries.

Execute a query

883

https://github.com/orientechnologies/orientdb/wiki/SQL
https://github.com/orientechnologies/orientdb/wiki/Gremlin


Studio saves the executed queries in the Local Storage of the browser, in the query
settings, you can configure how many queries studio will keep in history. You can also
search a previously executed query, delete all the queries from the history or delete a
single query.

From Studio 2.0, you can send the result set of a query to the Graph Editor by clicking to
the circle icon in the result set actions. This allows you to visualize your data graphically.

884



Studio speaks with the OrientDB Server using HTTP/RESt+JSON protocol. To see the
output in JSON format, press the RAW tab.

Look at the JSON output

885

https://github.com/orientechnologies/orientdb/wiki/OrientDB-REST


Edit Document

886



Edit Vertex

887



OrientDB can work in schema-less mode, schema mode or a mix of both. Here we'll
discuss the schema mode. To know more about schema in OrientDB go here

Here you can :

Browse all the Classes of your database
Create a new Class
Rename/Drop a Class
Change the cluster selection for a Class
Edit a class by clicking on a class row in the table
View all indexes created

Schema Manager

888



To create a new Class, just click the New Class button. Some information is required to
create the new class.

Name
SuperClass
Alias (Optional)
Abstract

Here you can find more information about Classes 

Create a new Class

889



When you want to have an overview of all indexes created in your database, just click
the All indexes button in the Schema UI. This will provide quick access to some
information about indexes (name, type, properties, etc) and you can drop or rebuild them
from here.

View all indexes

890



Class Edit

891



Property

Add Property

892



Indexes

Create new index

893



Since Studio 2.0 we have a new brand graph editor. Not only you can visualize your data
in a graph way but you can also interact with the graph and modify it.

To populate the graph area just type a query in the query editor or use the functionality
Send To Graph from the Browse UI

Supported operations in the Graph Editor are:

Add Vertices
Save the Graph Rendering Configuration
Clear the Graph Rendering Canvas
Delete Vertices
Remove Vertices from Canvas
Edit Vertices
Inspect Vertices
Change the Rendering Configuration of Vertices
Navigating Relationships
Create Edges between Vertices
Delete Edges between Vertices
Inspect Edges
Edit Edges

Graph Editor

894



To add a new Vertex in your Graph Database and in the Graph Canvas area you have to
press the button Add Vertex. This operation is done in two steps.

The first step you have to choose the class for the new Vertex and then click Next

In the second step you have to insert the fields values of the new vertex, you can also
add custom fields as OrientDB supports Schema-Less mode. To make the new vertex
persistent click to Save changes and the vertex will be saved into the database and
added to the canvas area

Add Vertices

895



Open the circular menu by clicking on the Vertex that you want to delete, open the sub-
menu by passing hover the mouse to the menu entry more (...) and then click the trash
icon.

Delete Vertices

896



Open the circular menu , open the sub-menu by passing hover the mouse to the menu
entry more (...) and then click the eraser icon.

Remove Vertices from Canvas

897



Open the circular menu and then click to the edit icon, Studio will open a popup where
you can edit the vertex properties.

Edit Vertices

898



If you want to take a quick look to the Vertex property, click to the eye icon.

Inspect Vertices

899



Change the Rendering Configuration of
Vertices

900



Navigating Relationships

Create Edges between Vertices

Delete Edges between Vertices

Inspect Edges

Edit Edges

901



Functions

902



Studio 2.0 includes the new Security Management where you can manage Users and
Roles in a graphical way. For detailed information about Security in OrientDB, visit here

Security

903



Here you can manage the database users:

Search Users
Add Users
Delete Users
Edit User: roles can be edited in-line, for name, status and password click the Edit
button

To add a new User, click the Add User button, complete the information for the new
user (name, password, status, roles) and then save to add the new user to the database.

Users

Add Users

904



Here you can manage the database roles:

Search Role
Add Role
Delete Role
Edit Role

To add a new User, click the Add Role button, complete the information for the new role
(name, parent role, mode) and then save to add the new role to the database.

Roles

Add Role

905



To add a new security rule for the selected role, click the Add Rule button. This will ask
you the string of the resource that you want to secure. For a list of available resources,
visit the official documentation here

Then you can configure the CRUD permissions on the newly created resource.

Add Rule to a Role

906



Database Management

Structure

907



Configuration

908



Export

909



Server Management

Connections

910



Configuration

911



Storage

912



The OrientDB Console is a Java Application made to work against OrientDB databases
and Server instances.

Console Tool

913



This is the default mode. Just launch the console by executing the script bin/console.sh
(or bin/console.bat in MS Windows systems). Assure to have execution permission on
it.

Once started the console is ready to accepts commands.

OrientDB	console	v.1.6.6	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.

orientdb>

To know all the supported commands look to commands.

Interactive mode

914



To execute commands in batch mode run the bin/console.sh (or bin/console.bat in
MS Windows systems) script passing all the commands separated with semicolon ";".
Example:

>	console.bat	"connect	remote:localhost/demo;select	*	from	profile"

Or call the console script passing the name of the file in text format containing the list of
commands to execute. Commands must be separated with semicolon ";". Example:

orientdb>	console.bat	commands.txt

In batch mode you can ignore errors to let the script to continue the execution by setting
the "ignoreErrors" variable to true:

orientdb>	set	ignoreErrors	true

Batch mode

915



When you run console commands in pipeline, you could need to display them. Enable
"echo" of commands by setting it as property at the beginning:

orientdb>	set	echo	true

Enable echo

916



To know all the commands supported by the Orient console open it and type help or ?.

Command Description

alter class Changes the class schema

alter
cluster Changes the cluster attributes

alter
database Changes the database attributes

alter
property Changes the class's property schema

begin Begins a new transaction

browse
class Browses all the records of a class

browse
cluster Browses all the records of a cluster

classes Displays all the configured classes

cluster
status Displays the status of distributed cluster of servers

clusters Displays all the configured clusters

commit Commits an active transaction

config Displays the configuration where the opened database
is located (local or remote)

config get Returns a configuration value

config set Set a configuration value

connect Connects to a database

create
class Creates a new class

create
cluster Creates a new cluster inside a database

create
cluster Creates a new record cluster

create
database Creates a new database

create
edge Create a new edge connecting two vertices

Console commands

917



create
index

Create a new index

create link Create a link reading a RDBMS JOIN

create
vertex Create a new vertex

declare
intent Declares an intent

delete Deletes a record from the database using the SQL
syntax. To know more about the SQL syntax go here

dictionary
keys Displays all the keys in the database dictionary

dictionary
get

Loookups for a record using the dictionary. If found set
it as the current record

dictionary
put

Inserts or modify an entry in the database dictionary.
The entry is composed by key=String, value=record-id

dictionary
remove Removes the association in the dictionary

disconnect Disconnects from the current database

display
record Displays current record's attributes

display
raw record Displays current record's raw format

drop class Drop a class

drop
cluster Drop a cluster

drop
database Drop a database

drop index Drop an index

drop
property Drop a property from a schema class

explain Explain a command by displaying the profiling values
while executing it

export
database Exports a database

export
record

Exports a record in any of the supported format (i.e.
json)

find
references Find the references to a record

freeze
database

Freezes the database locking all the changes. Use this
to raw backup. Once frozen it use the release
database to release it

918



get Returns the value of a property

grant Grants a permission to a user

import
database Imports a database previously exported

indexes Displays information about indexes

info Displays information about current status

info class Displays information about a class

insert
Inserts a new record in the current database using the
SQL syntax. To know more about the SQL syntax go
here

js Executes a Javascript in the console

jss Executes a Javascript in the server

list
databases List the available databases

load
record

Loads a record in memory and set it as the current
one

profiler Controls the Profiler

properties Returns all the configured properties

pwd
Display
current
path

rebuild
index Rebuild an index

Release
Database Releases a Console Freeze Database database

reload
record

Reloads a record in memory and set it as the current
one

reload
schema Reloads the schema

rollback Rollbacks the active transaction started with begin

select
Executes a SQL query against the database and
display the results. To know more about the SQL
syntax go here

revoke Revokes a permission to a user

set Changes the value of a property

sleep Sleep for the time specified. Useful on scripts

show
holes Displays the database's holes

919



traverse Traverse a graph of records

truncate
class

Remove all the records of a class (by truncating all the
underlying configured clusters)

truncate
cluster Remove all the records of a cluster

truncate
record

Truncate a record you can't delete because it's
corrupted

update
Updates a record in the current database using the
SQL syntax. To know more about the SQL syntax go
here

help Prints this help

exit Closes the console

920



Edit the OConsoleDatabaseApp class and add a new method. There's an auto
discovering system that put the new method between the available commands. To
provide a description of the command use the annotations (look below). The command
name must follow the Java code convention where to separate works just use the
Camel-case.

So, for example, if you want to create the brand new "move cluster" command:

@ConsoleCommand(description	=	"Move	the	physical	location	of	cluster	files")
public	void	moveCluster(
		@ConsoleParameter(name	=	"cluster-name",	description	=	"The	name	or	the	id	of	the	cluster	to	remove"
		@ConsoleParameter(name	=	"target-path",	description	=	"path	of	the	new	position	where	to	move	the	cluster	files"

		checkCurrentDatabase();	//	THE	DB	MUST	BE	OPENED

		System.out.println("Moving	cluster	'"	+	iClusterName	+	"'	to	path	"	+	iNewPath	+	"...");
}

If you type:

orientdb>	help

Your new command will appear. And now try:

orientdb>	move	cluster	foo	/temp

Moving	cluster	'foo'	to	path	/temp...

Don't miss to contribute your command to the OrientDB Community! ;-)

Extend the console with custom command

921

http://www.google.com/codesearch#Q2eMNvxgD0M/trunk/tools/src/main/java/com/orientechnologies/orient/console/OConsoleDatabaseApp.java&q=oconsoleda%20package:http://orient%5C.googlecode%5C.com
https://groups.google.com/forum/#!forum/orient-database


Executes a complete backup against the currently opened database. The backup file is
compressed using the ZIP algorithm. To restore the database use the Restore Database
command. Backup is much faster than Export Database. Look also to Export Database
and Import Database commands. Backup can be done automatically by enabling the
Automatic-Backup Server plugin.

NOTE: Backup of remote databases is not supported in Community Edition, but only in
Enterprise Edition. If you're using the Enterprise Edition look at Remote Backup.

Console - BACKUP

922

http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/enterprise/last/servermanagement.html


backup	database	<output-file>	[-compressionLevel=<compressionLevel>]	[-bufferSize=<bufferSize>]

Where:

output-file is the output file path
compressionLevel the compression level between 0 and 9. Default is 9. Since
v1.7.
bufferSize the compression buffer size. Default is 1MB. Since v1.7.

Syntax

923



orientdb>	connect	plocal:../databases/mydatabase	admin	admin
orientdb>	backup	database	/backups/mydb.zip

Backuping	current	database	to:	database	mydb.zip...

Backup	executed	in	0,52	seconds

Example

924



Backup can be executed in Java and any language on top of the JVM by using the
method backup() against the database instance:

db.backup(out,	options,	callable,	listener,	compressionLevel,	bufferSize);

Where:

out: OutputStream used to write the backup content. Use a FileOutputStream to
make the backup persistent on disk
options: Backup options as Map object
callable: Callback to execute when the database is locked iListener: Listener called
for backup messages
compressionLevel: ZIP Compression level between 0 (no compression) and 9
(maximum). The bigger is the compression, the smaller will be the final backup
content, but will consume more CPU and time to execute
bufferSize: Buffer size in bytes, the bigger is the buffer, the more efficient will be
the compression

Example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");
db.open("admin",	"admin");
try{
		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{
				@Override
				public	void	onMessage(String	iText)	{
						System.out.print(iText);
				}
		};

		OutputStream	out	=	new	FileOutputStream("/temp/mydb.zip");
		db.backup(out,null,null,listener,9,2048);
}	finally	{
			db.close();
}

Backup API

925



Restore Database
Export Database
Import Database
Console-Commands
ODatabaseExport Java class

See also

926

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java


OrientDB supports Transactions. To begin a new transaction use the begin command.
Once a transaction is begun to make persistent the changes you have to call the commit
command. To abort the changes call rollback command instead.

Console - BEGIN

927



begin

Syntax

928



Transactions
Console-Command-Commit
Console-Command-Rollback
Console-Commands

See also

929



orientdb>	begin
Transaction	1	is	running

orientdb>	begin
Error:	an	active	transaction	is	currently	open	(id=1).	Commit	or	rollback	before	starting	a	new	one.

orientdb>	insert	into	account	(name)	values	('tx	test')

Inserted	record	'Account#9:-2{name:tx	test}	v0'	in	0,004000	sec(s).

orientdb>	select	from	account	where	name	like	'tx%'

---+---------+--------------------
		#|	RID					|name
---+---------+--------------------
		0|				#9:-2|tx	test
---+---------+--------------------

1	item(s)	found.	Query	executed	in	0.076	sec(s).

Until the commit all the new records will have a temporary RID with negative numbers.

Example

930



This command displays all the records of a class.

Console - BROWSE CLASS

931



browse	class	<class-name>

Where:

class-name The name of the class

Syntax

932



>	browse	class	City

---+--------+-------------------
		#|	REC	ID	|NAME
---+--------+-------------------
		0|				-6:0|Rome
		1|				-6:1|London
		2|				-6:2|Honolulu
---+--------+-------------------

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

933



This command displays all the records of a cluster.

Console - BROWSE CLUSTER

934



browse	cluster	<cluster-name>

Where:

cluster-name The name of the cluster

Syntax

935



>	browse	cluster	City

---+--------+-------------------
		#|	REC	ID	|NAME
---+--------+-------------------
		0|				-6:0|Rome
		1|				-6:1|London
		2|				-6:2|Honolulu
---+--------+-------------------

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

936



Displays all the classes configured in the current database.

Console - CLASSES

937



classes

Syntax

938



>	classes

CLASSES:
--------------------+------+------------------------------------------+-----------+
NAME																|		ID		|	CLUSTERS																																	|	ELEMENTS		|
--------------------+------+------------------------------------------+-----------+
Person														|					0|	person																																			|									7	|
Animal														|					1|	animal																																			|									5	|
AnimalRace										|					2|	AnimalRace																															|									0	|
AnimalType										|					3|	AnimalType																															|									1	|
OrderItem											|					4|	OrderItem																																|									0	|
Order															|					5|	Order																																				|									0	|
City																|					6|	City																																					|									3	|
--------------------+------+------------------------------------------+-----------+
TOTAL																																																																										16	|
----------------------------------------------------------------------------------+

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

939



Displays all the clusters configured in the current database.

Console - CLUSTERS

940



clusters

Syntax

941



>	clusters

CLUSTERS:
--------------------+------+--------------------+-----------+
NAME																|		ID		|	TYPE															|	ELEMENTS		|
--------------------+------+--------------------+-----------+
metadata												|					0|Physical												|								11	|
index															|					1|Physical												|									0	|
default													|					2|Physical												|							779	|
csv																	|					3|Physical												|						1000	|
binary														|					4|Physical												|						1001	|
person														|					5|Physical												|									7	|
animal														|					6|Physical												|									5	|
animalrace										|				-2|Logical													|									0	|
animaltype										|				-3|Logical													|									1	|
orderitem											|				-4|Logical													|									0	|
order															|				-5|Logical													|									0	|
city																|				-6|Logical													|									3	|
--------------------+------+--------------------+-----------+
TOTAL																																																		2807	|
------------------------------------------------------------+

Example

942



To create a new cluster in the current database use the command create cluster.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

943



OrientDB supports Transactions. To begin a new transaction use the begin command.
Once a transaction is begun to make persistent the changes you have to call the commit
command. To abort the changes call rollback command instead.

Console - COMMIT

944



commit

Syntax

945



Transactions
Console Command Begin
Console Command Rollback
Console Commands

See also

946



orientdb>	begin
Transaction	2	is	running

orientdb>	begin
Error:	an	active	transaction	is	currently	open	(id=2).	Commit	or	rollback	before	starting	a	new	one.

orientdb>	insert	into	account	(name)	values	('tx	test')

Inserted	record	'Account#9:-2{name:tx	test}	v0'	in	0,000000	sec(s).

orientdb>	commit
Transaction	2	has	been	committed	in	4ms

orientdb>	select	from	account	where	name	like	'tx%'

---+---------+--------------------
		#|	RID					|name
---+---------+--------------------
		0|		#9:1107|tx	test
---+---------+--------------------

1	item(s)	found.	Query	executed	in	0.041	sec(s).

orientdb>

Until the commit all the new records will have a temporary RID with negative numbers.

Example

947



Displays the configuration where the opened database is located (local or remote)

Console - CONFIG

948



config

Syntax

949



>	config

REMOTE	SERVER	CONFIGURATION:
+------------------------------------+--------------------------------+
|	NAME																															|	VALUE																										|
+------------------------------------+--------------------------------+
|	treemap.lazyUpdates																=	300																												|
|	db.cache.enabled																			=	false																										|
|	file.mmap.forceRetry															=	5																														|
|	treemap.optimizeEntryPointsFactor		=	1.0																												|
|	storage.keepOpen																			=	true																											|
|	treemap.loadFactor																	=	0.7																												|
|	file.mmap.maxMemory																=	110000000																						|
|	network.http.maxLength													=	10000																										|
|	storage.cache.size																	=	5000																											|
|	treemap.nodePageSize															=	1024																											|
|	network.timeout																				=	10000																										|
|	file.mmap.forceDelay															=	500																												|
|	profiler.enabled																			=	false																										|
|	network.socketBufferSize											=	32768																										|
|	treemap.optimizeThreshold										=	50000																										|
|	file.mmap.blockSize																=	300000																									|
|	network.retryDelay																	=	500																												|
|	network.retry																						=	5																														|
|	treemap.entryPoints																=	30																													|
+------------------------------------+--------------------------------+

Example

950



To change a configuration value use the config set.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

951



Returns the value of the requested configuration value.

Console - CONFIG GET

952



config	get	<config-name>

Where:

config-name Name of the configuration

Syntax

953



>	config	get	db.cache.enabled

Remote	configuration:	db.cache.enabled	=	false

Example

954



To display the entire configuration use the config.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

955



Changes the value of a property.

Console - CONFIG SET

956



config	set	<config-name>	<config-value>

Where:

config-name Name of the configuration to change
config-value Value to set

Syntax

957



>	config	set	db.cache.enabled	false

Remote	configuration	value	changed	correctly

Example

958



To know all the configuration values use the config. To read a configuration value use
the config get.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

959



Opens a database using a URL.

Console - CONNECT

960



connect	<database-url>	<user-name>	<user-password>

Where:

database-url The url of the database to connect in the format 	<mode>:<path>	
user The user name
user-password The user password

Syntax

961



To connect to a local database loading it directly into the console.

Example:

>	connect	plocal:../databases/GratefulDeadConcerts	admin	admin

Example: connect to a local database

962



To connect to a local or remote database by using a Orient Server.

Example:

>	connect	remote:127.0.0.1/GratefulDeadConcerts	admin	admin

>	connect	plocal:../databases/GratefulDeadConcerts	admin

Connecting	to	database	[plocal:../databases/GratefulDeadConcerts]...OK

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example: Connect to a remote database

963



Creates a new cluster in the current database. The cluster can be "physical" or
"memory".

Console - CREATE CLUSTER

964



create	cluster	<cluster-name>	<cluster-type>	<data-segment>	<location>	<position>

Where:

cluster-name The name of the cluster to create
cluster-type Cluster type: 'physical' or 'logical'
data-segment Data segment to use. 'default' will use the default one
location Location where to place the new cluster files, if appliable. use 'default' to
leave into the database directory
position 'append' to add as last cluster, otherwise the empty position to replace

Syntax

965



orientdb>	create	cluster	documents	physical	default	default	append

Creating	cluster	[documents]	of	type	'physical'	in	database	demo	as	last	one...
PHYSICAL	cluster	created	correctly	with	id	#68

Example

966



To display all the cluster configured in the current database use the command clusters.

To delete a cluster use the command Drop Cluster.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

967



Creates a new database.

Console - CREATE DATABASE

968



create	database	<database-url>	[<user>	<password>	<storage-type>	[<db-type>]]

Where:

database-url The url of the database to create in the format '	<mode>:<path>	'
user on remote database is the Server's administrator name
password on remote database is the Server's administrator password
storage-type The type of the storage between 'plocal' for disk-based database and
'memory' for in memory only database. Look at Storage types.
db-type Optional, is the database type between "graph" (the default) and
"document"

Syntax

969



Console Command Drop Database
SQL Alter Database

See also

970



>	create	database	plocal:/usr/local/orient/databases/demo/demo

Creating	database	[plocal:/usr/local/orient/databases/demo/demo]...
Connecting	to	database	[plocal:/usr/local/orient/databases/demo/demo]...OK
Database	created	successfully.

Current	database	is:	plocal:/usr/local/orient/databases/demo/demo

Example: create a local database

971



>	create	database	remote:localhost/trick	root	E30DD873203AAA245952278B4306D94E423CF91D569881B7CAD7D0B6D1A20CE9	plocal

Creating	database	[remote:localhost/trick	]...
Connecting	to	database	[remote:localhost/trick	]...OK
Database	created	successfully.

Current	database	is:	remote:localhost/trick

Example: create a remote database

972



To create a static database to use it from the server look at: Server pre-configured
storages.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Create a static database into the server
configuration

973



The SQL Create Index command creates an index on a property defined in the schema.

Indexes can be:

unique, doesn't allow duplicated
not unique, allows duplicates
full-text, by indexing any single word of the text. It's used in query with the operator
CONTAINSTEXT

Console - CREATE INDEX

974



CREATE	INDEX	<name>	[ON	<class-name>	(prop-names)]	<type>	[<key-type>]

Where:

name logical name of index. Can be 	<class>.<property>	 to create an automatic index
bound to a schema property. In this case class is the class of the schema and
property, is the property created into the class. Notice that in another case index
name can't contain '.' symbol
class-name name of class that automatic index created for. Class with such name
must already exist in database
prop-names comma-separated list of properties that this automatic index is created
for. Property with such name must already exist in schema
type, between 'unique', 'notunique' and 'fulltext'
key-type, is the type of key (Optional). On automatic indexes is auto-determined by
reading the target schema property where the index is created. If not specified for
manual indexes, at run-time during the first insertion the type will be auto
determined by reading the type of the class.

Syntax

975



CREATE	INDEX	users.Id	unique

For more information look at Create index command.

For complete index guide look at Index guide.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

976



The Create Link command creates links between two or more records of type
Document. This is very useful when you're importing data from a Relational database. In
facts in the Relational world relationships are resolved as foreign keys.

Consider this example where the class "Post" has a relationship 1-N to "Comment":

Post	1	--->	*	Comment

In a Relational database you'll have something like that:

Table	Post
+----+----------------+
|	Id	|	Title										|
+----+----------------+
|	10	|	NoSQL	movement	|
|	20	|	New	OrientDB			|
+----+----------------+

Table	Comment
+----+--------+--------------+
|	Id	|	PostId	|	Text									|
+----+--------+--------------+
|		0	|			10			|	First								|
|		1	|			10			|	Second							|
|	21	|			10			|	Another						|
|	41	|			20			|	First	again		|
|	82	|			20			|	Second	Again	|
+----+--------+--------------+

Using OrientDB, instead, you have direct relationship as in your object model. So the
navigation is from Post to Comment and not viceversa as for Relational model. For this
reason you need to create a link as INVERSE.

Console - CREATE LINK

977



CREATE	LINK	<link-name>	FROM	<source-class>.<source-property>	TO	<destination-class>.<destination-property>

Where:

link-name is the name of the property for the link. If not expressed will be
overwritten the destination-property field
source-class, is the source class
source-property, is the source property
destination-class, is the destination class
destination-property, is the destination property

Syntax

978



CREATE LINK comments FROM comments.!PostId To posts.Id INVERSE

To know more about other SQL commands look at SQL SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

979



The SQL Create Property command creates a new property in the schema. You need
to create the class before.

Console - CREATE PROPERTY

980



CREATE	PROPERTY	<class>.<property>	<type>

Where:

class is the class of the schema
property, is the property created into the class
type, the type of the property. It can be:

boolean
integer
short
long
float
double
date
string
binary
embedded
embeddedlist, this is a container and needs the parameter linked-type or linked-
class
embeddedset, this is a container and needs the parameter linked-type or
linked-class
embeddedmap, this is a container and needs the parameter linked-type or
linked-class
link
linklist, this is a container and needs the parameter linked-type or linked-class
linkset, this is a container and needs the parameter linked-type or linked-class
linkmap, this is a container and needs the parameter linked-type or linked-class
byte

linked-type, the contained type in containers (see above). It can be:
boolean
integer
short
long
float
double
date

Syntax

981



string
binary
embedded
link
byte

linked-class, the contained class in containers (see above).

982



Create the property 'name' of type 'STRING' in class 'User':

CREATE	PROPERTY	user.name	STRING

Create a list of Strings as property 'tags' of type 'EMBEDDEDLIST' in class 'Profile'. The
linked type is 'STRING':

CREATE	PROPERTY	profile.tags	EMBEDDEDLIST	STRING

Create the property 'friends' of type 'EMBEDDEDMAP' in class 'Profile'. The linked class
is profile itself (circular references):

CREATE	PROPERTY	profile.friends	EMBEDDEDMAP	Profile

To remove a property use the SQLRemoveProperty Remove Property command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

983



Declares an intent on current database. Intents are a way to tell to OrientDB what you're
going to do.

Console - DECLARE INTENT

984



declare	intent	<intent-name>

Where:

intent-name The name of the intent. "null" means remove the current intent.
Supported ones are:
massiveinsert
massiveread

Syntax

985



>	declare	intent	massiveinsert

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

986



987



Displays the value of the requested key loaded from the database dictionary.

Console - DICTIONARY GET

988



dictionary	get	<key>

Where:

key The key to search

Syntax

989



>	dictionary	get	obama
--------------------------------------------------
Class:	Person			id:	5:4			v.1
--------------------------------------------------
														parent	:	null
												children	:	[Person@5:5{parent:Person@5:4,children:null,name:Malia	Ann,surname:Obama,city:
,name:Natasha,surname:Obama,city:null}]
																name	:	Barack
													surname	:	Obama
																city	:	City@-6:2{name:Honolulu}
--------------------------------------------------

To know all the keys stored in the database dictionary use the dictionary keys command.

For complete index (and dictionary) guide look at Index guide.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

990



Displays all the keys stored in the database dictionary.

Console - DICTIONARY KEYS

991



dictionary	keys

Syntax

992



>	dictionary	keys

Found	4	keys:
#0:	key-148
#1:	key-147
#2:	key-146
#3:	key-145

To load the associated record use the dictionary get 	<key>	.

For complete index (and dictionary) guide look at Index guide.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

993



Associates in the database dictionary a record to a key to be found later using a
dictionary get command.

Console - DISCTIONARY PUT

994



dictionary	put	<key>	<record-id>

Where:

key The key to bind
record-id The record-id of the record to bind to the key passes

Syntax

995



>	dictionary	put	obama	5:4
--------------------------------------------------
Class:	Person			id:	5:4			v.1
--------------------------------------------------
														parent	:	null
												children	:	[Person@5:5{parent:Person@5:4,children:null,name:Malia	Ann,surname:Obama,city:
,name:Natasha,surname:Obama,city:null}]
																name	:	Barack
													surname	:	Obama
																city	:	City@-6:2{name:Honolulu}
--------------------------------------------------
The	entry	obama=5:4	has	been	inserted	in	the	database	dictionary

To know all the keys stored in the database dictionary use the dictionary keys command.

For complete index (and dictionary) guide look at Index guide.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

996



Removes the association from the database dictionary.

Console - DICTIONARY REMOVE

997



dictionary	remove	<key>

Where:

key The key to remove

Syntax

998



>	dictionary	remove	obama

Entry	removed	from	the	dictionary.	Last	value	of	entry	was:
--------------------------------------------------
Class:	Person			id:	5:4			v.1
--------------------------------------------------
														parent	:	null
												children	:	[Person@5:5{parent:Person@5:4,children:null,name:Malia	Ann,surname:Obama,city:
,name:Natasha,surname:Obama,city:null}]
																name	:	Barack
													surname	:	Obama
																city	:	City@-6:2{name:Honolulu}
--------------------------------------------------

To know all the keys stored in the database dictionary use the dictionary keys command.

For complete index (and dictionary) guide look at Index guide.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

999



Closes the current opened database.

Console - DISCONNECT

1000



disconnect

Syntax

1001



>	disconnect

Disconnecting	from	the	database	[../databases/petshop/petshop]...OK

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1002



Displays the details of the record of the last result set returned. This command needs the
relative position of the record in the result set.

Console - DISPLAYS RECORD

1003



display	[<number>](<number>.md)record])

Where:

number The number of the record in the last result set

Syntax

1004



>	select	*	from	person

---+--------+--------------------+--------------------+--------------------+--------------------+--------------------
		#|	REC	ID	|PARENT														|CHILDREN												|NAME																|SURNAME													|CITY
---+--------+--------------------+--------------------+--------------------+--------------------+--------------------
		0|					5:0|null																|null																|Giuseppe												|Garibaldi											|-
		1|					5:1|5:0																	|null																|Napoleone											|Bonaparte											|-
		2|					5:2|5:3																	|null																|Nicholas												|Churcill												|-
		3|					5:3|5:2																	|null																|Winston													|Churcill												|-
		4|					5:4|null																|[2]																	|Barack														|Obama															|-
		5|					5:5|5:4																	|null																|Malia	Ann											|Obama															|
		6|					5:6|5:4																	|null																|Natasha													|Obama															|
---+--------+--------------------+--------------------+--------------------+--------------------+--------------------
7	item(s)	found.	Query	executed	in	0.038	sec(s).

>	display	record	4
--------------------------------------------------
Class:	Person			id:	5:5			v.0
--------------------------------------------------
														parent	:	Person@5:4{parent:null,children:[Person@5:5,	Person@5:6],name:Barack,surname:Obama,city:City@-
												children	:	null
																name	:	Malia	Ann
													surname	:	Obama
																city	:	null
--------------------------------------------------

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1005



The Drop Cluster command definitely deletes a cluster. This will delete the cluster, all
its records and will clear all caches. NOTE: Unless you've made backups there is no way
to restore a deleted cluster.

Console - DROP CLUSTER

1006



DROP	CLUSTER	<cluster-name>

Where:

cluster-name is the name of the cluster.

Syntax

1007



Delete the current local database:

DROP	CLUSTER	Person

deletes the cluster named 'Person' with all Person records.

To create a new cluster use the Create Cluster command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

1008



The Drop Database command definitely deletes a database. If a database is open and
no database name is used, then the current database will be deleted. NOTE: Unless
you've made backups there is no way to restore a deleted database.

Console - DROP DATABASE

1009



For database opened using "local" protocol:

DROP	DATABASE

To remove a database hosted in a remote OrientDB Server you need the credential to
do it at the target OrientDB server:

DROP	DATABASE	<database-name>	<server-username>	<server-userpassword>

Where:

database-name is the name of database. If not specified means the current
database if it's opened
server-username is the name of the server's user with privileges to drop the
database
server-userpassword is the password of the server's user

Syntax

1010



Console Command Create Database
SQL Alter Database

See also

1011



Delete the current local database:

DROP	DATABASE

Delete the remote database "demo" hosted on localhost:

DROP	DATABASE	remote:localhost/demo	root	5B1A917B20C78ECAA219E37CFDDA6598D4D62CE68DD82E5B05D4949758A66828

To create a new database use the Create Database command.

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

1012



Exports the current opened database to a file. The exported file is in JSON format using
the Export-Format. By default the file is compressed using the GZIP algorithm. The
Export/Import commands allow to migrate the database between different releases of
OrientDB without loosing data. If you receive an error about the database version, export
the database using the same version of OrientDB that has generated the database.

Export doesn't lock your database, but browses it. This means that concurrent operation
can be executed during the export, but the exported database couldn't be the exact
replica when you issued the command because concurrent updates could occurs. If you
need a snapshot of database at a point in a time, please use Backup.

Once exported, use the Import to restore it. The database will be imported and will be
ready to be used. Look also to Backup Database and Restore Database commands.

Console - EXPORT

1013

http://en.wikipedia.org/wiki/JSON


By default the export command exports the full database, but there are some flags to
disable some parts.

export	database	<output-file>
						[-excludeAll]
						[-includeClass=<class-name>*]
						[-excludeClass=<class-name>*]
						[-includeCluster=<cluster-name>*]
						[-excludeCluster=<cluster-name>*]
						[-includeInfo=<true|false>]
						[-includeClusterDefinitions=<true|false>]
						[-includeSchema=<true|false>]
						[-includeSecurity=<true|false>]
						[-includeRecords=<true|false>]
						[-includeIndexDefinitions=<true|false>]
						[-includeManualIndexes=<true|false>]
						[-compressionLevel=<0-9>]
						[-compressionBuffer=<bufferSize>]

Where:

output-file is the output file path
-excludeAll exclude everything. This is useful to export only few things. Instead of
exclude all the feature it's much easier exclude all, and include what you're
interested. Example: "-excludeAll -includeSchema" to export the schema only.
Available since v1.7.
-includeClass includes few classes to export. Class names must be separated by
spaces
-excludeClass excludes few classes to export. Class names must be separated by
spaces
-includeCluster includes few clusters to export. Cluster names must be separated
by spaces
-excludeCluster excludes few clusters to export. Cluster names must be separated
by spaces
-includeInfo includes or not database's information
-includeClusterDefinitions includes or not definitions of clusters
-includeSchema includes or not the database's schema
-includeSecurity includes or not database's security
-includeRecords includes or not record contents
-includeIndexDefinitions includes or not database's index definition
-includeManualIndexes includes or not manual index contents

Syntax

1014



-compressionLevel set the compression level between 0 (=no compression) and 9
(maximum compression). Default is 1 (since 1.7.6)
-compressionBuffer Set the buffer size in bytes used by compression. By default
is 16Kb (since 1.7.6)

1015



orientdb>	export	database	C:\temp\petshop.export

Exporting	current	database	to:	C:\temp\petshop.export...

Exporting	database	info...OK
Exporting	dictionary...OK
Exporting	schema...OK
Exporting	clusters...
-	Exporting	cluster	'metadata'	(records=11)	->	...........OK
-	Exporting	cluster	'index'	(records=0)	->	OK
-	Exporting	cluster	'default'	(records=779)	->	OK
-	Exporting	cluster	'csv'	(records=1000)	->	OK
-	Exporting	cluster	'binary'	(records=1001)	->	OK
-	Exporting	cluster	'person'	(records=7)	->	OK
-	Exporting	cluster	'animal'	(records=5)	->	OK
-	Exporting	cluster	'animalrace'	(records=0)	->	OK
-	Exporting	cluster	'animaltype'	(records=1)	->	OK
-	Exporting	cluster	'orderitem'	(records=0)	->	OK
-	Exporting	cluster	'order'	(records=0)	->	OK
-	Exporting	cluster	'city'	(records=3)	->	OK
Export	of	database	completed.

orientdb>	export	database	functions.gz	-includeClass=OFunction
																	-includeInfo=false
																	-includeClusterDefinitions=false
																	-includeSchema=false
																	-includeIndexDefinitions=false
																	-includeManualIndexes=false

Examples

Export the entire database

Export the database's functions only

1016



Export command can be used in Java and any language on top of the JVM by using the
class ODatabaseExport. Example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");
db.open("admin",	"admin");
try{
		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{
				@Override
				public	void	onMessage(String	iText)	{
						System.out.print(iText);
				}
		};

		ODatabaseExport	export	=	new	ODatabaseExport(db,	"/temp/export",	listener);
		export.exportDatabase();
		export.close();
}	finally	{
		db.close();
}

Export API

1017

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java


Export File Format
Import Database
Backup Database
Restore Database
Console Commands
ODatabaseExport Java class

See also

1018

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseExport.java


This command exports the current record in the format requested. The format must be
between the supported ones. In case of error the supported format list will be displayed.

Console - EXPORT RECORD

1019



export	record	<format>

Syntax

1020



>	export	record	json
{
		'parent':	null,
		'children':	[5:5,	5:6],
		'name':	'Barack',
		'surname':	'Obama',
		'city':	-6:2
}

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1021



Flushes all cached content to the disk storage and allows to perform only read
commands. Database will be "frozen" till release database command will not been
executed.

This command requires presence of server administration rights and can be executed
only on remote DBs. If you would like to freeze/release local DB use methods
	ODatabase.freeze()	 and 	ODatabase.release()	 directly from OrientDB API.

This command is very useful in case you would like to do "live" database backups. You
can "freeze" database, do file system snapshot, "release" database, copy snapshot
anywhere you want. Using such approach you can perform backup in short term.

Console - FREEZE DATABASE

1022



FREEZE	DATABASE

Syntax

1023



release database, to release the frozen database
SQL commands
Console-Commands

See also

1024



Freezes the current database:

FREEZE	DATABASE

Examples

1025



Returns the value of the requested property

Console - GET

1026



get	<property-name>

Where:

property-name Name of the property

Syntax

1027



>	get	limit

limit	=	20

Example

1028



To know all the properties setted use the properties.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

1029



The SQL Grant command changes the permission of a role granting the access to one
or more resources.

Console - GRANT

1030



GRANT	<permission>	ON	<resource>	TO	<role>

Where:

permission can be:
NONE, no permission
CREATE, to create the indicated resource
READ, to read the indicated resource
UPDATE, to update the indicated resource
DELETE, to delete the indicated resource
ALL, all permissions
resource, the target resource where to change the permissions
database, as the access to the whole database
database.class, as the access to the records contained in a class. Use 	**	 to
indicate all the classes
database.cluster, as the access to the records contained in a cluster. Use 	**	 to
indicate all the clusters
database.query, as the ability to execute query (READ is enought)
database.command, as the ability to execute SQL commands. CREATE is for SQL-
Insert, READ is for SQL SELECT, UPDATE for SQL-Update and DELETE is for
SQL-Delete
database.config, as the ability to access to the configuration. Valid permissions are
READ and UPDATE
database.hook.record, as the ability to set hooks
server.admin, as the ability to access to the server resources
role, the role name

Syntax

1031



Grant the permission to update any records in cluster Account to the role "backoffice".

GRANT	update	ON	database.cluster.Account	TO	backoffice

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

1032



Imports a database to the current one opened. The input file is in JSON format using the
Export-Format generated by Console Command Export tool. By default the file is
compressed using the GZIP algorithm. The Export/Import commands allow to migrate
between engine releases without loosing data. Use the Export command to generate the
JSON file to import. Look also to Backup Database and Restore Database commands.

Console - IMPORT

1033

http://en.wikipedia.org/wiki/JSON


import	database	<input-file>	[-preserveClusterIDs	=	<true|false>]
																													[-merge	=	<true|false>]
																													[-migrateLinks	=	<true|false>]
																													[-rebuildIndexes	=	<true|false>]

Where:

input-file: input file path
-preserveClusterIDs: allows to keep the same cluster ids during import. Valid only
for plocal storage. Import tool usually creates temporary clusters to keep cluster ids
the same, but this approach fails some times so if you use plocal storage it is
recommended to set this parameter during DB import.
-merge: merges the database to import into the current one. Security classes
(ORole, OUser and OIdentity) are always preserved. By default is false that means
overwrite current database (but security classes). Since 1.6.1.
-migrateLinks: Migrate links after import. This is needed to update all the
references to the new RID. By default is true that means all the links are updated.
Set it to false to speed up the importing only when -merge=true and if you're very
sure no other existent records are linking the records you're importing. Since 1.6.1.
-rebuildIndexes: Rebuild indexes after import. By default is true that means all the
indexes are rebuilt. Set it to false to speed up the importing only when you're very
sure indexes aren't impacted from import. Since 1.6.1.

Syntax

1034



Export File Format
Export Database
Backup Database
Restore Database
Console-Commands
ODatabaseImport Java class

See also

1035

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java


>	import	database	C:/temp/petshop.export	-preserveClusterIDs=true
Importing	records...
-	Imported	records	into	the	cluster	'internal':	5	records
-	Imported	records	into	the	cluster	'index':	4	records
-	Imported	records	into	the	cluster	'default':	1022	records
-	Imported	records	into	the	cluster	'orole':	3	records
-	Imported	records	into	the	cluster	'ouser':	3	records
-	Imported	records	into	the	cluster	'csv':	100	records
-	Imported	records	into	the	cluster	'binary':	101	records
-	Imported	records	into	the	cluster	'account':	1005	records
-	Imported	records	into	the	cluster	'company':	9	records
-	Imported	records	into	the	cluster	'profile':	9	records
-	Imported	records	into	the	cluster	'whiz':	1000	records
-	Imported	records	into	the	cluster	'address':	164	records
-	Imported	records	into	the	cluster	'city':	55	records
-	Imported	records	into	the	cluster	'country':	55	records
-	Imported	records	into	the	cluster	'animalrace':	3	records
-	Imported	records	into	the	cluster	'ographvertex':	102	records
-	Imported	records	into	the	cluster	'ographedge':	101	records
-	Imported	records	into	the	cluster	'graphcar':	1	records

Example

1036



If during the importing you experience that "Imported cluster 'XXX' has id=6 different
from the original: 5" means that your database was created with an ancient version of
OrientDB:

-	Creating	cluster	'company'...Error	on	database	import	happened	just	before	line	16,	column	52
com.orientechnologies.orient.core.exception.OConfigurationException:	Imported	cluster	'company'	has	id=6	different	from	the	original:	5
								at	com.orientechnologies.orient.core.db.tool.ODatabaseImport.importClusters(ODatabaseImport.java:500)
								at	com.orientechnologies.orient.core.db.tool.ODatabaseImport.importDatabase(ODatabaseImport.java:121)

To fix it just drop the ORIDs class before to import the database:

orientdb>	drop	class	ORIDs
orientdb>	import	database	...

Troubleshooting

1037



Import command can be used in Java and any language on top of the JVM by using the
class ODatabaseImport. Example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");
db.open("admin",	"admin");
try{
		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{
				@Override
				public	void	onMessage(String	iText)	{
						System.out.print(iText);
				}
		};

		ODatabaseImport	import	=	new	ODatabaseImport(db,	"/temp/export/export.json.gz",	listener);
		import.importDatabase();
		import.close();
}	finally	{
		db.close();
}

Import API

1038

https://github.com/orientechnologies/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/db/tool/ODatabaseImport.java


Displays all the information about the current database.

Console - INFO

1039



info

Syntax

1040



Current	database:	../databases/petshop/petshop
CLUSTERS:
--------------------+------+--------------------+-----------+
NAME																|		ID		|	TYPE															|	ELEMENTS		|
--------------------+------+--------------------+-----------+
metadata												|					0|Physical												|								11	|
index															|					1|Physical												|									0	|
default													|					2|Physical												|							779	|
csv																	|					3|Physical												|						1000	|
binary														|					4|Physical												|						1001	|
person														|					5|Physical												|									7	|
animal														|					6|Physical												|									5	|
animalrace										|				-2|Logical													|									0	|
animaltype										|				-3|Logical													|									1	|
orderitem											|				-4|Logical													|									0	|
order															|				-5|Logical													|									0	|
city																|				-6|Logical													|									3	|
--------------------+------+--------------------+-----------+
TOTAL																																																		2807	|
------------------------------------------------------------+

CLASSES:
--------------------+------+------------------------------------------+-----------+
NAME																|		ID		|	CLUSTERS																																	|	ELEMENTS		|
--------------------+------+------------------------------------------+-----------+
Person														|					0|	person																																			|									7	|
Animal														|					1|	animal																																			|									5	|
AnimalRace										|					2|	AnimalRace																															|									0	|
AnimalType										|					3|	AnimalType																															|									1	|
OrderItem											|					4|	OrderItem																																|									0	|
Order															|					5|	Order																																				|									0	|
City																|					6|	City																																					|									3	|
--------------------+------+------------------------------------------+-----------+
TOTAL																																																																										16	|
----------------------------------------------------------------------------------+

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1041



Displays all the information about the selected class

Console - INFO CLASS

1042



info	class	<class-name>

Syntax

1043



>	info	class	profile

Class................:	Profile	(id=4)
Default	cluster......:	profile	(id=10)
Supported	cluster	ids:	[10]
Properties:
-------------------------------+----+-------------+-------------------------------+-----------+-----------+----------+------+------+
	NAME																										|	ID	|	TYPE								|	LINKED	TYPE/CLASS													|	INDEX					|	MANDATORY	|	NOT	NULL	|	MIN		|	MAX		|
-------------------------------+----+-------------+-------------------------------+-----------+-----------+----------+------+------+
	lastAccessOn																		|		5	|	DATETIME				|	null																										|											|	false					|	false				|	2010-01-01	00:00:00|						|
	registeredOn																		|		4	|	DATETIME				|	null																										|											|	false					|	false				|	2010-01-01	00:00:00|						|
	nick																										|		3	|	STRING						|	null																										|											|	false					|	false				|	3				|	30			|
	name																										|		2	|	STRING						|	null																										|	NOTUNIQUE	|	false					|	false				|	3				|	30			|
	surname																							|		1	|	STRING						|	null																										|											|	false					|	false				|	3				|	30			|
	photo																									|		0	|	TRANSIENT			|	null																										|											|	false					|	false				|						|						|
-------------------------------+----+-------------+-------------------------------+-----------+-----------+----------+------+------+

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1044



Insert a new record into the current database. Remember that Orient can work also in
schema-less mode, so you can create any field at-the-fly.

Console - insert

Insert

1045



insert	into	<class|cluster:<cluster>>	(<field-name>*)	values	(	<field-value>	)

Syntax

1046



nsert a new record with name 'Jay' and surname 'Miner':

>	insert	into	Profile	(name,	surname)	values	('Jay',	'Miner'	)

Inserted	record	in	0,060000	sec(s).

Insert a new record adding a relationship:

insert	into	Employee	(name,	boss)	values	('jack',	11:99	)

Insert a new record adding a collection of relationship:

insert	into	Profile	(name,	friends)	values	('Luca',	[10:3,	10:4]	)

To know more about the SQL syntax used in Orient take a look to: SQL-Query.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1047



Loads a record by its record-id from the current database.

Console - LOAD RECORD

1048



load	record	<record-id>

Where:

record-id The unique Record Id of the record to load. If you don't have the Record Id
execute a query first

Syntax

1049



>	load	record	#5:5

--------------------------------------------------
Class:	Person			id:	#5:5			v.0
--------------------------------------------------
														parent	:	Person@5:4{parent:null,children:[Person@5:5,	Person@5:6],name:Barack,surname:Obama,city:City@-
												children	:	null
																name	:	Malia	Ann
													surname	:	Obama
																city	:	null
--------------------------------------------------

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1050



Controls the Profiler.

Console - PROFILER

1051



profiler	on|off|dump|reset

Where:

on Turn on the profiler and start recording
off Turn off the profiler and stop recording
dump Dump profiler's data
reset Reset profiler's data

Syntax

1052



orientdb>	profiler	on
orientdb>	profiler	dump

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1053



Returns all the properties setted.

Console - PROPERTIES

1054



properties

Syntax

1055



>	properties

PROPERTIES:
+---------------------+----------------------+
|	NAME																|	VALUE																|
+---------------------+----------------------+
|	limit															=	20																			|
+---------------------+----------------------+

Example

1056



To change a property value use the set.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

1057



Switches database from "frozen" state (where only read operations are allowed) to
normal mode.

Execution of this command requires presence of server administration rights.

This command is very usefull in case you would like to do "live" database backups. You
can "freeze" database, do file system snapshot, "release" database, copy snapshot
anywhere you want. Using such approach you can perform backup in short term.

Console - RELEASE DATABASE

1058



RELEASE	DATABASE

Syntax

1059



Freeze Database, to freeze a database
SQL commands
Console-Commands

See also

1060



Release the current database:

RELEASE	DATABASE

Examples

1061



Reloads a record by its record-id from the current database ignoring the cache. This is
useful when external applications change the record and you need to see latest update.

Console - RELOAD RECORD

1062



reload	record	<record-id>

Where:

record-id The unique Record Id of the record to reload. If you don't have the Record
Id execute a query first

Syntax

1063



>	reload	record	5:5

--------------------------------------------------
Class:	Person			id:	5:5			v.0
--------------------------------------------------
														parent	:	Person@5:4{parent:null,children:[Person@5:5,	Person@5:6],name:Barack,surname:Obama,city:City@-
												children	:	null
																name	:	Malia	Ann
													surname	:	Obama
																city	:	null
--------------------------------------------------

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Example

1064



Executes a restore of current opened database. The backup file is created using the
Backup Database command. Look also to Export Database and Import Database
commands.

Console - RESTORE

1065



restore	database	<backup-file>

Where:

backup-file is the backup input file path to restore

Syntax

1066



orientdb>	restore	database	/backups/mydb.zip

Restore	executed	in	6,33	seconds

Example

1067



Restore can be executed in Java and any language on top of the JVM by using the
method restore() against the database instance:

db.restore(in,	options,	callable,	listener);

Where:

in: InputStream used to read the backup content. Use a FileInputStream to read the
backup content from disk
options: Backup options as Map object
callable: Callback to execute when the database is locked iListener: Listener called
for backup messages
compressionLevel: ZIP Compression level between 0 (no compression) and 9
(maximum). The bigger is the compression, the smaller will be the final backup
content, but will consume more CPU and time to execute
bufferSize: Buffer size in bytes, the bigger is the buffer, the more efficient will be
the compression

Example:

ODatabaseDocumentTx	db	=	new	ODatabaseDocumentTx("plocal:/temp/mydb");
db.open("admin",	"admin");
try{
		OCommandOutputListener	listener	=	new	OCommandOutputListener()	{
				@Override
				public	void	onMessage(String	iText)	{
						System.out.print(iText);
				}
		};

		InputStream	out	=	new	FileInputStream("/temp/mydb.zip");
		db.restore(in,null,null,listener);
}	finally	{
			db.close();
}

Restore API

1068



Backup Database
Export Database
Import Database
Console-Commands

See also

1069



The SQL Revoke command changes the permission of a role revoking the access to
one or more resources.

Console - REVOKE

1070



REVOKE	<permission>	ON	<resource>	FROM	<role>

Where:

permission can be:
NONE, no permission
CREATE, to create the indicated resource
READ, to read the indicated resource
UPDATE, to update the indicated resource
DELETE, to delete the indicated resource
ALL, all permissions
resource, the target resource where to change the permissions
database, as the access to the whole database
database.class, as the access to the records contained in a class. Use 	**	 to
indicate all the classes
database.cluster, as the access to the records contained in a cluster. Use 	**	 to
indicate all the clusters
database.query, as the ability to execute query (READ is enought)
database.command, as the ability to execute SQL commands. CREATE is for SQL-
Insert, READ is for SQL SELECT, UPDATE for SQL-Update and DELETE is for
SQL-Delete
database.config, as the ability to access to the configuration. Valid permissions are
READ and UPDATE
database.hook.record, as the ability to set hooks
server.admin, as the ability to access to the server resources
role, the role name

Syntax

1071



Revoke the permission to delete any records in any cluster to the role "backoffice".

REVOKE	delete	ON	database.cluster.*	TO	backoffice

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Examples

1072



OrientDB supports Transactions. Once a transaction is begun you can abort changes in
transactions by using the rollback command.

Console - ROLLBACK

1073



rollback

Syntax

1074



Transactions
Console Command Commit
Console Command Rollback
Console Commands

See also

1075



orientdb>	begin
Transaction	1	is	running

orientdb>	begin
Error:	an	active	transaction	is	currently	open	(id=1).	Commit	or	rollback	before	starting	a	new	one.

orientdb>	insert	into	account	(name)	values	('tx	test')

Inserted	record	'Account#9:-2{name:tx	test}	v0'	in	0,004000	sec(s).

orientdb>	select	from	account	where	name	like	'tx%'

---+---------+--------------------
		#|	RID					|name
---+---------+--------------------
		0|				#9:-2|tx	test
---+---------+--------------------

1	item(s)	found.	Query	executed	in	0.076	sec(s).

orientdb>	rollback
Transaction	1	has	been	rollbacked	in	4ms

orientdb>	select	from	account	where	name	like	'tx%'

0	item(s)	found.	Query	executed	in	0.037	sec(s).

Example

1076



Changes the value of a property.

Console - SET

1077



set	<property-name>	<property-value>

Where:

property-name Name of the property
property-value Value to set

Syntax

1078



>	set	limit	100

Previous	value	was:	20

limit	=	100

Example

1079



To know all the properties setted use the properties. To read the property value use the
get.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

See also

1080



This is the main page for DBA and DevOps.

Operations

1081



Performance Tuning

Tuning

1082



ETL (Extract-Transform-Load)
Distributed Architecture
Backup & Restore
Export & Import

In & Out

1083



Install as Service on Unix/Linux
Install as Service on Windows

Install

1084



OrientDB is available in two editions:

Community Edition This edition is released as an open source project under the
Apache 2 license. This license allows unrestricted free usage for both open source
and commercial projects.
Enterprise Edition OrientDB Enterprise edition is commercial software built on top
of the Community Edition. Enterprise is developed by the same team that developed
the OrientDB engine. It serves as an extension of the Community Edition by
providing Enterprise features such as:

Query Profiler
Distributed Clustering configuration
Metrics Recording
Live Monitoring with configurable Alerts

An Enterprise Edition license is included without charge if you purchase Support.

Both editions run on every operating system that has an implementation of the Java
Virtual Machine (JVM), for example:

All Linux distributions, including ARM (Raspberry Pi, etc.)
Mac OS X
Microsoft Windows from 95/NT or later
Solaris
HP-UX
IBM AIX

This means the only requirement for using OrientDB is to have Java version 1.6 or
higher installed.

The easiest and fastest way to start using OrientDB is to download binaries from the
Official OrientDB Download Page.

Installation

Prerequisites

Download Binaries

Compile Your Own Community Edition

1085

http://www.orientechnologies.com/orientdb/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.orientechnologies.com/orientdb-enterprise/
http://www.orientechnologies.com/support/
http://www.java.com/en/download
http://www.orientechnologies.com/download/


Alternatively, you can clone the Community Edition project from GitHub and compile it.
This allows you access to the latest functionality without waiting for a distribution binary.
To build the Community Edition, you must first install the Apache Ant tool and follow
these steps:

>	git	clone	git@github.com:orientechnologies/orientdb.git
>	cd	orientdb
>	ant	clean	install

After the compilation, all the binaries are placed under the 	../releases	 directory.

The Mac OS X, Linux, and UNIX based operating systems typically require you to
change the permissions to execute scripts. The following command will apply the
necessary permissions for these scripts in the 	bin	 directory of the OrientDB distribution:

>	chmod	755	bin/*.sh
>	chmod	-R	777	config

OrientDB uses a ConcurrentLinkedHashMap implementation provided by
https://code.google.com/p/concurrentlinkedhashmap/ to create the LRU based cache.
This library actively uses the sun.misc package which is usually not exposed as a
system package. To overcome this limitation you should add property
	org.osgi.framework.system.packages.extra	 with value 	sun.misc	 to your list of framework
properties. It may be as simple as passing an argument to the VM starting the platform:

>	java	-Dorg.osgi.framework.system.packages.extra=sun.misc

To learn more about how to install OrientDB on specific environments, please refer to
the guides below:

Install as service on Unix, Linux and MacOSX
Install as service on Windows

Change Permissions

Use inside of OSGi container

Other Resources

1086

https://github.com/orientechnologies/orientdb
http://ant.apache.org/bindownload.cgi
https://code.google.com/p/concurrentlinkedhashmap/


Install with Docker
Install on Linux Ubuntu
Install on JBoss AS
Install on GlassFish
Install on Ubuntu 12.04 VPS (DigitalOcean)
Install on Vagrant

1087

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps
https://bitbucket.org/nuspy/vagrant-orientdb-with-tinkerpop/overview


OrientDB is the first Multi-Model Open Source NoSQL DBMS that combines the power
of graphs and the flexibility of documents into one scalable, high-performance
operational database.

This repository is a dockerfile for creating an orientdb image with :

explicit orientdb version (orientdb-2.0) for image cache stability
init by supervisord
config, databases and backup folders expected to be mounted as volumes

And lots of information from my orientdb+docker explorations. Read on!

orientdb-docker

1088

http://www.orientdb.org


1. Checkout this project to a local folder cding to it

2. Build the image:

docker	build	-t	<YOUR_DOCKER_HUB_USER>/orientdb-2.0	.

3. Push it to your Docker Hub repository (it will ask for your login credentials):

docker	push	<YOUR_DOCKER_HUB_USER>/orientdb-2.0

All examples below are using my own image nesrait/orientdb-2.0. If you build your own
image please find/replace "nesrait" with your Docker Hub user.

Building the image on your own

1089



To run the image, run:

docker	run	--name	orientdb	-d	-v	<config_path>:/opt/orientdb/config	-v	<databases_path>:/opt/orientdb/databases	-v	<backup_path>:/opt/orientdb/backup	-p	

The docker image contains a unconfigured orientdb installation and for running it you
need to provide your own config folder from which OrientDB will read its startup settings.

The same applies for the databases folder which if local to the running container would
go away as soon as it died/you killed it.

The backup folder only needs to be mapped if you activate that setting on your OrientDB
configuration file.

Running orientdb

1090

http://www.orientdb.org
http://www.orientdb.org


If you're not running OrientDB in a distributed configuration you need to take special care
to backup your database (in case your host goes down).

Below is a simple, yet hackish, way to do this: using BTSync data containers to
propagate the OrientDB config, LIVE databases and backup folders to remote
location(s). Note: don't trust the remote copy of the LIVE database folder unless the
server is down and it has correctly flushed changes to disk.

1. Create BTSync shared folders on any remote location for the various folder you
want to replicate

1.1. config: orientdb configuration inside the config folder

1.2. databases: the LIVE databases folder

1.3. backup: the place where OrientDB will store the zipped backups (if you activate
the backup in the configuration file)

2. Take note of the BTSync folder secrets CONFIG_FOLDER_SECRET,
DATABASES_FOLDER_SECRET, BACKUP_FOLDER_SECRET

3. Launch BTSync data containers for each of the synched folder you created giving
them proper names:

docker	run	-d	--name	orientdb_config	-v	/opt/orientdb/config	nesrait/btsync	/opt/orientdb/config	CONFIG_FOLDER_SECRET
docker	run	-d	--name	orientdb_databases	-v	/opt/orientdb/databases	nesrait/btsync	/opt/orientdb/databases	DATABASES_FOLDER_SECRET
docker	run	-d	--name	orientdb_backup	-v	/opt/orientdb/backup	nesrait/btsync	/opt/orientdb/backup	BACKUP_FOLDER_SECRET

4. Wait until all files have magically appeared inside your BTSync data volumes:

docker	run	--rm	-i	-t	--volumes-from	orientdb_config	--volumes-from	orientdb_databases	--volumes-from	orientdb_backup	ubuntu	du	-h	/opt/orientdb/config	/opt/orientdb/databases	/opt/orientdb/backup

5. Finally you're ready to start your OrientDB server

docker	run	--name	orientdb	-d	\

Persistent distributed storage using BTSync

1091

http://www.orientdb.org
http://www.orientdb.org
http://www.orientdb.org


									--volumes-from	orientdb_config	\
									--volumes-from	orientdb_databases	\
									--volumes-from	orientdb_backup	\
									-p	2424	-p	2480	\
									nesrait/orientdb-2.0

1092



If you're running OrientDB distributed* you won't have the problem of losing the contents
of your databases folder since they are already replicated to the other OrientDB nodes.
From the setup above simply leave out the "--volumes-from orientdb_databases"
argument and OrientDB will use the container storage to hold your databases' files.

*note: some extra work might be needed to correctly setup hazelcast running inside
docker containers (see this discussion).

OrientDB distributed

1093

http://www.orientdb.org
http://www.orientdb.org
https://groups.google.com/forum/#!topic/vertx/MvKcz_aTaWM


With OrientDB 2.0 we can now create ad-hoc backups by taking advantage of the new
backup.sh script:

Using the orientdb_backup data container that was created above:

docker	run	-i	-t	--volumes-from	orientdb_config	--volumes-from	orientdb_backup	nesrait/orientdb-

Or using a host folder:

	docker	run	-i	-t	--volumes-from	orientdb_config	-v	<host_backup_path>:/backup
nesrait/orientdb-2.0	./backup.sh	<dburl>	<user>	<password>	/backup/<backup_file>	[<type>]	

Either way, when the backup completes you will have the backup file located outside of
the OrientDB container and read for safekeeping.

Note: I haven't tried the non-blocking backup (type=lvm) yet but found this discussion
about a docker LVM dependency issue.

Ad-hoc backups

1094

http://www.orientdb.org
https://github.com/orientechnologies/orientdb/wiki/Backup-and-Restore#backup-database
http://www.orientdb.org
https://groups.google.com/forum/#!topic/docker-user/n4Xtvsb4RAw


docker	run	--rm	-it	\
												--volumes-from	orientdb_config	\
												--volumes-from	orientdb_databases	\
												--volumes-from	orientdb_backup	\
												nesrait/orientdb-2.0	\
												/opt/orientdb/bin/console.sh

Running the orientdb console

1095



OrientDB is shipped with the script $ORIENTDB_HOME/bin/orientdb.sh that can be
used to run OrientDB like a daemon. It supports the following parameters:

start
stop
status

Before to install it as service open the file and change the following lines:

ORIENTDB_DIR="YOUR_ORIENTDB_INSTALLATION_PATH"
ORIENTDB_USER="USER_YOU_WANT_ORIENTDB_RUN_WITH"
`

By setting the installation path and the user as stated, save the script, and deploy like
other scripts for the other daemon.

Different Unix, Linux and MacOSX distribution uses different ways to manage the
start/stop process at the system bootstrap/shutdown.

Install as Service on Unix/Linux

1096



To learn more about how to install OrientDB on specific environment please follow the
guide below:

Install on Linux Ubuntu
Install on JBoss AS
Install on GlassFish
Install on Ubuntu 12.04 VPS (DigitalOcean)
Install as service on Unix, Linux and MacOSX
Install as service on Windows

Other resources

1097

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps


OrientDB is a Java server application. As most server applications, they have to perform
several tasks before being able to shut down the Virtual Machine process hence they
need a portable way to be notified of the imminent Virtual Machine shutdown. At the
moment, the only way to properly shut down an OrientDB server instance (not
embedded) is to execute the shutdown.bat (or shutdown.sh) script shipped with the
OrientDB distribution but it's up to the user to take care of this. This implies that the
server instance isn't stopped correctly when the computer on which it is deployed is
shutted down without executing the above script.

Install as Service on Windows

1098



Apache Commons Daemon is a set of applications and API enabling Java server
application to run as native non interactive server applications under Unix and Windows.
In Unix, server applications running in background are called daemons and are
controlled by the operating system with a set of specified signals. Under Windows such
programs are called services and are controlled by appropriate calls to specific functions
defined in the application binary. Although the ways of dealing with the problem are
different, in both cases the operating system can notify a server application of its
imminent shutdown, and the underlying application has the ability to perform certain
tasks before its process of execution is destroyed. Wrapping OrientDB as a Unix
daemon or as a Windows service enables the management of this server application
lifecycle through the mechanisms provided natively by both Unix and Windows operating
systems.

Apache Commons Daemon

1099

http://commons.apache.org/daemon/


This tutorial is focused on Windows so you have to download procrun. Procrun is a set
of applications that allow Windows users to wrap (mostly) Java applications (e.g.
Tomcat) as a Windows service. The service can be set to automatically start when the
machine boots and will continue to run with no user logged onto the machine.

1. Point you browser to the Apache Commons Daemon download page.
2. Click on Browse native binaries download area...: you will see the index

commons/daemon/binaries/ (even if the title in the page reports Index of
dist/commons).

3. Click on windows. Now you can see the index of
commons/daemon/binaries/windows.

4. Click on commons-daemon-1.0.7-bin-windows.zip. The download starts.
5. Unzip the file in a directory of your choice. The content of the archive is depicted

below:

commons-daemon-1.0.7-bin-windows
|
\---amd64
				|
				\---prunsrv.exe
|
\---ia64
				|
				\---prunsrv.exe
|
\---LICENCE.txt
|
\---NOTICE.txt
|
\---prunmgr.exe
|
\---prunsrv.exe
|
\---RELEASE-NOTES.txt

prunmgr is a GUI application for monitoring and configuring Windows services wrapped
with procrun. prunsrv is a service application for running applications as services. It can
convert any application (not just Java applications) to run as a service. The directory
amd64 contains a version of prunsrv for x86-64 machines while the directory ia64
contains a version of prunsrv for Itanium 64 machines.

Once you downloaded the applications, you have to put them in a folder under the

Installation

1100

http://commons.apache.org/daemon/procrun.html
http://commons.apache.org/daemon/download_daemon.cgi


OrientDB installation folder.

1. Go to the OrientDB folder, in the following referred as %ORIENTDB_HOME%
2. Create a new directory and name it service
3. Copy there the appropriate versions of prunsrv and prunmgr according to the

architecture of your machine.

1101



In this section, we will show how to wrap OrientDB GraphEd 1.0rc5 as a Windows
Service. In order to wrap OrientDB as a service, you have to execute a short script that
uses the prunsrv application to configure a Windows Service.

Before defining the Windows Service, you have to rename prunsrv and prunmgr
according to the name of the service. Both applications require the name of the service
to manage and monitor as parameter but you can avoid it by naming them with the name
of the service. In this case, rename them respectively OrientDBGraph and
OrientDBGraphw as OrientDBGraph is the name of the service that you are going to
configure with the script below. If you want to use a difference service name, you have to
rename both application respectively myservicename and myservicenamew (for
example, if you are wrapping OrientDB and the name of the service is OrientDB, you
could rename prunsrv as OrientDB and prunmgr as OrientDBw). After that, create the
file %ORIENTDB_HOME%\service\installService.bat with the content depicted below:

::	OrientDB	Windows	Service	Installation
@echo	off
rem	Remove	surrounding	quotes	from	the	first	parameter
set	str=%~1
rem	Check	JVM	DLL	location	parameter
if	"%str%"	==	""	goto	missingJVM
set	JVM_DLL=%str%
rem	Remove	surrounding	quotes	from	the	second	parameter
set	str=%~2
rem	Check	OrientDB	Home	location	parameter
if	"%str%"	==	""	goto	missingOrientDBHome
set	ORIENTDB_HOME=%str%

set	CONFIG_FILE=%ORIENTDB_HOME%/config/orientdb-server-config.xml
set	LOG_FILE=%ORIENTDB_HOME%/config/orientdb-server-log.properties
set	LOG_CONSOLE_LEVEL=info
set	LOG_FILE_LEVEL=fine
set	WWW_PATH=%ORIENTDB_HOME%/www
set	ORIENTDB_SETTINGS=-Dprofiler.enabled=true	-Dcache.level1.enabled=false	-Dcache.level2.strategy=1
set	JAVA_OPTS_SCRIPT=-XX:+HeapDumpOnOutOfMemoryError

rem	Install	service
OrientDBGraphX.X.X.exe	//IS	--DisplayName="OrientDB	GraphEd	X.X.X"	\
--Description="OrientDB	Graph	Edition,	aka	GraphEd,	contains	OrientDB	server	integrated	with	the	latest	release	of	the	TinkerPop	Open	Source	technology	stack	supporting	property	graph	data	model."	\
--StartClass=com.orientechnologies.orient.server.OServerMain	--StopClass=com.orientechnologies.orient.server.OServerShutdownMain	\
--Classpath="%ORIENTDB_HOME%\lib\*"	--JvmOptions	"-Djava.util.logging.config.file="%LOG_FILE%";-Dorientdb.config.file="%CONFIG_FILE%";-Dorientdb.www.path="%WWW_PATH%";-Dlog.console.level=%LOG_CONSOLE_LEVEL%;-Dlog.file.level=%LOG_FILE_LEVEL%;-Dorientdb.build.number="@BUILD@";-DORIENTDB_HOME=%ORIENTDB_HOME%"	\
--StartMode=jvm	--StartPath="%ORIENTDB_HOME%\bin"	--StopMode=jvm	--StopPath="%ORIENTDB_HOME%\bin"	--Jvm="%JVM_DLL%"	--LogPath="%ORIENTDB_HOME%\log"	--Startup=auto

EXIT	/B

:missingJVM
echo	Insert	the	JVM	DLL	location

Configuration

1102



goto	printUsage

:missingOrientDBHome
echo	Insert	the	OrientDB	Home
goto	printUsage

:printUsage
echo	usage:
echo					installService	JVM_DLL_location	OrientDB_Home
EXIT	/B

The script requires two input parameters:

1. The location of jvm.dll, for example C:\Program
Files\Java\jdk1.6.0_26\jre\bin\server\jvm.dll

2. The location of the OrientDB installation folder, for example D:\orientdb-graphed-
1.0rc5

The service is actually installed when executing OrientDBGraph.exe (originally prunsrv)
with the appropriate set of command line arguments and parameters. The command line
argument //IS states that the execution of that application will result in a service
installation. Below there is the table with the command line parameters used in the
above script.

Parameter
name Description Source

--
DisplayName

The name displayed
in the Windows
Services
Management
Console

Custom

--Description

The description
displayed in the
Windows Services
Management
Console

Custom

--StartClass

Class that contains
the startup method (=
the method to be
called to start the
application). The
default method to be
called is the 	main	
method

The class invoked in the
/bin/server.bat script

--StopClass

Class that will be
used when receiving
a Stop service signal.
The default method

The class invoked in the
/bin/shutdown.bat script

1103



to be called is the
	main	 method

--Classpath Set the Java
classpath

The value of the 	-cp	 parameter
specified in the
%ORIENTDB_HOME%\bin\server.bat
script

--JvmOptions

List of options to be
passed to the JVM
separated using
either # or ;
characters

The list of options in the form of -D or
-X specified in the
%ORIENTDB_HOME%\bin\server.bat
script and the definition of the
ORIENTDBHOME system property

--StartMode

Specify how to start
the process. In this
case, it will start Java
in-process and not as
a separate image

Based on Apache Tomcat
configuration

--StartPath Working path for the
StartClass %ORIENTDBHOME%\bin

--StopMode The same as --
StartMode

Based on Apache Tomcat
configuration

--StopPath Working path for the
StopClass %ORIENTDB_HOME%\bin

--Jvm
Which jvm.dll to use:
the default one or the
one located in the
specified full path

The first input parameter of this script.
Ensure that you insert the location of
the Java HotSpot Server VM as a full
path. We will use the server version
for both start and stop.

--LogPath Path used by prunsrv
for logging

The default location of the Apache
Commons Daemon log

--Startup
States if the service
should start at
machine start up or
manually

auto

For a complete reference to all available parameters and arguments for prunsrv and
prunmgr, visit the Procrun page.

In order to install the service:

1. Open the Windows command shell
2. Go to %ORIENTDB_HOME%\service, for example typing in the shell 	>	cd

D:\orientdb-graphed-1.0rc5\service	

3. Execute the installService.bat specifying the jvm.dll location and the OrientDB
Home as full paths, for example typing in the shell 	>	installService.bat	"C:\Program
Files\Java\jdk1.6.0_26\jre\bin\server\jvm.dll"	D:\orientdb-graphed-1.0rc5	

4. Open the Windows Services Management Console - from the taskbar, click on

1104

http://commons.apache.org/daemon/procrun.html


Start, Control Panel, Administrative Tools and then Service - and check the
existance of a service with the same name specified as value of the 	--DisplayName	
parameter (in this case OrientDB GraphEd 1.0rc5). You can also use
%ORIENTDB_HOME%\service\OrientDBGraphw.exe to manage and monitor the
OrientDBGraph service.

To learn more about how to install OrientDB on specific environment please follow the
guide below:

Install on Linux Ubuntu
Install on JBoss AS
Install on GlassFish
Install on Ubuntu 12.04 VPS (DigitalOcean)
Install as service on Unix, Linux and MacOSX
Install as service on Windows

Other resources

1105

http://famvdploeg.com/blog/2013/01/setting-up-an-orientdb-server-on-ubuntu/
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+JBoss+AS
http://team.ops4j.org/wiki/display/ORIENT/Installation+on+GlassFish
https://www.digitalocean.com/community/articles/how-to-install-and-use-orientdb-on-an-ubuntu-12-04-vps


This guide contains the general tips to optimize your application that use the OrientDB.
Below you can find links for the specific guides different per database type used. Look at
the specific guides based on the database type you're using:

Document Database performance tuning
Object Database performance tuning
Native Graph Database performance tuning (Deprecated)

Performance Tuning

1106



To tune OrientDB look at the Configuration settings.

Configuration

1107



Performance analysis on ZFS

Platforms

1108

http://carloprad.blogspot.it/2014/03/orientdb-on-zfs-performance-analysis.html


These settings are valid for both Server component and the JVM where is running the
Java application that use OrientDB in Embedded Mode, by using directly plocal.

The most important thing on tuning is assuring the memory settings are correct. What
can make the real difference is the right balancing between the heap and the virtual
memory used by Memory Mapping, specially on large datasets (GBs, TBs and more)
where the in memory cache structures count less than raw IO.

For example if you can assign maximum 8GB to the Java process, it's usually better
assigning small heap and large disk cache buffer (off-heap memory). So rather than:

java	-Xmx8g	...

You could instead try this:

java	-Xmx800m	-Dstorage.diskCache.bufferSize=7200	...

The storage.diskCache.bufferSize setting (with old "local" storage it was
file.mmap.maxMemory) is in MB and tells how much memory to use for Disk Cache
component. By default is 4GB.

NOTE: If the sum of maximum heap and disk cache buffer is too high, could cause the
OS to swap with huge slow down.

Memory settings

Server and Embedded settings

1109



JVM settings are encoded in server.sh (and server.bat) batch files. You can change
them to tune the JVM according to your usage and hw/sw settings. We found these
setting work well on most configurations:

-server	-XX:+AggressiveOpts	-XX:CompileThreshold=200

OrientDB has an optimistic concurrency control system, but on very high concurrent
updates on the few records it could be more efficient locking records to avoid retries.
You could synchronize the access by yourself or by using the storage API. Note that this
works only with non-remote databases.

((OStorageEmbedded)db.getStorage()).acquireWriteLock(final	ORID	iRid)
((OStorageEmbedded)db.getStorage()).acquireSharedLock(final	ORID	iRid)
((OStorageEmbedded)db.getStorage()).releaseWriteLock(final	ORID	iRid)
((OStorageEmbedded)db.getStorage()).releaseSharedLock(final	ORID	iRid)

Example of usage. Writer threads:

try{
		((OStorageEmbedded)db.getStorage()).acquireWriteLock(record.getIdentity());

		//	DO	SOMETHING
}	finally	{
		((OStorageEmbedded)db.getStorage()).releaseWriteLock(record.getIdentity());
}

Reader threads:

try{
		((OStorageEmbedded)db.getStorage()).acquireSharedLock(record.getIdentity());
		//	DO	SOMETHING

}	finally	{
		((OStorageEmbedded)db.getStorage()).releaseSharedLock(record.getIdentity());
}

JVM settings

High concurrent updates

1110



There are many ways to improve performance when you access to the database using
the remote connection.

When you work with a remote database you've to pay attention to the fetching strategy
used. By default OrientDB Client loads only the record contained in the result set. For
example if a query returns 100 elements, but then you cross these elements from the
client, then OrientDB client lazily loads the elements with one more network call to the
server foreach missed record.

By specifying a fetch plan when you execute a command you're telling to OrientDB to
prefetch the elements you know the client application will access. By specifying a
complete fetch plan you could receive the entire result in just one network call.

For more information look at: Fetching-Strategies.

Each client, by default, uses only one network connection to talk with the server. Multiple
threads on the same client share the same network connection pool.

When you've multiple threads could be a bottleneck since a lot of time is spent on
waiting for a free network connection. This is the reason why is much important to
configure the network connection pool.

The configurations is very simple, just 2 parameters:

minPool, is the initial size of the connection pool. The default value is configured as
global parameters "client.channel.minPool" (see parameters)
maxPool, is the maximum size the connection pool can reach. The default value is
configured as global parameters "client.channel.maxPool" (see parameters)

At first connection the minPool is used to pre-create network connections against the
server. When a client thread is asking for a connection and all the pool is busy, then it
tries to create a new connection until maxPool is reached.

If all the pool connections are busy, then the client thread will wait for the first free
connection.

Remote connections

Fetching strategy

Network Connection Pool

1111



Example of configuration by using database properties:

database	=	new	ODatabaseDocumentTx("remote:localhost/demo");
database.setProperty("minPool",	2);
database.setProperty("maxPool",	5);

database.open("admin",	"admin");

If you see a lot of messages like:

WARNING:	Connection	re-acquired	transparently	after	XXXms	and	Y	retries:	no	errors	will	be	thrown	at	application	level

means that probably default timeouts are too low and server side operation need more
time to complete. It's strongly suggested you enlarge your timeout only after tried to
enlarge the Network Connection Pool. The timeout parameters to tune are:

	network.lockTimeout	, the timeout in ms to acquire a lock against a channel. The
default is 15 seconds.
	network.socketTimeout	, the TCP/IP Socket timeout in ms. The default is 10 seconds.

Enlarge timeouts

1112



The first improvement to speed up queries is to create Indexes against the fields used in
WHERE conditions. For example this query:

SELECT	FROM	Profile	WHERE	name	=	'Jay'

Browses the entire "profile" cluster looking for records that satisfy the conditions. The
solution is to create an index against the 'name' property with:

CREATE	INDEX	profile.name	UNIQUE

Use NOTUNIQUE instead of UNIQUE if the value is not unique.

For more complex queries like

select	*	from	testClass	where	prop1	=	?	and	prop2	=	?

Composite index should be used

CREATE	INDEX	compositeIndex	ON	testClass	(prop1,	prop2)	UNIQUE

or via Java API:

oClass.createIndex("compositeIndex",	OClass.INDEX_TYPE.UNIQUE,	"prop1",	"prop2");

Moreover, because of partial match searching, this index will be used for optimizing
query like

select	*	from	testClass	where	prop1	=	?

Query

Use of indexes

1113



For deep understanding of query optimization look at the unit test:
http://code.google.com/p/orient/source/browse/trunk/tests/src/test/java/com/orientechnol
ogies/orient/test/database/auto/SQLSelectIndexReuseTest.java

Using @rid in where conditions slow down queries. Much better to use the RecordID as
target. Example:

Change this:

SELECT	FROM	Profile	WHERE	@rid	=	#10:44

With this:

SELECT	FROM	#10:44

Also

SELECT	FROM	Profile	WHERE	@rid	IN	[#10:44,	#10:45]

With this:

SELECT	FROM	[#10:44,	#10:45]

Avoid use of @rid in WHERE conditions (not actual from
1.3 version)

1114

http://code.google.com/p/orient/source/browse/trunk/tests/src/test/java/com/orientechnologies/orient/test/database/auto/SQLSelectIndexReuseTest.java


Intents suggest to OrientDB what you're going to do. In this case you're telling to
OrientDB that you're executing a massive insertion. OrientDB auto-reconfigure itself to
obtain the best performance. When done you can remove the intent just setting it to null.

Example:

db.declareIntent(	new	OIntentMassiveInsert()	);

//	YOUR	MASSIVE	INSERTION

db.declareIntent(	null	);

In case of massive insertion, specially when this operation is made just once, you could
disable the journal (WAL) to improve insertion speed:

-storage.useWAL=false

By default WAL (Write Ahead Log) is enabled.

This setting avoids to execute a sync at OS level when a page is flushed. Disabling this
setting will improve throughput on writes:

-Dstorage.wal.syncOnPageFlush=false

Massive Insertion

Use the Massive Insert intent

Disable Journal

Disable sync on flush of pages

1115



Updates generates "holes" at Storage level because rarely the new record fits perfectly
the size of the previous one. Holes are free spaces between data. Holes are recycled
but an excessive number of small holes it's the same as having a highly defragmented
File System: space is wasted (because small holes can't be easily recycled) and
performance degrades when the database growth.

If you know you will update certain type of records, create a class for them and set the
Oversize (default is 0) to 2 or more.

By default the OGraphVertex class has an oversize value setted at 2. If you define your
own classes set this value at least at 2.

OClass myClass = getMetadata().getSchema().createClass("Car");
myClass.setOverSize(2);

Massive Updates

Oversize

1116



To obtain real linear performance with OrientDB you should avoid to use Transactions
as far as you can. In facts OrientDB keeps in memory all the changes until you flush it
with a commit. So the bottleneck is your Heap space and the management of local
transaction cache (implemented as a Map).

Transactions slow down massive inserts unless you're using a "remote" connection. In
that case it speeds up all the insertion because the client/server communication happens
only at commit time.

If you need to group operations to speed up remote execution in a logical transaction but
renouncing to the Transaction Log, just disable it by setting the property tx.useLog to
false.

Via JVM configuration:

java	...	-Dtx.useLog=false	...

or via API:

OGlobalConfiguration.TX_USE_LOG.setValue(false);

NOTE: Please note that in case of crash of the JVM the pending transaction OrientDB
could not be able to rollback it.

Wise use of transactions

Disable Transaction Log

1117



The smaller the database you have, the bigger are the number of records you can cache
in memory. Furthermore small database means faster seek in filesystem and minor
loading time from disk/network. In order to keep your database small follow the following
suggestions:

OrientDB is schema-less that means field names are stored with the values too. So if
you call a field "out" instead of "outVertices" you saves 8 characters, namely 8 bytes per
record. Applying this to millions of records allows you to save several Megabytes.

Keep the database small

Keep field names short

1118



OrientDB can be configured in several ways. To know the current settings use the
console with the config command.

Global Configuration

1119



You can pass settings via command line when the JVM is launched. This is typically
stored inside server.sh (or server.bat on Windows):

java	-Dcache.size=10000	-Dstorage.keepOpen=true	...

Put in the 	<properties>	 section of the file orientdb-server-config.xml (or orientdb-
dserver-config.xml) the entries to configure. Example:

		...
		<properties>
				<entry	name="cache.size"	value="10000"	/>
				<entry	name="storage.keepOpen"	value="true"	/>
		</properties>
		...

OGlobalConfiguration.MVRBTREE_NODE_PAGE_SIZE.setValue(2048);

Change settings

By command line

By server configuration

At run-time

1120



To dump the OrientDB configuration you can set a parameter at JVM launch:

java	-Denvironment.dumpCfgAtStartup=true	...

Or via API at any time:

OGlobalConfiguration.dumpConfiguration(System.out);

Dump the configuration

1121



To know more look at the Java enumeration: 	OGlobalConfiguration.java	.

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	environment.dumpCfgAtStartup	 true false true false

	environment.concurrent	 true true true true

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	memory.optimizeThreshold	 0.85 0.85 0.85 0.85

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

Parameters

Environment

Memory

Storage

1122

https://github.com/nuvolabase/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/config/OGlobalConfiguration.java


	storage.keepOpen	 true true true true

	storage.record.lockTimeout	 5000 5000 5000 5000

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	cache.level1.enabled	 true true false false

	cache.level1.size	 -1 -1 0 0

	cache.level2.enabled	 true true false false

	cache.level2.size	 -1 -1 0 0

Cache

1123



Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	db.mvcc	 true true true true

	object.saveOnlyDirty	 false false false false

	nonTX.recordUpdate.synch	 false false false false

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

Allowed
input

	tx.useLog	 true true true true true or
false

	tx.log.fileType	 classic classic classic classic
'classic'
or
'mmap'

Database

Transactions

1124



	tx.log.synch	 false false false false true or
false

	tx.commit.synch	 false false true true true or
false

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	blueprints.graph.txMode	 0 0 0 0

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server

	index.auto.rebuildAfterNotSoftClose	 true true true true

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server

TinkerPop Blueprints

Index

MVRB Tree (index and dictionary)

1125



	mvrbtree.lazyUpdates	 20000 20000 1 1

	mvrbtree.nodePageSize	 128 128 128 128

	mvrbtree.loadFactor	 0.7f 0.7f 0.7f 0.7f

	mvrbtree.optimizeThreshold	 100000 100000 100000 100000

	mvrbtree.entryPoints	 16 16 16 16

	mvrbtree.optimizeEntryPointsFactor	 1.0f 1.0f 1.0f 1.0f

	mvrbtree.ridBinaryThreshold	 8 8 8 8

	mvrbtree.ridNodePageSize	 16 16 16 16

	mvrbtree.ridNodeSaveMemory	 False False False False

1126



Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	lazyset.workOnStream	 true true false false

Parameter Def.
32bit Def. 64bit

Def.
Server
32bit

	file.lock	 false false false

	file.defrag.strategy	 0 0 0

	file.defrag.holeMaxDistance	 32768
(32Kb) 32768 (32Kb) 32768

(32Kb)

	file.mmap.useOldManager	 false false false

	file.mmap.lockMemory	 true true true

Lazy Collections

File (I/O)

1127



	file.mmap.strategy	 0 0 0

	file.mmap.blockSize	
1048576
(1Mb) 1048576 (1Mb) 1048576

(1Mb)

	file.mmap.bufferSize	
8192
(8Kb) 8192 (8Kb) 8192

(8Kb)

	file.mmap.maxMemory	 134Mb
(maxOsMem -
maxProcessHeapMem)
/ 2

like Def.
32 bit

	file.mmap.overlapStrategy	 2 2 2

1128



	file.mmap.forceDelay	 500
(0.5sec) 500 (0.5sec) 500

(0.5sec)

	file.mmap.forceRetry	 20 20 20

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	jna.disable.system.library	 true true true true

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server

	network.socketBufferSize	 32768 32768 32768 32768

	network.lockTimeout	 15000
(15secs)

15000
(15secs)

15000
(15secs)

15000
(15secs)

	network.socketTimeout	 10000
(10secs)

10000
(10secs)

10000
(10secs)

10000
(10secs)

	network.retry	 5 5 5 5

JNA

Networking (I/O)

1129



	network.retryDelay	 500
(0.5sec)

500
(0.5sec)

500
(0.5sec)

500
(0.5sec)

	network.binary.maxLength	 100000
(100Kb)

100000
(100Kb)

100000
(100Kb)

100000
(100Kb)

	network.binary.readResponse.maxTime	 30 30 30 30

	network.binary.debug	 false false false false

	network.http.maxLength	 100000
(100Kb)

100000
(100Kb)

100000
(100Kb)

100000
(100Kb)

	network.http.charset	 utf-8 utf-8 utf-8 utf-8

	network.http.sessionExpireTimeout	 300
(5min)

300
(5min) 300 (5min) 300 (5min)

Profiler

1130



Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

	profiler.enabled	 false false true true

	profiler.autoDump.interval	 0 0 0 0

	profiler.autoDump.reset	 true true true true

	profiler.config	 null null null null

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

Allowed

	log.console.level	 info info info info
fine,
info,
warn,
error

	log.file.level	 fine fine fine fine
fine,
info,
warn,
error

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server
64bit

Log

Client

1131



	client.channel.minPool	 1 1 1 1

	client.channel.maxPool	 5 5 5 5

Parameter Def.32bit Def.64bit Def.Server
32bit

	server.channel.cleanDelay	 5000 5000 5000

	server.log.dumpClientExceptionLevel	 FINE FINE FINE

	server.log.dumpClientExceptionFullStackTrace	 false false false

	server.cache.staticFile	 false false false

Parameter Def.32bit Def.64bit Def.Server
32bit

Def.Server

	distributed.async.timeDelay	 0 0 0 0

	distributed.sync.maxRecordsBuffer	 100 100 100 100

Server

Distributed cluster

1132



NOTE: On 64-bit systems you have not the limitation of 32-bit systems with memory.

1133



Logging is configured in a separate file, look at Logging for more information.

Logging

1134



OrientDB allows modifications to the storage configuration. Even though this will be
supported with high level commands, for now it's pretty "internal" using Java API.

To get the storage configuration for the current database:

OStorageConfiguration	cfg	=	db.getStorage().getConfiguration();

Look at 	OStorageConfiguration	 to discover all the properties you can change. To change
the configuration of a cluster get it by ID;

OStoragePhysicalClusterConfigurationLocal	clusterCfg	=	(OStoragePhysicalClusterConfigurationLocal)	cfg.clusters.get(3);

To change the default settings for new clusters get the file template object. In this
example we change the initial file size from the default 500Kb down to 10Kb:

OStorageSegmentConfiguration	defaultCfg	=	(OStorageSegmentConfiguration)	cfg.fileTemplate;
defaultCfg.fileStartSize	=	"10Kb";

After changes call 	OStorageConfiguration.update()	:

cfg.update();

Storage configuration

1135

https://github.com/nuvolabase/orientdb/blob/master/core/src/main/java/com/orientechnologies/orient/core/config/OStorageConfiguration.java


This guide is specific for the TinkerPop Blueprints Graph Database. Please be sure to
read the generic guide to the Performance-Tuning.

Tuning the Graph API

1136



Local connection is much faster than remote. So use "plocal" based on the storage
engine used on database creation. If you need to connect to the database from the
network you can use the "Embed the server technique".

Connect to the database locally

1137



Even though supports properties on edges, this is much expensive because it creates a
new record per edge. So if you need them you've to know that the database will be
bigger and insertion time will be much longer.

Avoid putting properties on edges

1138



It's much lighter to set properties in block than one by one. Look at this paragraph:
Graph-Database-Tinkerpop#setting-multiple-properties.

Set properties all together

1139



It's even faster if you set properties directly on creation of vertices and edges. Look at
this paragraph: Graph-Database-Tinkerpop#create-element-and-properties.

Set properties on vertex and edge creation

1140



See Generic improvement on massive insertion. To access to the underlying database
use:

database.getRawGraph().declareIntent(	new	OIntentMassiveInsert()	);

//	YOUR	MASSIVE	INSERTION

database.getRawGraph().declareIntent(	null	);

Massive Insertion

1141



Use the OrientGraphNoTx implementation that doesn't use transaction at all.
OrientGraphNoTx is not compatible with OrientBatchGraph so use it plain:

OrientGraphNoTx	graph	=	new	OrientGraphNoTx("local:/tmp/mydb");

Avoid transactions if you can

1142



Even if you can model your graph with only the entities (V)ertex and (E)dge it's much
better to use schema for your types extending Vertex and Edge classes. In this way
traversing will be faster and vertices and edges will be split on different files. For more
information look at: Graph Schema.

Example:

OClass	account	=	graph.createVertexType("Account");
Vertex	v	=	graph.addVertex("class:Account");

Use the schema

1143



If you've your own ID on vertices and you need to lookup them to create edges then
create an index against it:

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("class",	"Account"));

If the ID is unique then create an UNIQUE index that is much faster and lighter:

graph.createKeyIndex("id",	Vertex.class,	new	Parameter("type",	"UNIQUE"),	new	Parameter("class",	"Account"));

To lookup vertices by ID:

for(	Vertex	v	:	graph.getVertices("Account.id",	"23876JS2")	)	{
		System.out.println("Found	vertex:	"	+	v	);
}

Use indexes to lookup vertices by an ID

1144



Every time a graph element is modified, OrientDB executes a validation to assure the
graph rules are all respected, that means:

put edge in out/in collections
put vertex in edges in/out

Now if you use the Graph API without bypassing graph element manipulation this could
be turned off with a huge gain in performance:

graph.setValidationEnabled(false);

Disable validation

1145



You can avoid the creation of a new ODocument for each new vertex by reusing it with
ODocument.reset() method that clears the instance making it ready for a new insert
operation. Bear in mind that you will need to assign the document with the proper class
after resetting as it is done in the code below.

NOTE: This trick works ONLY IN NON-TRANSACTIONAL contexts, because during
transactions the documents could be kept in memory until commit.

Example:

db.declareIntent(	new	OIntentMassiveInsert()	);

ODocument	doc	=	db.createVertex("myVertex");
for(	int	i	=	0;	i	<	1000000;	++i	){
		doc.reset();
		doc.setClassName("myVertex");
		doc.field("id",	i);
		doc.field("name",	"Jason");
		doc.save();
}

db.declareIntent(	null	);

Reduce vertex objects

1146



Graph Database, by default, caches the most used elements. For massive insertion is
strongly suggested to disable cache to avoid to keep all the element in memory. Massive
Insert Intent automatically sets it to false.

graph.setRetainObjects(false);

Cache management

1147



This guide is specific for the Document Database. Please be sure to read the generic
guide to the Performance-Tuning.

Tuning the Document API

1148



See Generic improvement on massive insertion.

You can avoid the creation of a new ODocument for each insertion by using the
ODocument.reset() method that clears the instance making it ready for a new insert
operation. Bear in mind that you will need to assign the document with the proper class
after resetting as it is done in the code below.

NOTE: This trick works ONLY IN NON-TRANSACTIONAL contexts, because during
transactions the documents could be kept in memory until commit.

Example:

db.declareIntent(	new	OIntentMassiveInsert()	);

ODocument	doc	=	new	ODocument(db);
for(	int	i	=	0;	i	<	1000000;	++i	){
		doc.reset();
		doc.setClassname("Customer");
		doc.field("id",	i);
		doc.field("name",	"Jason");
		doc.save();
}

db.declareIntent(	null	);

Massive Insertion

Avoid document creation

1149



This guide is specific for the Object Database. Please be sure to read the generic guide
to the Performance-Tuning.

Tuning the Object API

1150



See Generic improvement on massive insertion.

Massive Insertion

1151



OrientDB Enterprise Edition comes with a profiler that collects all the metrics about the
engine and the system where is running.

Profiler

1152



When you incur in problems, the best way to produce information about OrientDB is
activating a regular dump of the profiler. Set this configuration variable at start:

java	...	-Dprofiler.autoDump.reset=true	-Dprofiler.autoDump.interval=60	-Dprofiler.enabled=true	...

This will dump the profiler in the console every 60 seconds and resets the metrics after
the dump. For more information about settings look at Parameters.

Automatic dump

1153



http://<server>[<:port>]/profiler/<command>/[<config>]|[<from>/<to>]

Where:

server is the server where OrientDB is running
port is the http port, OrientDB listens at 2480 by default
command, is the command between:

realtime to retrieve realtime information
last to retrieve realtime information
archive to retrieve archived profiling
summary to retrieve summary of past profiling
start to start profiling
stop to stop profiling
reset to reset the profiler (equals to stop+start)
status to know the status of profiler
configure to configure profiling
metadata to retrieve metadata

Example:

http://localhost:2480/profiler/realtime

Retrieve profiler metrics via HTTP

1154



Chrono are recording of operation. Each Chrono has the following values:

last, as the last time recorded
min, as the minimum time recorded
max, as the maximum time recorded
average, as the average time recorded
total, as the total time recorded
entries, as the number of times the metric has been recorded

It's a counter as long value that records resources.

Are generic values of any type between the supported ones: string, number, boolean or
null.

A hook value is not collected in central way, but it's gathered at runtime by calling the
hooks as callbacks.

Metric type

Chrono

Counter

HookValues

1155



Follows the main categories of metrics:

	db.<db-name>	: database related metrics
	db.<db-name>.cache	: metrics about db's caching
	db.<db-name>.index	: metrics about db's indexes
	system	: system metrics like CPU, memory, OS, etc.
	system.disk	: File system metrics
	process	: not strictly related to database but to the process (JVM) that is running
OrientDB as client, server or embedded
	process.network	: network metrics
	process.runtime	: process's runtime information like memory used, etc
	server	: server related metrics

Example of profiler values extracted from the server after test suite is run
(http://localhost:2480/profiler/realtime):

{
				"realtime":	{
								"from":	1344531312356,
								"to":	9223372036854776000,
								"hookValues":	{
												"db.0$db.cache.level1.current":	0,
												"db.0$db.cache.level1.enabled":	false,
												"db.0$db.cache.level1.max":	-1,
												"db.0$db.cache.level2.current":	0,
												"db.0$db.cache.level2.enabled":	true,
												"db.0$db.cache.level2.max":	-1,
												"db.0$db.data.holeSize":	0,
												"db.0$db.data.holes":	0,
												"db.0$db.index.dictionary.entryPointSize":	64,
												"db.0$db.index.dictionary.items":	0,
												"db.0$db.index.dictionary.maxUpdateBeforeSave":	5000,
												"db.0$db.index.dictionary.optimizationThreshold":	100000,
												"db.1$db.cache.level1.current":	0,
												"db.1$db.cache.level1.enabled":	false,
												"db.1$db.cache.level1.max":	-1,
												"db.1$db.cache.level2.current":	0,
												"db.1$db.cache.level2.enabled":	true,
												"db.1$db.cache.level2.max":	-1,
												"db.1$db.data.holeSize":	0,
												"db.1$db.data.holes":	0,
												"db.1$db.index.dictionary.entryPointSize":	64,
												"db.1$db.index.dictionary.items":	0,
												"db.1$db.index.dictionary.maxUpdateBeforeSave":	5000,
												"db.1$db.index.dictionary.optimizationThreshold":	100000,
												"db.2$db.cache.level1.current":	0,
												"db.2$db.cache.level1.enabled":	false,

Metric main categories

1156

http://localhost:2480/profiler/realtime


												"db.2$db.cache.level1.max":	-1,
												"db.2$db.cache.level2.current":	0,
												"db.2$db.cache.level2.enabled":	true,
												"db.2$db.cache.level2.max":	-1,
												"db.2$db.data.holeSize":	0,
												"db.2$db.data.holes":	0,
												"db.2$db.index.dictionary.entryPointSize":	64,
												"db.2$db.index.dictionary.items":	0,
												"db.2$db.index.dictionary.maxUpdateBeforeSave":	5000,
												"db.2$db.index.dictionary.optimizationThreshold":	100000,
												"db.demo.cache.level1.current":	0,
												"db.demo.cache.level1.enabled":	false,
												"db.demo.cache.level1.max":	-1,
												"db.demo.cache.level2.current":	20520,
												"db.demo.cache.level2.enabled":	true,
												"db.demo.cache.level2.max":	-1,
												"db.demo.data.holeSize":	47553,
												"db.demo.data.holes":	24,
												"db.demo.index.BaseTestClass.testParentProperty.entryPointSize":	64,
												"db.demo.index.BaseTestClass.testParentProperty.items":	2,
												"db.demo.index.BaseTestClass.testParentProperty.maxUpdateBeforeSave":	5000,
												"db.demo.index.BaseTestClass.testParentProperty.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestCompositeEmbeddedList.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeEmbeddedList.items":	0,
												"db.demo.index.ClassIndexTestCompositeEmbeddedList.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestCompositeEmbeddedList.optimizationThreshold":	100000
												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.items":	0,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMap.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.items":	0,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.maxUpdateBeforeSave":	5000
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByKey.optimizationThreshold":	100000
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.items":	0,
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.maxUpdateBeforeSave":	5000
												"db.demo.index.ClassIndexTestCompositeEmbeddedMapByValue.optimizationThreshold":	
												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.items":	0,
												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestCompositeEmbeddedSet.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestCompositeLinkList.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeLinkList.items":	0,
												"db.demo.index.ClassIndexTestCompositeLinkList.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestCompositeLinkList.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.items":	0,
												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestCompositeLinkMapByValue.optimizationThreshold":	100000
												"db.demo.index.ClassIndexTestCompositeOne.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeOne.items":	0,
												"db.demo.index.ClassIndexTestCompositeOne.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestCompositeOne.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestCompositeTwo.entryPointSize":	64,
												"db.demo.index.ClassIndexTestCompositeTwo.items":	0,
												"db.demo.index.ClassIndexTestCompositeTwo.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestCompositeTwo.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestDictionaryIndex.entryPointSize":	64,

1157



												"db.demo.index.ClassIndexTestDictionaryIndex.items":	0,
												"db.demo.index.ClassIndexTestDictionaryIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestDictionaryIndex.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestFulltextIndex.entryPointSize":	64,
												"db.demo.index.ClassIndexTestFulltextIndex.items":	0,
												"db.demo.index.ClassIndexTestFulltextIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestFulltextIndex.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestNotUniqueIndex.entryPointSize":	64,
												"db.demo.index.ClassIndexTestNotUniqueIndex.items":	0,
												"db.demo.index.ClassIndexTestNotUniqueIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestNotUniqueIndex.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestParentPropertyNine.entryPointSize":	64,
												"db.demo.index.ClassIndexTestParentPropertyNine.items":	0,
												"db.demo.index.ClassIndexTestParentPropertyNine.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestParentPropertyNine.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.entryPointSize":	64,
												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.items":	0,
												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestPropertyByKeyEmbeddedMap.optimizationThreshold":	100000
												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.entryPointSize":	64,
												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.items":	0,
												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.maxUpdateBeforeSave":	5000
												"db.demo.index.ClassIndexTestPropertyByValueEmbeddedMap.optimizationThreshold":	100000
												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.entryPointSize":	64,
												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.items":	0,
												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestPropertyEmbeddedMap.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestPropertyLinkedMap.entryPointSize":	64,
												"db.demo.index.ClassIndexTestPropertyLinkedMap.items":	0,
												"db.demo.index.ClassIndexTestPropertyLinkedMap.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestPropertyLinkedMap.optimizationThreshold":	100000,
												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.entryPointSize":	64,
												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.items":	0,
												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestPropertyLinkedMapByKey.optimizationThreshold":	100000
												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.entryPointSize":	64,
												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.items":	0,
												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestPropertyLinkedMapByValue.optimizationThreshold":	100000
												"db.demo.index.ClassIndexTestPropertyOne.entryPointSize":	64,
												"db.demo.index.ClassIndexTestPropertyOne.items":	0,
												"db.demo.index.ClassIndexTestPropertyOne.maxUpdateBeforeSave":	5000,
												"db.demo.index.ClassIndexTestPropertyOne.optimizationThreshold":	100000,
												"db.demo.index.Collector.stringCollection.entryPointSize":	64,
												"db.demo.index.Collector.stringCollection.items":	0,
												"db.demo.index.Collector.stringCollection.maxUpdateBeforeSave":	5000,
												"db.demo.index.Collector.stringCollection.optimizationThreshold":	100000,
												"db.demo.index.DropPropertyIndexCompositeIndex.entryPointSize":	64,
												"db.demo.index.DropPropertyIndexCompositeIndex.items":	0,
												"db.demo.index.DropPropertyIndexCompositeIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.DropPropertyIndexCompositeIndex.optimizationThreshold":	100000,
												"db.demo.index.Fruit.color.entryPointSize":	64,
												"db.demo.index.Fruit.color.items":	0,
												"db.demo.index.Fruit.color.maxUpdateBeforeSave":	5000,
												"db.demo.index.Fruit.color.optimizationThreshold":	100000,
												"db.demo.index.IndexCountPlusCondition.entryPointSize":	64,
												"db.demo.index.IndexCountPlusCondition.items":	5,
												"db.demo.index.IndexCountPlusCondition.maxUpdateBeforeSave":	5000,
												"db.demo.index.IndexCountPlusCondition.optimizationThreshold":	100000,

1158



												"db.demo.index.IndexNotUniqueIndexKeySize.entryPointSize":	64,
												"db.demo.index.IndexNotUniqueIndexKeySize.items":	5,
												"db.demo.index.IndexNotUniqueIndexKeySize.maxUpdateBeforeSave":	5000,
												"db.demo.index.IndexNotUniqueIndexKeySize.optimizationThreshold":	100000,
												"db.demo.index.IndexNotUniqueIndexSize.entryPointSize":	64,
												"db.demo.index.IndexNotUniqueIndexSize.items":	5,
												"db.demo.index.IndexNotUniqueIndexSize.maxUpdateBeforeSave":	5000,
												"db.demo.index.IndexNotUniqueIndexSize.optimizationThreshold":	100000,
												"db.demo.index.MapPoint.x.entryPointSize":	64,
												"db.demo.index.MapPoint.x.items":	9999,
												"db.demo.index.MapPoint.x.maxUpdateBeforeSave":	5000,
												"db.demo.index.MapPoint.x.optimizationThreshold":	100000,
												"db.demo.index.MapPoint.y.entryPointSize":	64,
												"db.demo.index.MapPoint.y.items":	10000,
												"db.demo.index.MapPoint.y.maxUpdateBeforeSave":	5000,
												"db.demo.index.MapPoint.y.optimizationThreshold":	100000,
												"db.demo.index.MyFruit.color.entryPointSize":	64,
												"db.demo.index.MyFruit.color.items":	10,
												"db.demo.index.MyFruit.color.maxUpdateBeforeSave":	5000,
												"db.demo.index.MyFruit.color.optimizationThreshold":	100000,
												"db.demo.index.MyFruit.flavor.entryPointSize":	64,
												"db.demo.index.MyFruit.flavor.items":	0,
												"db.demo.index.MyFruit.flavor.maxUpdateBeforeSave":	5000,
												"db.demo.index.MyFruit.flavor.optimizationThreshold":	100000,
												"db.demo.index.MyFruit.name.entryPointSize":	64,
												"db.demo.index.MyFruit.name.items":	5000,
												"db.demo.index.MyFruit.name.maxUpdateBeforeSave":	5000,
												"db.demo.index.MyFruit.name.optimizationThreshold":	100000,
												"db.demo.index.MyProfile.name.entryPointSize":	64,
												"db.demo.index.MyProfile.name.items":	3,
												"db.demo.index.MyProfile.name.maxUpdateBeforeSave":	5000,
												"db.demo.index.MyProfile.name.optimizationThreshold":	100000,
												"db.demo.index.Profile.hash.entryPointSize":	64,
												"db.demo.index.Profile.hash.items":	5,
												"db.demo.index.Profile.hash.maxUpdateBeforeSave":	5000,
												"db.demo.index.Profile.hash.optimizationThreshold":	100000,
												"db.demo.index.Profile.name.entryPointSize":	64,
												"db.demo.index.Profile.name.items":	20,
												"db.demo.index.Profile.name.maxUpdateBeforeSave":	5000,
												"db.demo.index.Profile.name.optimizationThreshold":	100000,
												"db.demo.index.Profile.nick.entryPointSize":	64,
												"db.demo.index.Profile.nick.items":	38,
												"db.demo.index.Profile.nick.maxUpdateBeforeSave":	5000,
												"db.demo.index.Profile.nick.optimizationThreshold":	100000,
												"db.demo.index.PropertyIndexFirstIndex.entryPointSize":	64,
												"db.demo.index.PropertyIndexFirstIndex.items":	0,
												"db.demo.index.PropertyIndexFirstIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.PropertyIndexFirstIndex.optimizationThreshold":	100000,
												"db.demo.index.PropertyIndexSecondIndex.entryPointSize":	64,
												"db.demo.index.PropertyIndexSecondIndex.items":	0,
												"db.demo.index.PropertyIndexSecondIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.PropertyIndexSecondIndex.optimizationThreshold":	100000,
												"db.demo.index.PropertyIndexTestClass.prop1.entryPointSize":	64,
												"db.demo.index.PropertyIndexTestClass.prop1.items":	0,
												"db.demo.index.PropertyIndexTestClass.prop1.maxUpdateBeforeSave":	5000,
												"db.demo.index.PropertyIndexTestClass.prop1.optimizationThreshold":	100000,
												"db.demo.index.SQLDropClassCompositeIndex.entryPointSize":	64,
												"db.demo.index.SQLDropClassCompositeIndex.items":	0,
												"db.demo.index.SQLDropClassCompositeIndex.maxUpdateBeforeSave":	5000,

1159



												"db.demo.index.SQLDropClassCompositeIndex.optimizationThreshold":	100000,
												"db.demo.index.SQLDropIndexCompositeIndex.entryPointSize":	64,
												"db.demo.index.SQLDropIndexCompositeIndex.items":	0,
												"db.demo.index.SQLDropIndexCompositeIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.SQLDropIndexCompositeIndex.optimizationThreshold":	100000,
												"db.demo.index.SQLDropIndexTestClass.prop1.entryPointSize":	64,
												"db.demo.index.SQLDropIndexTestClass.prop1.items":	0,
												"db.demo.index.SQLDropIndexTestClass.prop1.maxUpdateBeforeSave":	5000,
												"db.demo.index.SQLDropIndexTestClass.prop1.optimizationThreshold":	100000,
												"db.demo.index.SQLDropIndexWithoutClass.entryPointSize":	64,
												"db.demo.index.SQLDropIndexWithoutClass.items":	0,
												"db.demo.index.SQLDropIndexWithoutClass.maxUpdateBeforeSave":	5000,
												"db.demo.index.SQLDropIndexWithoutClass.optimizationThreshold":	100000,
												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.entryPointSize":	64,
												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.items":	0,
												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.maxUpdateBeforeSave":	
												"db.demo.index.SQLSelectCompositeIndexDirectSearchTestIndex.optimizationThreshold
												"db.demo.index.SchemaSharedIndexCompositeIndex.entryPointSize":	64,
												"db.demo.index.SchemaSharedIndexCompositeIndex.items":	0,
												"db.demo.index.SchemaSharedIndexCompositeIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.SchemaSharedIndexCompositeIndex.optimizationThreshold":	100000,
												"db.demo.index.TRPerson.name.entryPointSize":	64,
												"db.demo.index.TRPerson.name.items":	4,
												"db.demo.index.TRPerson.name.maxUpdateBeforeSave":	5000,
												"db.demo.index.TRPerson.name.optimizationThreshold":	100000,
												"db.demo.index.TRPerson.surname.entryPointSize":	64,
												"db.demo.index.TRPerson.surname.items":	3,
												"db.demo.index.TRPerson.surname.maxUpdateBeforeSave":	5000,
												"db.demo.index.TRPerson.surname.optimizationThreshold":	100000,
												"db.demo.index.TestClass.name.entryPointSize":	64,
												"db.demo.index.TestClass.name.items":	2,
												"db.demo.index.TestClass.name.maxUpdateBeforeSave":	5000,
												"db.demo.index.TestClass.name.optimizationThreshold":	100000,
												"db.demo.index.TestClass.testLink.entryPointSize":	64,
												"db.demo.index.TestClass.testLink.items":	2,
												"db.demo.index.TestClass.testLink.maxUpdateBeforeSave":	5000,
												"db.demo.index.TestClass.testLink.optimizationThreshold":	100000,
												"db.demo.index.TransactionUniqueIndexWithDotTest.label.entryPointSize":	64,
												"db.demo.index.TransactionUniqueIndexWithDotTest.label.items":	1,
												"db.demo.index.TransactionUniqueIndexWithDotTest.label.maxUpdateBeforeSave":	5000
												"db.demo.index.TransactionUniqueIndexWithDotTest.label.optimizationThreshold":	100000
												"db.demo.index.Whiz.account.entryPointSize":	64,
												"db.demo.index.Whiz.account.items":	1,
												"db.demo.index.Whiz.account.maxUpdateBeforeSave":	5000,
												"db.demo.index.Whiz.account.optimizationThreshold":	100000,
												"db.demo.index.Whiz.text.entryPointSize":	64,
												"db.demo.index.Whiz.text.items":	275,
												"db.demo.index.Whiz.text.maxUpdateBeforeSave":	5000,
												"db.demo.index.Whiz.text.optimizationThreshold":	100000,
												"db.demo.index.a.entryPointSize":	64,
												"db.demo.index.a.items":	0,
												"db.demo.index.a.maxUpdateBeforeSave":	5000,
												"db.demo.index.a.optimizationThreshold":	100000,
												"db.demo.index.anotherproperty.entryPointSize":	64,
												"db.demo.index.anotherproperty.items":	0,
												"db.demo.index.anotherproperty.maxUpdateBeforeSave":	5000,
												"db.demo.index.anotherproperty.optimizationThreshold":	100000,
												"db.demo.index.byte-array-manualIndex-notunique.entryPointSize":	64,
												"db.demo.index.byte-array-manualIndex-notunique.items":	6,

1160



												"db.demo.index.byte-array-manualIndex-notunique.maxUpdateBeforeSave":	5000,
												"db.demo.index.byte-array-manualIndex-notunique.optimizationThreshold":	100000,
												"db.demo.index.byte-array-manualIndex.entryPointSize":	64,
												"db.demo.index.byte-array-manualIndex.items":	11,
												"db.demo.index.byte-array-manualIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.byte-array-manualIndex.optimizationThreshold":	100000,
												"db.demo.index.byteArrayKeyIndex.entryPointSize":	64,
												"db.demo.index.byteArrayKeyIndex.items":	2,
												"db.demo.index.byteArrayKeyIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.byteArrayKeyIndex.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerComposite.entryPointSize":	64,
												"db.demo.index.classIndexManagerComposite.items":	0,
												"db.demo.index.classIndexManagerComposite.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerComposite.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerTestClass.prop1.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestClass.prop1.items":	0,
												"db.demo.index.classIndexManagerTestClass.prop1.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerTestClass.prop1.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerTestClass.prop2.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestClass.prop2.items":	0,
												"db.demo.index.classIndexManagerTestClass.prop2.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerTestClass.prop2.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerTestClass.prop4.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestClass.prop4.items":	0,
												"db.demo.index.classIndexManagerTestClass.prop4.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerTestClass.prop4.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerTestClass.prop6.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestClass.prop6.items":	0,
												"db.demo.index.classIndexManagerTestClass.prop6.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerTestClass.prop6.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerTestIndexByKey.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestIndexByKey.items":	0,
												"db.demo.index.classIndexManagerTestIndexByKey.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerTestIndexByKey.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerTestIndexByValue.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestIndexByValue.items":	0,
												"db.demo.index.classIndexManagerTestIndexByValue.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerTestIndexByValue.optimizationThreshold":	100000,
												"db.demo.index.classIndexManagerTestIndexValueAndCollection.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestIndexValueAndCollection.items":	0,
												"db.demo.index.classIndexManagerTestIndexValueAndCollection.maxUpdateBeforeSave":	
												"db.demo.index.classIndexManagerTestIndexValueAndCollection.optimizationThreshold
												"db.demo.index.classIndexManagerTestSuperClass.prop0.entryPointSize":	64,
												"db.demo.index.classIndexManagerTestSuperClass.prop0.items":	0,
												"db.demo.index.classIndexManagerTestSuperClass.prop0.maxUpdateBeforeSave":	5000,
												"db.demo.index.classIndexManagerTestSuperClass.prop0.optimizationThreshold":	100000
												"db.demo.index.compositeByteArrayKey.entryPointSize":	64,
												"db.demo.index.compositeByteArrayKey.items":	4,
												"db.demo.index.compositeByteArrayKey.maxUpdateBeforeSave":	5000,
												"db.demo.index.compositeByteArrayKey.optimizationThreshold":	100000,
												"db.demo.index.compositeIndexWithoutSchema.entryPointSize":	64,
												"db.demo.index.compositeIndexWithoutSchema.items":	0,
												"db.demo.index.compositeIndexWithoutSchema.maxUpdateBeforeSave":	5000,
												"db.demo.index.compositeIndexWithoutSchema.optimizationThreshold":	100000,
												"db.demo.index.compositeone.entryPointSize":	64,
												"db.demo.index.compositeone.items":	0,
												"db.demo.index.compositeone.maxUpdateBeforeSave":	5000,
												"db.demo.index.compositeone.optimizationThreshold":	100000,
												"db.demo.index.compositetwo.entryPointSize":	64,

1161



												"db.demo.index.compositetwo.items":	0,
												"db.demo.index.compositetwo.maxUpdateBeforeSave":	5000,
												"db.demo.index.compositetwo.optimizationThreshold":	100000,
												"db.demo.index.curotorCompositeIndex.entryPointSize":	64,
												"db.demo.index.curotorCompositeIndex.items":	0,
												"db.demo.index.curotorCompositeIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.curotorCompositeIndex.optimizationThreshold":	100000,
												"db.demo.index.dictionary.entryPointSize":	64,
												"db.demo.index.dictionary.items":	2,
												"db.demo.index.dictionary.maxUpdateBeforeSave":	5000,
												"db.demo.index.dictionary.optimizationThreshold":	100000,
												"db.demo.index.diplomaThesisUnique.entryPointSize":	64,
												"db.demo.index.diplomaThesisUnique.items":	3,
												"db.demo.index.diplomaThesisUnique.maxUpdateBeforeSave":	5000,
												"db.demo.index.diplomaThesisUnique.optimizationThreshold":	100000,
												"db.demo.index.equalityIdx.entryPointSize":	64,
												"db.demo.index.equalityIdx.items":	0,
												"db.demo.index.equalityIdx.maxUpdateBeforeSave":	5000,
												"db.demo.index.equalityIdx.optimizationThreshold":	100000,
												"db.demo.index.idx.entryPointSize":	64,
												"db.demo.index.idx.items":	2,
												"db.demo.index.idx.maxUpdateBeforeSave":	5000,
												"db.demo.index.idx.optimizationThreshold":	100000,
												"db.demo.index.idxTerm.entryPointSize":	64,
												"db.demo.index.idxTerm.items":	1,
												"db.demo.index.idxTerm.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTerm.optimizationThreshold":	100000,
												"db.demo.index.idxTransactionUniqueIndexTest.entryPointSize":	64,
												"db.demo.index.idxTransactionUniqueIndexTest.items":	1,
												"db.demo.index.idxTransactionUniqueIndexTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTransactionUniqueIndexTest.optimizationThreshold":	100000,
												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.entryPointSize":	64,
												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.items":	0,
												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTxAwareMultiValueGetEntriesTest.optimizationThreshold":	100000,
												"db.demo.index.idxTxAwareMultiValueGetTest.entryPointSize":	64,
												"db.demo.index.idxTxAwareMultiValueGetTest.items":	0,
												"db.demo.index.idxTxAwareMultiValueGetTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTxAwareMultiValueGetTest.optimizationThreshold":	100000,
												"db.demo.index.idxTxAwareMultiValueGetValuesTest.entryPointSize":	64,
												"db.demo.index.idxTxAwareMultiValueGetValuesTest.items":	0,
												"db.demo.index.idxTxAwareMultiValueGetValuesTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTxAwareMultiValueGetValuesTest.optimizationThreshold":	100000,
												"db.demo.index.idxTxAwareOneValueGetEntriesTest.entryPointSize":	64,
												"db.demo.index.idxTxAwareOneValueGetEntriesTest.items":	0,
												"db.demo.index.idxTxAwareOneValueGetEntriesTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTxAwareOneValueGetEntriesTest.optimizationThreshold":	100000,
												"db.demo.index.idxTxAwareOneValueGetTest.entryPointSize":	64,
												"db.demo.index.idxTxAwareOneValueGetTest.items":	0,
												"db.demo.index.idxTxAwareOneValueGetTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTxAwareOneValueGetTest.optimizationThreshold":	100000,
												"db.demo.index.idxTxAwareOneValueGetValuesTest.entryPointSize":	64,
												"db.demo.index.idxTxAwareOneValueGetValuesTest.items":	0,
												"db.demo.index.idxTxAwareOneValueGetValuesTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.idxTxAwareOneValueGetValuesTest.optimizationThreshold":	100000,
												"db.demo.index.inIdx.entryPointSize":	64,
												"db.demo.index.inIdx.items":	0,
												"db.demo.index.inIdx.maxUpdateBeforeSave":	5000,
												"db.demo.index.inIdx.optimizationThreshold":	100000,

1162



												"db.demo.index.indexForMap.entryPointSize":	64,
												"db.demo.index.indexForMap.items":	0,
												"db.demo.index.indexForMap.maxUpdateBeforeSave":	5000,
												"db.demo.index.indexForMap.optimizationThreshold":	100000,
												"db.demo.index.indexWithoutSchema.entryPointSize":	64,
												"db.demo.index.indexWithoutSchema.items":	0,
												"db.demo.index.indexWithoutSchema.maxUpdateBeforeSave":	5000,
												"db.demo.index.indexWithoutSchema.optimizationThreshold":	100000,
												"db.demo.index.indexfive.entryPointSize":	64,
												"db.demo.index.indexfive.items":	0,
												"db.demo.index.indexfive.maxUpdateBeforeSave":	5000,
												"db.demo.index.indexfive.optimizationThreshold":	100000,
												"db.demo.index.indexfour.entryPointSize":	64,
												"db.demo.index.indexfour.items":	0,
												"db.demo.index.indexfour.maxUpdateBeforeSave":	5000,
												"db.demo.index.indexfour.optimizationThreshold":	100000,
												"db.demo.index.indexone.entryPointSize":	64,
												"db.demo.index.indexone.items":	0,
												"db.demo.index.indexone.maxUpdateBeforeSave":	5000,
												"db.demo.index.indexone.optimizationThreshold":	100000,
												"db.demo.index.indexsix.entryPointSize":	64,
												"db.demo.index.indexsix.items":	0,
												"db.demo.index.indexsix.maxUpdateBeforeSave":	5000,
												"db.demo.index.indexsix.optimizationThreshold":	100000,
												"db.demo.index.indexthree.entryPointSize":	64,
												"db.demo.index.indexthree.items":	0,
												"db.demo.index.indexthree.maxUpdateBeforeSave":	5000,
												"db.demo.index.indexthree.optimizationThreshold":	100000,
												"db.demo.index.indextwo.entryPointSize":	64,
												"db.demo.index.indextwo.items":	0,
												"db.demo.index.indextwo.maxUpdateBeforeSave":	5000,
												"db.demo.index.indextwo.optimizationThreshold":	100000,
												"db.demo.index.linkCollectionIndex.entryPointSize":	64,
												"db.demo.index.linkCollectionIndex.items":	0,
												"db.demo.index.linkCollectionIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.linkCollectionIndex.optimizationThreshold":	100000,
												"db.demo.index.lpirtCurator.name.entryPointSize":	64,
												"db.demo.index.lpirtCurator.name.items":	0,
												"db.demo.index.lpirtCurator.name.maxUpdateBeforeSave":	5000,
												"db.demo.index.lpirtCurator.name.optimizationThreshold":	100000,
												"db.demo.index.lpirtCurator.salary.entryPointSize":	64,
												"db.demo.index.lpirtCurator.salary.items":	0,
												"db.demo.index.lpirtCurator.salary.maxUpdateBeforeSave":	5000,
												"db.demo.index.lpirtCurator.salary.optimizationThreshold":	100000,
												"db.demo.index.lpirtDiploma.GPA.entryPointSize":	64,
												"db.demo.index.lpirtDiploma.GPA.items":	3,
												"db.demo.index.lpirtDiploma.GPA.maxUpdateBeforeSave":	5000,
												"db.demo.index.lpirtDiploma.GPA.optimizationThreshold":	100000,
												"db.demo.index.lpirtDiploma.thesis.entryPointSize":	64,
												"db.demo.index.lpirtDiploma.thesis.items":	54,
												"db.demo.index.lpirtDiploma.thesis.maxUpdateBeforeSave":	5000,
												"db.demo.index.lpirtDiploma.thesis.optimizationThreshold":	100000,
												"db.demo.index.lpirtGroup.curator.entryPointSize":	64,
												"db.demo.index.lpirtGroup.curator.items":	0,
												"db.demo.index.lpirtGroup.curator.maxUpdateBeforeSave":	5000,
												"db.demo.index.lpirtGroup.curator.optimizationThreshold":	100000,
												"db.demo.index.lpirtGroup.name.entryPointSize":	64,
												"db.demo.index.lpirtGroup.name.items":	0,
												"db.demo.index.lpirtGroup.name.maxUpdateBeforeSave":	5000,

1163



												"db.demo.index.lpirtGroup.name.optimizationThreshold":	100000,
												"db.demo.index.lpirtStudent.group.entryPointSize":	64,
												"db.demo.index.lpirtStudent.group.items":	0,
												"db.demo.index.lpirtStudent.group.maxUpdateBeforeSave":	5000,
												"db.demo.index.lpirtStudent.group.optimizationThreshold":	100000,
												"db.demo.index.lpirtStudent.name.entryPointSize":	64,
												"db.demo.index.lpirtStudent.name.items":	0,
												"db.demo.index.lpirtStudent.name.maxUpdateBeforeSave":	5000,
												"db.demo.index.lpirtStudent.name.optimizationThreshold":	100000,
												"db.demo.index.manualTxIndexTest.entryPointSize":	64,
												"db.demo.index.manualTxIndexTest.items":	1,
												"db.demo.index.manualTxIndexTest.maxUpdateBeforeSave":	5000,
												"db.demo.index.manualTxIndexTest.optimizationThreshold":	100000,
												"db.demo.index.mapIndexTestKey.entryPointSize":	64,
												"db.demo.index.mapIndexTestKey.items":	0,
												"db.demo.index.mapIndexTestKey.maxUpdateBeforeSave":	5000,
												"db.demo.index.mapIndexTestKey.optimizationThreshold":	100000,
												"db.demo.index.mapIndexTestValue.entryPointSize":	64,
												"db.demo.index.mapIndexTestValue.items":	0,
												"db.demo.index.mapIndexTestValue.maxUpdateBeforeSave":	5000,
												"db.demo.index.mapIndexTestValue.optimizationThreshold":	100000,
												"db.demo.index.newV.f_int.entryPointSize":	64,
												"db.demo.index.newV.f_int.items":	3,
												"db.demo.index.newV.f_int.maxUpdateBeforeSave":	5000,
												"db.demo.index.newV.f_int.optimizationThreshold":	100000,
												"db.demo.index.nullkey.entryPointSize":	64,
												"db.demo.index.nullkey.items":	0,
												"db.demo.index.nullkey.maxUpdateBeforeSave":	5000,
												"db.demo.index.nullkey.optimizationThreshold":	100000,
												"db.demo.index.nullkeytwo.entryPointSize":	64,
												"db.demo.index.nullkeytwo.items":	0,
												"db.demo.index.nullkeytwo.maxUpdateBeforeSave":	5000,
												"db.demo.index.nullkeytwo.optimizationThreshold":	100000,
												"db.demo.index.propOne1.entryPointSize":	64,
												"db.demo.index.propOne1.items":	0,
												"db.demo.index.propOne1.maxUpdateBeforeSave":	5000,
												"db.demo.index.propOne1.optimizationThreshold":	100000,
												"db.demo.index.propOne2.entryPointSize":	64,
												"db.demo.index.propOne2.items":	0,
												"db.demo.index.propOne2.maxUpdateBeforeSave":	5000,
												"db.demo.index.propOne2.optimizationThreshold":	100000,
												"db.demo.index.propOne3.entryPointSize":	64,
												"db.demo.index.propOne3.items":	0,
												"db.demo.index.propOne3.maxUpdateBeforeSave":	5000,
												"db.demo.index.propOne3.optimizationThreshold":	100000,
												"db.demo.index.propOne4.entryPointSize":	64,
												"db.demo.index.propOne4.items":	0,
												"db.demo.index.propOne4.maxUpdateBeforeSave":	5000,
												"db.demo.index.propOne4.optimizationThreshold":	100000,
												"db.demo.index.propertyone.entryPointSize":	64,
												"db.demo.index.propertyone.items":	0,
												"db.demo.index.propertyone.maxUpdateBeforeSave":	5000,
												"db.demo.index.propertyone.optimizationThreshold":	100000,
												"db.demo.index.simplekey.entryPointSize":	64,
												"db.demo.index.simplekey.items":	0,
												"db.demo.index.simplekey.maxUpdateBeforeSave":	5000,
												"db.demo.index.simplekey.optimizationThreshold":	100000,
												"db.demo.index.simplekeytwo.entryPointSize":	64,
												"db.demo.index.simplekeytwo.items":	0,

1164



												"db.demo.index.simplekeytwo.maxUpdateBeforeSave":	5000,
												"db.demo.index.simplekeytwo.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexCompositeIndex.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexCompositeIndex.items":	0,
												"db.demo.index.sqlCreateIndexCompositeIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexCompositeIndex.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexCompositeIndex2.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexCompositeIndex2.items":	0,
												"db.demo.index.sqlCreateIndexCompositeIndex2.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexCompositeIndex2.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexEmbeddedListIndex.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexEmbeddedListIndex.items":	0,
												"db.demo.index.sqlCreateIndexEmbeddedListIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexEmbeddedListIndex.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.items":	0,
												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexEmbeddedMapByKeyIndex.optimizationThreshold":	100000
												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.items":	0,
												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexEmbeddedMapByValueIndex.optimizationThreshold":	100000
												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.items":	0,
												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexEmbeddedMapIndex.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexTestClass.prop1.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexTestClass.prop1.items":	0,
												"db.demo.index.sqlCreateIndexTestClass.prop1.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexTestClass.prop1.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexTestClass.prop3.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexTestClass.prop3.items":	0,
												"db.demo.index.sqlCreateIndexTestClass.prop3.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexTestClass.prop3.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexTestClass.prop5.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexTestClass.prop5.items":	0,
												"db.demo.index.sqlCreateIndexTestClass.prop5.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexTestClass.prop5.optimizationThreshold":	100000,
												"db.demo.index.sqlCreateIndexWithoutClass.entryPointSize":	64,
												"db.demo.index.sqlCreateIndexWithoutClass.items":	0,
												"db.demo.index.sqlCreateIndexWithoutClass.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlCreateIndexWithoutClass.optimizationThreshold":	100000,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.entryPointSize":	64,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.maxUpdateBeforeSave":	5000,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedList.optimizationThreshold":	100000
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.entryPointSize":	64,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.maxUpdateBeforeSave":	
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedListTwoProp8.optimizationThreshold":	
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.entryPointSize":	64,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.maxUpdateBeforeSave":	5000
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKey.optimizationThreshold":	100000
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.entryPointSize":	64,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.maxUpdateBeforeSave":	
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByKeyProp8.optimizationThreshold
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.entryPointSize":	64,

1165



												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.maxUpdateBeforeSave":	5000
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValue.optimizationThreshold":	
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.entryPointSize":	64
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.maxUpdateBeforeSave
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedMapByValueProp8.optimizationThreshold
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.entryPointSize":	64,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.maxUpdateBeforeSave":	5000
												"db.demo.index.sqlSelectIndexReuseTestEmbeddedSetProp8.optimizationThreshold":	100000
												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.entryPointSize":	64,
												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.items":	0,
												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.maxUpdateBeforeSave":	
												"db.demo.index.sqlSelectIndexReuseTestProp9EmbeddedSetProp8.optimizationThreshold
												"db.demo.index.studentDiplomaAndNameIndex.entryPointSize":	64,
												"db.demo.index.studentDiplomaAndNameIndex.items":	0,
												"db.demo.index.studentDiplomaAndNameIndex.maxUpdateBeforeSave":	5000,
												"db.demo.index.studentDiplomaAndNameIndex.optimizationThreshold":	100000,
												"db.demo.index.testIdx.entryPointSize":	64,
												"db.demo.index.testIdx.items":	1,
												"db.demo.index.testIdx.maxUpdateBeforeSave":	5000,
												"db.demo.index.testIdx.optimizationThreshold":	100000,
												"db.demo.index.test_class_by_data.entryPointSize":	64,
												"db.demo.index.test_class_by_data.items":	0,
												"db.demo.index.test_class_by_data.maxUpdateBeforeSave":	5000,
												"db.demo.index.test_class_by_data.optimizationThreshold":	100000,
												"db.demo.index.twoclassproperty.entryPointSize":	64,
												"db.demo.index.twoclassproperty.items":	0,
												"db.demo.index.twoclassproperty.maxUpdateBeforeSave":	5000,
												"db.demo.index.twoclassproperty.optimizationThreshold":	100000,
												"db.demo.index.vertexA_name_idx.entryPointSize":	64,
												"db.demo.index.vertexA_name_idx.items":	2,
												"db.demo.index.vertexA_name_idx.maxUpdateBeforeSave":	5000,
												"db.demo.index.vertexA_name_idx.optimizationThreshold":	100000,
												"db.demo.index.vertexB_name_idx.entryPointSize":	64,
												"db.demo.index.vertexB_name_idx.items":	2,
												"db.demo.index.vertexB_name_idx.maxUpdateBeforeSave":	5000,
												"db.demo.index.vertexB_name_idx.optimizationThreshold":	100000,
												"db.subTest.cache.level1.current":	0,
												"db.subTest.cache.level1.enabled":	false,
												"db.subTest.cache.level1.max":	-1,
												"db.subTest.cache.level2.current":	0,
												"db.subTest.cache.level2.enabled":	false,
												"db.subTest.cache.level2.max":	-1,
												"db.subTest.data.holeSize":	0,
												"db.subTest.data.holes":	0,
												"db.subTest.index.dictionary.entryPointSize":	64,
												"db.subTest.index.dictionary.items":	0,
												"db.subTest.index.dictionary.maxUpdateBeforeSave":	5000,
												"db.subTest.index.dictionary.optimizationThreshold":	100000,
												"db.temp.cache.level1.current":	0,
												"db.temp.cache.level1.enabled":	false,
												"db.temp.cache.level1.max":	-1,
												"db.temp.cache.level2.current":	3,
												"db.temp.cache.level2.enabled":	true,
												"db.temp.cache.level2.max":	-1,
												"db.temp.index.dictionary.entryPointSize":	64,
												"db.temp.index.dictionary.items":	0,

1166



												"db.temp.index.dictionary.maxUpdateBeforeSave":	5000,
												"db.temp.index.dictionary.optimizationThreshold":	100000,
												"process.network.channel.binary./0:0:0:0:0:0:0:1:451822480.flushes":	0,
												"process.network.channel.binary./0:0:0:0:0:0:0:1:451822480.receivedBytes":	513,
												"process.network.channel.binary./0:0:0:0:0:0:0:1:451822480.transmittedBytes":	0,
												"process.network.channel.binary./127.0.0.1:451282424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451282424.receivedBytes":	98,
												"process.network.channel.binary./127.0.0.1:451282424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451292424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451292424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451292424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451352424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451352424.receivedBytes":	79,
												"process.network.channel.binary./127.0.0.1:451352424.transmittedBytes":	134,
												"process.network.channel.binary./127.0.0.1:451362424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451362424.receivedBytes":	105,
												"process.network.channel.binary./127.0.0.1:451362424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451382424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451382424.receivedBytes":	79,
												"process.network.channel.binary./127.0.0.1:451382424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451392424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451392424.receivedBytes":	79,
												"process.network.channel.binary./127.0.0.1:451392424.transmittedBytes":	134,
												"process.network.channel.binary./127.0.0.1:451402424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451402424.receivedBytes":	105,
												"process.network.channel.binary./127.0.0.1:451402424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451422424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451422424.receivedBytes":	79,
												"process.network.channel.binary./127.0.0.1:451422424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451432424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451432424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451432424.transmittedBytes":	127,
												"process.network.channel.binary./127.0.0.1:451442424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451442424.receivedBytes":	98,
												"process.network.channel.binary./127.0.0.1:451442424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451452424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451452424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451452424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451462424.flushes":	7,
												"process.network.channel.binary./127.0.0.1:451462424.receivedBytes":	194,
												"process.network.channel.binary./127.0.0.1:451462424.transmittedBytes":	2606,
												"process.network.channel.binary./127.0.0.1:451472424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451472424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451472424.transmittedBytes":	127,
												"process.network.channel.binary./127.0.0.1:451482424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451482424.receivedBytes":	98,
												"process.network.channel.binary./127.0.0.1:451482424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451492424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451492424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451492424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451502424.flushes":	7,
												"process.network.channel.binary./127.0.0.1:451502424.receivedBytes":	194,
												"process.network.channel.binary./127.0.0.1:451502424.transmittedBytes":	2606,
												"process.network.channel.binary./127.0.0.1:451512424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451512424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451512424.transmittedBytes":	127,
												"process.network.channel.binary./127.0.0.1:451522424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451522424.receivedBytes":	98,
												"process.network.channel.binary./127.0.0.1:451522424.transmittedBytes":	16,

1167



												"process.network.channel.binary./127.0.0.1:451532424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451532424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451532424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451542424.flushes":	7,
												"process.network.channel.binary./127.0.0.1:451542424.receivedBytes":	194,
												"process.network.channel.binary./127.0.0.1:451542424.transmittedBytes":	2606,
												"process.network.channel.binary./127.0.0.1:451552424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451552424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451552424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451562424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451562424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451562424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451572424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451572424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451572424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451582424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451582424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451582424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451592424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451592424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451592424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451602424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451602424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451602424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451612424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451612424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451612424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451622424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451622424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451622424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451632424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451632424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451632424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451642424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451642424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451642424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451652424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451652424.receivedBytes":	98,
												"process.network.channel.binary./127.0.0.1:451652424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451672424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451672424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451672424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451682424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451682424.receivedBytes":	98,
												"process.network.channel.binary./127.0.0.1:451682424.transmittedBytes":	16,
												"process.network.channel.binary./127.0.0.1:451692424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451692424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451692424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451702424.flushes":	76545,
												"process.network.channel.binary./127.0.0.1:451702424.receivedBytes":	4937639,
												"process.network.channel.binary./127.0.0.1:451702424.transmittedBytes":	53391585,
												"process.network.channel.binary./127.0.0.1:451712424.flushes":	3,
												"process.network.channel.binary./127.0.0.1:451712424.receivedBytes":	72,
												"process.network.channel.binary./127.0.0.1:451712424.transmittedBytes":	17,
												"process.network.channel.binary./127.0.0.1:451762424.flushes":	16176,
												"process.network.channel.binary./127.0.0.1:451762424.receivedBytes":	435578,
												"process.network.channel.binary./127.0.0.1:451762424.transmittedBytes":	7744941,
												"process.network.channel.binary./127.0.0.1:451772424.flushes":	16181,
												"process.network.channel.binary./127.0.0.1:451772424.receivedBytes":	446949,

1168



												"process.network.channel.binary./127.0.0.1:451772424.transmittedBytes":	7932617,
												"process.network.channel.binary./127.0.0.1:451782424.flushes":	16103,
												"process.network.channel.binary./127.0.0.1:451782424.receivedBytes":	437708,
												"process.network.channel.binary./127.0.0.1:451782424.transmittedBytes":	7192022,
												"process.network.channel.binary./127.0.0.1:451792424.flushes":	15663,
												"process.network.channel.binary./127.0.0.1:451792424.receivedBytes":	422013,
												"process.network.channel.binary./127.0.0.1:451792424.transmittedBytes":	1128841,
												"process.network.channel.binary.flushes":	140851,
												"process.network.channel.binary.receivedBytes":	6687263,
												"process.network.channel.binary.transmittedBytes":	77419866,
												"process.runtime.availableMemory":	311502288,
												"process.runtime.maxMemory":	939524096,
												"process.runtime.totalMemory":	442368000,
												"server.connections.actives":	101,
												"system.config.cpus":	8,
												"system.disk.C.freeSpace":	50445692928,
												"system.disk.C.totalSpace":	127928365056,
												"system.disk.C.usableSpace":	50445692928,
												"system.disk.D.freeSpace":	0,
												"system.disk.D.totalSpace":	0,
												"system.disk.D.usableSpace":	0,
												"system.disk.G.freeSpace":	12820815872,
												"system.disk.G.totalSpace":	500103213056,
												"system.disk.G.usableSpace":	12820815872,
												"system.file.mmap.mappedPages":	177,
												"system.file.mmap.nonPooledBufferUsed":	0,
												"system.file.mmap.pooledBufferCreated":	0,
												"system.file.mmap.pooledBufferUsed":	0,
												"system.file.mmap.reusedPages":	31698774,
												"system.memory.alerts":	0,
												"system.memory.stream.resize":	21154
								},
								"chronos":	{
												"db.0$db.close":	{
																"entries":	4,
																"last":	16,
																"min":	0,
																"max":	16,
																"average":	4,
																"total":	16
												},
												"db.0$db.create":	{
																"entries":	1,
																"last":	13,
																"min":	13,
																"max":	13,
																"average":	13,
																"total":	13
												},
												"db.0$db.createRecord":	{
																"entries":	10,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	6
												},
												"db.0$db.data.createHole":	{
																"entries":	14,

1169



																"last":	2,
																"min":	0,
																"max":	2,
																"average":	0,
																"total":	8
												},
												"db.0$db.data.findClosestHole":	{
																"entries":	11,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.0$db.data.move":	{
																"entries":	6,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	3
												},
												"db.0$db.data.recycled.notFound":	{
																"entries":	7,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.0$db.data.recycled.partial":	{
																"entries":	11,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.0$db.data.updateHole":	{
																"entries":	21,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	2
												},
												"db.0$db.delete":	{
																"entries":	1,
																"last":	101,
																"min":	101,
																"max":	101,
																"average":	101,
																"total":	101
												},
												"db.0$db.metadata.load":	{
																"entries":	3,
																"last":	0,
																"min":	0,
																"max":	0,

1170



																"average":	0,
																"total":	0
												},
												"db.0$db.open":	{
																"entries":	3,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.0$db.readRecord":	{
																"entries":	15,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	5
												},
												"db.0$db.updateRecord":	{
																"entries":	18,
																"last":	2,
																"min":	0,
																"max":	2,
																"average":	0,
																"total":	9
												},
												"db.1$db.close":	{
																"entries":	4,
																"last":	13,
																"min":	0,
																"max":	13,
																"average":	3,
																"total":	13
												},
												"db.1$db.create":	{
																"entries":	1,
																"last":	15,
																"min":	15,
																"max":	15,
																"average":	15,
																"total":	15
												},
												"db.1$db.createRecord":	{
																"entries":	10,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	5
												},
												"db.1$db.data.createHole":	{
																"entries":	14,
																"last":	3,
																"min":	0,
																"max":	3,
																"average":	0,
																"total":	8
												},

1171



												"db.1$db.data.findClosestHole":	{
																"entries":	11,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.1$db.data.move":	{
																"entries":	6,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	3
												},
												"db.1$db.data.recycled.notFound":	{
																"entries":	7,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.1$db.data.recycled.partial":	{
																"entries":	11,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.1$db.data.updateHole":	{
																"entries":	21,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"db.1$db.delete":	{
																"entries":	1,
																"last":	115,
																"min":	115,
																"max":	115,
																"average":	115,
																"total":	115
												},
												"db.1$db.metadata.load":	{
																"entries":	3,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.1$db.open":	{
																"entries":	3,
																"last":	0,

1172



																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.1$db.readRecord":	{
																"entries":	15,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	4
												},
												"db.1$db.updateRecord":	{
																"entries":	18,
																"last":	3,
																"min":	0,
																"max":	3,
																"average":	0,
																"total":	7
												},
												"db.2$db.close":	{
																"entries":	4,
																"last":	15,
																"min":	0,
																"max":	15,
																"average":	3,
																"total":	15
												},
												"db.2$db.create":	{
																"entries":	1,
																"last":	17,
																"min":	17,
																"max":	17,
																"average":	17,
																"total":	17
												},
												"db.2$db.createRecord":	{
																"entries":	10,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	5
												},
												"db.2$db.data.createHole":	{
																"entries":	14,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	5
												},
												"db.2$db.data.findClosestHole":	{
																"entries":	11,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,

1173



																"total":	0
												},
												"db.2$db.data.move":	{
																"entries":	6,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"db.2$db.data.recycled.notFound":	{
																"entries":	7,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.2$db.data.recycled.partial":	{
																"entries":	11,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.2$db.data.updateHole":	{
																"entries":	21,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"db.2$db.delete":	{
																"entries":	1,
																"last":	61,
																"min":	61,
																"max":	61,
																"average":	61,
																"total":	61
												},
												"db.2$db.metadata.load":	{
																"entries":	3,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.2$db.open":	{
																"entries":	3,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.2$db.readRecord":	{

1174



																"entries":	15,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"db.2$db.updateRecord":	{
																"entries":	18,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	5
												},
												"db.demo.close":	{
																"entries":	1396,
																"last":	0,
																"min":	0,
																"max":	31,
																"average":	0,
																"total":	51
												},
												"db.demo.create":	{
																"entries":	3,
																"last":	19,
																"min":	19,
																"max":	40,
																"average":	27,
																"total":	81
												},
												"db.demo.createRecord":	{
																"entries":	35716,
																"last":	0,
																"min":	0,
																"max":	12,
																"average":	0,
																"total":	1187
												},
												"db.demo.data.createHole":	{
																"entries":	58886,
																"last":	0,
																"min":	0,
																"max":	23,
																"average":	0,
																"total":	9822
												},
												"db.demo.data.findClosestHole":	{
																"entries":	51022,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	181
												},
												"db.demo.data.move":	{
																"entries":	1327946,
																"last":	0,
																"min":	0,

1175



																"max":	16,
																"average":	0,
																"total":	4091
												},
												"db.demo.data.recycled.complete":	{
																"entries":	24,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.demo.data.recycled.notFound":	{
																"entries":	16070,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	59
												},
												"db.demo.data.recycled.partial":	{
																"entries":	57638,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	102
												},
												"db.demo.data.updateHole":	{
																"entries":	108613,
																"last":	0,
																"min":	0,
																"max":	12,
																"average":	0,
																"total":	451
												},
												"db.demo.delete":	{
																"entries":	2,
																"last":	61,
																"min":	61,
																"max":	124,
																"average":	92,
																"total":	185
												},
												"db.demo.deleteRecord":	{
																"entries":	12362,
																"last":	0,
																"min":	0,
																"max":	24,
																"average":	0,
																"total":	4626
												},
												"db.demo.metadata.load":	{
																"entries":	1423,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	49

1176



												},
												"db.demo.open":	{
																"entries":	1423,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	6
												},
												"db.demo.readRecord":	{
																"entries":	476697,
																"last":	0,
																"min":	0,
																"max":	16,
																"average":	0,
																"total":	3071
												},
												"db.demo.synch":	{
																"entries":	484,
																"last":	2,
																"min":	0,
																"max":	34,
																"average":	2,
																"total":	1251
												},
												"db.demo.updateRecord":	{
																"entries":	180667,
																"last":	0,
																"min":	0,
																"max":	12,
																"average":	0,
																"total":	2343
												},
												"db.subTest.close":	{
																"entries":	10,
																"last":	0,
																"min":	0,
																"max":	16,
																"average":	3,
																"total":	31
												},
												"db.subTest.create":	{
																"entries":	2,
																"last":	44,
																"min":	18,
																"max":	44,
																"average":	31,
																"total":	62
												},
												"db.subTest.createRecord":	{
																"entries":	20,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	11
												},
												"db.subTest.data.createHole":	{
																"entries":	28,

1177



																"last":	2,
																"min":	0,
																"max":	2,
																"average":	0,
																"total":	12
												},
												"db.subTest.data.findClosestHole":	{
																"entries":	22,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"db.subTest.data.move":	{
																"entries":	12,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	4
												},
												"db.subTest.data.recycled.notFound":	{
																"entries":	14,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.subTest.data.recycled.partial":	{
																"entries":	22,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.subTest.data.updateHole":	{
																"entries":	42,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	2
												},
												"db.subTest.delete":	{
																"entries":	2,
																"last":	118,
																"min":	76,
																"max":	118,
																"average":	97,
																"total":	194
												},
												"db.subTest.metadata.load":	{
																"entries":	6,
																"last":	0,
																"min":	0,
																"max":	1,

1178



																"average":	0,
																"total":	1
												},
												"db.subTest.open":	{
																"entries":	6,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"db.subTest.readRecord":	{
																"entries":	30,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	3
												},
												"db.subTest.updateRecord":	{
																"entries":	36,
																"last":	2,
																"min":	0,
																"max":	2,
																"average":	0,
																"total":	16
												},
												"db.temp.createRecord":	{
																"entries":	10,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	2
												},
												"db.temp.readRecord":	{
																"entries":	7,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"db.temp.updateRecord":	{
																"entries":	21,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	2
												},
												"process.file.mmap.commitPages":	{
																"entries":	2034,
																"last":	1,
																"min":	0,
																"max":	21,
																"average":	0,
																"total":	1048
												},

1179



												"process.mvrbtree.clear":	{
																"entries":	16007,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	141
												},
												"process.mvrbtree.commitChanges":	{
																"entries":	165235,
																"last":	0,
																"min":	0,
																"max":	55,
																"average":	0,
																"total":	5730
												},
												"process.mvrbtree.entry.fromStream":	{
																"entries":	5408,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	45
												},
												"process.mvrbtree.entry.toStream":	{
																"entries":	60839,
																"last":	0,
																"min":	0,
																"max":	26,
																"average":	0,
																"total":	3013
												},
												"process.mvrbtree.fromStream":	{
																"entries":	7424,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	54
												},
												"process.mvrbtree.get":	{
																"entries":	97863,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	233
												},
												"process.mvrbtree.put":	{
																"entries":	151070,
																"last":	0,
																"min":	0,
																"max":	55,
																"average":	0,
																"total":	5002
												},
												"process.mvrbtree.putAll":	{
																"entries":	1847,
																"last":	0,

1180



																"min":	0,
																"max":	8,
																"average":	0,
																"total":	84
												},
												"process.mvrbtree.remove":	{
																"entries":	41000,
																"last":	0,
																"min":	0,
																"max":	10,
																"average":	0,
																"total":	2226
												},
												"process.mvrbtree.toStream":	{
																"entries":	124870,
																"last":	0,
																"min":	0,
																"max":	6,
																"average":	0,
																"total":	543
												},
												"process.mvrbtree.unload":	{
																"entries":	7424,
																"last":	0,
																"min":	0,
																"max":	10,
																"average":	0,
																"total":	519
												},
												"process.serializer.record.string.binary2string":	{
																"entries":	1867,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	18
												},
												"process.serializer.record.string.bool2string":	{
																"entries":	43,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"process.serializer.record.string.byte2string":	{
																"entries":	1143,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"process.serializer.record.string.date2string":	{
																"entries":	114176,
																"last":	0,
																"min":	0,
																"max":	6,
																"average":	0,

1181



																"total":	464
												},
												"process.serializer.record.string.datetime2string":	{
																"entries":	2,
																"last":	0,
																"min":	0,
																"max":	0,
																"average":	0,
																"total":	0
												},
												"process.serializer.record.string.decimal2string":	{
																"entries":	2,
																"last":	1,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"process.serializer.record.string.double2string":	{
																"entries":	30237,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	104
												},
												"process.serializer.record.string.embed2string":	{
																"entries":	122581,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	117
												},
												"process.serializer.record.string.embedList2string":	{
																"entries":	29922,
																"last":	0,
																"min":	0,
																"max":	2,
																"average":	0,
																"total":	87
												},
												"process.serializer.record.string.embedMap2string":	{
																"entries":	3160,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	25
												},
												"process.serializer.record.string.embedSet2string":	{
																"entries":	32280,
																"last":	1,
																"min":	0,
																"max":	8,
																"average":	0,
																"total":	1430
												},
												"process.serializer.record.string.float2string":	{

1182



																"entries":	20640,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	63
												},
												"process.serializer.record.string.fromStream":	{
																"entries":	1735665,
																"last":	0,
																"min":	0,
																"max":	82,
																"average":	0,
																"total":	7174
												},
												"process.serializer.record.string.int2string":	{
																"entries":	246700,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	101
												},
												"process.serializer.record.string.link2string":	{
																"entries":	18664,
																"last":	0,
																"min":	0,
																"max":	6,
																"average":	0,
																"total":	62
												},
												"process.serializer.record.string.linkList2string":	{
																"entries":	2648,
																"last":	0,
																"min":	0,
																"max":	2,
																"average":	0,
																"total":	52
												},
												"process.serializer.record.string.linkMap2string":	{
																"entries":	28,
																"last":	0,
																"min":	0,
																"max":	1,
																"average":	0,
																"total":	1
												},
												"process.serializer.record.string.linkSet2string":	{
																"entries":	1269,
																"last":	0,
																"min":	0,
																"max":	33,
																"average":	0,
																"total":	80
												},
												"process.serializer.record.string.long2string":	{
																"entries":	1620,
																"last":	0,
																"min":	0,

1183



																"max":	1,
																"average":	0,
																"total":	6
												},
												"process.serializer.record.string.string2string":	{
																"entries":	358585,
																"last":	0,
																"min":	0,
																"max":	3,
																"average":	0,
																"total":	183
												},
												"process.serializer.record.string.toStream":	{
																"entries":	183912,
																"last":	0,
																"min":	0,
																"max":	34,
																"average":	0,
																"total":	3149
												},
												"server.http.0:0:0:0:0:0:0:1.request":	{
																"entries":	2,
																"last":	2,
																"min":	2,
																"max":	19,
																"average":	10,
																"total":	21
												}
								},
								"statistics":	{},
								"counters":	{
												"db.0$db.cache.level2.cache.found":	7,
												"db.0$db.cache.level2.cache.notFound":	8,
												"db.0$db.data.update.notReused":	11,
												"db.0$db.data.update.reusedAll":	7,
												"db.1$db.cache.level2.cache.found":	7,
												"db.1$db.cache.level2.cache.notFound":	8,
												"db.1$db.data.update.notReused":	11,
												"db.1$db.data.update.reusedAll":	7,
												"db.2$db.cache.level2.cache.found":	7,
												"db.2$db.cache.level2.cache.notFound":	8,
												"db.2$db.data.update.notReused":	11,
												"db.2$db.data.update.reusedAll":	7,
												"db.demo.cache.level2.cache.found":	364467,
												"db.demo.cache.level2.cache.notFound":	393509,
												"db.demo.data.update.notReused":	38426,
												"db.demo.data.update.reusedAll":	140921,
												"db.demo.data.update.reusedPartial":	100,
												"db.demo.query.compositeIndexUsed":	46,
												"db.demo.query.compositeIndexUsed.2":	42,
												"db.demo.query.compositeIndexUsed.2.1":	20,
												"db.demo.query.compositeIndexUsed.2.2":	18,
												"db.demo.query.compositeIndexUsed.3":	4,
												"db.demo.query.compositeIndexUsed.3.1":	1,
												"db.demo.query.compositeIndexUsed.3.2":	1,
												"db.demo.query.compositeIndexUsed.3.3":	2,
												"db.demo.query.indexUsed":	2784,
												"db.subTest.cache.level2.cache.found":	14,
												"db.subTest.cache.level2.cache.notFound":	16,

1184



												"db.subTest.data.update.notReused":	22,
												"db.subTest.data.update.reusedAll":	14,
												"db.temp.cache.level2.cache.found":	5,
												"db.temp.cache.level2.cache.notFound":	4,
												"process.file.mmap.pagesCommitted":	2034,
												"process.mvrbtree.entry.serializeKey":	4617509,
												"process.mvrbtree.entry.serializeValue":	68620,
												"process.mvrbtree.entry.unserializeKey":	6127,
												"process.mvrbtree.entry.unserializeValue":	225,
												"process.serializer.record.string.linkList2string.cached":	19,
												"server.http.0:0:0:0:0:0:0:1.requests":	3,
												"server.http.0:0:0:0:0:0:0:1.timeout":	1
								}
				}
}

1185



The OrientDB-ETL module is an amazing tool to move data from and to OrientDB by
executing an ETL process. It's super easy to use. OrientDB ETL is based on the
following principles:

one configuration file in JSON format
one Extractor is allowed to extract data from a source
one Loader is allowed to load data to a destination
multiple Transformers that transform data in pipeline. They receive something in
input, do something, return something as output that will be processed as input by
the next component

ETL

1186

http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/JSON


EXTRACTOR	=>	TRANSFORMERS[]	=>	LOADER

Example of a process that extract from a CSV file, apply some change, lookup if the
record has already been created and then store the record as document against
OrientDB database:

+-----------+-----------------------+-----------+
|											|														PIPELINE													|
+	EXTRACTOR	+-----------------------+-----------+
|											|					TRANSFORMERS						|		LOADER			|
+-----------+-----------------------+-----------+
|			FILE			==>		CSV->FIELD->MERGE		==>	OrientDB	|
+-----------+-----------------------+-----------+

The pipeline, made of transformation and loading phases, can run in parallel by setting
the configuration 	{"parallel":true}	.

How ETL works

1187



Starting from OrientDB v2.0 the ETL module will be distributed in bundle with the official
release. If you want to use it, then follow these steps:

Clone the repository on your computer, by executing:
	git	clone	https://github.com/orientechnologies/orientdb-etl.git	

Compile the module, by executing:
	mvn	clean	install	

Copy 	script/oetl.sh	 (or .bat under Windows) to $ORIENTDB_HOME/bin
Copy 	target/orientdb-etl-2.0-SNAPSHOT.jar	 to $ORIENTDB_HOME/lib

Installation

1188



$	cd	$ORIENTDB_HOME/bin
$	./oetl.sh	config-dbpedia.json

Usage

1189



Blocks
Sources
Extractors
Transformers
Loaders

Examples:

Import from CSV to a Graph
Import from JSON
Import DBPedia
Import from a DBMS
Import from Parse (Facebook)

Available Components

1190

http://www.orientechnologies.com/docs/last/orientdb-etl.wiki/Import-from-PARSE.html


One of the most important OrientDB-ETL module features is the simplicity to configure
complex ETL processed, just by working to a single JSON file.

The Configuration file is divided in the following sections:

config, to manage all the settings and context's variables used by any component
of the process
source, to manage the source to process
begin, as a list of Blocks to execute in order. This section is executed when the
process begins
extractor, contains the Extractor configuration
transformers, contains the list of Transformers configuration to execute in pipeline
loader, contains the Loader configuration
end, as a list of Blocks to execute in order. This section is executed when the
process is finished

ETL - Configuration

1191

http://en.wikipedia.org/wiki/JSON


{
		"config":	{
				<name>:	<value>
		},
		"begin":	[
				{	<block-name>:	{	<configuration>	}	}
		],
		"source"	:	{
				{	<source-name>:	{	<configuration>	}	}
		},
		"extractor"	:	{
				{	<extractor-name>:	{	<configuration>	}	}
		},
		"transformers"	:	[
				{	<transformer-name>:	{	<configuration>	}	}
		],
		"loader"	:	{	<loader-name>:	{	<configuration>	}	},
		"end":	[
			{	<block-name>:	{	<configuration>	}	}
		]
}

Example:

{
		"config":	{
				"log":	"debug",
				"fileDirectory":	"/temp/databases/dbpedia_csv/",
				"fileName":	"Person.csv.gz"
		},
		"begin":	[
			{	"let":	{	"name":	"$filePath",		"value":	"$fileDirectory.append(	$fileName	)"}	},
			{	"let":	{	"name":	"$className",	"value":	"$fileName.substring(	0,	$fileName.indexOf(".")	)"
		],
		"source"	:	{
				"file":	{	"path":	"$filePath",	"lock"	:	true	}
		},
		"extractor"	:	{
				"row":	{}
		},
		"transformers"	:	[
			{	"csv":	{	"separator":	",",	"nullValue":	"NULL",	"skipFrom":	1,	"skipTo":	3	}	},
			{	"merge":	{	"joinFieldName":"URI",	"lookup":"V.URI"	}	},
			{	"vertex":	{	"class":	"$className"}	}
		],
		"loader"	:	{
				"orientdb":	{
						"dbURL":	"plocal:/temp/databases/dbpedia",
						"dbUser":	"admin",
						"dbPassword":	"admin",

Syntax

1192



						"dbAutoCreate":	true,
						"tx":	false,
						"batchCommit":	1000,
						"dbType":	"graph",
						"indexes":	[{"class":"V",	"fields":["URI:string"],	"type":"UNIQUE"	}]
				}
		}
}

1193



context variables can be used by prefixing them with $
	$input	 is the context variable assigned before each transformation
to execute an expression using OrientDB SQL, use 	={<expression>}	, example: 	=
{eval('3	*	5')}	

Generic rules

1194



All executable blocks, like Transformers and Blocks, can be executed only if a condition
is true by using the if conditional expression using the OrientDB SQL syntax. Example:

{	"let":	{
				"name":	"path",
				"value":	"C:/Temp",
				"if":	"${os.name}	=	'Windows'"
		}
},
{	"let":	{
				"name":	"path",
				"value":	"/tmp",
				"if":	"${os.name}.indexOf('nux')"
		}
}
`

Conditional execution

1195



Most of the blocks, like Transformers and Blocks, supports the 	log	 setting. Log can be
one of the following values (case insensitive): 	[NONE,	ERROR,	INFO,	DEBUG]	. By default is
	INFO	.

Set the log level to 	DEBUG	 to display more information on execution. Remember that
logging slows down execution, so use it only for development and debug purpose.
Example:

{	"http":	{
				"url":	"http://ip.jsontest.com/",
				"method":	"GET",
				"headers":	{
						"User-Agent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_9_4)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/36.0.1985.125	Safari/537.36"
				},
				"log":	"DEBUG"
		}
}

Log setting

1196



All the variables declared in "config" block are bound in the execution context and can
be used by ETL processing.

There are also special variables used by ETL process:

Variable Description Type Mandatory Default
value

log

Global "log" setting.
Accepted values: 	[NONE,
ERROR,	INFO,	DEBUG]	.
Useful to debug a ETL
process or single
component.

string false INFO

maxRetries

Maximum number of
retries in case the
loader raises a
ONeedRetryException:
concurrent modification
of the same records

integer false 10

parallel
Executes pipelines in
parallel by using all the
available cores

boolean false false

Configuration variables

1197



Block components execute operations.

ETL - BLocks

1198



let code console

Assigns variable in the ETL process context.

Component name: let

Parameter Description Type Mandatory Default
value

name Variable name. Any $
prefix is ignored string true -

value Fixed value to assign any false -

expression
Expression in OrientDB
SQL language, to evaluate
and assign

string false -

Assign a value to the variable:

{	"let":	{	"name":	"$filePath",		"value":	"/temp/myfile"}	}

Concats the $fileName variable to $fileDirectory to create the new variable $filePath:

{	"let":	{	"name":	"$filePath",		"expression":	"$fileDirectory.append(	$fileName	)"}	}

Execute a snippet of code in any of the JVM supported languages. Default is Javascript.

Component name: code

Available Blocks

let

Syntax

Example

code

1199



Parameter Description Type Mandatory Default
value

language Programming language
used string false Javascript

code Code to execute string true -

{	"code":	{	"language":	"Javascript",
												"code":	"print('Hello	World!');"}
}

Execute commands invoking the OrientDB Console.

Component name: console

Parameter Description Type Mandatory Default
value

file File path containing the
commands to execute string false -

commands
Array of commands, as
string, to execute in
sequence

string
array false -

Invoice the console with a file containing the commands to execute

{	"console":	{	"file":	"/temp/commands.sql"}		}

{	"console":	{
				"commands":	[
						"CONNECT	plocal:/temp/db/mydb	admin	admin",

Syntax

Example

Console

Syntax

Example

1200



						"INSERT	INTO	Account	set	name	=	'Luca'"
		]	}
}

1201



Source components represent the source where to extract the content. Source is
optional, some Extractor like JDBCExtractor works without a source.

ETL - Sources

1202



file input http

Represents a source file where to start reading. Files can be text files or compressed
with tar.gz.

Component name: file

Parameter Description Type Mandatory Default
value

path File path string true -

lock Lock the file while the
extraction phase boolean false false

Extracts from the file "/temp/actor.tar.gz":

{	"file":	{	"path":	"/temp/actor.tar.gz",	"lock"	:	true	}	}

Extracts data from console input. This is useful when the ETL works in PIPE with other
tools

Component name: input

Parameter Description Type Mandatory Default value

Available Sources

File

Syntax

Example

Input

Syntax

1203



Extracts the file as input

cat	/etc/csv|oetl.sh	"{transformers:[{csv:{}}]}"

Use a HTTP endpoint as content source.

Component name: http

Parameter Description Type Mandatory Default
value

url HTTP URL to invoke String true -

method

HTTP Method
between "GET",
"POST", "PUT",
"DELETE", "HEAD",
"OPTIONS", "TRACE"

String false GET

headers
Request headers as
inner document
key/value

Document false

Execute a HTTP request against the URL "http://ip.jsontest.com/" in GET setting the
User-Agent in headers:

{	"http":	{
				"url":	"http://ip.jsontest.com/",
				"method":	"GET",
				"headers":	{
						"User-Agent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_9_4)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/36.0.1985.125	Safari/537.36"
				}
		}
}

Example

HTTP

Syntax

Example

1204

http://ip.jsontest.com/


Extractor components are the first part of the ETL process responsible of extracting
data.

ETL - Extractors

1205



row jdbc json

Extracts content row by row.

Component name: row
Output class: [String]

Parameter Description Type Mandatory Default value

{	"row":	{}	}

Extracts data from any DBMS that support JDBC driver. In order to get the ETL
component to connect to the source database, put the DBMS's JDBC driver in the
classpath or $ORIENTDB_HOME/lib directory.

Component name: jdbc
Output class: [ODocument]

Parameter Description Type Mandatory Default
value

driver JDBC Driver class string true -

url JDBC URL to connect string true -

userName DBMS User name string true -

Available Extractors

row

Syntax

Example

JDBC

Syntax

1206

http://en.wikipedia.org/wiki/JDBC_driver


userPassword DBMS User password string true -

query Query that extract the
record to import string true -

queryCount

Query that return the
count of the fetched
records. This is used to
provide a correct
progress indicator

string false -

Extracts all the Client from the MySQL database "test" hosted on localhost:

{	"jdbc":	{
				"driver":	"com.mysql.jdbc.Driver",
				"url":	"jdbc:mysql://localhost/test",
				"userName":	"root",
				"userPassword":	"",
				"query":	"select	*	from	Client"
		}
}

Extracts content by parsing json objects. If the content has more json items must be
enclosed between [].

Component name: json
Output class: [ODocument]

Parameter Description Type Mandatory Default value

{	"json":	{}	}

Example

json

Syntax

Example

1207



Transformer components are executed in pipeline. They work against the received input
returning an output.

Before the execution, the 	$input	 variable is always assigned, so you can get at run-time
and use if needed.

ETL Transformers

1208



CSV FIELD MERGE VERTEX

CODE LINK EDGE SKIP

LOG BLOCK COMMAND

Converts a String in a Document parsing it as CSV.

Component description.

Component name: csv
Supported inputs types: [String]
Output: ODocument

Parameter Description Type Mandatory Default
value

separator Column
separator char false ,

columnsOnFirstLine
Columns are
described in
the first line

boolean false true

columns

Columns array
containing
names, and
optionally types
by postfixing
names with :.
Specifying type
guarantee
better
performance

string[] false -

nullValue
value to
consider as
NULL. Default
is not declared

string false -

stringCharacter
String
character
delimiter

char false "

skipFrom
Line number
where start to integer true -

Available Transformers

CSV

Syntax

1209



skip

skipTo
Line number
where skip
ends

integer true -

Transforms a row in CSV (as ODocument), using comma as separator, considering
"NULL" as null value and skipping the rows 2-4:

{	"csv":	{	"separator":	",",	"nullValue":	"NULL",
											"skipFrom":	1,	"skipTo":	3	}	}

Example

1210



Execute a SQL transformation against a field.

Component description.

Component name: vertex
Supported inputs types: [ODocument]
Output: ODocument

Parameter Description Type Mandatory Default
value

fieldName Document's field name
to assign string true -

expression
Expression to evaluate.
You can use OrientDB
SQL syntax

string true -

value
Value to set. If the value
is taken or computed at
run-time, use 	expression	
instead

any false -

operation
Operation to execute
against the field: set,
remove. Default is set

string false set

save
Save the
vertex/edge/document
right after the setting of
the field

boolean false false

Transforms the field 'class' into the ODocument's class by prefixing it with '_':

{	"field":	{	"fieldName":	"@class",	"expression":	"class.prefix('_')"}	}

Applies the class name based on the value of another field:

{	"field":	{	"fieldName":	"@class",	"expression":	"if(	(	fileCount	>=	0	),	'D',	'F')"}	}

FIELD

Syntax

Examples

1211

https://github.com/orientechnologies/orientdb/wiki/SQL-Where#syntax


Assigns to the "name" field the last part of a path:

{	"field":	{	"fieldName":	"name",
						"expression":	"path.substring(	eval(	'$current.path.lastIndexOf(\"/\")	+	1')	)"	}

Assign a fixed value:

{	"field":	{	"fieldName":	"counter",	"value":	0}	}

Rename a field from 'salary' to 'remuneration':

{	"field":	{	"fieldName":	"remuneration",	"expression":	"salary"}	},
{	"field":	{	"fieldName":	"salary",	"operation":	"remove"}	}

Merges input ODocument with another one, loaded by a lookup. Lookup can be a lookup
against an index or a SELECT query.

Component description.

Component name: merge
Supported inputs types: [ODocument, OrientVertex]
Output: ODocument

Parameter Description Type Mandatory Default
value

joinFieldName
Field name
where the
join value is
saved

string true -

lookup

Can be the
index name
where to
execute the
lookup, or a
SELECT
query

string true -

MERGE

Syntax

1212



unresolvedLinkAction

Action to
execute in
case the
JOIN hasn't
been
resolved.
Actions can
be:
'NOTHING'
(do nothing),
WARNING
(increment
warnings),
ERROR
(increment
errors), HALT
(interrupt the
process),
SKIP (skip
current row).

string false NOTHING

Merges current record against the record returned by the lookup on index "V.URI" with
the value contained in the field "URI" of the input's document:

{	"merge":	{	"joinFieldName":"URI",	"lookup":"V.URI"	}	}

Transforms a ODocument in a OrientVertex.

Component description.

Component name: vertex
Supported inputs types: [ODocument, OrientVertex]
Output: OrientVertex

Parameter Description Type Mandatory Default
value

class Vertex class name to
assign string false V

Vertices with

Example

VERTEX

Syntax

1213



skipDuplicates

duplicate keys are
skipped. If
	skipDuplicates:true	
and a UNIQUE
constraint is defined
on vertices ETL will
ignore it with no
exceptions.
Available v. 2.1

boolean false false

Transform the ODocument in a Vertex setting as class the value of "$className"
variable:

{	"vertex":	{	"class":	"$className",	"skipDuplicates":	true	}	}

Transform a JOIN value in one or more EDGEs between current vertex and all the
vertices returned by the lookup. Lookup can be a lookup against an index or a SELECT
query.

Component description.

Component name: EDGE
Supported inputs types: [ODocument, OrientVertex]
Output: OrientVertex

Parameter Description Type Mandatory Default
value

joinFieldName
Field name
where the
join value is
saved

string true -

direction Edge
direction string false 'out'

class Edge's class
name string false 'E'

Can be the
index name

Example

EDGE

Syntax

1214



lookup
where to
execute the
lookup, or a
SELECT
query

string true -

unresolvedLinkAction

Action to
execute in
case the
JOIN hasn't
been
resolved.
Actions can
be:
'NOTHING'
(do nothing),
CREATE
(create a
OrientVertex
setting as
primary key
the join
value),
WARNING
(increment
warnings),
ERROR
(increment
errors), HALT
(interrupt the
process),
SKIP (skip
current row).

string false NOTHING

Creates an EDGE from the current vertex, with class "Parent", to all the vertices returned
by the lookup on "D.inode" index with the value contained in the field "inode_parent" of
the input's vertex:

{	"edge":	{	"class":	"Parent",	"joinFieldName":	"inode_parent",
												"lookup":"D.inode",	"unresolvedLinkAction":"CREATE"}	}

Skip an execution in pipeline if the condition in "expression" field is true.

Component description.

Component name: skip

Example

SKIP

1215



Supported inputs types: [ODocument, OrientVertex]
Output: same type as input

Parameter Description Type Mandatory Default
value

expression
SQL expression to
evaluate. If true the current
execution is skipped

string true -

Skip the current record if name is null:

{	"skip":	{	"expression":	"name	is	null"}	}

Executes a snippet of code in any of the JVM supported languages. Default is
Javascript. Last object in the code is returned as output. In the execution context are
bound the following variables:

	input	 with the input object received
	record	 with the record extracted from input object when is possible. In case the
input object is a Vertex/Edge, the underlying ODocument is assigned to the variable

Component description.

Component name: code
Supported inputs types: [Object]
Output: Object

Parameter Description Mandatory Default
value

language Programming
language used string false Javascript

Syntax

Example

CODE

Syntax

1216



code Code to execute string true -

Displays current record and returns the parent.

{	"code":	{	"language":	"Javascript",
												"code":	"print('Current	record:	'	+	record);	record.field('parent');"}
}

Transform a JOIN value in LINK in current record with the result of the lookup. Lookup
can be a lookup against an index or a SELECT query.

Component description.

Component name: link
Supported inputs types: [ODocument, OrientVertex]
Output: ODocument

Parameter Description Type Mandatory Default
value

joinFieldName
Field name
where the
join value is
saved

string false -

joinValue Value to
lookup string false -

linkFieldName
Field name
containing
the link to set

string true -

linkFieldType

Type of link
between:
LINK,
LINKSET and
LINKLIST

string true -

Can be the
index name
where to

Example

LINK

Syntax

1217



lookup execute the
lookup, or a
SELECT
query

string true -

unresolvedLinkAction

Action to
execute in
case the
JOIN hasn't
been
resolved.
Actions can
be:
'NOTHING'
(do nothing),
CREATE
(create a
ODocument
setting as
primary key
the join
value),
WARNING
(increment
warnings),
ERROR
(increment
errors), HALT
(interrupt the
process),
SKIP (skip
current row).

string false NOTHING

Transform a JOIN value in LINK in current record (set as "parent" of type LINK) with the
result of the lookup on index "D.inode" with the value contained in the field
"inode_parent" of the input's document:

{	"link":	{	"linkFieldName":	"parent",	"linkFieldType":	"LINK",
												"joinFieldName":	"inode_parent",	"lookup":"D.inode",	"unresolvedLinkAction":"CREATE"

Logs the input object to System.out.

Component description.

Component name: log

Example

LOG

1218



Supported inputs types: [Any]
Output: Any

Parameter Description Type Mandatory Default
value

prefix Prefix to write before the
content string false -

postfix Postfix to write after the
content string false -

Simply log current value:

{	"log":	{}	}

Log current value with "-> " as prefix:

{	"log":	{	"prefix"	:	"->	"}	}

Executes a Block as transformation step.

Component description.

Component name: block
Supported inputs types: [Any]
Output: Any

Parameter Description Type Mandatory Default value

block Block to
execute document true -

Syntax

Example

Block

Syntax

1219



Simply log current value:

{	"block":	{
				"let":	{
						"name":	"id",
						"value":	"={eval('$input.amount	*	2')}"
				}
		}
}

Executes a command.

Component description.

Component name: command
Supported inputs types: [ODocument]
Output: ODocument

Parameter Description Type Mandatory Default
value

language
Command language.
Available are: sql (default)
and gremlin

string false sql

command Command to execute string true -

{
		"command"	:	{
				"command"	:	"select	from	E	where	id	=	${edgeid}",
				"output"	:	"edge"
		}
}

Example

Command

Syntax

Example

1220



Loader components are the last part of the ETL process responsible of the saving of
records.

ETL - Loaders

1221



Output OrientDB

It's the default Loader. It prints the transformation result to the console output.

Component name: output
Accepted input classes: [Object]

Loads record and vertices into a OrientDB database.

Component name: orientdb
Accepted input classes: [ODocument, OrientVertex]

Parameter Description Type Mandatory Default
value

dbURL Database URL string true -

dbUser User Name string false admin

dbPassword User Password string false admin

dbAutoCreate
If the database
not exists, create
it automatically

boolean false true

tx Use transactions
or not boolean false false

wal

Use WAL (Write
Ahead Logging).
Disable WAL to
achieve better
performances

boolean false true

With transactions
enabled, commit
every X entries.

Available Loaders

Output

OrientDB

Syntax

1222

https://github.com/orientechnologies/orientdb/wiki/Transactions


batchCommit Use this to avoid
having one huge
transaction in
memory

integer false 0

dbType
Database type,
between 'graph'
or 'document'

string false document

indexes

Contains the
indexes used on
ETL process.
Before starting
any declared
index not present
in database will
be created
automatically.
Index
configuration
must have "type",
"class" and
"fields"

inner
document false -

Below an example of configuration to load in a OrientDB database called "dbpedia" in
directory "/temp/databases" open using "plocal" protocol and used as "graph". The
loading is transactional and commits the transaction every 1,000 inserts. To lookup
vertices has been create the index against the property string "URI" in base vertex "V"
class. The index is unique.

"orientdb":	{
						"dbURL":	"plocal:/temp/databases/dbpedia",
						"dbUser":	"importer",
						"dbPassword":	"IMP",
						"dbAutoCreate":	true,
						"tx":	false,
						"batchCommit":	1000,
						"wal"	:	false,
						"dbType":	"graph",
						"indexes":	[{"class":"V",	"fields":["URI:string"],	"type":"UNIQUE"	}]
				}

Example

1223



This example describes the process for importing from a CSV file into OrientDB as a
Graph. For the sake of simplicity, consider only these 2 entities:

POST
COMMENT

Where the relationship is between Post and Comment as One-2-Many. One Post can
have multiple Comments. We're representing them as they would appear in a RDBMS,
but the source could be anything.

With a RDBMS Post and Comment would be stored in 2 separate tables:

TABLE	POST:
+----+----------------+
|	id	|	title										|
+----+----------------+
|	10	|	NoSQL	movement	|
|	20	|	New	OrientDB			|
+----+----------------+

TABLE	COMMENT:
+----+--------+--------------+
|	id	|	postId	|	text									|
+----+--------+--------------+
|		0	|			10			|	First								|
|		1	|			10			|	Second							|
|	21	|			10			|	Another						|
|	41	|			20			|	First	again		|
|	82	|			20			|	Second	Again	|
+----+--------+--------------+

With an RDBMS, one-2-many references are inverted from the target table (Comment)
to the source one (Post). This is due to the inability of an RDBMS to handle a collection
of values.

In comparison, using the OrientDB Graph model, relationships are modeled as you think
when you design an application: POSTs have edges to COMMENTs.

So, with an RDBMS you have:

Table	POST				<-	(foreign	key)	Table	COMMENT

Import from a CSV file to a Graph

1224



With OrientDB, the Graph model uses Edges to manage relationships:

Class	POST	->*	(collection	of	edges)	Class	COMMENT

1225



If you're using an RDBMS or any other source, export your data in CSV format. The ETL
module is also able to extract from JSON and an RDBMS directly through JDBC drivers.
However, for the sake of simplicity, in this example we're going to use CSV as the
source format.

Consider having 2 CSV files:

posts.csv file, containing all the posts

id,title
10,NoSQL	movement
20,New	OrientDB

comments.csv file, containing all the comments, with the relationship to the commented
post

id,postId,text
0,10,First
1,10,Second
21,10,Another
41,20,First	again
82,20,Second	Again

(1) Export to CSV

File posts.csv

File comments.csv

1226



The OrientDB ETL tool requires only a JSON file to define the ETL process as Extractor,
a list of Transformers to be executed in the pipeline, and a Loader, to load graph
elements into the OrientDB database.

Below are 2 files containing the ETL to import Posts and Comments separately.

{
		"source":	{	"file":	{	"path":	"/temp/datasets/posts.csv"	}	},
		"extractor":	{	"row":	{}	},
		"transformers":	[
				{	"csv":	{}	},
				{	"vertex":	{	"class":	"Post"	}	}
		],
		"loader":	{
				"orientdb":	{
							"dbURL":	"plocal:/temp/databases/blog",
							"dbType":	"graph",
							"classes":	[
									{"name":	"Post",	"extends":	"V"},
									{"name":	"Comment",	"extends":	"V"},
									{"name":	"HasComments",	"extends":	"E"}
							],	"indexes":	[
									{"class":"Post",	"fields":["id:integer"],	"type":"UNIQUE"	}
							]
				}
		}
}

The Loader contains all the information to connect to an OrientDB database. We have
used plocal because it's faster, but if you have an OrientDB server up & running, use
"remote:" instead. Note the classes and indexes declared in Loader. As soon as the
Loader is configured, the classes and indexes are created if they do not already exist.
We have created the index on the Post.id field to assure that there are no duplicates and
that the lookup on the created edges (see below) will be fast enough.

{
		"source":	{	"file":	{	"path":	"/temp/datasets/comments.csv"	}	},
		"extractor":	{	"row":	{}	},
		"transformers":	[

(2) ETL Configuration

post.json ETL file

comments.json ETL file

1227



				{	"csv":	{}	},
				{	"vertex":	{	"class":	"Comment"	}	},
				{	"edge":	{	"class":	"HasComments",
																"joinFieldName":	"postId",
																"lookup":	"Post.id",
																"direction":	"in"
												}
								}
		],
		"loader":	{
				"orientdb":	{
							"dbURL":	"plocal:/temp/databases/blog",
							"dbType":	"graph",
							"classes":	[
									{"name":	"Post",	"extends":	"V"},
									{"name":	"Comment",	"extends":	"V"},
									{"name":	"HasComments",	"extends":	"E"}
							],	"indexes":	[
									{"class":"Post",	"fields":["id:integer"],	"type":"UNIQUE"	}
							]
				}
		}
}

This file is similar to the previous one, but the Edge transformer does the job. Since the
link found in the CSV goes in the opposite direction (Comment->Post), while we want to
model directly (Post->Comment), we used the direction "in" (default is always "out").

1228



Now allow the ETL to run by executing both imports in sequence. Open a shell under the
OrientDB home directory, and execute the following steps:

$	cd	bin
$	./oetl.sh	post.json
$	./oetl.sh	comment.json

Once both scripts execute successfully, you'll have your Blog imported into OrientDB as
a Graph!

(3) Run the ETL process

1229



Open the database under the OrientDB console and execute the following commands to
check that the import is ok:

$	./console.sh

OrientDB	console	v.2.0-SNAPSHOT	(build	2565)	www.orientechnologies.com
Type	'help'	to	display	all	the	supported	commands.
Installing	extensions	for	GREMLIN	language	v.2.6.0

orientdb>	connect	plocal:/temp/databases/blog	admin	admin

Connecting	to	database	[plocal:/temp/databases/blog]	with	user	'admin'...OK

orientdb	{db=blog}>	select	expand(	out()	)	from	Post	where	id	=	10

----+-----+-------+----+------+-------+--------------
#			|@RID	|@CLASS	|id		|postId|text			|in_HasComments
----+-----+-------+----+------+-------+--------------
0			|#12:0|Comment|0			|10				|First		|[size=1]
1			|#12:1|Comment|1			|10				|Second	|[size=1]
2			|#12:2|Comment|21		|10				|Another|[size=1]
----+-----+-------+----+------+-------+--------------

3	item(s)	found.	Query	executed	in	0.002	sec(s).
orientdb	{db=blog}>	select	expand(	out()	)	from	Post	where	id	=	20

----+-----+-------+----+------+------------+--------------
#			|@RID	|@CLASS	|id		|postId|text								|in_HasComments
----+-----+-------+----+------+------------+--------------
0			|#12:3|Comment|41		|20				|First	again	|[size=1]
1			|#12:4|Comment|82		|20				|Second	Again|[size=1]
----+-----+-------+----+------+------------+--------------

2	item(s)	found.	Query	executed	in	0.001	sec(s).

(4) Check the database

1230



If you are migrating from MongoDB or any other DBMS that exports data in JSON
format, the JSON extractor is what you need. For more information look also at: Import-
from-PARSE.

This is the input file stored in 	/tmp/database.json	 file:

[
	{
		"name":	"Joe",
		"id":	1,
		"friends":	[2,4,5],
		"enemies":	[6]
	},
	{
		"name":	"Suzie",
		"id":	2,
		"friends":	[1,4,6],
		"enemies":	[5,2]
	}
]

Note that 	friends	 and 	enemies	 represents a relationship with nodes of the same type.
They are under form of array if IDs. This is what we need:

Use the Vertex class "Account" to store nodes
Use the Edge classes "Friend" and "Enemy" to connect vertices
Merge and Lookups will be on 	id	 property of Account class that will be unique
In case the connected friend hasn't been inserted yet, create it
("unresolvedLinkAction": "CREATE")
To speed up lookups, an unique has index will be created on 	Account.it	

And this pipeline (log is at 	debug	 level to show all the messages):

{
		"config":	{
				"log":	"debug"
		},
		"source"	:	{
				"file":	{	"path":	"/tmp/database.json"	}
		},
		"extractor"	:	{
				"json":	{}
		},
		"transformers"	:	[

Import form JSON

1231



				{	"merge":	{	"joinFieldName":	"id",	"lookup":	"Account.id"	}	},
				{	"vertex":	{	"class":	"Account"}	},
				{	"edge":	{
						"class":	"Friend",
						"joinFieldName":	"friends",
						"lookup":	"Account.id",
						"unresolvedLinkAction":	"CREATE"
				}	},
				{	"edge":	{
						"class":	"Enemy",
						"joinFieldName":	"enemies",
						"lookup":	"Account.id",
						"unresolvedLinkAction":	"CREATE"
				}	}
		],
		"loader"	:	{
				"orientdb":	{
						"dbURL":	"plocal:/tmp/databases/db",
						"dbUser":	"admin",
						"dbPassword":	"admin",
						"dbAutoDropIfExists":	true,
						"dbAutoCreate":	true,
						"standardElementConstraints":	false,
						"tx":	false,
						"wal":	false,
						"batchCommit":	1000,
						"dbType":	"graph",
						"classes":	[{"name":	"Account",	"extends":"V"},	{"name":	"Friend",	"extends":"E"},	{"name
						"indexes":	[{"class":"Account",	"fields":["id:integer"],	"type":"UNIQUE_HASH_INDEX"	}]
				}
		}
}

Note also the setting

						"standardElementConstraints":	false,

In OrientDB Loader to allow importing the property "id". Without this option the Blueprints
standard would reject it because "id" is a reserved name.

By executing the ETL process this is the output:

OrientDB	etl	v.2.1-SNAPSHOT	www.orientechnologies.com
feb	09,	2015	2:46:42	AM	com.orientechnologies.common.log.OLogManager	log
INFORMAZIONI:	OrientDB	auto-config	DISKCACHE=10.695MB	(heap=3.641MB	os=16.384MB	disk=42.205MB)
[orientdb]	INFO	Dropping	existent	database	'plocal:/tmp/databases/db'...
BEGIN	ETL	PROCESSOR
[file]	DEBUG	Reading	from	file	/tmp/database.json
[orientdb]	DEBUG	-	OrientDBLoader:	created	vertex	class	'Account'	extends	'V'
[orientdb]	DEBUG	orientdb:	found	0	vertices	in	class	'null'

1232



[orientdb]	DEBUG	-	OrientDBLoader:	created	edge	class	'Friend'	extends	'E'
[orientdb]	DEBUG	orientdb:	found	0	vertices	in	class	'null'
[orientdb]	DEBUG	-	OrientDBLoader:	created	edge	class	'Enemy'	extends	'E'
[orientdb]	DEBUG	orientdb:	found	0	vertices	in	class	'null'
[orientdb]	DEBUG	-	OrientDBLoader:	created	property	'Account.id'	of	type:	integer
[orientdb]	DEBUG	-	OrientDocumentLoader:	created	index	'Account.id'	type	'UNIQUE_HASH_INDEX'	against	Class	'Account',	fields	[id:integer]
[0:merge]	DEBUG	Transformer	input:	{name:Joe,id:1,friends:[3],enemies:[1]}
[0:merge]	DEBUG	joinValue=1,	lookupResult=null
[0:merge]	DEBUG	Transformer	output:	{name:Joe,id:1,friends:[3],enemies:[1]}
[0:vertex]	DEBUG	Transformer	input:	{name:Joe,id:1,friends:[3],enemies:[1]}
[0:vertex]	DEBUG	Transformer	output:	v(Account)[#11:0]
[0:edge]	DEBUG	Transformer	input:	v(Account)[#11:0]
[0:edge]	DEBUG	joinCurrentValue=2,	lookupResult=null
[0:edge]	DEBUG	created	new	vertex=Account#11:1{id:2}	v1
[0:edge]	DEBUG	created	new	edge=e[#12:0][#11:0-Friend->#11:1]
[0:edge]	DEBUG	joinCurrentValue=4,	lookupResult=null
[0:edge]	DEBUG	created	new	vertex=Account#11:2{id:4}	v1
[0:edge]	DEBUG	created	new	edge=e[#12:1][#11:0-Friend->#11:2]
[0:edge]	DEBUG	joinCurrentValue=5,	lookupResult=null
[0:edge]	DEBUG	created	new	vertex=Account#11:3{id:5}	v1
[0:edge]	DEBUG	created	new	edge=e[#12:2][#11:0-Friend->#11:3]
[0:edge]	DEBUG	Transformer	output:	v(Account)[#11:0]
[0:edge]	DEBUG	Transformer	input:	v(Account)[#11:0]
[0:edge]	DEBUG	joinCurrentValue=6,	lookupResult=null
[0:edge]	DEBUG	created	new	vertex=Account#11:4{id:6}	v1
[0:edge]	DEBUG	created	new	edge=e[#13:0][#11:0-Enemy->#11:4]
[0:edge]	DEBUG	Transformer	output:	v(Account)[#11:0]
[1:merge]	DEBUG	Transformer	input:	{name:Suzie,id:2,friends:[3],enemies:[2]}
[1:merge]	DEBUG	joinValue=2,	lookupResult=Account#11:1{id:2,in_Friend:[#12:0]}	v2
[1:merge]	DEBUG	merged	record	Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2]}	v2	with	found	record={name:Suzie,id:2,friends:[3],enemies:[2]}
[1:merge]	DEBUG	Transformer	output:	Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2]}	v2
[1:vertex]	DEBUG	Transformer	input:	Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2]}	v2
[1:vertex]	DEBUG	Transformer	output:	v(Account)[#11:1]
[1:edge]	DEBUG	Transformer	input:	v(Account)[#11:1]
[1:edge]	DEBUG	joinCurrentValue=1,	lookupResult=Account#11:0{name:Joe,id:1,friends:[3],enemies:[1],out_Friend:[#12:0,	#12:1,	#12:2],out_Enemy:[#13:0]}	v5
[1:edge]	DEBUG	created	new	edge=e[#12:3][#11:1-Friend->#11:0]
[1:edge]	DEBUG	joinCurrentValue=4,	lookupResult=Account#11:2{id:4,in_Friend:[#12:1]}	v2
[1:edge]	DEBUG	created	new	edge=e[#12:4][#11:1-Friend->#11:2]
[1:edge]	DEBUG	joinCurrentValue=6,	lookupResult=Account#11:4{id:6,in_Enemy:[#13:0]}	v2
[1:edge]	DEBUG	created	new	edge=e[#12:5][#11:1-Friend->#11:4]
[1:edge]	DEBUG	Transformer	output:	v(Account)[#11:1]
[1:edge]	DEBUG	Transformer	input:	v(Account)[#11:1]
[1:edge]	DEBUG	joinCurrentValue=5,	lookupResult=Account#11:3{id:5,in_Friend:[#12:2]}	v2
[1:edge]	DEBUG	created	new	edge=e[#13:1][#11:1-Enemy->#11:3]
[1:edge]	DEBUG	joinCurrentValue=2,	lookupResult=Account#11:1{id:2,in_Friend:[#12:0],name:Suzie,friends:[3],enemies:[2],out_Friend:[#12:3,	#12:4,	#12:5],out_Enemy:[#13:1]}	v6
[1:edge]	DEBUG	created	new	edge=e[#13:2][#11:1-Enemy->#11:1]
[1:edge]	DEBUG	Transformer	output:	v(Account)[#11:1]
END	ETL	PROCESSOR
+	extracted	2	entries	(0	entries/sec)	-	2	entries	->	loaded	2	vertices	(0	vertices/sec)	Total	time:	228ms	[0	warnings,	0	errors]

Once ready, let's open the database with Studio and this is the result:

1233



1234



Most of DBMSs support JDBC driver. All you need is to gather the JDBC driver and put it
in classpath or simply in the $ORIENTDB_HOME/lib directory.

With the configuration below all the records from the table "Client" are imported in
OrientDB from MySQL database.

ETL - Import from RDBMS

1235

http://en.wikipedia.org/wiki/JDBC_driver


{
		"config":	{
				"log":	"debug"
		},
		"extractor"	:	{
				"jdbc":	{	"driver":	"com.mysql.jdbc.Driver",
														"url":	"jdbc:mysql://localhost/mysqlcrm",
														"userName":	"root",
														"userPassword":	"",
														"query":	"select	*	from	Client"	}
		},
		"transformers"	:	[
			{	"vertex":	{	"class":	"Client"}	}
		],
		"loader"	:	{
				"orientdb":	{
						"dbURL":	"plocal:/temp/databases/orientdbcrm",
						"dbAutoCreate":	true
				}
		}
}

Example importing a flat table

1236



With this example we want to import a database that contains Blog posts in the following
tables:

Authors, in TABLE Author, with the following columns: id and name
Posts, in TABLE Post, with the following columns: author_id, title and text

To import them into OrientDB we'd need 2 ETL processes.

{
		"config":	{
				"log":	"debug"
		},
		"extractor"	:	{
				"jdbc":	{	"driver":	"com.mysql.jdbc.Driver",
														"url":	"jdbc:mysql://localhost/mysql",
														"userName":	"root",
														"userPassword":	"",
														"query":	"select	*	from	Author"	}
		},
		"transformers"	:	[
			{	"vertex":	{	"class":	"Author"}	}
		],
		"loader"	:	{
				"orientdb":	{
						"dbURL":	"plocal:/temp/databases/orientdb",
						"dbAutoCreate":	true
				}
		}
}

{
		"config":	{
				"log":	"debug"
		},
		"extractor"	:	{
				"jdbc":	{	"driver":	"com.mysql.jdbc.Driver",
														"url":	"jdbc:mysql://localhost/mysql",
														"userName":	"root",
														"userPassword":	"",
														"query":	"select	*	from	Post"	}

Example loading records from 2 connected
tables

Importing of Authors

Importing of Posts

1237



		},
		"transformers"	:	[
			{	"vertex":	{	"class":	"Post"}	},
			{	"edge":	{	"class":	"Wrote",	"direction"	:	"in",	
												"joinFieldName":	"author_id",
												"lookup":"Author.id",	"unresolvedLinkAction":"CREATE"}	}
		],
		"loader"	:	{
				"orientdb":	{
						"dbURL":	"plocal:/temp/databases/orientdb",
						"dbAutoCreate":	true
				}
		}
}

Note the edge configuration has the direction as "in", that means starts from the Author
and finishes to Post.

1238



DBPedia exports all the entities as GZipped CSV files. Features:

First line contains column names, second, third and forth has meta information we'll
skip (look at 	"skipFrom":	1,	"skipTo":	3	in CSV transformer)
The vertex class name is created automatically based on file name, so we can use
the same file against any DBPedia file
The Primary Key is the "URI" field where it has been created a UNIQUE index (look
at "ORIENTDB" loader)
The "merge" transformer is used to allow to reimport or update any file without
generating duplicates

Import from DB-Pedia

1239

http://wiki.dbpedia.org/DBpediaAsTables


{
		"config":	{
				"log":	"debug",
				"fileDirectory":	"/temp/databases/dbpedia_csv/",
				"fileName":	"Person.csv.gz"
		},
		"begin":	[
			{	"let":	{	"name":	"$filePath",		"value":	"$fileDirectory.append(	$fileName	)"}	},
			{	"let":	{	"name":	"$className",	"value":	"$fileName.substring(	0,	$fileName.indexOf('.')	)"
		],
		"source"	:	{
				"file":	{	"path":	"$filePath",	"lock"	:	true	}
		},
		"extractor"	:	{
				"row":	{}
		},
		"transformers"	:	[
			{	"csv":	{	"separator":	",",	"nullValue":	"NULL",	"skipFrom":	1,	"skipTo":	3	}	},
			{	"merge":	{	"joinFieldName":"URI",	"lookup":"V.URI"	}	},
			{	"vertex":	{	"class":	"$className"}	}
		],
		"loader"	:	{
				"orientdb":	{
						"dbURL":	"plocal:/temp/databases/dbpedia",
						"dbUser":	"admin",
						"dbPassword":	"admin",
						"dbAutoCreate":	true,
						"tx":	false,
						"batchCommit":	1000,
						"dbType":	"graph",
						"indexes":	[{"class":"V",	"fields":["URI:string"],	"type":"UNIQUE"	}]
				}
		}
}

Configuration

1240



Parse is a very popular BaaS (Backend as a Service), acquired by Facebook. Parse
uses MongoDB as database and allows to export the database in JSON format. The
format is an array of JSON object. Example:

[
				{
								"user":	{
												"__type":	"Pointer",
												"className":	"_User",
												"objectId":	"Ldlskf4mfS"
								},
								"address":	{
												"__type":	"Pointer",
												"className":	"Address",
												"objectId":	"lvkDfj4dmS"
								},
								"createdAt":	"2013-11-15T18:15:59.336Z",
								"updatedAt":	"2014-02-27T23:47:00.440Z",
								"objectId":	"Ldk39fDkcj",
								"ACL":	{
												"Lfo33mfDkf":	{
																"write":	true
												},
												"*":	{
																"read":	true
												}
								}
				},	{
								"user":	{
												"__type":	"Pointer",
												"className":	"_User",
												"objectId":	"Lflfem3mFe"
								},
								"address":	{
												"__type":	"Pointer",
												"className":	"Address",
												"objectId":	"Ldldjfj3dd"
								},
								"createdAt":	"2014-01-01T18:04:02.321Z",
								"updatedAt":	"2014-01-23T20:12:23.948Z",
								"objectId":	"fkfj49fjFFN",
								"ACL":	{
												"dlfnDJckss":	{
																"write":	true
												},
												"*":	{
																"read":	true
												}
								}
				}
]

Import from Parse

1241

https://parse.com/


Notes:

Each object has own 	objectId	 that identifies the object in the entire database.
Parse has the concept of 	class	, like OrientDB
Links are similar to OrientDB RID (but it requires a costly JOIN to be traversed), but
made if an embedded object containing:

	className	 as target class name
	objectIf	 as target objectId

Parse has ACL at record level, like OrientDB.

In order to import a PARSE file, you need to create the ETL configuration using JSON as
Extractor.

1242

http://www.orientechnologies.com/docs/last/orientdb.wiki/Security.html#record-level-security


In this example we're going to import the file extracted from Parse containing all the
records of 	user	 class. Note the creation of class 	User	 in OrientDB that extends 	V	
(Base Vertex class). We created an index against property 	User.objectId	 to use the
same ID as for Parse. If you execute this ETL importing multiple time, the record in
OrientDB will be updated thanks to the 	merge	.

{
		"config":	{
				"log":	"debug"
		},
		"source"	:	{
				"file":	{	"path":	"/temp/parse-user.json",	"lock"	:	true	}
		},
		"extractor"	:	{
				"json":	{}
		},
		"transformers"	:	[
			{	"merge":	{	"joinFieldName":"objectId",	"lookup":"User.objectId"	}	},
			{	"vertex":	{	"class":	"User"}	}
		],
		"loader"	:	{
				"orientdb":	{
						"dbURL":	"plocal:/temp/databases/parse",
						"dbUser":	"admin",
						"dbPassword":	"admin",
						"dbAutoCreate":	true,
						"tx":	false,
						"batchCommit":	1000,
						"dbType":	"graph",
						"classes":	[
								{"name":	"User",	"extends":	"V"}
						],						
						"indexes":	[
								{"class":"User",	"fields":["objectId:string"],	"type":"UNIQUE_HASH_INDEX"	}
						]
				}
		}
}

Look also at - Import from JSON.

Example

1243



OrientDB can be distributed across different servers and used in different ways to
achieve the maximum of performance, scalability and robustness.

OrientDB uses the Hazelcast Open Source project to manage the clustering. Many of
the references in this page are linked to the Hazelcast official documentation to get more
information about such topic.

Distributed Architecture

1244

http://www.hazelcast.com


1
of
23 

Presentation

1245



Distributed Architecture Lifecycle
Configure the Cluster of servers
Replication of databases
Sharding
Distributed Cache
Tutorial to setup a distributed database

Main topics

1246



In distributed mode the RID is assigned with cluster locality. If you have class 	Customer	
and 3 nodes (node1, node2, node3), you'll have these clusters:

	customer	 with id=#15 (this is the default one, assigned to node1)
	customer_node2	 with id=#16
	customer_node3	 with id=#17

So if you create a new Customer on node1, it will get the RID with cluster-id of
"customer" cluster: #15. The same operation on node2 will generate a RID with cluster-
id=16 and 17 on node3.

In this way RID never collides and each node can be a master on insertion without any
conflicts.

Creation of records (documents, vertices
and edges)

1247



Starting from v1.6, OrientDB supports distributed transactions. When a transaction is
committed, all the updated records are sent across all the servers, so each server is
responsible to commit the transaction. In case one or more nodes fail on commit, the
quorum is checked. If the quorum has been respected, then the failing nodes are aligned
to the winner nodes, otherwise all the nodes rollback the transaction.

During the distributed transaction, in case of rollback, there could be an amount of time
when the records appear changed before they are rollbacked.

Distributed transactions

What about the visibility during distributed transaction?

1248



OrientDB v 2.0.x has some limitations you should notice when you work in Distributed
Mode:

	hotAlignment:true	 could bring the database status as inconsistent. Please set it
always to 'false`, the default
creation of a database on multiple nodes could cause synchronization problems
when clusters are automatically created. Please create the databases before to run
in distributed mode
split network case: this is not well managed and in case you setup 4 nodes and the
network is split between 2 nodes on the left, and 2 nodes on the right, each partition
will think to be the only survived and on rejoin database could be inconsistent.
Please always setup an odd number of nodes, so there will always be a majority in
quorum
if an error happen during CREATE RECORD, the operation is fixed across the
entire cluster, but some node could have a wrong RID upper bound (the created
record, then deleted as fix operation). In this case a new database deploy operation
must be executed
Constraints with distributed databases could cause problems because some
operations are executed at 2 steps: create + update. For example in some
circumstance edges could be first created, then updated, but constraints like
MANDATORY and NOTNULL against fields would fail at the first step making the
creation of edges not possible on distributed mode.

Limitations

1249



In OrientDB Distributed Architecture all the nodes are masters (Multi-Master), while in
most DBMS the replication works in Master-Slave mode where there is only one Master
node and N Slaves that are use only for reads or when the Master is down.

When start a OrientDB server in distributed mode (	bin/dserver.sh	) it looks for an existent
cluster. If exists the starting node joins the cluster, otherwise creates a new one. You
can have multiple clusters in your network, each cluster with a different "group name".

Distributed Architecture Lifecycle

1250



At startup each Server Node sends an IP Multicast message in broadcast to discover if
an existent cluster is available to join it. If available the Server Node will connect to it,
otherwise creates a new cluster.

This is the default configuration contained in 	config/hazelcast.xml	 file. Below the
multicast configuration fragment:

<hazelcast>
		<network>
				<port	auto-increment="true">2434</port>
						<join>
								<multicast	enabled="true">
										<multicast-group>235.1.1.1</multicast-group>
										<multicast-port>2434</multicast-port>
							</multicast>
					</join>
		</network>
</hazelcast>

If multicast is not available (typical on Cloud environments), you can use:

Direct IPs
Amazon EC2 Discovering

Joining a cluster

Auto discovering

1251

http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#configuring-tcpip-cluster
http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#ec2-auto-discovery


For more information look at Hazelcast documentation about configuring network.

To join a cluster the Server Node has to configure the cluster group name and password
in hazelcast.xml file. By default these information aren't encrypted. If you wan to encrypt
all the distributed messages, configure it in hazelcast.xml file:

<hazelcast>
				...
				<network>
								...
								<!--
												Make	sure	to	set	enabled=true
												Make	sure	this	configuration	is	exactly	the	same	on
												all	members
								-->
								<symmetric-encryption	enabled="true">
												<!--
															encryption	algorithm	such	as
															DES/ECB/PKCS5Padding,
															PBEWithMD5AndDES,
															Blowfish,
															DESede
												-->
												<algorithm>PBEWithMD5AndDES</algorithm>

												<!--	salt	value	to	use	when	generating	the	secret	key	-->
												<salt>thesalt</salt>

												<!--	pass	phrase	to	use	when	generating	the	secret	key	-->
												<password>thepass</password>

												<!--	iteration	count	to	use	when	generating	the	secret	key	-->
												<iteration-count>19</iteration-count>
								</symmetric-encryption>
				</network>
				...
</hazelcast>

All the nodes in the distributed cluster must have the same settings.

Security

1252

http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#network-configuration


For more information look at: Hazelcast Encryption.

You can have multiple OrientDB clusters in the same network, what identifies a cluster is
it’s name that must be unique in the network. By default OrientDB uses "orientdb", but
for security reasons change it to a different name and password. All the nodes in the
distributed cluster must have the same settings.

<hazelcast>
		<group>
				<name>orientdb</name>
				<password>orientdb</password>
		</group>
</hazelcast>

In this case Server #2 joins the existent cluster.

Join to an existent cluster

1253

http://www.hazelcast.org/docs/latest/manual/html-single/hazelcast-documentation.html#encryption


Multiple clusters can coexist in the same network. Clusters can't see each others
because are isolated black boxes.

Every time a new Server Node joins or leaves the Cluster, the new Cluster configuration
is broadcasted to all the connected clients. Everybody knows the cluster layout and who
has a database!

Multiple clusters

Distribute the configuration to the clients

1254



1255



When a Server Node becomes unreachable (because it’s crashed, network problems,
high load, etc.) the Cluster treats this event as if the Server Node left the cluster.

All the clients connected to the unreachable node will switch to another server
transparently without raising errors to the Application User Application doesn’t know
what is happening!

Fail over management

When a node is unreachable

Automatic switch of servers

1256



After the Server #2 left the Cluster the updated configuration is sent again to all the
connected clients.

Continue with:

Distributed Architecture
Replication
Tutorial to setup a distributed database

Re-distribute the updated configuration again

1257



Look also at Replication and pages.

The distributed configuration is made of 3 files under the config/ directory:

orientdb-server-config.xml
default-distributed-db-config.json
Asynchronous replication mode
hazelcast.xml

Cloud support

Distributed Configuration

1258



To enable and configure the clustering between nodes, add and enable the
OHazelcastPlugin. This task is configured as a Server handler. The default
configuration is reported below.

File orientdb-server-config.xml:

<handler	class="com.orientechnologies.orient.server.hazelcast.OHazelcastPlugin">
		<parameters>
				<!--	NODE-NAME.	IF	NOT	SET	IS	AUTO	GENERATED	THE	FIRST	TIME	THE	SERVER	RUN	-->
				<!--	<parameter	name="nodeName"	value="europe1"	/>	-->
				<parameter	name="enabled"	value="true"	/>
				<parameter	name="configuration.db.default"
															value="${ORIENTDB_HOME}/config/default-distributed-db-config.json"	/>
				<parameter	name="configuration.hazelcast"
															value="${ORIENTDB_HOME}/config/hazelcast.xml"	/>
		</parameters>
</handler>

Where:

Parameter Description

enabled To enable or disable the plugin: 	true	 to enable it,
	false	 to disable it. By default is 	true	

nodeName
An optional alias identifying the current node within the
cluster. When omitted, a default value is generated as
node, example: "node239233932932". By default is
commented, so it's automatic generated

configuration.db.default
Path of default distributed database configuration. By
default is 	${ORIENTDB_HOME}/config/default-distributed-db-
config.json	

configuration.hazelcast Path of Hazelcast configuration file, default is
	${ORIENTDB_HOME}/config/hazelcast.xml	

orientdb-server-config.xml

1259

http://www.hazelcast.com/docs/3.1/manual/multi_html/ch14.html


This is the JSON file containing the default configuration for distributed databases. The
first time a database run in distributed version this file is copied in the database's folder,
then every time the cluster shape changes the database specific file is changed.

Default default-distributed-db-config.json file content:

{
				"autoDeploy":	true,
				"hotAlignment":	false,
				"executionMode":	"undefined",
				"readQuorum":	1,
				"writeQuorum":	2,
				"failureAvailableNodesLessQuorum":	false,
				"readYourWrites":	true,
				"clusters":	{
								"internal":	{
								},
								"index":	{
								},
								"*":	{
												"servers"	:	[	"<NEW_NODE>"	]
								}
				}
}

Where:

Parameter Description Default
value

autoDeploy
Auto deploy the
database in case the
joining node hasn't it. It
can be 	true	 or 	false	

	true	

hotAlignment

In case a node left the
cluster 	hotAlignment	 the
synchronization queue is
left or not for hot
alignment when the node
will join the cluster again.
It can be 	true	 or 	false	

	true	

executionMode

. It can be 	undefined	 to
let to the client to decide
per call execution if
synchronous (default) or
asynchronous.
	synchronous	 forces
synchronous mode, and

	undefined	

default-distributed-db-config.json

1260



	asynchronous	 forces
asynchronous mode

readQuorum

On "read" operation
(record read, query and
traverse) is the number
of responses to be
coherent before to send
the response to the
client. Set to 1 if you
don't want this check at
read time

	1	

writeQuorum

On "write" operation (any
write on database) is the
number of responses to
be coherent before to
send the response to the
client. Set to 1 if you
don't want this check at
write time. Suggested
value is N/2+1 where N
is the number of replicas.
In this way the quorum is
reached only if the
majority of nodes are
coherent

	2	

failureAvailableNodesLessQuorum
Decide to return error
when the available nodes
are less then quorum.
Can be 	true	 or 	false	

	false	

readYourWrites

The write quorum is
satisfied only when also
the local node
responded. This assure
current the node can
read its writes. Disable it
to improve replication
performance if such
consistency is not
important. Can be 	true	
or 	false	

	true	

clusters

if the object containing
the clusters' configuration
as map 	cluster-name	 :
	cluster-configuration	. 	*	
means all the clusters
and is the cluster's
default configuration

-

The cluster configuration inherits database configuration, so if you declare
"writeQuorum" at database level, all the clusters will inherit that setting unless they
define your own. Settings can be:

Parameter Description Default
value

1261



readQuorum

On "read" operation
(record read, query
and traverse) is the
number of responses
to be coherent before
to send the response
to the client. Set to 1 if
you don't want this
check at read time

	1	

writeQuorum

On "write" operation
(any write on
database) is the
number of responses
to be coherent before
to send the response
to the client. Set to 1 if
you don't want this
check at write time.
Suggested value is
N/2+1 where N is the
number of replicas. In
this way the quorum is
reached only if the
majority of nodes are
coherent

	2	

failureAvailableNodesLessQuorum

Decide to return error
when the available
nodes are less then
quorum. Can be 	true	
or 	false	

	false	

readYourWrites

The write quorum is
satisfied only when
also the local node
responded. This
assure current the
node can read its
writes. Disable it to
improve replication
performance if such
consistency is not
important. Can be
	true	 or 	false	

	true	

servers
Is the array of servers
where to store the
records of cluster

empty for
internal and
index
clusters and
	[	"
<NEW_NODE>"
]	 for cluster
*
representing
any cluster

	"<NEW_NODE>"	 is a special tag that put any new joining node name in the array.

Default configuration

1262



In the default configuration all the record clusters are replicated but 	internal	, 	index	,
because all the changes remain locally to each node (indexing is per node). Every node
that joins the cluster shares all the rest of the clusters ("*" settings). Since "readQuorum"
is 1 all the reads are executed on the first available node where the local node is
preferred if own the requested record. "writeQuorum" to 2 means that all the changes
are in at least 2 nodes. If available nodes are less then 2, no error is given because
"failureAvailableNodesLessQuorum" is false.

By default writeQuorum is 2. This means that it waits and checks the answer from at
least 2 nodes before to send the ACK to the client. If you've more then 2 nodes
configured, then starting from the 3rd node the response will be managed
asynchronously. You could also set this to 1 to have all the writes asynchronous.

100% asynchronous writes

1263



A OrientDB cluster is composed by two or more servers that are the nodes of the
cluster. All the server nodes that want to be part of the same cluster must to define the
same Cluster Group. By default "orientdb" is the group name. Look at the default
config/hazelcast.xml configuration file reported below:

<?xml	version="1.0"	encoding="UTF-8"?>
<hazelcast	xsi:schemaLocation="http://www.hazelcast.com/schema/config	hazelcast-config-3.0.xsd"
											xmlns="http://www.hazelcast.com/schema/config"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		<group>
				<name>orientdb</name>
				<password>orientdb</password>
		</group>
		<network>
				<port	auto-increment="true">2434</port>
				<join>
						<multicast	enabled="true">
								<multicast-group>235.1.1.1</multicast-group>
								<multicast-port>2434</multicast-port>
						</multicast>
				</join>
		</network>
		<executor-service>
				<pool-size>16</pool-size>
		</executor-service>
</hazelcast>

NOTE: Change the name and password of the group to prevent external nodes from
joining it!

OrientDB by default uses TCP Multicast to discover nodes. This is contained in
config/hazelcast.xml file under the network tag. This is the default configuration:

<hazelcast>
		...
		<network>
				<port	auto-increment="true">2434</port>
				<join>
						<multicast	enabled="true">
								<multicast-group>235.1.1.1</multicast-group>

hazelcast.xml

Network configuration

Automatic discovery in LAN using Multicast

1264

http://www.hazelcast.com/docs/3.1/manual/multi_html/ch14.html


								<multicast-port>2434</multicast-port>
						</multicast>
					</join>
		</network>
		...
</hazelcast>

When Multicast is disabled or you prefer to assign Hostnames/IP-addresses manually
use the TCP/IP tag in configuration. Pay attention to disable the multicast:

<hazelcast>
		...
		<network>
				<port	auto-increment="true">2434</port>
				<join>
						<multicast	enabled="false">
								<multicast-group>235.1.1.1</multicast-group>
								<multicast-port>2434</multicast-port>
						</multicast>
						<tcp-ip	enabled="true">
								<member>europe0:2434</member>
								<member>europe1:2434</member>
								<member>usa0:2434</member>
								<member>asia0:2434</member>
								<member>192.168.1.0-7:2434</member>
						</tcp-ip>
					</join>
		</network>
		...
</hazelcast>

For more information look at: Hazelcast Config TCP/IP.

Since multicast is disabled on most of the Cloud stacks, you have to change the
config/hazelcast.xml configuration file based on the Cloud used.

OrientDB supports natively Amazon EC2 through the Hazelcast's Amazon discovery
plugin. In order to use it include also the hazelcast-cloud.jar library under the lib/
directory.

Manual IP

Cloud support

Amazon EC2

1265

http://www.hazelcast.com/docs/3.1/manual/multi_html/ch14s02.html#ConfigTcpIp
http://aws.amazon.com/ec2/


<hazelcast>
		...
				<join>
						<multicast	enabled="false">
								<multicast-group>235.1.1.1</multicast-group>
								<multicast-port>2434</multicast-port>
						</multicast>
						<aws	enabled="true">
								<access-key>my-access-key</access-key>
								<secret-key>my-secret-key</secret-key>
								<region>us-west-1</region>																															<!--	optional,	default	is	us-east-1	-->
								<host-header>ec2.amazonaws.com</host-header>													<!--	optional,	default	is	ec2.amazonaws.com.	If	set	region
																																																																						shouldn't	be	set	as	it	will	override	this	property	-->
								<security-group-name>hazelcast-sg</security-group-name>		<!--	optional	-->
								<tag-key>type</tag-key>																																		<!--	optional	-->
								<tag-value>hz-nodes</tag-value>																										<!--	optional	-->
						</aws>
				</join>
		...
</hazelcast>

For more information look at Hazelcast Config Amazon EC2 Auto Discovery.

Uses manual IP like explained in Manual IP.

Other Cloud providers

1266

http://www.hazelcast.com/docs/3.1/manual/multi_html/ch14s02.html#EC2AutoDiscovery


In order to reduce the latency in WAN, the suggested configuration is to set
	executionMode	 to "asynchronous". In asynchronous mode any operation is executed on
local node and then replicated. In this mode the client doesn't wait for the quorum across
all the servers, but receives the response immediately after the local node answer.
Example:

{
				"autoDeploy":	true,
				"hotAlignment":	false,
				"executionMode":	"asynchronous",
				"readQuorum":	1,
				"writeQuorum":	2,
				"failureAvailableNodesLessQuorum":	false,
				"readYourWrites":	true,
				"clusters":	{
								"internal":	{
								},
								"index":	{
								},
								"*":	{
												"servers"	:	[	"<NEW_NODE>"	]
								}
				}
}

Asynchronous replication mode

1267



The simplest and most powerful way to achieve load balancing seems to use some
hidden (to some) properties of DNS. The trick is to create a TXT record listing the
servers.

The format is:

v=opf<version>	(s=<hostname[:<port>]>	)*

Example of TXT record for domain dbservers.mydomain.com:

v=opf1	s=192.168.0.101:2424	s=192.168.0.133:2424

In this way if you open a database against the URL 	remote:dbservers.mydomain.com/demo	 the
OrientDB client library will try to connect to the address 192.168.0.101 port 2424. If the
connection fails, then the next address 192.168.0.133: port 3434 is tried.

To enable this feature in Java Client driver set 	network.binary.loadBalancing.enabled=true	:

java	...	-Dnetwork.binary.loadBalancing.enabled=true

or via Java code:

OGlobalConfiguration.NETWORK_BINARY_DNS_LOADBALANCING_ENABLED.setValue(true);

Misc

Load balancing

1268



Simplified configuration by moving. Removed some flags (replication:boolean, now it’s
deducted by the presence of “servers” field) and settings now are global (autoDeploy,
hotAlignment, offlineMsgQueueSize, readQuorum, writeQuorum,
failureAvailableNodesLessQuorum, readYourWrites), but you can overwrite them per-
cluster.

For more information look at News in 1.7.

History

1.7

1269

http://www.orientechnologies.com/distributed-architecture-sharding/


Java class: 	com.orientechnologies.orient.server.hazelcast.OHazelcastPlugin	

Distributed Architecture Plugin

1270



This is part of Distributed Architecture. Configure a distributed clustered architecture.
This task is configured as a Server handler. The task can be configured easily by
changing these parameters:

enabled: Enable the plugin: 	true	 to enable, 	false	 to disable it.
configuration.hazelcast: The location of the Hazelcast configuration file
(	hazelcast.xml	).
alias: An alias for the current node within the cluster name. Default value is the IP
address and port for OrientDB on this node.
configuration.db.default: The location of a file that describes, using JSON syntax,
the synchronization configuration of the various clusters in the database.

Default configuration in orientdb-dserver-config.xml:

			<handler	class="com.orientechnologies.orient.server.hazelcast.OHazelcastPlugin">
						<parameters>
									<!--	<parameter	name="alias"	value="europe1"	/>	-->
									<parameter	name="enabled"	value="true"	/>
									<parameter	name="configuration.db.default"	value="${ORIENTDB_HOME}/config/default-distributed-db-config.json"
									<parameter	name="configuration.hazelcast"	value="${ORIENTDB_HOME}/config/hazelcast.xml"
						</parameters>
			</handler>

Introduction

1271



OrientDB supports the Multi Master replication. This means that all the nodes in the
cluster are Master and are able to read and write to the database. This allows to scale
up horizontally without bottlenecks like most of any other RDBMS and NoSQL solution
do.

Replication works only in the Distributed-Architecture.

Replication

1272

http://en.wikipedia.org/wiki/Multi-master_replication


In Distributed Architecture the replicated database must have he same name. When a
OrientDB Server is starting, sends the list of current databases (all the databases
located under 	$ORIENTDB_HOME/databases	 directory) to all the nodes in the cluster. If other
nodes have databases with the same name, a replication is automatically set.

NOTE: In Distributed Architecture assure to avoid conflict with database names,
otherwise 2 different databases could start replication with the chance to get corrupted.

If the database configuration has the setting 	"autoDeploy"	:	true	, then the databases are
automatically deployed across the network to the other nodes as soon as they join the
cluster.

Sharing of database

1273

https://github.com/orientechnologies/orientdb/wiki/Distributed-Configuration#default-distributed-db-configjson


1274



In case a server becomes unreachable, the node is removed by database configuration
unless the setting 	"hotAlignment"	:	true	. In this case all the new synchronization
messages are kept in a distributed queue.

As soon as the Server becomes online again, it starts the synchronization phase
(status=SYNCHRONIZING) by polling all the synchronization messages in the queue.

Server unreachable

1275

https://github.com/orientechnologies/orientdb/wiki/Distributed-Configuration#default-distributed-db-configjson


Once the alignment is finished, the node becomes online (status=ONLINE) and the
replication continues like at the beginning.

1276



Continue with:

Distributed Architecture
Distributed Sharding
Distributed database configuration

Further readings

1277



OrientDB supports sharding of data at class level, by using multiple clusters[clusters] per
per class, where each cluster has own list of server where data is replicated. From a
logical point of view all the records stored in clusters that are part of the same class, are
records of that class.

Follows an example that split the class “Client” in 3 clusters:

Class Client -> Clusters [ 	client_usa	, 	client_europe	, 	client_china	 ]

This means that OrientDB will consider any record/document/graph element in any of
such clusters as “Clients” (Client class relies on such clusters). In Distributed-
Architecture each cluster can be assigned to one or multiple server nodes.

Shards, based on clusters, work against indexed and non-indexed class/clusters.

Sharding

1278



You can assign each cluster to one or more servers. If more servers are enlisted the
records will be copied in all the servers. This is similar to what RAID stands for Disks.
The first server in the list will be the master server for that cluster.

This is an example of configuration where the Client class has been split in the 3 clusters
client_usa, client_europe and client_china, each one with different configuration:

	client_usa	, will be managed by "usa" and "china" nodes
	client_europe	, will be managed by all the nodes (it would be equivalent as writing
	“<NEW_NODE>”	, see cluster "*", the default one)
	client_china	, will be managed only by "china" node

Multiple servers per cluster

1279

http://en.wikipedia.org/wiki/RAID


In order to keep things simple, the entire OrientDB Distributed Configuration is stored on
a single JSON file. Example of distributed database configuration for (Multiple servers
per cluster)[Distributed-Sharding#Multiple-servers-per-cluster] use case:

{
		"autoDeploy":	true,
		"hotAlignment":	false,
		"readQuorum":	1,
		"writeQuorum":	2,
		"failureAvailableNodesLessQuorum":	false,
		"readYourWrites":	true,
		"clusters":	{
				"internal":	{
				},
				"index":	{
				},
				"client_usa":	{
						"servers"	:	[	"usa",	"europe"	]
				},
				"client_europe":	{
						"servers"	:	[	"europe"	]
				},
				"client_china":	{
						"servers"	:	[	"china",	"usa",	"europe"	]
				},
				"*":	{
						"servers"	:	[	"<NEW_NODE>"	]
				}
		}
}

Configuration

1280



OrientDB automatically creates a new cluster per each class as soon as node joins the
distributed cluster. These cluster names have the node name as suffix: 	<class>_<node>	.
Example: 	client_usa	. When a node goes down, the clusters where the node was master
are reassigned to other servers. As soon as that node returns up and running, OrientDB
will reassign the previous clusters where it was master to the same node again following
the convention 	<class>_<node>	.

This is defined as "Cluster Locality". The local node is always selected when a ne record
is created. This avoids conflicts and allow to insert record in parallel on multiple nodes.
This means also that in distributed mode you can't select the cluster selection strategy,
because "local" strategy is always injected to all the cluster automatically.

If you want to change permanently the mastership of clusters, rename the cluster with
the suffix of the node you want assign as master.

Cluster Locality

1281



In the configuration above, if a new Client record is created on node USA, then the
selected cluster will be 	client_usa	, because it's the local cluster for class Client. Now,
	client_usa	 is managed by both USA and CHINA nodes, so the "create record" operation
is sent to both "usa" (locally) and "china" nodes.

Updating and Deleting of records always involves all the nodes where the record is
stored. No matter the node that receive the update operation. If we update record
	#13:22	 that is stored on cluster 	13	, namely 	client_china	 in the example above, then the
update is sent to nodes: "china", "usa", "europe".

If the local node has the requested record, the record is read directly from the storage. If
it's not present on local server, a forward is executed to any of the nodes that have the
requested record. This means a network call to between nodes.

In case of queries, OrientDB checks where the query target are located and send the
query to all the involved servers. This operation is equivalent to a Map-Reduce. If the
query target is 100% managed on local node, the query is simply executed on local node
without paying the cost of network call.

All the query works by aggregating the result sets from all the involved nodes.

Example of executing this query on node "usa":

select	from	Client

Since local node (USA) already owns 	client_usa	 and 	client_china	, 2/3 of data are local.
The missing 1/3 of data is in 	client_europe	 that is managed only by node "Europe". So
the query will be executed on local node "usa" and "Europe" providing the aggregated
result back to the client.

You can query also a particular cluster:

CRUD Operations

Create new records

Update and Delete of records

Read records

1282



select	from	cluster:client_china

In this case the local node (USA) is used, because 	client_china	 is hosted on local node.

1283



OrientDB supports Map/Reduce by using the OrientDB SQL. The Map/Reduce operation
is totally transparent to the developer. When a query involve multiple shards (clusters),
OrientDB executes the query against all the involved server nodes (Map operation) and
then merge the results (Reduce operation). Example:

select	max(amount),	count(*),	sum(amount)	from	Client

In this case the query is executed across all the 3 nodes and then filtered again on
starting node.

Map-Reduce

1284

http://en.wikipedia.org/wiki/MapReduce


1285



The application can decide where to insert a new Client by passing the cluster number
or name. Example:

INSERT	INTO	Client	CLUSTER:client_usa	SET	name	=	'Jay'

If the node that executes this command is not the master of cluster 	client_usa	, an
exception is thrown.

OrientVertex	v	=	graph.addVertex("class:Client,cluster:client_usa");
v.setProperty("name",	"Jay");

ODocument	doc	=	new	ODocument("Client");
doc.field("name",	"Jay");
doc.save(	"client_usa"	);

1. Hot change of distributed configuration not available. This will be introduced at
release 2.0 via command line and in visual way in the Workbench of the Enterprise
Edition (commercial licensed).

2. Not complete merging of results for all the projections. Some functions like AVG()
doesn’t work on map/reduce

Define the target cluster/shard

Java Graph API

Java Document API

Limitation

1286



All the indexes are managed locally to a server. This means that if a class is spanned
across 3 clusters on 3 different servers, each server will have own local indexes. By
executing a distributed query (Map/Reduce like) each server will use own indexes.

Indexes

1287



With Community Edition the distributed configuration cannot be changed at run-time but
you have to stop and restart all the nodes. Enterprise Edition allows to create and drop
new shards without stopping the distributed cluster.

By using Enterprise Edition and the Workbench, you can deploy the database to the new
server and defining the cluster to assign to it. In this example a new server "usa2" is
created where only the cluster 	client_usa	 will be copied. After the deployment, cluster
	client_usa	 will be replicated against nodes "usa" and "usa2".

Hot management of distributed
configuration

1288

http://www.orientechnologies.com/orientdb-enterprise
http://www.orientechnologies.com/enterprise/last/clustermgmt.html


OrientDB has own more Cache levels. When OrientDB runs in Distributed-Architecture,
each server has own cache. All the caches in each server are independent.

You can also have a shared cache among servers, by enabling the Hazelcast's 2nd level
cache. To enable it set the cache.level2.impl property in orientdb-dserver-config.xml file
with value com.orientechnologies.orient.server.hazelcast.OHazelcastCache:

Note that this will slow down massive insertion but will improve query and lookup
operations.

Example in orientdb-dserver-config.xml file:

...
<properties>
		<!--	Uses	the	Hazelcast	distributed	cache	as	2nd	level	cache	-->
		<entry	name="cache.level2.impl"	value="com.orientechnologies.orient.server.hazelcast.OHazelcastCache"
</properties>

Distributed Cache

Distributed 2nd Level cache

1289



OrientDB supports backup and restore operations like any RDBMS.

Backup executes a complete backup against the currently opened database. The
backup file is compressed using the ZIP algorithm. To restore the database use the
Restore Database command. Backup is much faster than Export Database. Look also to
Export Database and Import Database commands. Backup can be done automatically
by enabling the Automatic-Backup Server plugin.

Backup & Restore

1290



Backup does a consistent copy of database, all further write operations are locked
waiting to finish it. The database is in read-only mode during backup operation. If you
need an read/write database during backup setup a distributed cluster of nodes.

Export, instead, doesn't lock the database and allow concurrent writes during the export
process. This means the exported database could have changes executed during the
export.

When to use backup and when export?

1291



Starting from v1.7.8, OrientDB comes with the script "backup.sh" under the "bin"
directory. This script executes the backup by using the console. Syntax:

./backup.sh	<dburl>	<user>	<password>	<destination>	[<type>]

Where:

dburl: database URL
user: database user allowed to run the backup
password: database password for the specified user
destination: destination file path (use .zip as extension) where the backup is
created
type: optional backup type, supported types are:

default, locks the database during the backup
lvm, uses LVM copy-on-write snapshot to execute in background

Example of backup against a database open with "plocal":

./backup.sh	plocal:../database/testdb	admin	admin	/dest/folder/backup.zip

backup.sh script supports non-blocking backup if the OS supports LVM). Example:

./backup.sh	plocal:../database/testdb	admin	admin	/dest/folder/backup.zip	lvm

Same example like before, but against a remote database hosted on localhost:

./backup.sh	remote:localhost/testdb	root	rootpwd	/dest/folder/backup.zip	lvm

For more information about LVM) and Copy On Write (COS) look at:

File system snapshots with LVM
LVM snapshot backup

Backup database

Non-Blocking Backup

1292

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux
http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux
http://arstechnica.com/information-technology/2004/10/linux-20041013/
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html


You can also use the console to execute a backup. Below the same backup like before,
but using the console.

orientdb>	connect	plocal:../database/testdb	admin	admin
orientdb>	backup	database	/dest/folder/backup.zip
Backup	executed	in	0,52	seconds

Using the console

1293



Use the console to restore a database. Example:

orientdb>	restore	database	/backups/mydb.zip
Restore	executed	in	6,33	seconds

Restore database

1294



Backup Database
Restore Database
Export Database
Import Database
Console-Commands

See also

1295



OrientDB supports export and import operations like any RDBMS.

The Export command exports the current opened database to a file. The exported file is
in JSON format using the Export-Format. By default the file is compressed using the
GZIP algorithm. The Export/Import commands allow to migrate the database between
different releases of OrientDB without loosing data. If you receive an error about the
database version, export the database using the same version of OrientDB that has
generated the database.

Export doesn't lock your database, but browses it. This means that concurrent operation
can be executed during the export, but the exported database couldn't be the exact
replica when you issued the command because concurrent updates could occurs. If you
need a snapshot of database at a point in a time, please use Backup.

Once exported, use the Import to restore it. The database will be imported and will be
ready to be used. Look also to Backup Database and Restore Database commands.

Export & Import

1296

http://en.wikipedia.org/wiki/JSON


Backup does a consistent copy of database, all further write operations are locked
waiting to finish it. The database is in read-only mode during backup operation. If you
need an read/write database during backup setup a distributed cluster of nodes.

Export, instead, doesn't lock the database and allow concurrent writes during the export
process. This means the exported database could have changes executed during the
export.

When to use backup and when export?

1297



orientdb>	export	database	/temp/petshop.export

Exporting	current	database	to:	/temp/petshop.export...

Exporting	database	info...OK
Exporting	dictionary...OK
Exporting	schema...OK
Exporting	clusters...
-	Exporting	cluster	'metadata'	(records=11)	->	...........OK
-	Exporting	cluster	'index'	(records=0)	->	OK
-	Exporting	cluster	'default'	(records=779)	->	OK
-	Exporting	cluster	'csv'	(records=1000)	->	OK
-	Exporting	cluster	'binary'	(records=1001)	->	OK
-	Exporting	cluster	'person'	(records=7)	->	OK
-	Exporting	cluster	'animal'	(records=5)	->	OK
-	Exporting	cluster	'animalrace'	(records=0)	->	OK
-	Exporting	cluster	'animaltype'	(records=1)	->	OK
-	Exporting	cluster	'orderitem'	(records=0)	->	OK
-	Exporting	cluster	'order'	(records=0)	->	OK
-	Exporting	cluster	'city'	(records=3)	->	OK
Export	of	database	completed.

Export Example

1298



>	import	database	/temp/petshop.export	-preserveClusterIDs=true
Importing	records...
-	Imported	records	into	the	cluster	'internal':	5	records
-	Imported	records	into	the	cluster	'index':	4	records
-	Imported	records	into	the	cluster	'default':	1022	records
-	Imported	records	into	the	cluster	'orole':	3	records
-	Imported	records	into	the	cluster	'ouser':	3	records
-	Imported	records	into	the	cluster	'csv':	100	records
-	Imported	records	into	the	cluster	'binary':	101	records
-	Imported	records	into	the	cluster	'account':	1005	records
-	Imported	records	into	the	cluster	'company':	9	records
-	Imported	records	into	the	cluster	'profile':	9	records
-	Imported	records	into	the	cluster	'whiz':	1000	records
-	Imported	records	into	the	cluster	'address':	164	records
-	Imported	records	into	the	cluster	'city':	55	records
-	Imported	records	into	the	cluster	'country':	55	records
-	Imported	records	into	the	cluster	'animalrace':	3	records
-	Imported	records	into	the	cluster	'ographvertex':	102	records
-	Imported	records	into	the	cluster	'ographedge':	101	records
-	Imported	records	into	the	cluster	'graphcar':	1	records

Import Example

1299



Export-Format
Restore Database
Export Database
Import Database
Console-Commands

See also

1300



This page contains the format used by Export Database and Import Database tools. The
file is 100% JSON compliant.

Export format

1301



Export Database
Import Database

See also

1302



First section resuming the database information and all the version used to check
compatibility on import.

{
		"info":{
		"name":	<database-name>,
		"default-cluster-id":	<default-cluster-id>,
		"exporter-version":	<exporter-format>,
		"engine-version":	<engine-version>,
		"storage-config-version":	<storage-version>,
		"schema-version":	<schema-version>,
		"mvrbtree-version":	<mvrbtree-version>
}

Parameter Description JSON Type

database-name Name of database String

default-cluster-id Cluster Id used by default. Range: 0-32,767 Integer

exporter-format Version of Database exporter Integer

engine-version Version of OrientDB String

storage-version Version of Storage layer Integer

schema-version Version of the schema exporter Integer

mvrbtree-version Version of the MVRB-Tree Integer

{
		"info":{
		"name":	"demo",
		"default-cluster-id":	2,
		"exporter-version":	2,
		"engine-version":	"1.7-SNAPSHOT",
		"storage-config-version":	2,
		"schema-version":	4,
		"mvrbtree-version":	0
}

Sections

Info Section

Example

1303



Contains the database structure in clusters.

"clusters":	[
		{"name":	<cluster-name>,	"id":	<cluster-id>,	"type":	<cluster-type>}
]

Parameter Description JSON
Type

cluster-
name Name of cluster String

cluster-id Cluster id. Range: 0-32,767 Integer

cluster-
type

Cluster type between "PHYSICAL", "LOGICAL" and
"MEMORY" String

"clusters":	[
		{"name":	"internal",	"id":	0,	"type":	"PHYSICAL"},
		{"name":	"index",	"id":	1,	"type":	"PHYSICAL"},
		{"name":	"default",	"id":	2,	"type":	"PHYSICAL"}
]

Contains the schema as classes and properties.

"schema":{
		"version":	<schema-version>,
		"classes":	[
				{	"name":	<class-name>,
						"default-cluster-id":	<default-cluster-id>,
						"cluster-ids":	[<cluster-ids>],
						"properties":	[
								{	"name":	<property-name>,
										"type":	<property-type>,
										"mandatory":	<property-is-mandatory>,
										"not-null":	<property-not-null>	}
						]
				}
		]
}

Clusters Section

Example

Schema Section

1304



Parameter Description JSON
Type

schema-
version

Version of the record where the schema is stored.
Range: 0-2,147,483,647 Integer

class-
name Class name String

default-
cluster-id

Default cluster id for the class. Represents the cluster
where records will be stored Integer

cluster-ids Array of cluster ids where the class records can be
stored. The first is always the 	<default-cluster-id>	

Array of
Integer

property-
name Name of the property String

property-
type Property type between the supported ones String

property-
is-
mandatory

Is this property mandatory? true or false Boolean

property-
not-null The property can't accept null? true or false Boolean

"schema":{
		"version":	210,
		"classes":	[
				{"name":	"Account",	"default-cluster-id":	9,	"cluster-ids":	[9],
						"properties":	[
								{"name":	"binary",	"type":	"BINARY",	"mandatory":	false,	"not-null":	false},
								{"name":	"birthDate",	"type":	"DATE",	"mandatory":	false,	"not-null":	false},
								{"name":	"id",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}
						]
				}
		]
}

Contains the exported records with metadata (prefixed by @) and fields.

"records":	[
		{
				"@type":	<record-type>,
				"@rid":	<record-id>,

Example

Records Section

1305



				"@version":	0,
				"@class":	<record-class>,

				<field-name>:	<field-value>,

				["@fieldTypes":	"<field-name>=<field-type>"]
		}
]

Parameter Description JSON
Type

record-
type Record type: d = document, b = binary, f = flat String

record-id RecordID in the format 	#<cluster-id>:<cluster-position>	 String

record-
version Record version from 0 to 2,147,483,647 Integer

record-
class Record class name String

field-name Field name String

field-value Field value Any

field-type
Optional, it's the field type: 'l'=Long, 'f'=Float,
'd'=Double, 's'=Short, 't'=Datetime, 'd'=Date,
'c'=Decimal, 'b'=Byte

Any

"records":	[
		{
				"@type":	"d",	"@rid":	"#12:476",	"@version":	0,	"@class":	"Whiz",
				"id":	476,
				"date":	"2011-12-09	00:00:00:000",
				"text":	"Los	a	went	chip,	of	was	returning	cover,	In	the",
				"@fieldTypes":	"date=t"
		},{
				"@type":	"d",	"@rid":	"#12:477",	"@version":	0,	"@class":	"Whiz",
				"id":	477,
				"date":	"2011-12-09	00:00:00:000",
				"text":	"He	in	office	return	He	inside	electronics	for	$500,000	Jay",
				"@fieldTypes":	"date=t"
		}
]

Example

1306



{
		"info":{
				"name":	"demo",
				"default-cluster-id":	2,
				"exporter-version":	2,
				"engine-version":	"1.0rc8-SNAPSHOT",
				"storage-config-version":	2,
				"schema-version":	4,
				"mvrbtree-version":	0
		},
		"clusters":	[
				{"name":	"internal",	"id":	0,	"type":	"PHYSICAL"},
				{"name":	"index",	"id":	1,	"type":	"PHYSICAL"},
				{"name":	"default",	"id":	2,	"type":	"PHYSICAL"},
				{"name":	"orole",	"id":	3,	"type":	"PHYSICAL"},
				{"name":	"ouser",	"id":	4,	"type":	"PHYSICAL"},
				{"name":	"orids",	"id":	5,	"type":	"PHYSICAL"},
				{"name":	"csv",	"id":	6,	"type":	"PHYSICAL"},
				{"name":	"flat",	"id":	7,	"type":	"PHYSICAL"},
				{"name":	"binary",	"id":	8,	"type":	"PHYSICAL"},
				{"name":	"account",	"id":	9,	"type":	"PHYSICAL"},
				{"name":	"company",	"id":	10,	"type":	"PHYSICAL"},
				{"name":	"profile",	"id":	11,	"type":	"PHYSICAL"},
				{"name":	"whiz",	"id":	12,	"type":	"PHYSICAL"},
				{"name":	"address",	"id":	13,	"type":	"PHYSICAL"},
				{"name":	"city",	"id":	14,	"type":	"PHYSICAL"},
				{"name":	"country",	"id":	15,	"type":	"PHYSICAL"},
				{"name":	"dummy",	"id":	16,	"type":	"PHYSICAL"},
				{"name":	"ographvertex",	"id":	26,	"type":	"PHYSICAL"},
				{"name":	"ographedge",	"id":	27,	"type":	"PHYSICAL"},
				{"name":	"graphvehicle",	"id":	28,	"type":	"PHYSICAL"},
				{"name":	"graphcar",	"id":	29,	"type":	"PHYSICAL"},
				{"name":	"graphmotocycle",	"id":	30,	"type":	"PHYSICAL"},
				{"name":	"newv",	"id":	31,	"type":	"PHYSICAL"},
				{"name":	"mappoint",	"id":	33,	"type":	"PHYSICAL"},
				{"name":	"person",	"id":	35,	"type":	"PHYSICAL"},
				{"name":	"order",	"id":	36,	"type":	"PHYSICAL"},
				{"name":	"post",	"id":	37,	"type":	"PHYSICAL"},
				{"name":	"comment",	"id":	38,	"type":	"PHYSICAL"}
		],
		"schema":{
				"version":	210,
				"classes":	[
						{"name":	"Account",	"default-cluster-id":	9,	"cluster-ids":	[9],
								"properties":	[
										{"name":	"binary",	"type":	"BINARY",	"mandatory":	false,	"not-null":	false},
										{"name":	"birthDate",	"type":	"DATE",	"mandatory":	false,	"not-null":	false},
										{"name":	"id",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"Address",	"default-cluster-id":	13,	"cluster-ids":	[13]
						},
						{"name":	"Animal",	"default-cluster-id":	17,	"cluster-ids":	[17]
						},

Full Example

1307



						{"name":	"AnimalRace",	"default-cluster-id":	18,	"cluster-ids":	[18]
						},
						{"name":	"COMMENT",	"default-cluster-id":	38,	"cluster-ids":	[38]
						},
						{"name":	"City",	"default-cluster-id":	14,	"cluster-ids":	[14]
						},
						{"name":	"Company",	"default-cluster-id":	10,	"cluster-ids":	[10],	"super-class":	"Account"
								"properties":	[
								]
						},
						{"name":	"Country",	"default-cluster-id":	15,	"cluster-ids":	[15]
						},
						{"name":	"Dummy",	"default-cluster-id":	16,	"cluster-ids":	[16]
						},
						{"name":	"GraphCar",	"default-cluster-id":	29,	"cluster-ids":	[29],	"super-class":	"GraphVehicle"
								"properties":	[
								]
						},
						{"name":	"GraphMotocycle",	"default-cluster-id":	30,	"cluster-ids":	[30],	"super-class":	
								"properties":	[
								]
						},
						{"name":	"GraphVehicle",	"default-cluster-id":	28,	"cluster-ids":	[28],	"super-class":	
								"properties":	[
								]
						},
						{"name":	"MapPoint",	"default-cluster-id":	33,	"cluster-ids":	[33],
								"properties":	[
										{"name":	"x",	"type":	"DOUBLE",	"mandatory":	false,	"not-null":	false},
										{"name":	"y",	"type":	"DOUBLE",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"OGraphEdge",	"default-cluster-id":	27,	"cluster-ids":	[27],	"short-name":	"E"
								"properties":	[
										{"name":	"in",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class
										{"name":	"out",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class
								]
						},
						{"name":	"OGraphVertex",	"default-cluster-id":	26,	"cluster-ids":	[26],	"short-name":	"V"
								"properties":	[
										{"name":	"in",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class
										{"name":	"out",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class
								]
						},
						{"name":	"ORIDs",	"default-cluster-id":	5,	"cluster-ids":	[5]
						},
						{"name":	"ORole",	"default-cluster-id":	3,	"cluster-ids":	[3],
								"properties":	[
										{"name":	"mode",	"type":	"BYTE",	"mandatory":	false,	"not-null":	false},
										{"name":	"name",	"type":	"STRING",	"mandatory":	true,	"not-null":	true},
										{"name":	"rules",	"type":	"EMBEDDEDMAP",	"mandatory":	false,	"not-null":	false,	"linked-type
								]
						},
						{"name":	"OUser",	"default-cluster-id":	4,	"cluster-ids":	[4],
								"properties":	[
										{"name":	"name",	"type":	"STRING",	"mandatory":	true,	"not-null":	true},
										{"name":	"password",	"type":	"STRING",	"mandatory":	true,	"not-null":	true},
										{"name":	"roles",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class
								]

1308



						},
						{"name":	"Order",	"default-cluster-id":	36,	"cluster-ids":	[36]
						},
						{"name":	"POST",	"default-cluster-id":	37,	"cluster-ids":	[37],
								"properties":	[
										{"name":	"comments",	"type":	"LINKSET",	"mandatory":	false,	"not-null":	false,	"linked-class
								]
						},
						{"name":	"Person",	"default-cluster-id":	35,	"cluster-ids":	[35]
						},
						{"name":	"Person2",	"default-cluster-id":	22,	"cluster-ids":	[22],
								"properties":	[
										{"name":	"age",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},
										{"name":	"firstName",	"type":	"STRING",	"mandatory":	false,	"not-null":	false},
										{"name":	"lastName",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"Profile",	"default-cluster-id":	11,	"cluster-ids":	[11],
								"properties":	[
										{"name":	"hash",	"type":	"LONG",	"mandatory":	false,	"not-null":	false},
										{"name":	"lastAccessOn",	"type":	"DATETIME",	"mandatory":	false,	"not-null":	false,	"
										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false,	"min":	"3"
										{"name":	"nick",	"type":	"STRING",	"mandatory":	false,	"not-null":	false,	"min":	"3"
										{"name":	"photo",	"type":	"TRANSIENT",	"mandatory":	false,	"not-null":	false},
										{"name":	"registeredOn",	"type":	"DATETIME",	"mandatory":	false,	"not-null":	false,	"
										{"name":	"surname",	"type":	"STRING",	"mandatory":	false,	"not-null":	false,	"min":	
								]
						},
						{"name":	"PropertyIndexTestClass",	"default-cluster-id":	21,	"cluster-ids":	[21],
								"properties":	[
										{"name":	"prop1",	"type":	"STRING",	"mandatory":	false,	"not-null":	false},
										{"name":	"prop2",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},
										{"name":	"prop3",	"type":	"BOOLEAN",	"mandatory":	false,	"not-null":	false},
										{"name":	"prop4",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},
										{"name":	"prop5",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"SQLDropIndexTestClass",	"default-cluster-id":	23,	"cluster-ids":	[23],
								"properties":	[
										{"name":	"prop1",	"type":	"DOUBLE",	"mandatory":	false,	"not-null":	false},
										{"name":	"prop2",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"SQLSelectCompositeIndexDirectSearchTestClass",	"default-cluster-id":	24,	"cluster-ids
								"properties":	[
										{"name":	"prop1",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},
										{"name":	"prop2",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"TestClass",	"default-cluster-id":	19,	"cluster-ids":	[19],
								"properties":	[
										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false},
										{"name":	"testLink",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class
								]
						},
						{"name":	"TestLinkClass",	"default-cluster-id":	20,	"cluster-ids":	[20],
								"properties":	[
										{"name":	"testBoolean",	"type":	"BOOLEAN",	"mandatory":	false,	"not-null":	false},
										{"name":	"testString",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}

1309



								]
						},
						{"name":	"Whiz",	"default-cluster-id":	12,	"cluster-ids":	[12],
								"properties":	[
										{"name":	"account",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class
										{"name":	"date",	"type":	"DATE",	"mandatory":	false,	"not-null":	false,	"min":	"2010-01-01"
										{"name":	"id",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false},
										{"name":	"replyTo",	"type":	"LINK",	"mandatory":	false,	"not-null":	false,	"linked-class
										{"name":	"text",	"type":	"STRING",	"mandatory":	true,	"not-null":	false,	"min":	"1"
								]
						},
						{"name":	"classclassIndexManagerTestClassTwo",	"default-cluster-id":	25,	"cluster-ids":	
						},
						{"name":	"newV",	"default-cluster-id":	31,	"cluster-ids":	[31],	"super-class":	"OGraphVertex"
								"properties":	[
										{"name":	"f_int",	"type":	"INTEGER",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"vertexA",	"default-cluster-id":	32,	"cluster-ids":	[32],	"super-class":	"OGraphVertex"
								"properties":	[
										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}
								]
						},
						{"name":	"vertexB",	"default-cluster-id":	34,	"cluster-ids":	[34],	"super-class":	"OGraphVertex"
								"properties":	[
										{"name":	"map",	"type":	"EMBEDDEDMAP",	"mandatory":	false,	"not-null":	false},
										{"name":	"name",	"type":	"STRING",	"mandatory":	false,	"not-null":	false}
								]
						}
				]
		},
		"records":	[{
										"@type":	"d",	"@rid":	"#12:476",	"@version":	0,	"@class":	"Whiz",
										"id":	476,
										"date":	"2011-12-09	00:00:00:000",
										"text":	"Los	a	went	chip,	of	was	returning	cover,	In	the",
										"@fieldTypes":	"date=t"
								},{
										"@type":	"d",	"@rid":	"#12:477",	"@version":	0,	"@class":	"Whiz",
										"id":	477,
										"date":	"2011-12-09	00:00:00:000",
										"text":	"He	in	office	return	He	inside	electronics	for	$500,000	Jay",
										"@fieldTypes":	"date=t"
								}
		]
}

1310



NOTE: Starting from OrientDB 2.0 you can use the OrientDB-ETL module to import data
from RDBMS. You can use ETL also with 1.7.x by installing it as separate module.

OrientDB supports a subset of SQL, so importing a database created as "Relational" is
straightforward. For the sake of simplicity consider your Relational database having just
these two tables:

POST
COMMENT

Where the relationship is between Post and comment as One-2-Many.

TABLE	POST:
+----+----------------+
|	id	|	title										|
+----+----------------+
|	10	|	NoSQL	movement	|
|	20	|	New	OrientDB			|
+----+----------------+

TABLE	COMMENT:
+----+--------+--------------+
|	id	|	postId	|	text									|
+----+--------+--------------+
|		0	|			10			|	First								|
|		1	|			10			|	Second							|
|	21	|			10			|	Another						|
|	41	|			20			|	First	again		|
|	82	|			20			|	Second	Again	|
+----+--------+--------------+

Import using the Document Model (relationships as links)
Import using the Graph Model (relationships as edges)

Import from RDBMS

1311

https://github.com/orientechnologies/orientdb-etl/wiki/Import-from-DBMS


This guide is to import an exported relational database into OrientDB using the
Document Model. If you're using the Graph Model, look at Import into Graph Model.

OrientDB supports a subset of SQL, so importing a database created as "Relational" is
straightforward. You can import a database using the API, the OrientDB Studio visual
tool or the Console. In this guide the console is used.

For the sake of simplicity consider your Relational database having just these two tables:

POST
COMMENT

Where the relationship is between Post and comment as One-2-Many.

TABLE	POST:
+----+----------------+
|	id	|	title										|
+----+----------------+
|	10	|	NoSQL	movement	|
|	20	|	New	OrientDB			|
+----+----------------+

TABLE	COMMENT:
+----+--------+--------------+
|	id	|	postId	|	text									|
+----+--------+--------------+
|		0	|			10			|	First								|
|		1	|			10			|	Second							|
|	21	|			10			|	Another						|
|	41	|			20			|	First	again		|
|	82	|			20			|	Second	Again	|
+----+--------+--------------+

Since the Relational Model hasn't Object Oriented concepts you can create a class per
table in OrientDB. Furthermore in the RDBMS references One-2-Many are inverted from
the target table to the source one. In OrientDB the Object Oriented model is respected
and you've a collection of links from POST to COMMENT instances. In a RDBMS you
have:

Table	POST				<-	(foreign	key)	Table	COMMENT

Import from RDBMS to Document Model

1312



In OrientDB the Document model uses Links to manage relationships:

Class	POST	->*	(collection	of	links)	Class	COMMENT

1313



Most of Relational DBMSs provide a way to export a database in SQL format. What you
need is a text file containing the SQL INSERT commands to recreate the database from
scratch. Take a look to the documentation of your RDBMS provider. Below the link to the
export utilities for the most common RDBMSs:

MySQL:
http://www.abbeyworkshop.com/howto/lamp/MySQL_Export_Backup/index.html
Oracle: http://www.orafaq.com/wiki/Import_Export_FAQ
MS SqlServer: http://msdn.microsoft.com/en-us/library/ms140052.aspx

At this point you should have a 	.sql	 file containing the Relational database exported in
SQL format like this:

DROP	TABLE	IF	EXISTS	post;
CREATE	TABLE	post	(
id	int(11)	NOT	NULL	auto_increment,
title	varchar(128),
PRIMARY	KEY	(id)
);

DROP	TABLE	IF	EXISTS	comment;
CREATE	TABLE	comment	(
id	int(11)	NOT	NULL	auto_increment,
postId	int(11),
text	text,
PRIMARY	KEY	(id),
CONSTRAINT	`fk_comments`
				FOREIGN	KEY	(`postId`	)
				REFERENCES	`post`	(`id`	)
);

INSERT	INTO	POST	(id,	title)	VALUES(	10,	'NoSQL	movement'	);
INSERT	INTO	POST	(id,	title)	VALUES(	20,	'New	OrientDB'	);

INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	0,	10,	'First'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	1,	10,	'Second'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	21,	10,	'Another'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	41,	20,	'First	again'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	82,	20,	'Second	Again'	);

Export your Relational Database

1314

http://www.abbeyworkshop.com/howto/lamp/MySQL_Export_Backup/index.html
http://www.orafaq.com/wiki/Import_Export_FAQ
http://msdn.microsoft.com/en-us/library/ms140052.aspx


What we're going to do is to change the generated SQL file to be imported into a
OrientDB database. Don't execute the following commands but include them into the
SQL file to be executed in batch mode by the OrientDB Console.

Modify the SQL script

1315



Before to import the database you need an open connection to a OrientDB database.
You can create a brand new database or use an existent one. You can use a volatile in-
memory only database or a persistent disk-based one.

For persistent databases you can choose to create it in a remote server or locally using
the "plocal" mode avoiding the server at all. This is suggested to have better
performance on massive insertion.

create	database	plocal:/tmp/db/blog	admin	admin	plocal	document

This will create a new database under the directory "/tmp/db/blog".

Or start a OrientDB server and create a database using the "remote" protocol in the
connection URL. Example:

create	database	remote:localhost/blog	root	dkdf383dhdsj	plocal	document

NOTE: When you create a remote database you need the server's credentials to do it.
Use the user "root" and the password stored in 	config/orientdb-server-config.xml	 file.

If you already have a database where to import, just open it:

connect	plocal:/tmp/db/blog	admin	admin

What database to use?

Create a new database

Use the embedded mode

Use the remote mode

Use an existent database

Use the embedded mode

1316



connect	remote:localhost/blog	admin	admin

Use the remote mode

1317



In order to obtain the maximum of performance you can tell to OrientDB what you're
going to do. These are called "Intents". The "Massive Insert" intent will auto tune the
OrientDB engine for fast insertion.

Add the following line:

DECLARE	INTENT	massiveinsert

Declare the 'massive insert' intent

1318



Since the Relational Model hasn't Object Oriented concepts you can create a class per
table. Change the 	CREATE	TABLE	...	 statements with 	CREATE	CLASS	:

CREATE	CLASS	POST
CREATE	CLASS	COMMENT

This is the case when your Relational database was created using a OR-Mapping tool
like Hibernate or Data Nucleus (JDO).

In this case you have to re-build the original Object Oriented structure directly in
OrientDB using the Object Oriented capabilities of OrientDB.

Create the classes, one for tables

Pseudo Object Oriented database

1319

http://www.hibernate.org
http://www.datanucleus.org


Leave only the 	INSERT	INTO	 statements. OrientDB supports not only INSERT statement
but for this purpose is out of scope.

Remove not supported statements

1320



At this point you need to create links as relationships in OrientDB. The Create Link
command creates links between two or more records of type Document. In facts in the
Relational world relationships are resolved as foreign keys.

Using OrientDB, instead, you have direct relationship as in your object model. So the
navigation is from Post to Comment and not viceversa as for Relational model. For this
reason you need to create a link as INVERSE.

Execute:

CREATE	LINK	comments	TYPE	linkset	FROM	comment.postId	To	post.id	INVERSE

Create links

1321



This is an optional step. Now you've direct links the field 'postId' has no more sense, so
remove it:

UPDATE	comment	REMOVE	postId

Remove old constraints

1322



After these steps the expected output should be similar to that below:

CONNECT	plocal:/tmp/db/blog	admin	admin

DECLARE	INTENT	massiveinsert

CREATE	CLASS	POST
CREATE	CLASS	COMMENT

INSERT	INTO	POST	(id,	title)	VALUES(	10,	'NoSQL	movement'	);
INSERT	INTO	POST	(id,	title)	VALUES(	20,	'New	OrientDB'	);

INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	0,	10,	'First'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	1,	10,	'Second'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	21,	10,	'Another'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	41,	20,	'First	again'	);
INSERT	INTO	COMMENT	(id,	postId,	text)	VALUES(	82,	20,	'Second	Again'	);

CREATE	LINK	comments	TYPE	linkset	FROM	comment.postId	To	post.id	INVERSE
UPDATE	comment	REMOVE	postId

Expected output

1323



Now you have modified the SQL script execute it by invoking the console tool in batch
mode (text file just created as first argument). Example of importing the file called
"database.sql":

$	console.sh	database.sql

Import the records

1324



That's all. Now you've a OrientDB database where relationships are direct without
JOINS.

Now enjoy with your new document-graph database and the following queries:

Select all the post with comments:

orientdb>	select	*	from	post	where	comments.size()	>	0

Select all the posts where comments contain the word 'flame' in the text property (before
as column):

orientdb>	select	*	from	post	where	comments	contains	(	text	like	'%flame%'	)

Select all the posts commented today. In this case we're assuming a property "date" is
present in Comment class:

orientdb>	select	*	from	post	where	comments	contains	(	date	>	'2011-04-14	00:00:00'	)

To know more about other SQL commands look at SQL commands.

This is a command of the Orient console. To know all the commands go to Console-
Commands.

Enjoy

1325



To import from RDBMS to OrientDB using the Graph Model the ETL tool is the
suggested way to do it. Take a look at: Import from CSV to a Graph.

Import from RDBMS to Graph Model

1326

http://www.orientechnologies.com/docs/last/orientdb-etl.wiki/Import-from-CSV-to-a-Graph.html


This guide explains how to export a graph from Neo4j* and import it into OrientDB in 3
easy steps. If you want to know more about the differences between OrientDB and
Neo4j, take a look at OrientDB vs Neo4j.

Import from Neo4j

1327

http://www.orientechnologies.com/orientdb-vs-neo4j/


In order to export the database in GraphML format, you need the additional neo4j-shell-
tools plugin:

Download it from the Neo4j web site
Extract the ZIP content inside Neo4j 	lib	 folder

1) Download Neo4j Shell Tools plugin

1328

https://github.com/jexp/neo4j-shell-tools
https://github.com/jexp/neo4j-shell-tools


Now launch the Neo4j-Shell tool located in the 	bin	 directory and execute the following
command:

export-graphml	-t	-o	/tmp/out.graphml

Where 	/tmp/out.graphml	 is the location to save the file in GraphML format.

Example:

$	bin/neo4j-shell
Welcome	to	the	Neo4j	Shell!	Enter	'help'	for	a	list	of	commands
NOTE:	Remote	Neo4j	graph	database	service	'shell'	at	port	1337

neo4j-sh	(0)$	export-graphml	-t	-o	/tmp/out.graphml
Wrote	to	GraphML-file	/tmp/out.graphml	0.	100%:	nodes	=	302	rels	=	834	properties	=	4221	time	59	sec	total	59	sec

2) Export the Neo4j database to a file

1329

http://docs.neo4j.org/chunked/stable/shell.html


The third and last step can be done in 2 ways, based on the OrientDB version you are
using.

If you have OrientDB 2.0, this is the suggested method because it's easier and is able to
import Neo4j labels as OrientDB classes automatically.

$	cd	$ORIENTDB_HOME/bin
$	./console.sh
orientdb>	create	database	plocal:/tmp/db/test
creating	database	[plocal:/tmp/db/test]	using	the	storage	type	[plocal]...
Database	created	successfully.

Current	database	is:	plocal:/tmp/db/test

orientdb	{db=test}>	import	database	/tmp/out.graphml

Importing	GRAPHML	database	database	from	/tmp/out.graphml...
Transaction	8	has	been	committed	in	12ms

This method uses the standard Gremlin importer, but doesn't take in consideration any
label declared in Neo4j, so everything is imported as V (base Vertex class) and E (base
Edge class). After importing you could need to refactor your graph element to fit in a
more structured schema.

To import the GraphML file into OrientDB complete the following steps:

execute the Gremlin console located in 	$ORIENTDB_HOME/bin	
create a new graph with the command 	g	=	new	OrientGraph("plocal:/tmp/db/test");	
specifying the path of your new OrientDB Graph Database, 	/tmp/db/test	 in this case
execute the command 	g.loadGraphML('/tmp/out.graphml');	 where 	/tmp/out.graphml	 is
the path of the exported file

Example:

$	cd	$ORIENTDB_HOME/bin
$	./gremlin.sh

3) Import the database into OrientDB

3a) With OrientDB 2.0.x or further

3b) With OrientDB 1.7 or previous

1330



									\,,,/
									(o	o)
-----oOOo-(_)-oOOo-----
gremlin>	g	=	new	OrientGraph("plocal:/tmp/db/test");
==>orientgraph[plocal:/db/test]
gremlin>	g.loadGraphML('/tmp/out.graphml');
==>null
gremlin>	quit

Congratulations! The database has been imported into OrientDB.

*Neo4j is a registered trademark of Neo Technology Inc.

1331



OrientDB uses the Java Logging framework bundled with the Java Virtual Machine.

Supported levels are those contained in the JRE class java.util.logging.Level:

SEVERE (highest value)
WARNING
INFO
CONFIG
FINE
FINER
FINEST (lowest value)

By default 2 loggers are installed:

console, as the output of the shell/command prompt that starts the
application/server. Can be changed by setting the variable 	log.console.level	
file, as the output to the log files. Can be changed by setting the 	log.file.level	

Logging

1332

http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/Level.html


The logging strategies and policies can be configured using a file following the Java
syntax: Java Logging configuration.

Example taken from orientdb-server-log.properties:

#	Specify	the	handlers	to	create	in	the	root	logger
#	(all	loggers	are	children	of	the	root	logger)
#	The	following	creates	two	handlers
handlers	=	java.util.logging.ConsoleHandler,	java.util.logging.FileHandler

#	Set	the	default	logging	level	for	the	root	logger
.level	=	ALL

#	Set	the	default	logging	level	for	new	ConsoleHandler	instances
java.util.logging.ConsoleHandler.level	=	INFO
#	Set	the	default	formatter	for	new	ConsoleHandler	instances
java.util.logging.ConsoleHandler.formatter	=	com.orientechnologies.common.log.OLogFormatter

#	Set	the	default	logging	level	for	new	FileHandler	instances
java.util.logging.FileHandler.level	=	INFO
#	Naming	style	for	the	output	file
java.util.logging.FileHandler.pattern=../log/orient-server.log
#	Set	the	default	formatter	for	new	FileHandler	instances
java.util.logging.FileHandler.formatter	=	com.orientechnologies.common.log.OLogFormatter
#	Limiting	size	of	output	file	in	bytes:
java.util.logging.FileHandler.limit=10000000
#	Number	of	output	files	to	cycle	through,	by	appending	an
#	integer	to	the	base	file	name:
java.util.logging.FileHandler.count=10

To tell to the JVM where the properties file is placed you need to set the
"java.util.logging.config.file" system property to it. Example:

$	java	-Djava.util.logging.config.file=mylog.properties	...

Configuration file

1333

http://www.javapractices.com/topic/TopicAction.do?Id=143


To change the logging level without modify the logging configuration just set the
"log.console.level" and "log.file.level" system variables to the requested levels.

Open the file orientdb-server-config.xml and add or update these lines at the end of
the file inside the 	<properties>	 section:

<entry	value="fine"	name="log.console.level"	/>
<entry	value="fine"	name="log.file.level"	/>

Set the system property "log.console.level" and "log.file.level" to the levels you want
using the -D parameter of java.

Example:

$	java	-Dlog.console.level=FINE	...

The system variable can be setted at startup using the 	System.setProperty()	 API.
Example:

public	void	main(String[]	args){
		System.setProperty("log.console.level",	"FINE");
		...
}

Set the logging level

In the server configuration

At startup

At run-time

1334



OrientDB Server uses own LogFormatter. To use the same by your application call:

OLogManager.installCustomFormatter();

LogFormatter is installed automatically by Server. To disable it define the setting
	orientdb.installCustomFormatter	 to 	false	. Example:

java	...	-Dorientdb.installCustomFormatter=false=false	...

Install Log formatter

1335



This is the main guide on using OrientDB Enterprise Edition. For more information
look at OrientDB Enterprise Edition.

Enterprise Edition is in Beta stage, ask for a Trial by writing to:
info@orientechnologies.com.

OrientDB Enterprise Edition is composed by 2 modules:

Enterprise Agent
Enterprise Workbench

Enterprise Edition

1336

http://www.orientechnologies.com/enterprise.htm


The Agent contains the license generated by Orient Technologies. If you're a client you
already own Agent jar files to install. If you don't have them or you want to try Enterprise
Edition write to: info@orientechnologies.com.

The Agent contains the Profiler component to get monitored by Workbench.

In order to enable Enterprise feature, copy the provided agent-*.jar file under the
OrientDB Server "plugins" directory of each server. The plugin will be hot loaded by the
server after few seconds (look at the server's output). In case the plugin is not loaded
restart the OrientDB Server.

Once installed, the Agent Plugin displays the license information. Example:

2013-12-18	16:52:43:206	INFO	Installing	dynamic	plugin	'agent-1.6.2.jar'...	[OServerPluginManager]

************************************************
*							ORIENTDB		-		ENTERPRISE	EDITION								*
*																																														*
*	Copyrights	(c)	2013	Orient	Technologies	LTD		*
************************************************
*	Version...:	1.6.2																												*
*	License...:	2P2tA1EO8oOoS/WkR2/023kdks922JDw	*
*	Expires	in:	-25	days																									*
************************************************

NOTE: OrientDB Enterprise Plugin and OrientDB Server must be of the same main
version. Workbench 1.7.x works against all Agents 2.7.x. If you don't have the right
version please write to the Orient Technologies: info@orientechnologies.com.

OrientDB Enterprise Agent

Installation

1337



Download the right OrientDB Workbench distribution, using the same Agent version:

Workbench Web Application v. 1.7.4:
Windows users: ZIP
MacOSX, Linux, Any Unix like OSs: TAR.GZ
Help

Workbench Web Application v. 1.6.2:
Windows users: ZIP
MacOSX, Linux, Any Unix like OSs: TAR.GZ
Help

Workbench Web Application v. 1.6.1:
Windows users: ZIP
MacOSX, Linux, Any Unix like OSs: TAR.GZ

OrientDB Enterprise Workbench

Download

1338

http://www.orientdb.org/portal/function/portal/download/unknown@unknown.com/-/-/-/-/-/orientdb-workbench-1.7.4.zip/-/-/multi
http://www.orientdb.org/portal/function/portal/download/unknown@unknown.com/-/-/-/-/-/orientdb-workbench-1.7.4.tar.gz/-/-/multi
http://www.orientechnologies.com/enterprise/1.7.4/introduction.html
http://www.orientdb.org/portal/function/portal/download/unknown@unknown.com/-/-/-/-/-/orientdb-workbench-1.6.2.zip/-/-/multi
http://www.orientdb.org/portal/function/portal/download/unknown@unknown.com/-/-/-/-/-/orientdb-workbench-1.6.2.tar.gz/-/-/multi
http://www.orientechnologies.com/enterprise/1.6.2/introduction.html
http://www.orientdb.org/portal/function/portal/download/unknown@unknown.com/-/-/-/-/-/orientdb-workbench-1.6.1.zip/-/-/multi
http://www.orientdb.org/portal/function/portal/download/unknown@unknown.com/-/-/-/-/-/orientdb-workbench-1.6.1.tar.gz/-/-/multi


Uncompress the Workbench distribution to a local directory. For Windows user it's a ZIP
file, for all the others is a TAR.GZ archive.

Install

1339



To start the Workbench go into the "bin" directory and double click on:

start-workbench.sh for MacOSX, Linux and Unix users
start-workbench.bat, for Windows users

Once started the Workbench ends with these messages:

************************************************
*			ORIENTDB	WORKBENCH	-		ENTERPRISE	EDITION			*
*																																														*
*	Copyrights	(c)	2013	Orient	Technologies	LTD		*
************************************************
*	Version...:	1.6.2																												*
************************************************

To	open	the	Web	Console	open	your	browser	to	the	URL:	http://localhost:2491	and	use	'admin'	as	user	and	password	to	log	in,	unless	you	already	changed	it.

Now point your browser to the local server's IP address, port 2491, example:
http://localhost:2491. This is the login page. Use the default credentials as user
"admin" and password "admin" (you can change it once logged in).

For the complete guide goto Workbench Guide.

Start and Use Workbench

1340

http://localhost:2491
http://www.orientechnologies.com/enterprise/last/userguide.html


This page aims to link all the guides to Problems and Troubleshooting.

Troubleshooting

1341



Troubleshooting Java API

Sub sections

1342



OrientDB, by default, manages edges as "lightweight" edges if they have no properties.
This means that if an edge has no properties, it's not stored as physical record. But don't
worry, your edge is still there but encoded in a separate data structure. For this reason if
you execute a 	select	from	E	no edges or less edges than expected are returned. It's
extremely rare the need to have the list of edges, but if this is your case you can disable
this feature by issuing this command once (with a slow down and a bigger database
size):

alter	database	custom	useLightweightEdges=false

The reason of this issue is massive usage of sun.misc.Unsafe which may have different
contract than it is implemented for Linux and Windows JDKs. To avoid this error please
use following settings during server start:

java	...	-Dmemory.useUnsafe=false	and	-Dstorage.compressionMethod=gzip	...

Don't be scared about it: your OrientDB installation will work perfectly, just it could be
slower with database larger than memory.

This lock is needed in case of you work on OS which uses aggressive swapping like
Linux. If there is the case when amount of available RAM is not enough to cache all
MMAP content OS can swap out rarely used parts of Java heap to the disk and when
GC is started to collect garbage we will have performance degradation, to prevent such
situation Java heap is locked into memory and prohibited to be flushed on the disk.

Topics

Why can't I see all the edges?

JVM crash on Solaris and other *NIX platforms.

Error occurred while locking memory: Unable to lock JVM
memory. This can result in part of the JVM being swapped
out, especially if mmapping of files enabled. Increase
RLIMIT_MEMLOCK or run OrientDB server as
root(ENOMEM)

1343



This usually happens because the database has been corrupted by a hw/sw crash or a
hard kill of the process during the writing to disk. If this happens on index clusters just
rebuild indexes, otherwise re-import a previously exported database.

Look at: Restore admin user.

Look at: Restore admin user.

This means that probably default timeouts are too low and server side operation need
more time to complete. Follow these MemoryLocker.lockMemoryPerformance-
Tuning#remote_connections.suggestions]].

Your maven configuration points to the old Orient Technologies repository:
http://www.orientechnologies.com/listing/m2. Follow this configuration: [### Record id
invalid -1:-2

This message is relative to a temporary Concepts#recordidrecordid.]] generated inside a
transaction. For more information look at Transactions. This means that the record
hasn't been correctly serialized.

com.orientechnologies.orient.core.exception.OStorageEx
ception: Error on reading record from file 'default.0.oda',
position 2333, size 122,14Mb: the record size is bigger
then the file itself (233,99Kb)

Class 'OUSER' or 'OROLE' was not found in current
database

User 'admin' was not found in current database

WARNING: Connection re-acquired transparently after
XXXms and Y retries: no errors will be thrown at
application level

Could not find artifact com.orientechnologies:orientdb-
core:jar:1.0-SNAPSHOT in orientechnologies-
repository(http://www.orientechnologies.com/listing/m2)

1344

http://www.orientechnologies.com/listing/m2
http://www.orientechnologies.com/listing/m2


This happens in graphs. Think to this graph of records:

A -> B -> C -> A

When OrientDB starts to serialize records goes recursively from the root A. When A is
encountered again to avoid loops it saves the record as empty just to get the RecordID
to store into the record C. When the serialization stack ends the record A (that was the
first of the stack) is updated because has been created as first but empty.

Try to enable automatic flush of index nodes. Via API:

				OGlobalConfiguration.MVRBTREE_LAZY_UPDATES.setValue(-1);

or via configuration:

java	...	-Dmvrbtree.optimizeThreshold=-1	...

This happens if you've migrated a database created with an old version of OrientDB
where indexes were managed in different way. Just drop and recreate the indexes.

This is because the database is locked by another process is using it. To fix:

Brand new records are created with version major than 0

Why it's so slow with index and massive insertion?

Error:
com.orientechnologies.orient.core.db.record.ORecordLaz
ySet cannot be cast to
com.orientechnologies.orient.core.db.record.OIdentifiable

com.orientechnologies.common.concur.lock.OLockExcep
tion: File '/tmp/databases/demo/default.0.oda' is locked by
another process, maybe the database is in use by another
process. Use the remote mode with a OrientDB server to
allow multiple access to the same database

1345



check there's no a process is using OrientDB. Most of the times a OrientDB Server
is running. Just shutdown it and retry
set the storage.keepOpen setting to false

This is a message of an old version of OrientDB: upgrade it.

You're using different version of libraries. For example the client is using 1.3 and the
server 1.4. Align the libraries to the same version (last is suggested). Or probably you've
different versions of the same jars in the classpath.

012-04-20 11:29:56:132 SEVE Received unread response
from /10.0.0.2:2434 for session=0, probably corrupted
data from the network connection. Cleared dirty data in
the buffer (330 bytes): [----7-c-o-m-.-o-r-i-e-n-t-e-c-h-n-o-l-
o-g-i-e-s-.-c-o-m-m-o-n-.-c-o-n-c-u-r-.-l-o-c-k-.-O-L-o-c-k...]
[OChannelBinaryClient

Caused by: java.lang.NumberFormatException: For input
string: "500Mb"

1346

http://code.google.com/p/orient/wiki/PerformanceTuning#Parameters


This exception happens because you're running in a Multi Version Control Check
(MVCC) system and another thread/user has updated the record you're saving. To fix
this problem you can:

if you're running in a multi-thread application and your JVM is the only client is
writing to the database then disabling the Level1 cache could be enough.
If you're using the GraphDB API look at: concurrency

If you want to leave the MVCC and write code concurrency proof:

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{
		try	{
				//	APPLY	CHANGES
				document.field(name,	"Luca");

				document.save();
				break;
		}	catch(ONeedRetryException	e)	{
				//	RELOAD	IT	TO	GET	LAST	VERSION
				document.reload();
		}
}

The same in transactions:

for	(int	retry	=	0;	retry	<	maxRetries;	++retry)	{
		db.begin();
		try	{
				//	CREATE	A	NEW	ITEM
				ODocument	invoiceItem	=	new	ODocument("InvoiceItem");
				invoiceItem.field(price,	213231);
				invoiceItem.save();

				//	ADD	IT	TO	THE	INVOICE

Troubleshooting using Java API

OConcurrentModificationException: Cannot
update record #X:Y in storage 'Z' because
the version is not the latest. Probably you
are updating an old record or it has been
modified by another user (db=vA your=vB)

1347

https://github.com/orientechnologies/orientdb/wiki/Caching#level-1
https://github.com/orientechnologies/orientdb/wiki/Graph-Database-Tinkerpop#multi-thread-applications


				Collection<ODocument>	items	=	invoice.field(items);
				items.add(invoiceItem);
				invoice.save();

				db.commit();
				break;
		}	catch	(OTransactionException	e)	{
				//	RELOAD	IT	TO	GET	LAST	VERSION
				invoice.reload();
		}
}

Where 	maxRetries	 is the maximum number of attempt of reloading.

1348



(by Raman Gupta) OrientDB uses ServiceRegistry to load OIndexFactory and some
OSGi container couldn't be happy with it.

One solution is to set the TCCL so that the ServiceRegistry lookup works inside of osgi:

ODatabaseObjectTx	db	=	null;
ClassLoader	origClassLoader	=	Thread.currentThread().getContextClassLoader();
try	{
		ClassLoader	orientClassLoader	=	OIndexes.class.getClassLoader();
		Thread.currentThread().setContextClassLoader(orientClassLoader);
		db	=	objectConnectionPool.acquire(dbUrl,	username,	password);
}	finally	{
		Thread.currentThread().setContextClassLoader(origClassLoader);
}

Because the ServiceLoader uses the thread context classloader, you can configure it to
use the classloader of the OrientDB bundle so that it finds the entries in META-
INF/services.

Another way is to embed the dependencies in configuration in the Maven pom.xml file
under plugin(maven-bundle-plugin)/configuration/instructions:

<Embed-Dependency>
		orientdb-client,
		orient-commons,
		orientdb-core,
		orientdb-enterprise,
		orientdb-object,
		javassist
</Embed-Dependency>

Including only the jars you need. Look at Which library do I use?

Run in OSGi context

1349

http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/spi/ServiceRegistry.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/spi/ServiceRegistry.html
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html


This is a generic error telling that the database has been found closed while using it.

Check the stack trace to find the reason of it:

Database instance has been released to the
pool. Get another database instance from
the pool with the right username and
password

1350



This is the case when you're working with Object Database API and a field contains a
collection or a map loaded in lazy. On iteration it needs an open database to fetch linked
records.

Solutions:

assure to leave the database open while browsing the field
or early load all the instances (just iterate the items)
define a fetch-plan to load the entire object tree in one shoot and then work offline. If
you need to save the object back to the database then reopen the database and call
	db.save(	object	)	.

OLazyObjectIterator

1351



This could be due to the high deep of the graph, usually when you create many records.
To fix it save the records more often.

Stack Overflow on saving objects

1352



If you're looking for drivers or JDBC connector go to Programming-Language-Bindings.

 

Play Framework 2.1 PLAY-WITH-ORIENTDB plugin
Play Framework 2.1 ORIGAMI plugin
Play Framework 1.x ORIENTDB plugin
Frames-OrientDB Plugin Play Framework 2.x Frames-OrientDB plugin is a Java O/G
mapper for the OrientDB with the Play! framework 2. It is used with the TinkerPop
Frames for O/G mapping.

With proper mark-up/logic separation, a POJO data model, and a refreshing lack of
XML, Apache Wicket makes developing web-apps simple and enjoyable again. Swap
the boilerplate, complex debugging and brittle code for powerful, reusable components
written with plain Java and HTML.

Guice (pronounced 'juice') is a lightweight dependency injection framework for Java 6
and above, brought to you by Google. OrientDB Guice plugin allows to integrate
OrientDB inside Guice. Features:

Integration through guice-persist (UnitOfWork, PersistService, @Transactional,
dynamic finders supported)
Support for document, object and graph databases
Database types support according to classpath (object and graph db support
activated by adding jars to classpath)

Plugins

1353

http://www.playframework.org
https://github.com/ratcashdev/play-with-orientdb
https://github.com/sgougi/play21-origami-plugin
http://www.playframework.org/modules/orientdb
https://github.com/sgougi/play21-frames-orientdb-plugin
https://github.com/PhantomYdn/wicket-orientdb
https://github.com/google/guice
https://github.com/xvik/guice-persist-orient


Auto mapping entities in package to db scheme or using classpath scanning to map
annotated entities
Auto db creation
Hooks for schema migration and data initialization extensions
All three database types may be used in single unit of work (but each type will use
its own transaction)

 

Vert.x is a lightweight, high performance application platform for the JVM that's designed
for modern mobile, web, and enterprise applications. Vert.x Persistor Module for
Tinkerpop-compatible Graph Databases like OrientDB.

Gephi Visual tool usage with OrientDB and the Blueprints importer

  
spring-orientdb is an attempt to provide a
PlatformTransactionManager for OrientDB usable with the Spring

Framework, in particular with @Transactional annotation. Apache 2 license

1354

http://vertx.io/
https://github.com/aschrijver/mod-tinkerpop-persistor
https://gephi.org
https://github.com/datablend/gephi-blueprints-plugin/wiki
http://www.springsource.org
https://github.com/megadix/orientdb-spring


Puppet module

Apache Tomcat realm plugin by Jonathan Tellier

Shibboleth connector by Jonathan Tellier. The Shibboleth System is a standards based,
open source software package for web single sign-on across or within organizational
boundaries. It allows sites to make informed authorization decisions for individual access
of protected online resources in a privacy-preserving manner

Griffon plugin, Apache 2 license

JCA connectors

OPS4J Orient provides a JCA resource adapter for integrating OrientDB with Java
EE 6 servers
OrientDB JCA connector to access to OrientDB database via JCA API + XA
Transactions

Pacer plugin by Paul Dlug. Pacer is a JRuby graph traversal framework built on the
Tinkerpop stack. This plugin enables full OrientDB graph support in Pacer.

EventStore for Axonframework, which uses fully transactional (full ACID support) NoSQL
database OrientDB. Axon Framework helps build scalable, extensible and maintainable
applications by supporting developers apply the Command Query Responsibility
Segregation (CQRS) architectural pattern

OrientDB session store for Connect

1355

https://github.com/ffissore/connect-orientdb
http://forge.puppetlabs.com
https://github.com/example42/puppet-orientdb
http://tomcat.apache.org
http://wiki.apache.org/tomcat/OrientDBRealm
mailto:jonathan.tellier@gmail.com
http://shibboleth.net
https://wiki.shibboleth.net/confluence/display/SHIB2/OrientDB+Connector
http://shibboleth.net
http://media.xircles.codehaus.org
https://github.com/griffon/griffon-orientdb-plugin
http://team.ops4j.org/wiki/display/ORIENT/JCA+Resource+Adapter
https://github.com/kirpi4ik/orientdb-jca
https://github.com/pdlug/pacer-orient
https://github.com/pangloss/pacer
http://jruby.org/
http://www.axonframework.org
http://code.google.com/p/data-storm/
http://code.google.com/p/axonframework/


Accessing OrientDB using Slick

Jackrabbit module to use OrientDB as backend.

  Plugin for FuelPHP framework.

1356

https://github.com/mproch/slick-orientdb#readme
https://github.com/eiswind/jackrabbit-orient
https://github.com/sakuraiyuta/fuel-orientdb
http://fuelphp.com


Rexster provides a RESTful shell to any Blueprints-complaint graph database. This
HTTP web service provides: a set of standard low-level GET, POST, and DELETE
methods, a flexible extension model which allows plug-in like development for external
services (such as ad-hoc graph queries through Gremlin), and a browser-based
interface called The Dog House.

A graph database hosted in the OrientDB can be configured in Rexster and then
accessed using the standard RESTful interface powered by the Rexster web server.

Rexster

1357

https://github.com/tinkerpop/rexster/wiki/


You can get the latest stable release of Rexster from it's Download Page. The latest
stable release when this page was last updated was 2.5.0.

Or you can build a snapshot by executing the following Git and Maven commands:

git	clone	https://github.com/tinkerpop/rexster.git
cd	rexster
mvn	clean	install

Rexster is distributed as a zip file (also the building process creates a zip file) hence the
installation consist of unzipping the archive in a directory of your choice. In the following
sections, this directory is referred to as $REXSTER_HOME.

After unzipping the archive, you should copy orient-client.jar and orient-enterprise.jar in
$REXSTER_HOME/ext. Make sure you use the same version of OrientDB as those
used by Rexster. For example Rexster 2.5.0 uses OrientDB 1.7.6.

You can find more details about Rexster installation at the Getting Started page.

Installation

1358

https://github.com/tinkerpop/rexster/downloads
http://git-scm.com/
http://maven.apache.org/
https://github.com/tinkerpop/rexster/wiki/Getting-Started


Refer to Rexster's Configuration page and OrientDB specific configuration page for the
latest details.

The Rexster configuration file rexster.xml is used to configure parameters such as: TCP
ports used by Rexster server modules to listen for incoming connections; character set
supported by the Rexster REST requests and responses; connection parameters of
graph instances.

In order to configure Rexster to connect to your OrientDB graph, locate the rexster.xml in
the Rexster directory and add the following snippet of code:

<rexster>
		...
		<graphs>
				...
				<graph>
						<graph-enabled>true</graph-enabled>
						<graph-name>my-orient-graph</graph-name>
						<graph-type>orientgraph</graph-type>
						<graph-file>url-to-your-db</graph-file>
						<properties>
								<username>user</username>
								<password>pwd</password>
						</properties>
				</graph>
		...
		</graphs>
</rexster>

In the configuration file, there could be a sample 	graph	 element for an OrientDB
instance (	<graph-name>orientdbsample<graph-name>	): you might edit it according to your
needs.

The 	<graph-name>	 element must be unique within the list of configured graphs and
reports the name used to identify your graph. The 	<graph-enabled>	 element states
whether the graph should be loaded and managed by Rexster. Setting its contents to
	false	 will prevent that graph from loading to Rexster; setting explicitly to 	true	 the graph
will be loaded. The 	<graph-type>	 element reports the type of graph by using an identifier
(	orientgraph	 for an OrientDB Graph instance) or the full name of the class that
implements the GraphConfiguration interface

Configuration

Synopsis

1359

https://github.com/tinkerpop/rexster/wiki/Rexster-Configuration
https://github.com/tinkerpop/rexster/wiki/Specific-Graph-Configurations#orientdb
https://github.com/tinkerpop/rexster/blob/master/src/main/java/com/tinkerpop/rexster/config/GraphConfiguration.java


(com.tinkerpop.rexster.OrientGraphConfiguration for an OrientDB Graph).

The 	<graph-file>	 element reports the URL to the OrientDB database Rexster is
expected to connect to:

	plocal:*path-to-db*	, if the graph can be accessed over the file system (e.g.
	plocal:/tmp/graph/db	)
	remote:*url-to-db*	, if the graph can be accessed over the network and/or if you want
to enable multiple accesses to the graph (e.g. 	remote:localhost/mydb	)
	memory:*db-name*	, if the graph resides in memory only. Updates to this kind of graph
are never persistent and when the OrientDB server ends the graph is lost

The 	<username>	 and 	<password>	 elements reports the credentials to access the graph
(e.g. 	admin	 	admin	).

1360

https://github.com/orientechnologies/orientdb/blob/master/graphdb/src/main/java/com/tinkerpop/rexster/OrientGraphConfiguration.java


Note: only Rexster 0.5-SNAPSHOT and further releases work with OrientDB
GraphEd
In this section we present a step-by-step guide to Rexster-ify an OrientDB graph.
We assume that:

you created a Blueprints enabled graph called orientGraph using the class
	com.tinkerpop.blueprints.pgm.impls.orientdb.OrientGraph	

you inserted in the Rexster configuration file a 	<graph>	 element with the 	<graph-
name>	 element set to 	my-orient-graph	 and the 	graph-file	 element set to
	remote:orienthost/orientGraph	 (if you do not remember how to do this, go back to the
Configuration section).
Be sure that the OrientDB server is running and you have properly configured the
	<graph-file>	 location and the access credentials of your graph.
Execute the startup script ($REXSTER_HOME/bin/rexster.bat or
$REXSTER_HOME/bin/rexster.sh)
The shell console appears and you should see the following log message (line 10
states that the OrientDB graph instance has been loaded):

[INFO]	WebServer	-	.:Welcome	to	Rexster:.
[INFO]	GraphConfigurationContainer	-	Graph	emptygraph	-	tinkergraph[vertices:0	edges:0]	loaded
[INFO]	RexsterApplicationGraph	-	Graph	[tinkergraph]	-	configured	with	allowable	namespace	[tp:gremlin]
[INFO]	GraphConfigurationContainer	-	Graph	tinkergraph	-	tinkergraph[vertices:6	edges:6]	loaded
[INFO]	RexsterApplicationGraph	-	Graph	[tinkergraph-readonly]	-	configured	with	allowable	namespace	[tp:gremlin]
[INFO]	GraphConfigurationContainer	-	Graph	tinkergraph-readonly	-	(readonly)tinkergraph[vertices:
[INFO]	RexsterApplicationGraph	-	Graph	[gratefulgraph]	-	configured	with	allowable	namespace	[tp:gremlin]
[INFO]	GraphConfigurationContainer	-	Graph	gratefulgraph	-	tinkergraph[vertices:809	edges:
[INFO]	GraphConfigurationContainer	-	Graph	sailgraph	-	sailgraph[memorystore]	loaded
[INFO]	GraphConfigurationContainer	-	Graph	my-orient-graph	-	orientgraph[remote:orienthost/orientGraph]	loaded
[INFO]	GraphConfigurationContainer	-	Graph	neo4jsample	-		not	enabled	and	not	loaded.
[INFO]	GraphConfigurationContainer	-	Graph	dexsample	-		not	enabled	and	not	loaded.
[INFO]	MapResultObjectCache	-	Cache	constructed	with	a	maximum	size	of	1000
[INFO]	WebServer	-	Web	Server	configured	with	com..sun..jersey..config..property..packages:	com.tinkerpop.rexster
[INFO]	WebServer	-	No	servlet	initialization	parameters	passed	for	configuration:	admin-server-configuration
[INFO]	WebServer	-	Rexster	Server	running	on:	[http://localhost:8182]
[INFO]	WebServer	-	Dog	House	Server	running	on:	[http://localhost:8183]
[INFO]	ShutdownManager$ShutdownSocketListener	-	Bound	shutdown	socket	to	/127.0.0.1:8184.

Now you can use Rexster REST API and The Dog House web application to
retrieve and modify the data stored in the OrientDB graph.

Run

1361

https://github.com/tinkerpop/rexster/wiki/Basic-REST-API
https://github.com/tinkerpop/rexster/wiki/The-Dog-House


Gephi Visual Tool

1362



Gephi is a visual tool to manipulate and analyze graphs. Gephi is an Open Source
project. Take a look at the amazing features.

Gephi can be used to analyze graphs extracted from OrientDB. There are 2 level of
integration:

the Streaming plugin that calls OrientDB server via HTTP. OrientDB exposes the
new "/gephi" command in HTTP GET method that executes a query and returns the
result set in "gephi" format.
Gephi importer for Blueprints

In this mini guide we will take a look at the first one: the streaming plugin.

For more information:

Gephi Graph Streaming format
Graph Streaming plugin
Tutorial video

Introduction

1363

http://gephi.org
http://gephi.org
http://gephi.org/features/
http://gephi.org
https://gephi.org/plugins/graph-streaming/
https://github.com/datablend/gephi-blueprints-plugin/wiki
http://wiki.gephi.org/index.php/Graph_Streaming
https://gephi.org/plugins/graph-streaming/
http://www.youtube.com/watch?v=7SW_FDiY0sg


Before to start assure you've OrientDB 1.1.0-SNAPSHOT or major.

Getting started

1364

https://oss.sonatype.org/content/groups/public/com/orientechnologies/orientdb/1.1.0-SNAPSHOT/


1. To download Gephi goto: http://gephi.org/users/download/
2. Install it, depends on your OS
3. Run Gephi
4. Click on the menu Tools -> Plugins
5. Click on the tab Available Plugins
6. Select the plugin Graph Streaming, click on the Install button and wait the plugin is

installed

Download and install

1365

http://gephi.org/users/download/


Before to import a graph assure a OrientDB server instance is running somewhere. For
more information watch this video.

1. Go to the Overview view (click on Overview top left button)
2. Click on the Streaming tab on the left
3. Click on the big + green button
4. Insert as Source URL the query you want to execute. Example:

	http://localhost:2480/gephi/demo/sql/select%20from%20v/100	 (below more information
about the syntax of query)

5. Select as Stream type the JSON format (OrientDB talks in JSON)
6. Enable the Use Basic Authentication and insert the user and password of

OrientDB database you want to access. The default user is "admin" as user and
password

7. Click on OK button

Import a graph in Gephi

1366

http://www.youtube.com/watch?v=7SW_FDiY0sg
http://localhost:2480/gephi/demo/sql/select%20from%20v/100


The OrientDB's "/gephi" HTTP command allow to execute any query. The format is:

http://<host>:<port>/gephi/<database>/<language>/<query>[/<limit>]

Where:

	host	 is the host name or the ip address where the OrientDB server is running. If
you're executing OrientDB on the same machine where Gephi is running use
"localhost"
	port	 is the port number where the OrientDB server is running. By default is 2480.
	database	 is the database name
	language	

	query	, the query text following the URL encoding rules. For example to use the
spaces use 	%20	, so the query 	select	from	v	 becomes 	select%20from%20v	
	limit	, optional, set the limit of the result set. If not defined 20 is taken by default.
	-1	 means no limits

Executing a query

1367

http://www.w3schools.com/tags/ref_urlencode.asp


To use the OrientDB's SQL language use 	sql	 as language. For more information look
at the SQL-Syntax.

For example, to return the first 1,000 vertices (class V) with outgoing connections the
query would be:

select	from	V	where	out.size()	>	0

Executed on "localhost" against the "demo" database + encoding becomes:

http://localhost:2480/gephi/demo/sql/select%20from%20V%20where%20out.size()%20%3E%200/1000

SQL Graph language

1368



To use the powerful GREMLIN language to retrieve the graph or a portion of it use
	gremlin	 as language. For more information look at the GREMLIN syntax.

For example, to return the first 100 vertices:

g.V[0..99]

Executed on "localhost" against the "demo" database + encoding becomes:

http://localhost:2480/gephi/demo/gremlin/g.V%5B0..99%5D/-1

For more information about using Gephi look at Learn how to use Gephi

GREMLIN language

1369

http://gephi.org/users/


OrientDB uses the Semantic Versioning System (http://semver.org) where given a
version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible API changes,
MINOR version when you add functionality in a backwards-compatible manner
PATCH version when you make backwards-compatible bug fixes.

So between PATCH versions the compatibility is assured (example 1.7.0 -> 1.7.8).
Between MINOR and MAJOR versions you could export and re-import the database.
See below in the column "Database":

Upgrade

1370

http://semver.org


FROM TO Guide Blueprints Database Binary
Protocol

HTTP
Protocol

1.7.x 2.0.x
Migration-
from-
1.7.x-to-
2.0.x

Final
v2.6.0 Automatic 25 10

1.6.x 1.7.x
Migration-
from-
1.6.x-to-
1.7.x

Final
v2.5.0 Automatic 20, 21 10

1.5.x 1.6.x
Migration-
from-
1.5.x-to-
1.6.x

Changed
v2.5.x Automatic 18, 19 10

1.4.x 1.5.x
Migration-
from-
1.4.x-to-
1.5.x

Changed
v2.4.x Automatic 16, 17 10

1.3.x 1.4.x
Migration-
from-
1.3.x-to-
1.4.x

Changed
v2.3.x Automatic 14, 15 n.a.

1.2.x 1.3.x n.a. Changed
v2.2.x OK OK OK

References:

Binary Network Protocol: Network Binary Protocol
HTTP Network Protocol: OrientDB REST

Compatibility Matrix

1371



Starting from version 1.5.x OrientDB comes with a brand new storage engine: PLOCAL
(Paginated LOCAL). It's persistent like the LOCAL, but stores information in different
way. Below the main differences with LOCAL:

records are stored in cluster files, while with LOCAL was split between cluster and
data-segments
more durable than LOCAL because the append-on-write mode
minor contention locks on writes: this means more concurrency
it doesn't use Memory Mapping techniques (MMap) so the behavior is more
"predictable"

To migrate your LOCAL storage to the new PLOCAL you've to export and reimport the
database using PLOCAL as storage engine. Follow the steps below:

1) open a new shell (Linux/Mac) or a Command Prompt (Windows)

2) export the database using the console. Example by exporting the database under
/temp/db:

>	bin/console.sh	(or	bin/console.bat	under	Windows)
orientdb>	connect	database	local:/temp/db	admin	admin
orientdb>	export	database	/temp/db.json.gzip
orientdb>	disconnect

3) now always in the console create a new database using the "plocal" engine:

a) on a local filesystem:

		orientdb>	create	database	plocal:/temp/newdb	admin	admin	plocal	graph

b) on a remote server (use the server's credentials to access):

		orientdb>	create	database	remote:localhost/newdb	root	password	plocal	graph

4) now always in the console import the old database in the new one:

Migrate from LOCAL storage engine to
PLOCAL

1372



orientdb>	import	database	/temp/db.json.gzip	-preserveClusterIDs=true
orientdb>	quit

5) If you access to the database in the same JVM remember to change the URL from
"local:" to "plocal:"

1373



Since OrientDB 1.7 RidBag is default collection that manage adjacency relations in
graphs. While the older database managed by MVRB-Tree are fully compatible, you can
update your database to more recent format.

You can upgrade your graph via console or using the ORidBagMigration class

Connect to database 	connect	plocal:databases/GratefulDeadConcerts	
Run 	upgrade	graph	 command

Create OGraphMigration instance. Pass database connection to constructor.
Invoke method execute()

Migrate graph to RidBag

Using console

Using the API

1374



OrientDB supports binary compatibility between previous releases and latest release.
Binary compatibility is supported at least between last 2 minor versions.

For example, lets suppose that we have following releases 1.5, 1.5.1, 1.6.1, 1.6.2, 1.7,
1.7.1 then binary compatibility at least between 1.6.1, 1.6.2, 1.7, 1.7.1 releases will be
supported.

If we have releases 1.5, 1.5.1, 1.6.1, 1.6.2, 1.7, 1.7.1, 2.0 then binary compatibility will
be supported at least between releases 1.7, 1.7.1, 2.0.

Binary compatibility feature is implemented using following algorithm:

1. When storage is opened, version of binary format which is used when storage is
created is read from storage configuration.

2. Factory of objects are used to present disk based data structures for current binary
format is created.

Only features and database components which were exist at the moment when current
binary format was latest one will be used. It means that you can not use all database
features available in latest release if you use storage which was created using old binary
format version. It also means that bugs which are fixed in new versions may be (but may
be not) reproducible on storage created using old binary format.

To update binary format storage to latest one you should export database in JSON
format and import it back. Using either console commands export database and import
database or Java API look at 	com.orientechnologies.orient.core.db.tool.ODatabaseImport	,
	com.orientechnologies.orient.core.db.tool.ODatabaseExport	 classes and
	com.orientechnologies.orient.test.database.auto.DbImportExportTest	 test.

Current binary format version can be read from
	com.orientechnologies.orient.core.db.record.OCurrentStorageComponentsFactory#binaryFormat

Version	 proporty.
Instance of 	OCurrentStorageComponentsFactory	 class can be retrieved by call of
	com.orientechnologies.orient.core.storage.OStorage#getComponentsFactory	 method.
Latest binary format version can be read from here
	com.orientechnologies.orient.core.config.OStorageConfiguration#CURRENT_BINARY_FORMAT_VERS

ION	.

Please note that binary compatibility is supported since 1.7-rc2 version for plocal
storage (as exception you can read database created in 1.5.1 version by 1.7-rc2
version).

1375



Return to Upgrade.

1376



Databases created with release 1.7.x are compatible with 2.0, so you don't have to
export/import the database like in the previous releases. Check your database directory:
if you have a file *.wal, delete it before migration.

Migration from 1.7.x to 2.0.x

1377



To use the new binary protocol you have to export and reimport the database into a new
one. This will boost up your database performance of about +20% against old database.

To export and reimport your database follow these steps:

1) Stop any OrientDB server running

2) Open a new shell (Linux/Mac) or a Command Prompt (Windows)

2) Export the database using the console. Move into the directory where you've installed
OrientDB 2.0 and execute the following commands:

>	cd	bin
>	./console.sh	(or	bin/console.bat	under	Windows)
orientdb>	connect	plocal:/temp/mydb	admin	admin
orientdb>	export	database	/temp/mydb.json.gz
orientdb>	disconnect
orientdb>	create	database	plocal:/temp/newdb
orientdb>	import	database	/temp/mydb.json.gz

Now your new database is: /temp/newdb.

Use the new binary serialization

1378



We removed pin() and unpin() methods to force the cache behavior.

We have hidden some methods considered internal to avoid users call them. However, if
your usage of OrientDB is quite advanced and you still need them, you can access from
Internal helper classes. Please still consider them as internals and could change in the
future. Below the main ones:

ORecordAbstract.addListener(), uses ORecordListenerManager.addListener()
instead

We moved getStorage() method to ODatabaseRecordInternal.

We replaced ODatabaseDocumentPool Java class (now deprecated) with the new, more
efficient com.orientechnologies.orient.core.db.OPartitionedDatabasePool.

We completely removed Level2 cache. Now only Level1 and Storage DiskCache are
used. This change should be transparent with code that run on previous versions, unless
you enable/disable Level2 cache in your code.

Furthermore it's not possible anymore to disable Cache, so method 	setEnable()	 has
been removed.

Context 1.7.x

API ODatabaseRecord.getLevel1Cache() ODatabaseRecord.getLocalCache()

API ODatabaseRecord.getLevel2Cache() Not available

API changes

ODocument pin() and unpin() methods

ODocument protecting of internal methods

ODatabaseRecord.getStorage()

ODatabaseDocumentPool

Caches

Changes

1379



Configuration OGlobalConfiguration.CACHE_LEVEL1_ENABLED OGlobalConfiguration.CACHE_LOCAL_ENABLED

Configuration OGlobalConfiguration.CACHE_LEVEL2_ENABLED Not available

We completely drop the long deprecated LOCAL Storage. If your database was created
using "LOCAL:" then you have to export it with the version you was using, then import it
in a fresh new database created with OrientDB 2.0.

No more LOCAL engine

1380



At first run, OrientDB asks for the root's password. Leave it blank to auto generate it (like
with 1.7.x). This is the message:

+----------------------------------------------------+
|										WARNING:	FIRST	RUN	CONFIGURATION										|
+----------------------------------------------------+
|	This	is	the	first	time	the	server	is	running.						|
|	Please	type	a	password	of	your	choice	for	the						|
|	'root'	user	or	leave	it	blank	to	auto-generate	it.	|
+----------------------------------------------------+

Root	password	[BLANK=auto	generate	it]:	_

If you set the system setting or environment variable 	ORIENTDB_ROOT_PASSWORD	, then its
value will be taken as root password. If it's defined, but empty, a password will be
automatically generated.

Server

First run ask for root password

1381



At first run as distributed, OrientDB asks for the node name. Leave it blank to auto
generate it (like with 1.7.x). This is the message:

+----------------------------------------------------+
|				WARNING:	FIRST	DISTRIBUTED	RUN	CONFIGURATION				|
+----------------------------------------------------+
|	This	is	the	first	time	that	the	server	is	running		|
|	as	distributed.	Please	type	the	name	you	want						|
|	to	assign	to	the	current	server	node.														|
+----------------------------------------------------+

Node	name	[BLANK=auto	generate	it]:	_

If you set the system setting or environment variable 	ORIENTDB_NODE_NAME	, then its value
will be taken as node name. If it's defined, but empty, a name will be automatically
generated.

With OrientDB 2.0 each record cluster selects assigns the first server node in the
	servers	 list node as master for insertion only. In 99% of the cases you insert per class,
not per cluster. When you work per class, OrientDB auto-select the cluster where the
local node is the master. In this way we completely avoid conflicts (like in 1.7.x).

Example of configuration with 2 nodes replicated (no sharding):

INSERT	INTO	Customer	(name,	surname)	VALUES	('Jay',	'Miner')

If you execute this command against a node1, OrientDB will assign the cluster-id where
node1 is master, i.e. #13:232. With node2 would be different: it couldn't never be #13.

For more information look at:
http://www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding.html.

Distributed

First run ask for node name

Multi-Master replication

Asynchronous replication

1382

http://www.orientechnologies.com/docs/last/orientdb.wiki/Distributed-Sharding.html


OrientDB 2.0 supports configurable execution mode through the new variable
	executionMode	. It can be:

	undefined	, the default, means synchronous
	synchronous	, to work in synchronous mode
	asynchronous	, to work in asynchronous mode

{
				"autoDeploy":	true,
				"hotAlignment":	false,
				"executionMode":	"undefined",
				"readQuorum":	1,
				"writeQuorum":	2,
				"failureAvailableNodesLessQuorum":	false,
				"readYourWrites":	true,
				"clusters":	{
								"internal":	{
								},
								"index":	{
								},
								"*":	{
												"servers"	:	[	"<NEW_NODE>"	]
								}
				}
}

Set to "asynchronous" to speed up the distributed replication.

1383



Starting from OrientDB 2.0, instances of both classes OrientGraph and
OrientGraphNoTx can't be shared across threads. Create and destroy instances from
the same thread.

OrientDB 2.0 disabled the auto scale of edge. In 1.7.x, if a vertex had 1 edge only, a
LINK was used. As soon as a new edge is added the LINK is auto scaled to a LINKSET
to host 2 edges. If you want this setting back you have to call these two methods on
graph instance (or OrientGraphFactory before to get a Graph instance):

graph.setAutoScaleEdgeType(true);
graph.setEdgeContainerEmbedded2TreeThreshold(40);

Graph API

Multi-threading

Edge collections

1384



Databases created with release 1.6.x are compatible with 1.7, so you don't have to
export/import the database like in the previous releases.

Migration from 1.6.x to 1.7.x

1385



OrientDB 1.7 comes with the PLOCAL engine as default one. For compatibility purpose
we still support "local" database, but this will be removed soon. So get the chance to
migrate your old "local" database to the new "plocal" follow the steps in: Migrate from
local storage engine to plocal.

Engine

1386



Databases created with release 1.5.x need to be exported and reimported in OrientDB
1.6.x.

From OrientDB 1.5.x:

Open the console under "bin/" directory calling:
./console.sh (or .bat on Windows)

Connect to the database and export it, example:
orientdb> connect plocal:/temp/db admin admin
orientdb> export database /temp/db.zip

Run OrientDB 1.6.x console
./console.sh (or .bat on Windows)

Create a new database and import it, example:
orientdb> create database plocal:/temp/db admin admin plocal
orientdb> import database /temp/db.zip

For any problem on import, look at Import Troubleshooting.

Migration from 1.5.x to 1.6.x

1387



OrientDB 1.6.x comes with the new PLOCAL engine. To migrate a database create with
the old "local" to such engine follow the steps in: Migrate from local storage engine to
plocal.

Engine

1388



OrientDB 1.5.x automatic upgrades any databases created with version 1.4.x, so export
and import is not needed.

Migration from 1.4.x to 1.5.x

1389



OrientDB 1.5.x comes with the new PLOCAL engine. To migrate to such engine follow
the steps in: Migrate from local storage engine to plocal.

Engine

1390



OrientDB 1.4.x uses a new optimized structure to manage graphs. You can use the new
OrientDB 1.4.x API against graph databases created with OrientDB 1.3.x setting few
properties at database level. In this way you can continue to work with your database but
remember that this doesn't use the new structure so it's strongly suggested to export and
import the database.

The new Engine uses some novel techniques based on the idea of a dynamic Graph
that change shape at run-time based on the settings and content. The new Engine is
much faster than before and needs less space in memory and disk. Below the main
improvements:

avoid creation of edges as document if haven't properties. With Graphs wit no
properties on edges this can save more than 50% of space on disk and therefore
memory with more chances to have a big part of database in cache. Furthermore
this speed up traversal too because requires one record load less. As soon as the
first property is set the edge is converted transparently
Vertex "in" and "out" fields aren't defined in the schema anymore because can be of
different types and change at run-time adapting to the content:

no connection = null (no space taken)
1 connection = store as LINK (few bytes)

1 connections = use the Set of LINKS (using the MVRBTreeRIDSet
class)

binding of Blueprints "label" concept to OrientDB sub-classes. If you create an edge
with label "friend", then the edge sub-type "friend" will be used (created by the
engine transparently). This means: 1 field less in document (the field "label") and
therefore less space and the ability to use the technique 1 (see above)
edges are stored on different files at file system level because are used different
clusters
better partitioning against multiple disks (and in the future more parallelism)
direct queries like "select from friend" rather than "select from E" and then filtering
the result-set looking for the edge with the wanted label property
multiple properties for edges of different labels. Not anymore a "in" and "out" in
Vertex but "out_friend" to store all the outgoing edges of class "friend". This means
faster traversal of edges giving one or multiple labels avoiding to scan the entire Set

Migration from 1.3.x to 1.4.x

GraphDB

1391



of edges to find the right one

If you was using Blueprints look also to the Blueprints changes 1.x and 2.x.

Execute these commands against the open database:

alter	database	custom	useLightweightEdges=false
alter	database	custom	useClassForEdgeLabel=false
alter	database	custom	useClassForVertexLabel=false
alter	database	custom	useVertexFieldsForEdgeLabels=false

Before 1.4.x the base classes for Vertices was "OGraphVertex" with alias "V" and for
Edges was "OGraphEdge" with alias "E". Starting from v1.4 the base class for Vertices is
"V" and "E" for Edges. So if in your code you referred "V" and "E" for inheritance nothing
is changed (because "V" and "E" was the aliases of OGraphVertex and "OGraphEdge"),
but if you used directly "OGraphVertex" and "OGraphEdge" you need to replace them
into "V" and "E".

If you don't export and import the database you can rename the classes by hand typing
these commands:

alter	class	OGraphVertex	shortname	null
alter	class	OGraphVertex	name	V
alter	class	OGraphEdge	shortname=null
alter	class	OGraphEdge	name	E

Use GREMLIN and GraphML format.

If you're exporting the database using the version 1.4.x you've to set few configurations
at database level. See above Working with database created with 1.3.x.

Blueprints changes

Working with database created with 1.3.x

Base class changed for Graph elements

Export and re-import the database

Export the database

1392

https://github.com/tinkerpop/blueprints/wiki/The-Major-Differences-Between-Blueprints-1.x-and-2.x


$	cd	$ORIENTDB_HOME/bin
$	./gremlin.sh

									\,,,/
									(o	o)
-----oOOo-(_)-oOOo-----
gremlin>	g	=	new	OrientGraph("local:/temp/db");
==>orientgraph[local:/temp/db]
gremlin>	g.saveGraphML("/temp/export.xml")
==>null

gremlin>	g	=	new	OrientGraph("local:/temp/newdb");
==>orientgraph[local:/temp/newdb]
gremlin>	g.loadGraphML("/temp/export.xml");
==>null
gremlin>

Your new database will be created under "/temp/newdb" directory.

Import the exported database

1393



If you want to migrate from release 1.3.x to 1.4.x you've to export the database using the
1.3.x and re-import it using 1.4.x. Example:

$	cd	$ORIENTDB_HOME/bin
$	./console.sh
OrientDB	console	v.1.3.0	-	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.

orientdb>	connect	local:../databases/mydb	admin	admin
Connecting	to	database	[local:../databases/mydb]	with	user	'admin'...
OK

orientdb>	export	database	/temp/export.json.gz
Exporting	current	database	to:	database	/temp/export.json.gz...

Started	export	of	database	'mydb'	to	/temp/export.json.gz...
Exporting	database	info...OK
Exporting	clusters...OK	(24	clusters)
Exporting	schema...OK	(23	classes)
Exporting	records...
-	Cluster	'internal'	(id=0)...OK	(records=3/3)
-	Cluster	'index'	(id=1)...OK	(records=0/0)
-	Cluster	'manindex'	(id=2)...OK	(records=1/1)
-	Cluster	'default'	(id=3)...OK	(records=0/0)
-	Cluster	'orole'	(id=4)...OK	(records=3/3)
-	Cluster	'ouser'	(id=5)...OK	(records=3/3)
-	Cluster	'ofunction'	(id=6)...OK	(records=1/1)
-	Cluster	'oschedule'	(id=7)...OK	(records=0/0)
-	Cluster	'orids'	(id=8).............OK	(records=428/428)
-	Cluster	'v'	(id=9).............OK	(records=809/809)
-	Cluster	'e'	(id=10)...OK	(records=0/0)
-	Cluster	'followed_by'	(id=11).............OK	(records=7047/7047)
-	Cluster	'sung_by'	(id=12)...OK	(records=2/2)
-	Cluster	'written_by'	(id=13)...OK	(records=1/1)
-	Cluster	'testmodel'	(id=14)...OK	(records=2/2)
-	Cluster	'vertexwithmandatoryfields'	(id=15)...OK	(records=1/1)
-	Cluster	'artist'	(id=16)...OK	(records=0/0)
-	Cluster	'album'	(id=17)...OK	(records=0/0)
-	Cluster	'track'	(id=18)...OK	(records=0/0)
-	Cluster	'sing'	(id=19)...OK	(records=0/0)
-	Cluster	'has'	(id=20)...OK	(records=0/0)
-	Cluster	'person'	(id=21)...OK	(records=2/2)
-	Cluster	'restaurant'	(id=22)...OK	(records=1/1)
-	Cluster	'eat'	(id=23)...OK	(records=0/0)

Done.	Exported	8304	of	total	8304	records

Exporting	index	info...
-	Index	dictionary...OK

General Migration

Export the database using 1.3.x

1394



OK	(1	indexes)
Exporting	manual	indexes	content...
-	Exporting	index	dictionary	...OK	(entries=0)
OK	(1	manual	indexes)

Database	export	completed	in	1913ms

$	cd	$ORIENTDB_HOME/bin
$	./console.sh
OrientDB	console	v.1.3.0	-	www.orientechnologies.com
Type	'help'	to	display	all	the	commands	supported.

orientdb>	create	database	local:../databases/newmydb	admin	admin	local

Creating	database	[local:../databases/newmydb]	using	the	storage	type	[local]...
Database	created	successfully.

Current	database	is:	local:../databases/newmydb

orientdb>	import	database	/temp/export.json.gz
Importing	database	database	/temp/export.json.gz...

Started	import	of	database	'local:../databases/newmydb'	from	/temp/export.json.gz...
Importing	database	info...OK
Importing	clusters...
-	Creating	cluster	'internal'...OK,	assigned	id=0
-	Creating	cluster	'default'...OK,	assigned	id=3
-	Creating	cluster	'orole'...OK,	assigned	id=4
-	Creating	cluster	'ouser'...OK,	assigned	id=5
-	Creating	cluster	'ofunction'...OK,	assigned	id=6
-	Creating	cluster	'oschedule'...OK,	assigned	id=7
-	Creating	cluster	'orids'...OK,	assigned	id=8
-	Creating	cluster	'v'...OK,	assigned	id=9
-	Creating	cluster	'e'...OK,	assigned	id=10
-	Creating	cluster	'followed_by'...OK,	assigned	id=11
-	Creating	cluster	'sung_by'...OK,	assigned	id=12
-	Creating	cluster	'written_by'...OK,	assigned	id=13
-	Creating	cluster	'testmodel'...OK,	assigned	id=14
-	Creating	cluster	'vertexwithmandatoryfields'...OK,	assigned	id=15
-	Creating	cluster	'artist'...OK,	assigned	id=16
-	Creating	cluster	'album'...OK,	assigned	id=17
-	Creating	cluster	'track'...OK,	assigned	id=18
-	Creating	cluster	'sing'...OK,	assigned	id=19
-	Creating	cluster	'has'...OK,	assigned	id=20
-	Creating	cluster	'person'...OK,	assigned	id=21
-	Creating	cluster	'restaurant'...OK,	assigned	id=22
-	Creating	cluster	'eat'...OK,	assigned	id=23
Done.	Imported	22	clusters
Importing	database	schema...OK	(23	classes)
Importing	records...
-	Imported	records	into	cluster	'internal'	(id=0):	3	records
-	Imported	records	into	cluster	'orole'	(id=4):	3	records
-	Imported	records	into	cluster	'ouser'	(id=5):	3	records

Re-import the exported database using OrientDB 1.4.x:

1395



-	Imported	records	into	cluster	'internal'	(id=0):	1	records
-	Imported	records	into	cluster	'v'	(id=9):	809	records
-	Imported	records	into	cluster	'followed_by'	(id=11):	7047	records
-	Imported	records	into	cluster	'sung_by'	(id=12):	2	records
-	Imported	records	into	cluster	'written_by'	(id=13):	1	records
-	Imported	records	into	cluster	'testmodel'	(id=14):	2	records
-	Imported	records	into	cluster	'vertexwithmandatoryfields'	(id=15):	1	records
-	Imported	records	into	cluster	'person'	(id=21):	2	records

Done.	Imported	7874	records

Importing	indexes	...
-	Index	'dictionary'...OK
Done.	Created	1	indexes.
Importing	manual	index	entries...
-	Index	'dictionary'...OK	(0	entries)
Done.	Imported	1	indexes.
Delete	temporary	records...OK	(0	records)

Database	import	completed	in	2383	ms
orientdb>

Your new database will be created under "../databases/newmydb" directory.

1396



This section contains internal technical information. Users usually are not interested to
such technical details, but if you want to hack OrientDB or become a contributor this
information could be useful.

Internals

1397



Any OrientDB database relies on a Storage. OrientDB supports 4 storage types:

plocal, persistent disk-based, where the access is made in the same JVM process
remote, by using the network to access a remote storage
memory, all data remains in memory
local, deprecated, it's the first version of disk based storage, but has been replaced
by plocal

A Storage is composed of multiple Clusters.

Storages

1398



Any OrientDB database relies on a Storage. OrientDB supports 4 storage types:

plocal, persistent disk-based, where the access is made in the same JVM process
remote, by using the network to access a remote storage
memory, all data remains in memory
local, deprecated, it's the first version of disk based storage, but has been replaced
by plocal

A Storage is composed of multiple Clusters.

Storages

1399



The Paginated Local Storage, "plocal" from now, is a disk based storage which works
with data using page model.

plocal storage consists of several components each of those components use disk data
through disk cache.

Below is list of plocal storage components and short description of each of them:

1. Clusters are managed by 2 kinds of files:
.pcl files contain the cluster data
.cpm files contain the mapping between record's cluster position and real
physical position

2. Write Ahead (operation) Log (WAL) are managed by 2 kinds of files:
.wal to store the log content
.wmr contains timing about synchronization operations between storage cache
and disk system

3. SBTree Index, it uses files with extensions .sbt.
4. Hash Index, it uses files with extensions .hit, .him and .hib.
5. Index Containers to store values of single entries of not unique index (Index RID

Set). It uses files with extension .irs.
6. File mapping, maps between file names and file ids (used internally). It's a single

file with name: name_id_map.cm.

PLocal Storage

1400



Since PLOCAL is bases on disk, all the pages are flushed to physical files. You can
specify any mounted partitions on your machine, backed by Disks, SSD, Flash Disks or
DRAM.

File System

1401



Cluster is logical piece of disk space where storage stores records data. Each cluster is
split in pages. Page is a single atomic unit, which is used by cluster.

Each page contains system information and records data. System information includes
"magic number" and crc32 check sum of page content. This information is used to check
storage integrity after DB crash. To start integrity check run command "check database"
from console.

Each cluster has 2 sub components:

data file, with extension .pcl
mapping between physical position of record in data file and cluster position, with
extension .cpm

To speed up the access to the most requested clusters it's recommended to use the
cluster files to a SSD or any faster support than disk. To do that, move the files to the
mounted partitions and create symbolic links to them on original path. OrientDB will
follow symbolic links and will open cluster files everywhere are reachable.

The mapping between data file and physical position is managed with a list, where each
entry of this list is a fixed size element which is the pointer to the physical position of
record in data file.

Because data file is paginated, this pointer consist of 2 items: page index (long value)
and position of record inside page (int value), so each record pointer consumes 12
bytes.

When a new record is inserted, a new pointer is added to the list so index of this pointer
becomes cluster position. The list is append only data structure so if you add a new
record its cluster position will be unique and will not be reused.

Cluster

File System

Cluster pointers

Creation of new records in cluster

Deletion of records in cluster

1402



When you delete a record, the page index and record position are set to -1. So record
pointer is transformed in record tombstone. You can think about record id like a uuid. It
is unique and never reused.

Usually when you delete records you lose very small amount of disk space. This could
be mitigated with a periodic "offline compaction" by performing database export/import.
In such case records cluster positions will be changed (tombstones will be ignored
during export) and the lost space will be revoked. So during the import process, the
cluster positions can change.

OrientDB import tool uses a manual hash index (by default the name is
'___exportImportRIDMap') to map the old record ids and new record ids.

Migration of RID

1403



Write Ahead Log, WAL from now, is used to restore storage data after a non-soft
shutdown:

Hard kill of the OrientDB process
Crash/Failure of the Java Virtual Machine that runs OrientDB
Crash/Failure of the Operating System that is hosting OrientDB

All the operations on plocal components are logged in WAL before they are performed
on these components. WAL is append only data structure, you can think about it like a
list of records which contains information about operations performed on storage
components.

WAL content is flushed to the disk on these events:

every 1 second in background thread (flush interval can be changed in
storage.wal.commitTimeout configuration property)
synchronously if the amount of RAM used by WAL exceeds 65Mb (can be changed
in storage.wal.cacheSize configuration property).

As result if OrientDB crashes, all data changes done during <=1 second interval before
crash will be lost. This is the trade off between performance and durability.

It's strongly recommended to store WAL records on separate disk than the disk used to
store the DB content. In this way data I/O operations will not be interrupted by WAL I/O
operations. This can be done by setting the storage.wal.path property to the folder
where storage WAL files will be placed.

Indexes can work with WAL in 2 modes:

ROLLBACK_ONLY (default mode) and
FULL

Write Ahead (operation) Log (WAL)

WAL flush

Put the WAL to a separate disk

How Indexes use WAL?

1404



In ROLLBACK_ONLY mode only data are needed to rollback transactions are stored.
WAL records can not be used to restore index content after crash, in such case
automatic indexes are rebuild. In FULL mode indexes can be restored after DB crash
without rebuild. You can change index durability mode by setting the property
index.txMode.

You can find more details about WAL here.

1405



PLocal storage writes the database on file system using different files. Below all the
extensions:

.cpm, contains the mapping between real physical positions and cluster positions. If
you delete record, the tombstone is placed here. Each tombstone consumes about
12 bytes
.pcl, data file
.sbt, is index file
.wal and .wmr, are Journal Write Ahead (operation) Log files
.cm, is the mapping between file id and real file name (is used internally)
.irs, is the RID set file for not unique index

File types

1406



Basically paginated storage is nothing more than 2-level disk cache which works
together with write ahead log.

Every file is spitted on pages, and each file operation is atomic at page level. 2-level disk
cache allows:

1. Cache frequently accessed pages in memory.
2. Automatically separate pages which are rarely accessed from frequently accessed

and rid off the first from cache memory.
3. Minimize amount of disk head seeks during data writes.
4. In case of low or middle write data load allows to mitigate pauses are needed to

write data to the disk by flushing all changed or newly added pages to the disk in
background thread.

5. Works together with WAL to make any set changes on single page look like atomic
operation.

2-level cache itself consist of Read Cache (implementation is based on 2Q cache
algorithm) and *Write cache (implementation is based on WOW cache algorithm).

Typical set of operations are needed to work with any file looks like following:

1. Open file using OReadWriteDiskCache#openFile operation and get id of open file. If
files does not exist it will be automatically created. Id of file is stored in special meta
data file and always will belong to given file till it will be deleted.

2. Allocate new page OReadWriteDiskCache#allocateNewPage or load existing one
ORreadWriteDiskCache#load into off heap memory.

3. Retrieve pointer to the allocated area of off-heap memory
OCacheEntry#getCachePointer().

4. If you plan to change page data acquire write lock or read lock if you read data and
your single file page is shared across several data structures. Write lock must be
acquired whether single page are used between several data structures or not.
Write lock is needed to prevent flush of inconsistent pages to the disk inside of
background “data flush” thread of write cache.
OCachePointer#acquireExclusiveLock.

5. Update/read data in off heap memory.
6. Release write lock if needed. OCachePointer#releaseExclusiveLock.
7. Mark page as dirty if you changed page data. It will allow write cache to flush pages

which are really changed OCacheEntry#markDirty.

How it works (Internal)

1407



8. Push record back to the disk cache, in other words indicate cache that you do not
use this page any more so it can be safely evicted from the memory to make room
to other pages OReadWriteDiskCache#release.

When we load page at first Read Cache looks it in one of LRU lists. There are two of
them for data which are accessed several times and then not accessed for very long
period of item (it consumes 25% of memory) and data which are accessed frequently for
long period of time (it consumes 75% of memory).

If page is absent in LRU queues, then Read Cache asks to the Write Cache to load data
from the disk.

If we are lucky and pages which are queued to flush are still in Write Queue of Write
Cache it will be retrieved from there or otherwise Write Cache will load data from file on
the disk.

When data will be read from file by Write Cache, it will be put in LRU queue which
contains “short living” pages. Eventually, if this pages will be accessed frequently during
long time interval, loaded page will be moved to the LRU of “long living” pages.

When we release page and this page is marked as dirty this page is put into the Write
Cache which adds it to the Write Queue. Write Queue can be considered as ring buffer
where all the pages are sorted by its position on the disk. This trick allows to minimize
disk head movements during pages flush. What is more interesting that pages are
always flushed in background in “background flush” thread. This approach allows to
mitigate I/O bottleneck if we have enough RAM to work in memory only and flush data in
background.

So it was about how disk cache works. But how we achieve durability of changes on
page level and what is more interesting on the level when we work with complex data
structures like Trees or Hash Maps (these data structures are used in indexes).

If we look back on set of operations which we perform to manipulate file data you see
that step 5 does not contains any references to OrientDB API. That is because there are
two ways to work with off heap page durable and not durable.

So simple (not durable way) is to work with methods of direct memory pointer
com.orientechnologies.common.directmemory.ODirectMemoryPointer(setLong/getLong,

So what is going on underneath when we load and
release pages?

1408



setInt/getInt and so on). If you would like to make all changes in your data structures
durable you should not work with direct memory pointer but should create component
which will present part of your data structure and extend it from
com.orientechnologies.orient.core.storage.impl.local.paginated.ODurablePage class.
This class has similar methods for manipulation of data in off heap page but also it
tracks all changes are done to the page and we can always return diff between old/new
states of page using
com.orientechnologies.orient.core.storage.impl.local.paginated.ODurablePage#getPage
Changes method. Also this class allows to apply given diff to the old/new snapshot of
given pages to repeat/revert (restoreChanges()/revertChanges()) changes are done for
this page.

1409



Paginated Local storage engine, also called as "plocal", is intended to be used as
durable replacement of the previous local storage.

plocal storage is based on principle that using disk cache which contains disk data that
are split by fixed size portions (pages) and write ahead logging approach (when changes
in page are logged first in so called durable storage) we can achieve following
characteristics:

1. Operations on single page are atomic.
2. Changes applied to the page can be restored after server crash even if they were

not flushed to the disk.

Using write ahead log and page based cache we can achieve durability/performance
trade off. We do not need to flush every page to the disk so we will avoid costly random
I/O operations as much as possible and still can achieve durability using much cheaper
append only I/O operations.

From all given above we can conclude one more advantage of plocal against local - it
has much faster transactions implementation. In order achieve durability on local storage
we should set tx.commit.synch property to true (perform synchronization of disk cache
on each transaction commit) which of course makes create/update/delete operations
inside transaction pretty slow.

Lets go deeper in implementation of both storages.

Local storage uses MMAP implementation and it means that caching of read and write
operations can not be controlled, plocal from other side uses two types of caches read
cache and write cache (the last is under implementation yet and not included in current
implementation).

The decision to split responsibilities between 2 caches is based on the fact that
characters of distribution of "read" and "write" data are different and they should be
processed separately.

We replaced MMAP by our own cache solution because we needed low level integration
with cache life cycle to provide fast and durable integration between WAL and disk
cache. Also we expect that when cache implementation will be finished issues like
https://github.com/orientechnologies/orientdb/issues/1202 and
https://github.com/orientechnologies/orientdb/issues/1339 will be fixed automatically.

PLocal Engine

1410

https://github.com/orientechnologies/orientdb/issues/1202
https://github.com/orientechnologies/orientdb/issues/1339


Despite of the fact that write cache is still not finished it does not mean that plocal
storage is not fully functional. You can use plocal storage and can notice that after
server crash it will restore itself.

But it has some limitations right now, mostly related to WAL implementation. When
storage is crashed it finds last data check point and restores data from this checkpoint
by reading operations log from WAL.

There are two kind of check points full check point and fuzzy check point. The full check
point is simple disk cache flush it is performed when cluster is added to storage or
cluster attributes are changed, also this check point is performed during storage close.

Fuzzy checkpoint is completely different (it is under implementation yet). During this
checkpoint we do not flush disk cache we just store the position of last operation in write
ahead log which is for sure flushed to the disk. When we restore data after crash we find
this position in WAL and restore all operations from it. Fuzzy check points are much
faster and will be performed each hour.

To achieve this trick we should have special write cache which will guarantee that we will
not restore data from the begging of database creation during restore from fuzzy
checkpoint and will not have performance degradation during write operations. This
cache is under implementation.

So right now when we restore data we need to restore data since last DB open
operation. It is quite long procedure and require quite space for WAL.

When fuzzy check points will be implemented we will cut unneeded part of WAL during
fuzzy check point which will allow us to keep WAL quite small.

We plan to finish fuzzy checkpoints during a month.

But whether we use fuzzy checkpoints or not we can not append to the WAL forever.
WAL is split by segments, when WAL size is exceed maximum allowed size the oldest
WAL segment will be deleted and new empty one will be created.

The segments size are controlled by storage.wal.maxSegmentSize parameter in
megabytes. The maximum WAL size is set by property storage.wal.maxSize parameter
in megabytes.

Maximum amount of size which is consumed by disk cache currently is set using two
parameters: storage.diskCache.bufferSize - Maximum amount of memory consumed by
disk cache in megabytes. storage.diskCache.writeQueueLength - Currently pages are

1411



nor flushed on the disk at the same time when disk cache size exceeds, they placed to
write queue and when write queue will be full it is flushed. This approach minimize disk
head movements but it is temporary solution and will be removed at final version of
plocal storage. This parameter is measured in megabytes.

During update the previous record deleted and content of new record is placed instead
of old record at the same place. If content of new record does not fit in place occupied by
old record, record is split on two parts first is written on old record's place and the
second is placed on new or existing page. Placing of part of the record on new page
requires to log in WAL not only new but previous data are hold in both pages which
requires much more space. To prevent such situation cluster in plocal storage has
following attributes:

1. RECORD_GROW_FACTOR the factor which shows how many space will be
consumed by record during initial creation. If record size is 100 bytes and
RECORD_GROW_FACTOR is 2 record will consume 200 bytes. Additional 100
bytes will be reused when record will grow.

2. RECORD_OVERFLOW_GROW_FACTOR the factor shows how many additional
space will be added to the record when record size will exceed initial record size. If
record consumed 200 bytes and additional 20 bytes will be needed and
RECORD_OVERFLOW_GROW_FACTOR is 1.5 then record will consume 300
bytes after update. Additional 80 bytes will be used during next record updates.

Default value for both parameters are 1.2.

1. USE_WAL if you prefer that some clusters will be faster but not durable you can set
this parameter to false.

1412



OrientDB Disk cache consists of two separate cache components that work together:

Read Cache, based on 2Q cache algorithm
Write Cache, based on WOW cache algorithm

PLocal Disk-Cache

1413

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.392
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.8729


It contains the following queues:

a1, as FIFO queue for pages which were not in the read cache and accessed for the
first time
am, as FIFO queue for the hot pages (pages which are accessed frequently during
db lifetime). The most used pages stored in a1 becomes "hot pages" and are moved
into the am queue.

a1 queue is split in two queues:

a1in that contains pointers to the pages are cached in memory
a1out that contains pointers to the pages which were in a1in, but was not accessed
for some time and were removed from RAM. a1out contains pointers to the pages
located on the disk, not in RAM.

When a page is read for the first time, it's loaded from the disk and put in the a1in
queue. If there isn't enough space in RAM, the page is moved to a1out queue.

If the same page is accessed again, then:

1. if it is in a1in queue, nothing
2. if it is in a1out queue, the page is supposed to be a "hot page" (that is page which is

accessed several times, but doesn't follow the pattern when the page is accessed
several times for short interval, and then not accessed at all) we put it in am queue

3. if it is in am queue, we put the page at the top of am queue

By default this is the configuration of queues:

a1in queue is 25% of Read Cache size
a1out queue is 50% of Read Cache size
am is 75% of Read Cache size.

Read Cache

a1 Queue

Loading a page

Queue sizes

1414



When OrientDB starts, both caches are empty, so all the accessed pages are put in a1in
queue, and the size of this queue is 100% of the size of the Read Cache.

But then, when there is no more room for new pages in a1in, the old pages are moved
from a1in to a1out. Eventually when a1out contains requested pages we need room for
am queue pages, so once again we move pages from a1in queue to a1out queue, a1in
queue is truncated till it is reached 25% size of read cache.

To make more clear how RAM and pages are distributed through queues lets look at
example. Lets suppose we have cache which should cache in RAM 4 pages, and we
have 8 pages stored on disk (which have indexes from 0 till 7 accordingly).

When we start database server all queues contain 0 pages:

am - []
a1in - []
a1out - []

Then we read first 4 pages from the disk. So we have:

am - []
a1in - [3, 2, 1, 0]
a1out - []

Then we read 5-th page from the disk and then 6-th , because only 4 pages can be fit
into RAM we remove the last pages with indexes 0 and 1, free memory which is
consumed by those pages and put them in a1out. So we have:

am - []
a1in - [5, 4, 3, 2]
a1out - [1, 0]

lets read pages with indexes from 6 till 7 (last 2 pages) but a1out can contain only 2
pages (50% of cache size) so the first pages will be removed from o1out. We have here:

am - []
a1in - [7, 6, 5, 4]
a1out - [3, 2]

Then if we will read pages 2, 3 then we mark them (obviously) as hot pages and we put
them in am queue but we do not have enough memory for these pages, so we remove
pages 5 and 4 from a1in queue and free memory which they consumed. Here we have:

1415



am - [3, 2]
a1in - [7, 6]
a1out - [5, 4]

Then we read page 4 because we read it several times during long time interval it is hot
page and we put it in am queue. So we have:

am - [4, 3, 5]
a1in - [7]
a1out - [6, 5]

We reached state when queues can not grow any more so we reached stable, from point
of view of memory distribution, state.

This is the used algorithm in pseudo code:

On	accessing	a	page	X
begin:
	if	X	is	in	Am	then
			move	X	to	the	head	of	Am
else	if	(X	is	in	A1out)	then
	removeColdestPageIfNeeded
	add	X	to	the	head	of	Am
else	if	(X	is	in	A1in)
	//	do	nothing
else
	removeColdestPageIfNeeded
	add	X	to	the	head	of	A1in
end	if
end

removeColdestPageIfNeeded
begin
	if	there	is	enough	RAM	do	nothing
	else	if(	A1in.size	>	A1inMaxSize)
		free	page	out	the	tail	of	A1in,	call	it	Y
		add	identifier	of	Y	to	the	head	of	A1out
	if(A1out.size	>	A1OutMaxSize)
		remove	page	from	the	tail	of	Alout
	end	if
	else
		remove	page	out	the	tail	of	Am
		//	do	not	put	it	on	A1out;	it	hasn’t	been
		//	accessed	for	a	while
	end	if
end

1416



The main target of the write cache is to eliminate disk I/O overhead, by using the
following approaches:

1. All the pages are grouped by 4 adjacent pages (group 0 contains pages from 0 to 3,
group 1 contains pages from 4 to 7, etc. ). Groups are sorted by position on the
disk. Groups are flushed in sorted order, in such way we reduce the random I/O disk
head seek overhead. Group's container is implemented as SortedMap: when we
reach the end of the map we start again from the beginning. You can think about
this data structure as a "ring buffer"

2. All the groups have "recency bit", this bit is set when group is changed. It is needed
to avoid to flush pages that are updated too often, it will be wasting of I/O time

3. Groups are continuously flushed by background thread, so until there is enough free
memory, all data operations do not suffer of I/O overhead because all operations
are performed in memory

Below the pseudo code for write cache algorithms:

Add changed page in cache:

begin
	try	to	find	page	in	page	group.
	if	such	page	exist
		replace	page	in	page	group
		set	group's	"recency	bit"	to	true
	end	if
	else
		add	page	group
		set	group's	"recency	bit"	to	true
	end	if
end

On periodical background flush

begin
	calculate	amount	of	groups	to	flush
	start	from	group	next	to	flushed	in	previous	flush	iteration
	set	"force	sync"	flag	to	false

	for	each	group
		if	"recency	bit"	set	to	true	and	"force	sync"	set	to	false
			set	"recency	bit"	to	false
		else

Write cache

1417



			flush	pages	in	group
			remove	group	from	ring	buffer
		end	if
	end	for

		if	we	need	to	flush	more	than	one	group	and	not	all	of	them	are	flushed	repeat	"flush	loop"	with	"force	sync"	flag	set	to	true.
end

The collection of groups to flush is calculated in following way:

1. if amount of RAM consumed by pages is less than 80%, then 1 group is flushed.
2. if amount of RAM consumed by pages is more than 80%, then 20% of groups is

flushed.
3. if amount of RAM consumed by pages is more than 90%, then 40% of groups is

flushed.

1418



By default the maximum size of Read Cache is 70% of cache RAM and 30% for Write
Cache.

When a page is requested, the Read Cache looks into the cached pages. If it's not
present, the Read Cache requests page from the Write Cache. Write Cache looks for the
page inside the Ring Buffer: if it is absent, it reads the page from the disk and returns it
directly to the Read Cache without caching it inside of Write Cache Ring Buffer.

Page which is used by storage data structure (such as cluster or index) can not be
evicted (removed from memory) so each page pointer also has "usage counter" when
page is requested by cache user, "usage counter" is incremented and decremented
when page is released. So removeColdestPageIfNeeded() method does not remove tail
page, but removes page closest to tail which usage counter is 0, if such pages do not
exit either exception is thrown or cache size is automatically increased and warning
message is added to server log (default) (it is controlled by properties
server.cache.2q.increaseOnDemand and server.cache.2q.increaseStep, the last one
is amount of percent of RAM from original size on which cache size will be increased).

When a page is changed, the cache page pointer (data structure which is called
OCacheEntry) is marked as dirty by cache user before release. If cache page is dirty it is
put in write cache by read cache during call of OReadWriteDiskCache#release()
method. Strictly speaking memory content of page is not copied, it will be too slow, but
pointer to the page is passed. This pointer (OCachePointer) tracks amount of referents if
no one references this pointer, it frees referenced page.

Obviously caches work in multithreaded environment, so to prevent data inconsistencies
each page is not accessed directly. Read cache returns data structure which is called
cache pointer. This pointer contains pointer to the page and lock object. Cache user
should acquire read or write lock before it will use this page. The same read lock is
acquired by write cache for each page in group before flush, so inconsistent data will not
be flushed to the disk. There is interesting nuance here, write cache tries to acquire read
lock and if it is used by cache user it will not wait but will try to flush other group.

Interaction between Read and Write Caches

Implementation details

1419



Write Ahead Log, WAL form now, is operation log which is used to store data about
operations which were performed on disk cache page. WAL is enabled by default.

You could disable the journal (WAL) for some operations where reliability is not
necessary:

-storage.useWAL=false

By default, the WAL files are written in the database folder. Since these files can growth
very fast, it's a best practice to store in a dedicated partition. WAL are written in append-
only mode, so there is not much difference on using a SSD or a normal HDD. If you
have a SSD we suggest to use for database files only, not WAL.

To setup a different location than database folder, set the 	WAL_LOCATION	variable.

OGlobalConfiguration.WAL_LOCATION.setValue("/temp/wal")

or at JVM level:

java	...	-Dstorage.wal.path=/temp/wal	...

This log is not an high level log, which is used to log operations on record level. During
each page change following values are stored:

1. offset and length of chunk of bytes which was changed.
2. previous value of chunk of bytes.
3. replaced (new) value of chunk of bytes.

As you can see WAL contains not logical but raw (in form of chunk of bytes) presentation
of data which was/is contained inside of page. Such format of record of write ahead log
allows to apply the same changes to the page several times and as result allows do not
flush cache content after each TX operation but do such flush on demand and flush only
chosen pages instead of whole cache. The second advantage is following if storage is
crashed during data restore operation it can be restored again , again and again.

PLocal WAL (Journal)

1420



Lets say we have page where following changes are done.

1. 10 bytes at the beginning were changed.
2. 10 bytes at the end were changed.

Storage is crashed during the middle of page flush, which does not mean that first 10
bytes are written, so lets suppose that the last 10 changed byte were written, but first 10
bytes were not.

During data restore we apply all operations stored in WAL one by one, which means that
we set first 10 bytes of changed page and then last 10 bytes of this page. So the
changed page will have correct state does not matter whether it's state was flushed to
the disk or not.

WAL file is split on pages and segments, each page contains in header CRC32 code of
page content and "magic number". When operation records are logged to WAL they are
serialized and binary content appended to the current page, if it is not enough space left
in page to accommodate binary presentation of whole record, the part of binary content
(which does not fit inside of current page) will be put inside of next record. It is important
to avoid gaps (free space) inside of pages. As any other files WAL can be corrupted
because of power failure and detection of gaps inside WAL pages is one of the
approaches how database separates broken and "healthy" WAL pages. More about this
later.

Any operation may include not single but several pages, to avoid data inconsistency all
operations on several records inside of one logical operation are considered as single
atomic operation. To achieve this functionality following types of WAL records were
introduced:

1. atomic operation start.
2. atomic operation end.
3. record which contains changes are done in single page inside of atomic operation.

These records contain following fields:

1. Atomic operation start record contains following fields:
i. Atomic operation id (uuid).
ii. LSN (log sequence number) - physical position of log record inside WAL.

2. Atomic operation end record contains following fields:
i. Atomic operation id (uuid).
ii. LSN (log sequence number) - physical position of log record inside WAL.

1421



iii. rollback flag - indicates whether given atomic operation should be rolled back.
3. Record which contains page changes contains following fields:

i. LSN (log sequence number) - physical position of log record inside WAL.
ii. page index and file id of changed page.
iii. Page changes itself.
iv. LSN of change which was applied to the current page before given one -

prevLSN.

The last record's type (page changes container) contains field (d. item) which deserves
additional explanation. Each cache page contains following "system" fields:

1. CRC32 code of the rest of content.
2. magic number
3. LSN of last change applied to the page - page LSN.

Every time we perform changes on the page before we release it back to the cache we
log page changes to the WAL, assign LSN of WAL record as the "page LSN" and only
after that release page back to the cache.

When WAL flushes it's pages it does not do it at once when current page is filled it is put
in cache and is flushed in background along with other cached pages. Flush is
performed every second in background thread (it is trade off between performance and
durability). But there are two exceptions when flush is performed in thread which put
record in WAL:

1. If WAL page's cache is exhausted.
2. If cache page is flushed, page LSN is compared with LSN of last flushed WAL

record and if page LSN is more than LSN of flushed WAL record then flush of WAL
pages is triggered. LSN is physical position of WAL record, because of WAL is
append only log so if "page LSN" is more than LSN of flushed record it means that
changes for given page were logged but not flushed, but we can restore state of
page only and only if all page changes will be contained in WAL too.

Given all of this data restore process looks like following:

begin
go	trough	all	WAL	records	one	by	one
gather	together	all	atomic	operation	records	in	one	batch
when	"atomic	operation	end"	record	was	found
		if	commit	should	be	performed
				go	through	all	atomic	operation	records	from	first	to	last,	apply	all	page	changes,	set	page	LSN	to	the	LSN	of	applied	WAL	record.
		else
				go	through	all	atomic	operation	records	from	last	to	first,	set	old	page's	content,	set	page	LSN	to	the	WALRecord.prevLSN	value.

1422



		endif
end

As it is written before WAL files are usual files and they can be flushed only partially if
power is switched off during WAL cache flush. There are two cases how WAL pages can
be broken:

1. Pages are flushed partially.
2. Some of pages are completely flushed, some are not flushed.

First case is very easy to detect and resolve:

1. When we open WAL during DB start we verify that size of WAL multiplies of WAL
page size if it is not WAL size is truncated to page size.

2. When we read pages one by one we verify CR32 and magic number of each page.
If page is broken we stop data restore procedure here.

Second case a bit more tricky. Because WAL is append only log, there is two possible
sub-cases, lets suppose we have 3 pages after 2-nd (broken) flush. First and first half of
second page were flushed during first flush and second half of second page and third
page were flushed during second flush. Because second flush was interrupted by power
failure we can have two possible states:

1. Second half of page was flushed but third was not. It is easy to detect by checking
CRC and magic number values.

2. Second half of page is not flushed but third page is flushed. In such case CRC and
magic number values will be correct and we can not use them instead of this when
we read WAL page we check if this page has free space if it has then we check if
this is last page if it is not we mark this WAL page as broken.

1423



Local storage is the first version of disk-based storage engine, but has been replaced by
plocal. Don't create new databases using local, but rather plocal. Local storage has
been kept only for compatibility purpose.

A local storage is composed of multiple Cluster and Data Segments.

Local Storage (Not more available since
2.0)

1424



The cluster is mapped 1-by-2 to files in the underlying File System. The local physical
cluster uses two or more files: One or more files with extension "ocl" (OrientDB Cluster)
and only one file with the extension "och" (OrientDB Cluster Holes).

For example, if you create the "Person" cluster, the following files will be created in the
folder that contains your database:

person.0.ocl
person.och

The first file contains the pointers to the record content in ODA (OrientDB Data
Segment). The '0' in the name indicates that more successive data files can be created
for this cluster. You can split a physical cluster into multiple real files. This behavior
depends on your configuration. When a cluster file is full, a new file will be used.

The second file is the "Hole" file that stores the holes in the cluster caused by deleted
data.

NOTE (again, but very important): You can move real files in your file system only
by using the OrientDB APIs.

Local Physical Cluster

1425



OrientDB uses data segments to store the record content. The data segment behaves
similar to the physical cluster files: it uses two or more files. One or multiple files with the
extension "oda" (OrientDB Data) and only one file with the extension "odh" (OrientDB
Data Holes).

By default OrientDB creates the first data segment named "default". In the folder that
contains your database you will find the following files:

default.0.oda
default.odh

The first file is the one that contains the real data. The '0' in the name indicates that
more successive data files can be created for this cluster. You can split a data segment
into multiple real files. This behavior depends on your configuration. When a data
segment file is full, a new file will be used.

NOTE (again, but it can't be said too many times): You can move real files in your
file system only by using the OrientDB APIs.

Interaction between components: load record use case:

Data Segment

1426



1427



OrientDB uses clusters to store links to the data. A cluster is a generic way to group
records. It is a concept that does not exist in the Relational world, so it is something that
readers from the relational world should pay particular attention to.

You can use a cluster to group all the records of a certain type, or by a specific value.
Here are some examples of how clusters may be used:

Use the cluster "Person" to group all the records of type "Person". This may at first
look very similar to the RDBMS tables, but be aware that the concept is quite
different.
Use the cluster "Cache" to group all the records most accessed.
Use the cluster "Today" to group all the records created today.
Use the cluster "CityCar" to group all the city cars.

If you have a background from the RDBMS world, you may benefit to think of a cluster
as a table (at least in the beginning). OrientDB uses a cluster per "class" by default, so
the similarities may be striking at first. However, as you get more advanced, we strongly
recommend that you spend some time understanding clustering and how it differs from
RDBMS tables.

A cluster can be local (physical) or in-memory.

Note: If you used an earlier version of OrientDB. The concept of "Logical Clusters"
are not supported after the introduction of version 1.0.

Clusters

1428



Also called Physical cluster, it stores data on disk.

Persistent Cluster

1429



The information stored in "In-Member clusters" is volatile (that is, it is never stored to
disk). Use this cluster only to work with temporary data. If you need an In-Memory
database, create it as an In-memory Database. In-memory databases have only In-
memory clusters.

In-Memory cluster

1430



Below are the limitations of the OrientDB engine:

Databases: There is no limit to the number of databases per server or embedded.
Users reported no problem with 1000 databases open
Clusters: each database can have a maximum of 32,767 clusters (2^15-1)
Records per cluster (Documents, Vertices and Edges are stored as records): can
be up to 9,223,372,036,854,780,000 (2^63-1), namely 9,223,372 Trillion records
Records per database (Documents, Vertices and Edges are stored as records):
can be up to 302,231,454,903,000,000,000,000 (2^78-1), namely 302,231,454,903
Trillion records
Record size: up to 2GB each, even if we suggest avoiding the creation of records
larger than 10MB. They can be split into smaller records, take a look at Binary Data
Document Properties can be:

up to 2 Billion per database for schema-full properties
there is no limitation regarding the number of properties in schema-less mode.
The only concrete limit is the size of the Document where they can be stored.
Users have reported no problems working with documents made of 15,000
properties

Indexes can be up to 2 Billion per database. There are no limitations regarding the
number of indexes per class
Queries can return a maximum of 2 Billion rows, no matter the number of the
properties per record

Limits

1431



OrientDB v 2.0.x has some limitations you should notice when you work in Distributed
Mode:

	hotAlignment:true	 could bring the database status as inconsistent. Please set it
always to 'false`, the default
creation of a database on multiple nodes could cause synchronization problems
when clusters are automatically created. Please create the databases before to run
in distributed mode
split network case: this is not well managed and in case you setup 4 nodes and the
network is split between 2 nodes on the left, and 2 nodes on the right, each partition
will think to be the only survived and on rejoin database could be inconsistent.
Please always setup an odd number of nodes, so there will always be a majority in
quorum
if an error happen during CREATE RECORD, the operation is fixed across the
entire cluster, but some node could have a wrong RID upper bound (the created
record, then deleted as fix operation). In this case a new database deploy operation
must be executed
Constraints with distributed databases could cause problems because some
operations are executed at 2 steps: create + update. For example in some
circumstance edges could be first created, then updated, but constraints like
MANDATORY and NOTNULL against fields would fail at the first step making the
creation of edges not possible on distributed mode.

Limitations running distributed

1432



RidBag is a data structure that manages multiple RIDs. It is a collection without an order
that could contain duplication. Actually the bag (or multi-set) is similar to set, but could
hold several instances of the same object.

RidBag is designed to efficiently manage edges in graph database, however it could be
used directly in document level.

RidBag

1433



The first goal of RidBag is to be able efficiently manage billions of entries. In the same
time it should be possible to use such collection in the remote. The main restriction of
such case is amount of data that should be sent over the network.

Some of the methods of 	java.util.Collection	 is really hard to efficiently implement for
such case, when most of them are not required for relationship management.

Why it doesn't implement java
java.util.Collection

1434



RidBag has 2 modes:

Embedded - has list-like representation and serialize its content right in document
Tree-based - uses external tree-based data structure to manages its content. Has
some overhead over embedded one, but much more efficient for many records.

By default newly created RidBags are embedded and they are automatically converted
to tree-based after reaching a threshold. The automatic conversion in opposite direction
is disabled by default due to an issues in remote mode. However you can use it if you
are using OrientDB embedded and don't use remote connections.

The conversion is always done on server and never on client. Firstly it allows to avoid a
lot of issues related to simultaneous conversions. Secondly it allows to simplify the
clients.

How it works

1435



RidBag could be configured with OGlobalConfiguration.

	RID_BAG_EMBEDDED_TO_SBTREEBONSAI_THRESHOLD	 (	ridBag.embeddedToSbtreeBonsaiThreshold	) -
The threshold of LINKBAG conversion to sbtree-based implementation. Default
value: 80.
	RID_BAG_SBTREEBONSAI_TO_EMBEDDED_THRESHOLD	 (	ridBag.sbtreeBonsaiToEmbeddedToThreshold	) -
The threshold of LINKBAG conversion to embedded implementation. Disabled by
default.

Configuration

1436



NOTE: This topic is rather for contributors or driver developers. OrientDB users
don't have to care about bag internals.

As been said rid bag could be represented in two ways: embedded and tree-based. The
first implementation serializes its entries right into stream of its owner. The second one
serializes only a special pointer to an external data structure.

In the same time the server could automatically convert the bag from embedded to tree-
based during save/commit. So client should be aware of such conversion because it can
hold an instance of rid bag.

To "listen" for such changes client should assign a temporary collection id to bag.

The flow of save/commit commands:

	Client																																																									Server
			|																																																														|
			V																																																														|
		/---------\						Record	content	[that	contain	bag	with	uuid]								|
	|											|------------------------------------------------------->|
	|			Send				|																																																								|	Convert	to	tree
	|		command		|																																																								|	and	save	to	disk
	|	to	server	|			Response	with	changes	(A	new	collection	pointer)					|
	|											|<-------------------------------------------------------/
		\---------/								the	target	of	new	identity	assignment
			|																		identified	by	temporary	id
			|
			V
	/-----------------------------\
	|	Update	a	collection	pointer	|
	|	to	be	able	perform	actions		|
	|	with	remote	tree												|
	\-----------------------------/

Interaction with remote clients

1437



NOTE: This topic is rather for contributors or driver developers. OrietnDB users
don't have to care about bag serialization

Save and load operations are performed during save/load of owner of RidBag. Other
operations are performed separately and have its own commands in binary protocol.

To get definitive syntax of each network command see Network Binary Protocol

Serialization.

1438



The bag is serialized in a binary format. If it is serialized into document by CSV serializer
it's encoded with base64.

The format is following:

(config:byte)[(temp_id:uuid:optional)](content.md)

The first byte is reserved for configuration. The bits of config byte define the further
structure of binary stream:

1. 1st: 1 if bag is embedded. 0 if tree-based.
2. 2nd: 1 if uuid is assigned, 0 otherwise. Used to prevent storing of UUID to disk.

If bag is embedded content has following

(size:int)(link:rid)*

If bag is tree based it doesn't serialize the content it serialize just a collection pointer
that points where the tree structure is saved:

(collectionPointer)(size:int)(changes)

See also serialization of collection pointer and rid bag changes

The cached size value is also saved to stream. It don't have to be recalculated in most
cases.

The changes part is used by client to send changes to server. In all other cases size of
cahnges is 0

Serialization during save and load

1439



Calculation of size for embedded rid bag is straight forward. But what about tree-based
bag.

The issue there that we probably have some changes on client that have not been send
to the server. On the other hand we probably have billions of records in bag on server.
So we can't just calculate size on server because we don't know how to apply changes
readjust that size regarding to changes on client. And in the same time calculation of
size on client is inefficient because we had to iterate over big amount of records over the
network.

That's why following approach is used:

Client ask server for RidBag size and provide client changes
Server apply changes in memory to calculate size, but doesn't save them to bag.
New entries (documents that have never been saved) are not sent to server for
recalculation, and the size is adjusted on client. New entries doesn't have an identity
yet, but rid bag works only with identities. So to prevent miscalculation it is easier to
add the count of not saved entries to calculated bag size on client.

Request:

(treePointer:collectionPointer)(changes)

See also serialization of collection pointer and rid bag changes

Response:

(size:int)

Size of rid bag

REQUEST_RIDBAG_GET_SIZE network command

1440



Iteration over tree-based RidBag could be implemented with
REQUEST_SBTREE_BONSAI_GET_ENTRIES_MAJOR and
REQUEST_SBTREE_BONSAI_FIRST_KEY.

Server doesn't know anything about client changes. So iterator implementation should
apply changes to the result before returning result to the user.

The algorithm of fetching records from server is following:

1. Get the first key from SB-tree.
2. Fetch portion of data with getEtriesMajor operation.
3. Repeat step 2 while getEtriesMajor returns any result.

Iteration over tree-based RidBag

1441



(changesSize:int)[(link:rid)(changeType:byte)(value:int)]*

changes could be 2 types:

Diff - value defines how the number of entries is changed for specific link.
Absolute - sets the number of entries of specified link. The number defined by
value field.

Serialization of rid bag changes

1442



(fileId:long)(pageIndex:long)(pageOffset:int)

Serialization of collection pointer

1443



BNF token specification

DOCUMENT	START
TOKENS
<DEFAULT>	SKIP	:	{
"	"
|	"\t"
|	"\n"
|	"\r"
}

/**	reserved	words	**/<DEFAULT>	TOKEN	:	{
<SELECT:	("s"	|	"S")	("e"	|	"E")	("l"	|	"L")	("e"	|	"E")	("c"	|	"C")	("t"	|	"T")>
|	<INSERT:	("i"	|	"I")	("n"	|	"N")	("s"	|	"S")	("e"	|	"E")	("r"	|	"R")	("t"	|	"T")>
|	<UPDATE:	("u"	|	"U")	("p"	|	"P")	("d"	|	"D")	("a"	|	"A")	("t"	|	"T")	("e"	|	"E")>
|	<DELETE:	("d"	|	"D")	("e"	|	"E")	("l"	|	"L")	("e"	|	"E")	("t"	|	"T")	("e"	|	"E")>
|	<FROM:	("f"	|	"F")	("r"	|	"R")	("o"	|	"O")	("m"	|	"M")>
|	<WHERE:	("w"	|	"W")	("h"	|	"H")	("e"	|	"E")	("r"	|	"R")	("e"	|	"E")>
|	<INTO:	("i"	|	"I")	("n"	|	"N")	("t"	|	"T")	("o"	|	"O")>
|	<VALUES:	("v"	|	"V")	("a"	|	"A")	("l"	|	"L")	("u"	|	"U")	("e"	|	"E")	("s"	|	"S")>
|	<SET:	("s"	|	"S")	("e"	|	"E")	("t"	|	"T")>
|	<ADD:	("a"	|	"A")	("d"	|	"D")	("d"	|	"D")>
|	<REMOVE:	("r"	|	"R")	("e"	|	"E")	("m"	|	"M")	("o"	|	"O")	("v"	|	"V")	("e"	|	"E")>
|	<AND:	("a"	|	"A")	("n"	|	"N")	("d"	|	"D")>
|	<OR:	("o"	|	"O")	("r"	|	"R")>
|	<NULL:	("N"	|	"n")	("U"	|	"u")	("L"	|	"l")	("L"	|	"l")>
|	<ORDER:	("o"	|	"O")	("r"	|	"R")	("d"	|	"D")	("e"	|	"E")	("r"	|	"R")>
|	<BY:	("b"	|	"B")	("y"	|	"Y")>
|	<LIMIT:	("l"	|	"L")	("i"	|	"I")	("m"	|	"M")	("i"	|	"I")	("t"	|	"T")>
|	<RANGE:	("r"	|	"R")	("a"	|	"A")	("n"	|	"N")	("g"	|	"G")	("e"	|	"E")>
|	<ASC:	("a"	|	"A")	("s"	|	"S")	("c"	|	"C")>
|	<AS:	("a"	|	"A")	("s"	|	"S")>
|	<DESC:	("d"	|	"D")	("e"	|	"E")	("s"	|	"S")	("c"	|	"C")>
|	<THIS:	"@this">
|	<RECORD_ATTRIBUTE:	<RID_ATTR>	|	<CLASS_ATTR>	|	<VERSION_ATTR>	|	<SIZE_ATTR>	|	<TYPE_ATTR>>
|	<#RID_ATTR:	"@rid">
|	<#CLASS_ATTR:	"@class">
|	<#VERSION_ATTR:	"@version">
|	<#SIZE_ATTR:	"@size">
|	<#TYPE_ATTR:	"@type">
}

/**	LITERALS	**/<DEFAULT>	TOKEN	:	{
<INTEGER_LITERAL:	<DECIMAL_LITERAL>	([|	<HEX_LITERAL>	(["l","L"]("l","L"].md)?))?	|	<OCTAL_LITERAL>	([|	<#DECIMAL_LITERAL:	[
|	<FLOATING_POINT_LITERAL:	<DECIMAL_FLOATING_POINT_LITERAL>	|	<HEXADECIMAL_FLOATING_POINT_LITERAL>>
|	<#DECIMAL_FLOATING_POINT_LITERAL:	(["."	(["0"-"9"]("0"-"9"].md)+))**	(<DECIMAL_EXPONENT>)?	([|	
|	<#HEXADECIMAL_FLOATING_POINT_LITERAL:	"0"	[(["0"-"9","a"-"f","A"-"F"]("x","X"].md))+	(".")?	<HEXADECIMAL_EXPONENT>	([|	
|	<CHARACTER_LITERAL:	"\'"	(~[|	"\\"	(["n","t","b","r","f","\\","\'","\""]("\'","\\","\n","\r"
|	<STRING_LITERAL:	"\""	(~["\"","\\","\n","\r"]("0"-"7"].md)))	|	"\\"	([|	["0"-"7"]("n","t","b"
}

/*	SEPARATORS	*/<DEFAULT>	TOKEN	:	{
<LPAREN:	"(">

SQL parser syntax

1444

https://en.wikipedia.org/wiki/Backus-Naur_Form


|	<RPAREN:	")">
|	<LBRACE:	"{">
|	<RBRACE:	"}">
|	<LBRACKET:	"[">
|	<RBRACKET:	"]("0"-"7"].md))*)">
|	<SEMICOLON:	";">
|	<COMMA:	",">
|	<DOT:	".">
|	<AT:	"@">
}

/**	OPERATORS	**/<DEFAULT>	TOKEN	:	{
<EQ:	"=">
|	<LT:	"<">
|	<GT:	">">
|	<BANG:	"!">
|	<TILDE:	"~">
|	<HOOK:	"?">
|	<COLON:	":">
|	<LE:	"<=">
|	<GE:	">=">
|	<NE:	"!=">
|	<NEQ:	"<>">
|	<SC_OR:	"||">
|	<SC_AND:	"&&">
|	<INCR:	"++">
|	<DECR:	"--">
|	<PLUS:	"+">
|	<MINUS:	"-">
|	<STAR:	"**">
|	<SLASH:	"/">
|	<BIT_AND:	"&">
|	<BIT_OR:	"|">
|	<XOR:	"^">
|	<REM:	"%">
|	<LSHIFT:	"<<">
|	<PLUSASSIGN:	"+=">
|	<MINUSASSIGN:	"-=">
|	<STARASSIGN:	"**=">
|	<SLASHASSIGN:	"/=">
|	<ANDASSIGN:	"&=">
|	<ORASSIGN:	"|=">
|	<XORASSIGN:	"^=">
|	<REMASSIGN:	"%=">
|	<LSHIFTASSIGN:	"<<=">
|	<RSIGNEDSHIFTASSIGN:	">>=">
|	<RUNSIGNEDSHIFTASSIGN:	">>>=">
|	<ELLIPSIS:	"...">
|	<NOT:	("N"	|	"n")	("O"	|	"o")	("T"	|	"t")>
|	<LIKE:	("L"	|	"l")	("I"	|	"i")	("K"	|	"k")	("E"	|	"e")>
|	<IS:	"is"	|	"IS"	|	"Is"	|	"iS">
|	<IN:	"in"	|	"IN"	|	"In"	|	"iN">
|	<BETWEEN:	("B"	|	"b")	("E"	|	"e")	("T"	|	"t")	("W"	|	"w")	("E"	|	"e")	("E"	|	"e")	("N"	|	"n"
|	<CONTAINS:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	"n"
|	<CONTAINSALL:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	
|	<CONTAINSKEY:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"	|	
|	<CONTAINSVALUE:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"
|	<CONTAINSTEXT:	("C"	|	"c")	("O"	|	"o")	("N"	|	"n")	("T"	|	"t")	("A"	|	"a")	("I"	|	"i")	("N"
|	<MATCHES:	("M"	|	"m")	("A"	|	"a")	("T"	|	"t")	("C"	|	"c")	("H"	|	"h")	("E"	|	"e")	("S"	|	"s"

1445



|	<TRAVERSE:	("T"	|	"t")	("R"	|	"r")	("A"	|	"a")	("V"	|	"v")	("E"	|	"e")	("R"	|	"r")	("S"	|	"s"
}

<DEFAULT>	TOKEN	:	{
<IDENTIFIER:	<LETTER>	(<PART_LETTER>)**>
|	<#LETTER:	[|	<#PART_LETTER:	["0"-"9","A"-"Z","_","a"-"z"]("A"-"Z","_","a"-"z"]>.md)>
}

NON-TERMINALS
				Rid				:=				"#"	<INTEGER_LITERAL>	<COLON>	<INTEGER_LITERAL>
								|				<INTEGER_LITERAL>	<COLON>	<INTEGER_LITERAL>
/**	Root	production.	**/				OrientGrammar				:=				Statement	<EOF>
				Statement				:=				(	SelectStatement	|	DeleteStatement	|	InsertStatement	|	UpdateStatement	)
				SelectStatement				:=				<SELECT>	(	Projection	)?	<FROM>	FromClause	(	<WHERE>	WhereClause	)?	(	OrderBy	)?	(	Limit	)?	(	Range	)?
				DeleteStatement				:=				<DELETE>	<FROM>	<IDENTIFIER>	(	<WHERE>	WhereClause	)?
				UpdateStatement				:=				<UPDATE>	(	<IDENTIFIER>	|	Cluster	|	IndexIdentifier	)	(	(	<SET>	UpdateItem	(	
				UpdateItem				:=				<IDENTIFIER>	<EQ>	(	<NULL>	|	<STRING_LITERAL>	|	Rid	|	<INTEGER_LITERAL>	|	<FLOATING_POINT_LITERAL>	|	<CHARACTER_LITERAL>	|	<LBRACKET>	Rid	(	
				UpdateAddItem				:=				<IDENTIFIER>	<EQ>	(	<STRING_LITERAL>	|	Rid	|	<INTEGER_LITERAL>	|	<FLOATING_POINT_LITERAL>	|	<CHARACTER_LITERAL>	|	<LBRACKET>	Rid	(	
				InsertStatement				:=				<INSERT>	<INTO>	(	<IDENTIFIER>	|	Cluster	)	<LPAREN>	<IDENTIFIER>	(	
				InsertExpression				:=				<NULL>
								|				<STRING_LITERAL>
								|				<INTEGER_LITERAL>
								|				<FLOATING_POINT_LITERAL>
								|				Rid
								|				<CHARACTER_LITERAL>
								|				<LBRACKET>	Rid	(	","	Rid	)**	<RBRACKET>
				InputParameter				:=				"?"
				Projection				:=				ProjectionItem	(	","	ProjectionItem	)**
				ProjectionItem				:=				"**"
								|				(	(	<NULL>	|	<INTEGER_LITERAL>	|	<STRING_LITERAL>	|	<FLOATING_POINT_LITERAL>	|	<CHARACTER_LITERAL>	|	FunctionCall	|	DottedIdentifier	|	RecordAttribute	|	ThisOperation	|	InputParameter	)	(	<AS>	Alias	)?	)
				FilterItem				:=				<NULL>
								|				Any
								|				All
								|				<INTEGER_LITERAL>
								|				<STRING_LITERAL>
								|				<FLOATING_POINT_LITERAL>
								|				<CHARACTER_LITERAL>
								|				FunctionCall
								|				DottedIdentifier
								|				RecordAttribute
								|				ThisOperation
								|				InputParameter
				Alias				:=				<IDENTIFIER>
				Any				:=				"any()"
				All				:=				"all()"
				RecordAttribute				:=				<RECORD_ATTRIBUTE>
				ThisOperation				:=				<THIS>	(	FieldOperator	)**
				FunctionCall				:=				<IDENTIFIER>	<LPAREN>	(	"**"	|	(	FilterItem	(	","	FilterItem	)**	)	)	<RPAREN>	(	FieldOperator	)**
				FieldOperator				:=				(	<DOT>	<IDENTIFIER>	<LPAREN>	(	FilterItem	(	","	FilterItem	)**	)?	<RPAREN>	)
								|				(	"[<STRING_LITERAL>	"](".md)"	)
				DottedIdentifier				:=				<IDENTIFIER>	(	"[WhereClause	"](".md)"	)+
								|				<IDENTIFIER>	(	FieldOperator	)+
								|				<IDENTIFIER>	(	<DOT>	DottedIdentifier	)?
				FromClause				:=				FromItem
				FromItem				:=				Rid
								|				<LBRACKET>	Rid	(	","	Rid	)**	<RBRACKET>
								|				Cluster
								|				IndexIdentifier
								|				<IDENTIFIER>

1446



				Cluster				:=				"cluster:"	<IDENTIFIER>
				IndexIdentifier				:=				"index:"	<IDENTIFIER>
				WhereClause				:=				OrBlock
				OrBlock				:=				AndBlock	(	<OR>	AndBlock	)**
				AndBlock				:=				(	NotBlock	)	(	<AND>	(	NotBlock	)	)**
				NotBlock				:=				(	<NOT>	)?	(	ConditionBlock	|	ParenthesisBlock	)
				ParenthesisBlock				:=				<LPAREN>	OrBlock	<RPAREN>
				ConditionBlock				:=				TraverseCondition
								|				IsNotNullCondition
								|				IsNullCondition
								|				BinaryCondition
								|				BetweenCondition
								|				ContainsCondition
								|				ContainsTextCondition
								|				MatchesCondition
				CompareOperator				:=				EqualsCompareOperator
								|				LtOperator
								|				GtOperator
								|				NeOperator
								|				NeqOperator
								|				GeOperator
								|				LeOperator
								|				InOperator
								|				NotInOperator
								|				LikeOperator
								|				ContainsKeyOperator
								|				ContainsValueOperator
				LtOperator				:=				<LT>
				GtOperator				:=				<GT>
				NeOperator				:=				<NE>
				NeqOperator				:=				<NEQ>
				GeOperator				:=				<GE>
				LeOperator				:=				<LE>
				InOperator				:=				<IN>
				NotInOperator				:=				<NOT>	<IN>
				LikeOperator				:=				<LIKE>
				ContainsKeyOperator				:=				<CONTAINSKEY>
				ContainsValueOperator				:=				<CONTAINSVALUE>
				EqualsCompareOperator				:=				<EQ>
				BinaryCondition				:=				FilterItem	CompareOperator	(	Rid	|	FilterItem	)
				BetweenCondition				:=				FilterItem	<BETWEEN>	FilterItem	<AND>	FilterItem
				IsNullCondition				:=				FilterItem	<IS>	<NULL>
				IsNotNullCondition				:=				FilterItem	<IS>	<NOT>	<NULL>
				ContainsCondition				:=				FilterItem	<CONTAINS>	<LPAREN>	OrBlock	<RPAREN>
				ContainsAllCondition				:=				FilterItem	<CONTAINSALL>	<LPAREN>	OrBlock	<RPAREN>
				ContainsTextCondition				:=				FilterItem	<CONTAINSTEXT>	(	<STRING_LITERAL>	|	DottedIdentifier	)
				MatchesCondition				:=				FilterItem	<MATCHES>	<STRING_LITERAL>
				TraverseCondition				:=				<TRAVERSE>	(	<LPAREN>	<INTEGER_LITERAL>	(	","	<INTEGER_LITERAL>	(	
				TraverseFields				:=				<STRING_LITERAL>
				OrderBy				:=				<ORDER>	<BY>	<IDENTIFIER>	(	","	<IDENTIFIER>	)**	(	<DESC>	|	<ASC>	)?
				Limit				:=				<LIMIT>	<INTEGER_LITERAL>
				Range				:=				<RANGE>	Rid	(	","	Rid	)?

DOCUMENT	END

1447



(Since OrientDB v 1.7)

Custom Index Engine

1448



The entry points for creating a new Index Engine are two:

OIndexFactory
OIndexEngine

Entry Points

1449



Create your own facory that implements OIndexFactory.

In your factory you have to declare:

1. Which types of index you support
2. Which types of algorithms you support

and you have to implements the createIndex method

Example of custom factory for Lucene Indexing

package	com.orientechnologies.lucene;

import	java.util.Collections;
import	java.util.HashSet;
import	java.util.Set;

import	com.orientechnologies.lucene.index.OLuceneFullTextIndex;
import	com.orientechnologies.lucene.index.OLuceneSpatialIndex;
import	com.orientechnologies.lucene.manager.*;
import	com.orientechnologies.lucene.shape.OShapeFactoryImpl;
import	com.orientechnologies.orient.core.db.record.ODatabaseRecord;
import	com.orientechnologies.orient.core.db.record.OIdentifiable;
import	com.orientechnologies.orient.core.exception.OConfigurationException;
import	com.orientechnologies.orient.core.index.OIndexFactory;
import	com.orientechnologies.orient.core.index.OIndexInternal;
import	com.orientechnologies.orient.core.metadata.schema.OClass;
import	com.orientechnologies.orient.core.record.impl.ODocument;

/**
	*	Created	by	enricorisa	on	21/03/14.
	*/
public	class	OLuceneIndexFactory	implements	OIndexFactory	{

		private	static	final	Set<String>	TYPES;
		private	static	final	Set<String>	ALGORITHMS;
		public	static	final	String							LUCENE_ALGORITHM	=	"LUCENE";

		static	{
				final	Set<String>	types	=	new	HashSet<String>();
				types.add(OClass.INDEX_TYPE.UNIQUE.toString());
				types.add(OClass.INDEX_TYPE.NOTUNIQUE.toString());
				types.add(OClass.INDEX_TYPE.FULLTEXT.toString());
				types.add(OClass.INDEX_TYPE.DICTIONARY.toString());
				types.add(OClass.INDEX_TYPE.SPATIAL.toString());
				TYPES	=	Collections.unmodifiableSet(types);
		}

		static	{
				final	Set<String>	algorithms	=	new	HashSet<String>();

Implementing OIndexFactory

1450



				algorithms.add(LUCENE_ALGORITHM);
				ALGORITHMS	=	Collections.unmodifiableSet(algorithms);
		}

		public	OLuceneIndexFactory()	{
		}

		@Override
		public	Set<String>	getTypes()	{
				return	TYPES;
		}

		@Override
		public	Set<String>	getAlgorithms()	{
				return	ALGORITHMS;
		}

		@Override
		public	OIndexInternal<?>	createIndex(ODatabaseRecord	oDatabaseRecord,	String	indexType,	String	algorithm,
						String	valueContainerAlgorithm,	ODocument	metadata)	throws	OConfigurationException	{
				return	createLuceneIndex(oDatabaseRecord,	indexType,	valueContainerAlgorithm,	metadata);
		}

		private	OIndexInternal<?>	createLuceneIndex(ODatabaseRecord	oDatabaseRecord,	String	indexType,	String	valueContainerAlgorithm,
						ODocument	metadata)	{
				if	(OClass.INDEX_TYPE.FULLTEXT.toString().equals(indexType))	{
						return	new	OLuceneFullTextIndex(indexType,	LUCENE_ALGORITHM,	new	OLuceneIndexEngine<Set<OIdentifiable>>(
										new	OLuceneFullTextIndexManager(),	indexType),	valueContainerAlgorithm,	metadata);
				}	else	if	(OClass.INDEX_TYPE.SPATIAL.toString().equals(indexType))	{
						return	new	OLuceneSpatialIndex(indexType,	LUCENE_ALGORITHM,	new	OLuceneIndexEngine<Set<OIdentifiable>>(
										new	OLuceneSpatialIndexManager(new	OShapeFactoryImpl()),	indexType),	valueContainerAlgorithm);
				}
				throw	new	OConfigurationException("Unsupported	type	:	"	+	indexType);
		}
}

To plug your factory create in your project under META-INF/services a text file called
	com.orientechnologies.orient.core.index.OIndexFactory	 and write inside your factory

Example

com.orientechnologies.lucene.OLuceneIndexFactory

1451



To write a new Index Engine implements the OIndexEngine interface.

The main methods are:

get
put

You have to return a Set of OIdentifiable or OIdentifiable if your index is unique,
associated with the key. The key could be:

The value if you are indexing a single field (Integer,String,Double..etc).
OCompositeKey if you are indexing two or more fields

The key is the value to be indexed. Could be as written before
The value is a Set of OIdentifiable or OIdentifiable associated with the key

Implementing OIndexEngine

get 	V	get(Object	key);	

put 	void	put(Object	key,	V	value);	

1452



You can create an index with your Index Engine with sql with this syntax

create	index	Foo.bar	on	Foo	(bar)	NOTUNIQUE	ENGINE	CUSTOM

where CUSTOM is the name of your index engine

Create Index from Sql

1453



In order to contribute issues and pull requests, please sign OrientDB's Contributor
License Agreement. The purpose of this agreement is to protect users of this codebase
by ensuring that all code is free to use under the stipulations of the Apache2 license.

Contribute to OrientDB

1454

https://www.clahub.com/agreements/orientechnologies/orientdb
http://www.apache.org/licenses/LICENSE-2.0.html


If you'd like to contribute to OrientDB with a patch follow the following steps:

apply your changes,
test that Test Suite hasn't been broken. Execute both commands:

ant clean test
mvn clean test

if all the tests pass then do a Pull Request (PR) against "develop" branch on
GitHub and write a comment about the change. Don't sent PR to "master" because
we use that only for releasing

Pushing into main repository

1455



You can find eclipse java formatter config file here: _base/ide/eclipse-formatter.xml

If you use IntelliJ IDEA you can install this plugin and use formatter profile mentioned
above.

Code formatting

1456

https://github.com/orientechnologies/orientdb/blob/master/_base/ide/eclipse-formatter.xml
http://plugins.jetbrains.com/plugin/?id=6546


As soon as github issues does not provide way to manage issue prioritization, priorities
of issues are defined as tags.

Priority Definition

Critical
The OrientDB server in Production doesn’t start up or the database is
corrupted in anyway. Issues encountered in a test or development
environment and enhancement requests should not be listed as
Critical.

High The Issue has impact on OrientDB functionality in Production, but
against a non critical component. OrientDB still works.

Medium The Issue hasn’t impact on the OrientDB operation and can be
bypassed with a round trip.

Low Little or no impact on OrientDB. Cosmetic problem or minor
enhancement.

Issue priorities

1457



If you want to contribute to the project, follow the Contributor rules.

The Team

1458

https://github.com/orientechnologies/orientdb/wiki/Contribute-to-OrientDB


Committers have reached the Joda Level OrientDB certification. They coordinates
updates, patches, new tasks and answer actively to the Google Group. They talk in a
private Mailing List to take decision all together. All the committers refer to the
Committer's guide.

Committers

1459

http://orientechnologies.com/certification.htm
http://groups.google.com/group/orient-database


Description Luca is the original author of OrientDB product
and the main committer. In order to handle indexes in
efficient way Luca has created the new MVRB-Tree
algorithm (it was called RB+Tree but another different
algorithm already exists with this name) as mix of Red-Black
Tree and B+Tree. MVRB stands for Multi Value Red Black
because stores multiple values in each tree node instead of
just one as RB-Tree does. MVRB-Tree consumes less than half memory of the RB-Tree
implementation mantaining the original speed while it balances the tree on
insertion/update. Furthermore the MVRB-Tree allows fast retrieving and storing of nodes
in persistent way. He is member of the Sun Microsystems JDO 1.0 Expert Group
(JSR#12) and JDO 2.0 Expert Group (JSR#243) for the writing of JDO standard.
Company Orient Technologies Ltd
Links Twitter - Google+ - VisualizeMe - LinkedIn - Blog - Ohloh
Since 2009

Luca Garulli

1460

http://www.jcp.org/en/jsr/detail?id=12
http://orientechnologies.com
http://twitter.com/lgarulli
https://plus.google.com/u/0/111607061083712272202/posts
http://vizualize.me/luca.garulli
http://www.linkedin.com/in/garulli
http://zion-city.blogspot.it
http://www.ohloh.net/accounts/lvca


Description Committer since 2012 and contributor since
2011. He started diving into indexes, composite indexes and
many other was introduced.
He have deep knowledge about the MVRB-Tree algorithm,
the optimization of the indexes on queries, Transactions and
Binary storage.
Company Orient Technologies Ltd
Links Twitter LinkedIn
Since 2012

Artem Orobets

1461

http://orientechnologies.com
https://twitter.com/#!/Dr_EniSh
http://ua.linkedin.com/in/artemorobets


Description Committer since 2012 and contributor since
2011. He started diving into indexes, composite indexes and
many other was introduced.
He is:

1. Author of disk based storage system in OrientDB
(plocal) which provides such features as durability and
thread safety. Durability is achieved using write-ahead
logging approach.

2. Author of "direct memory" disk cache (it is replacement of MMAP which is used
underneath of all plocal components) which is based on 2Q and WOW cache
algorithms.

3. Author of index system. Both hash and sbtree indexes.
4. Co-author (together with Artem Orobets) modern implementation of graph

relationships. 
Company Orient Technologies Ltd
Links Twitter LinkedIn
Since 2012

Andrey Lomakin

1462

http://orientechnologies.com
https://twitter.com/#!/Andrey_Lomakin
http://ua.linkedin.com/in/andreylomakin


Description Contributor since 2010 and committer since
2012 Luca is author of various Http commands and the
network protocol multipart management; author of the v1.0
ObjectDatabase implementation; author of the centralized
Fetching strategy; author of the FIND REFERENCES SQL
command; author of the ttl bash orient console; worked on
SQL commands, Storage creation\deleting and more.
Company Asset Data
Links Twitter GitHub
Since 2012

Luca Molino

1463

http://www.assetdata.it
http://twitter.com/MaDaPHaKa
http://github.com/MaDaPHaKa


Contributors are all the people that contribute in any way to the OrientDB development
as code, tests, documentation or other. They talk in a private Mailing List with all the
other committers and contributors and are updated on changes in internal stuff like
binary protocol. One time patch doesn't make you a contributor, but if you're developing
a driver or you sent more patches then you are a candidate to figure in this list.

Contributors (in alphabetic order):

Contributors

1464



Description Web developer since 2001, PHP developer
since 2002. Developer and maintainer of OrientDB-PHP
driver for binary protocol
(https://github.com/AntonTerekhov/OrientDB-PHP), bug
hunter, binary protocol tester :-) . Speaker on two Russian
IT-conferences. Founder, CEO and Lead Developer of own
company. Now specialized at high load, distributed web
systems.
Company NetMonsters
Links Facebook
Since 2011

Anton Terekhov

1465

https://github.com/AntonTerekhov/OrientDB-PHP
http://netmonsters.ru
http://www.facebook.com/anton.terekhov


Description Artem took part in MMAP file improvement
Since 2011

Artyom Loginov

1466



Description Dino is responsable of the Cloud infrastructure of NuvolaBase, providing
OrientDB databases as service. He develop in PHP but his main skill is System
Administrator and hacking on Linux platforms.
Since 2012

Dino Ciuffetti

1467

http://www.nuvolabase.com


Description Federico references to himself in the third
person and develops the node.js driver, which powers its
baby creature, http://presentz.org
Links GitHub Twitter LinkedIn Google+
Since

Federico Fissore

1468

http://presentz.org
https://github.com/ffissore
https://twitter.com/fridrik
https://www.linkedin.com/in/fissore
https://plus.google.com/114091868176609494289


Description Gabriel has been started the node.js OrientDB
driver that implements the binary protocol. This helped
discovering some problems in the binary protocol. Also
helped a little with the corresponding documentation pages.
Links Twitter LinkedIn
Since 2012

Gabriel Petrovay

1469

http://twitter.com/gabipetrovay
http://ch.linkedin.com/in/gabrielpetrovay


Description Java Developer specialized in Geographic Information Systems (GIS). Core
developer on Geotoolkit project (http://www.geotoolkit.org) and related projects :
GeoAPI, Mapfaces, Constellation, MDWeb, Puzzle-GIS. Member at the Open
Geospatial Consortium (OGC) for elaboration of geographic specifications. Contributions
on OrientDB are related to modularisation and performances.
Company Geomatys
Links Web Site Ohloh
Since 2013, contributors since 2012

Johann Sorel

1470

http://www.geotoolkit.org
http://www.geomatys.com
http://jsorel.developpez.com
http://www.ohloh.net/accounts/Eclesia


Description Contributed C++ binding
(https://github.com/Sfinx/orientpp)
Company SfinxSoft
Links LinkedIn
Since 2012

Rus V. Brushkoff

1471

https://github.com/Sfinx/orientpp
http://sfinxsoft.com/
http://ua.linkedin.com/in/sfinx


Description Tomas is developing and maintaining C# binary protocol driver for
OrientDB.
Company ONXPO
Links Home Page GitHub Twitter LinkedIn
Since 2012

Tomas Bosak

1472

https://github.com/yojimbo87/OrientDB-NET.binary
http://www.onxpo.com/
http://yojimbo87.github.com/
https://github.com/yojimbo87
https://twitter.com/yojimbo87
http://www.linkedin.com/in/tomasbosak


Hackatons are the appointement where OrientDB old and new committers and
contributors work together in few hours, on the same spot, or connected online.

Hackaton

1473



1. Committers will support contributors and new users on Hackaton
2. A new Google Hangout will be created, so if you want to attendee please send me

your gmail/gtalk account
3. We'll use the hangout to report to the committer issues to close, or any questions

about issues
4. We'll start from current release (1.7) and then go further (2.0, 2.1, no-release-tag)
5. If the issue is pretty old (>4 months), comment it about trying the last 1.7-rc2. We

could have some chance the issue has already been fixed
6. If the problem is with a SQL query, you could try to reproduce against the

GratefulDeadConcerts database or even an empty database. If you succeed on
reproduce it, please comment with additional information about the issue

The draft rules are (please contribute to
improve it):

1474



1. If you're a Java developer and you can debug inside OrientDB code (that's would be
great) you could include more useful information about the issue or even fix it

2. If you think the issue has been fixed with your patch, please run all the test cases
with:

ant clean test
mvn clean test

3. If all tests pass, send us a Pull Request (see below)

Contribution from Java Developers

1475



1. We're aware to have not the best documentation of the planet, so if you can improve
on this would be awesome

2. JavaDoc, open a Java class, and:
i. add the JavaDoc at the top of the class. This is the most important

documentation in code we can have. if it's pertinent
ii. add the JavaDoc for the public methods. It't better having a description about

the method than the detail of all the parameters, exceptions, etc

Contribution to the Documentation

1476



We use GitHub and it's fantastic to work in a team. In order to make our life easier, the
best way to contribute is with a Pull Request:

1. Goto your GitHub account. if you don't have it, create it in 2 minutes:
www.github.com

2. Fork this project: https://github.com/orientechnologies/orientdb, or any other projects
you want to contribute

3. Commit locally against the "develop" branch
4. Push your changes to your forked repository on GitHub
5. Send us a Pull Request and wait for the merging

Send a Pull Request!

1477

https://github.com/orientechnologies/orientdb


Very often when a new issue is open it lacks some fundamental information. This slows
down the entire process because the first question from the OrientDB team is always
"What release of OrientDB are you using?" and every time a Ferret dies in the world.

So please add more information about your issue:

1. OrientDB release? (If you're using a SNAPSHOT please attach also the build
number found in "build.number" file)

2. What steps will reproduce the problem? 1. 2. 3.
3. Settings. If you're using custom settings please provide them below (to dump all the

settings run the application using the JVM argument -
Denvironment.dumpCfgAtStartup=true)

4. What is the expected behavior or output? What do you get or see instead?
5. If you're describing a performance or memory problem the profiler dump can be

very useful (to dump it run the application using the JVM arguments -
Dprofiler.autoDump.reset=true -Dprofiler.autoDump.interval=10 -
Dprofiler.enabled=true)

Now you're ready to create a new one:
https://github.com/orientechnologies/orientdb/issues/new

Report an Issue

1478

https://github.com/orientechnologies/orientdb/issues/new


We want to make it super-easy for OrientDB users and contributors to talk to us and
connect with each other, to share ideas, solve problems and help make OrientDB
awesome. Here are the main channels we're running currently, we'd love to hear from
you on one of them:

Get in touch

1479



OrientDB Google Group

The OrientDB Google Group (aka Community Group) is a good first stop for a general
inquiry about OrientDB or a specific support issue (e.g. trouble setting OrientDB up). It's
also a good forum for discussions about the roadmap or potential new functionality.

Google Group

1480

https://groups.google.com/forum/#!forum/orient-database
https://groups.google.com/forum/#!forum/orient-database


The best Web Chat, where we have an open channel. Use this is you have a question
about OrientDB.

Gitter.io

1481

https://gitter.im/orientechnologies/orientdb


	#orientdb	

We're big fans of IRC here at OrientDB. We have a #orientdb channel on Freenode -
stop by and say hi, you can even use Freenode's webchat service so don't need to
install anything to access it.

IRC

1482

http://webchat.freenode.net/


@orientechno

Follow and chat to us on Twitter.

Twitter

1483

https://twitter.com/orientechno


OrientDB issues

If you spot a bug, then please raise an issue in our main GitHub project
orientechnologies/orientdb. Likewise if you have developed a cool new feature or
improvement in your OrientDB fork, then send us a pull request against the "develop"
branch!

If you want to brainstorm a potential new feature, then the OrientDB Google Group (see
above) is probably a better place to start.

GitHub

1484

https://github.com/orientechnologies/orientdb/issues?state=open


info@orientechnologies.com

If you want more information about Commercial Support, Consultancy or Training, email
us.

Email

1485

mailto:info@orientechnologies.com
http://www.orientechnologies.com/support/
http://www.orientechnologies.com/consulting/
http://www.orientechnologies.com/training/


Table	of	Contents

Introduction 1
Getting	Started 5
Multi-Model	Database 7
Installation 12
Run	the	server 15
Run	the	console 17
Classes 19
Clusters 22
Record	ID 22
SQL 29
Relationships 32
Working	with	Graphs 38
Using	Schema	with	Graphs 43
Setup	a	Distributed	Database 47
Working	with	Distributed	Graphs 52
Java	API 55
More	on	Tutorials 58

Presentations 61
Basic	Concepts 67
Supported	Types 76
Inheritance 79
Schema 83
Cluster	Selection 91

Fetching	Strategies 94
Indexes 101
SB-Tree 101
Hash 101
Full	Text 120
Lucene	Full	Text 122
Lucene	Spatial 124

Security 129
SSL 146

Caching 152
Functions 157
Transaction 175
Hook	-	Triggers 175
Dynamic	Hooks 187
Java	(Native)	Hooks 190

API 196

1486



Graph	or	Document	API? 200
SQL 203

Filtering 212
Functions 223
Methods 248
Batch 272
Pagination 279
Sequences	and	auto	increment 279
Commands 285

Java	API 429
Graph	API 434
Document	API 494
Object	API 538
Traverse 598
Multi-Threading 604
Transactions 612
Binary	Data 614
Web	Apps 622
Server	Management 627
JDBC	Driver 632
JPA 637

Gremlin	API 642
Javascript 665

Javascript	API 672
Scala	API 690
HTTP	API 697
Binary	Protocol 735

CSV	Serialization 801
Schemaless	Serialization 806
Commands 816

Use	Cases 819
Time	Series 821
Key	Value 825

Server 836
Embed	the	Server 848
Plugins 854

Automatic	Backup 866
Mail 869
JMX 875

Studio 877
Query 882
Edit	Document 882

1487



Edit	Vertex 882
Schema 887
Class 890
Graph	Editor 893
Functions 893
Security 902
Database	Management 906
Server	Management 909

Console 912
Backup 921
Begin 926
Browse	Class 930
Browse	Cluster 933
Classes 936
Clusters 939
Commit 943
Config 947
Config	Get 951
Config	Set 955
Connect 959
Create	Cluster 963
Create	Database 967
Create	Index 973
Create	Link 976
Create	Property 979
Declare	Intent 983
Delete 983
Dictionary	Get 987
Dictionary	Keys 990
Dictionary	Put 993
Dictionary	Remove 996
Disconnect 999
Display	Record 1002
Drop	Cluster 1005
Drop	Database 1008
Export 1012
Export	Record 1018
Freeze	DB 1021
Get 1025
Grant 1029
Import 1032
Info 1038

1488



Info	Class 1041
Insert 1044
Load	Record 1047
Profiler 1050
Properties 1053
Release	DB 1057
Reload	Record 1061
Restore 1064
Revoke 1069
Rollback 1072
Set 1076

Operations 1080
Installation 1084

Install	with	Docker 1087
Install	as	Service	on	Unix/Linux 1095
Install	as	Service	on	Windows 1097

Performance	Tuning 1105
Setting	Configuration 1118
Graph	API 1135
Document	API 1147
Object	API 1149
Profiler 1151

ETL 1185
Configuration 1190
Blocks 1197
Sources 1201
Extractors 1205
Transformers 1207
Loaders 1220
Import	from	CSV	to	a	Graph 1223
Import	from	JSON 1230
Import	from	RDBMS 1234
Import	from	DB-Pedia 1238
Import	from	Parse	(Facebook) 1240

Distributed	Architecture 1243
Lifecycle 1249
Configuration 1257
Server	Manager 1269
Replication 1271
Sharding 1277
Cache 1288

Backup	and	Restore 1289

1489



Export	and	Import 1295
Export	format 1300
Import	From	RDBMS 1300
Import	From	Neo4j 1326

Logging 1331
Enterprise	Edition 1335
Troubleshooting 1340
Java 1346

Available	Plugins 1352
Rexster 1356
Gephi	Graph	Render 1361

Upgrade 1369
Backward	compatibility 1374
From	1.7.x	to	2.0.x 1376
From	1.6.x	to	1.7.x 1384
From	1.5.x	to	1.6.x 1386
From	1.4.x	to	1.5.x 1388
From	1.3.x	to	1.4.x 1390

Internals 1390
Storages 1390

Memory	storage 1390
PLocal	storage 1399
Local	storage	(deprecated) 1423

Clusters 1427
Limits 1430
RidBag 1432
SQL	Syntax 1443
Custom	Index	Engine 1447

Contribute	to	OrientDB 1453
The	Team 1457
Hackaton 1472
Report	an	issue 1472

Get	in	touch 1478

1490


	Introduction
	Getting Started
	Multi-Model Database
	Installation
	Run the server
	Run the console
	Classes
	Clusters
	Record ID
	SQL
	Relationships
	Working with Graphs
	Using Schema with Graphs
	Setup a Distributed Database
	Working with Distributed Graphs
	Java API
	More on Tutorials
	Presentations


	Basic Concepts
	Supported Types
	Inheritance
	Schema
	Cluster Selection

	Fetching Strategies
	Indexes
	SB-Tree
	Hash
	Full Text
	Lucene Full Text
	Lucene Spatial

	Security
	SSL

	Caching
	Functions
	Transaction
	Hook - Triggers
	Dynamic Hooks
	Java (Native) Hooks

	API
	Graph or Document API?
	SQL
	Filtering
	Functions
	Methods
	Batch
	Pagination
	Sequences and auto increment
	Commands

	Java API
	Graph API
	Document API
	Object API
	Traverse
	Multi-Threading
	Transactions
	Binary Data
	Web Apps
	Server Management
	JDBC Driver
	JPA

	Gremlin API
	Javascript
	Javascript API

	Scala API
	HTTP API
	Binary Protocol
	CSV Serialization
	Schemaless Serialization
	Commands


	Use Cases
	Time Series
	Key Value

	Server
	Embed the Server
	Plugins
	Automatic Backup
	Mail
	JMX


	Studio
	Query
	Edit Document
	Edit Vertex
	Schema
	Class
	Graph Editor
	Functions
	Security
	Database Management
	Server Management

	Console
	Backup
	Begin
	Browse Class
	Browse Cluster
	Classes
	Clusters
	Commit
	Config
	Config Get
	Config Set
	Connect
	Create Cluster
	Create Database
	Create Index
	Create Link
	Create Property
	Declare Intent
	Delete
	Dictionary Get
	Dictionary Keys
	Dictionary Put
	Dictionary Remove
	Disconnect
	Display Record
	Drop Cluster
	Drop Database
	Export
	Export Record
	Freeze DB
	Get
	Grant
	Import
	Info
	Info Class
	Insert
	Load Record
	Profiler
	Properties
	Release DB
	Reload Record
	Restore
	Revoke
	Rollback
	Set

	Operations
	Installation
	Install with Docker
	Install as Service on Unix/Linux
	Install as Service on Windows

	Performance Tuning
	Setting Configuration
	Graph API
	Document API
	Object API
	Profiler

	ETL
	Configuration
	Blocks
	Sources
	Extractors
	Transformers
	Loaders
	Import from CSV to a Graph
	Import from JSON
	Import from RDBMS
	Import from DB-Pedia
	Import from Parse (Facebook)

	Distributed Architecture
	Lifecycle
	Configuration
	Server Manager
	Replication
	Sharding
	Cache

	Backup and Restore
	Export and Import
	Export format
	Import From RDBMS
	Import From Neo4j

	Logging

	Enterprise Edition
	Troubleshooting
	Java

	Available Plugins
	Rexster
	Gephi Graph Render

	Upgrade
	Backward compatibility
	From 1.7.x to 2.0.x
	From 1.6.x to 1.7.x
	From 1.5.x to 1.6.x
	From 1.4.x to 1.5.x
	From 1.3.x to 1.4.x

	Internals
	Storages
	Memory storage
	PLocal storage
	Local storage (deprecated)

	Clusters
	Limits
	RidBag
	SQL Syntax
	Custom Index Engine

	Contribute to OrientDB
	The Team
	Hackaton
	Report an issue

	Get in touch

